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Abstract

In this work we focus on two different methods to deal with parametrized
partial differential equations in an efficient and accurate way. Starting from
high fidelity approximations built via the hierarchical model reduction dis-
cretization, we consider two approaches, both based on a projection model
reduction technique. The two methods differ for the algorithm employed
during the construction of the reduced basis. In particular, the former
employs the proper orthogonal decomposition, while the latter relies on a
greedy algorithm according to the certified reduced basis technique. The
two approaches are preliminarily compared on two-dimensional scalar and
vector test cases.

1 Introduction

The interest for fluid dynamics simulations is growing more and more in the
scientific community and in the nowadays society, both in terms of spread and
of relevance. This is, most of all, due to practical issues and time reasons.
Physical experiments are often very expensive and time demanding so that, for
some specific applications (e.g., in naval or aeronautic applications as well as in
medical surgery planning), they are not well-suited, and numerical simulations
become the actual tool for modeling reliable scenarios in such contexts.

Although the computational power is continuously growing, standard meth-
ods in Computational Fluid Dynamics (CFD), such as direct numerical simula-
tions based on finite elements, may be very demanding in terms of computational
time and numerical sources, especially when interested in simulating challenging

1



phenomena in complex domains with a certain accuracy, or, even more, when
dealing with multi-query or parametric frameworks [24].

For these reasons, many different methods have been proposed in the scientific
panorama with the aim of offering a compromise between modeling accuracy
and computational efficiency. Model reduction techniques represent a relevant
solution in such a direction [24]. Some of them are strictly intertwined with
the model of the phenomenon at hand, while others perform the reduction only
under specific physical assumptions on the described configuration [36, 9, 8].

In this work, we focus on the Hierarchical Model (HiMod) reduction tech-
nique [17, 31, 30, 34]. This procedure has been devised to describe CFD con-
figurations where a principal dynamics overwhelms the transverse ones, with a
strong interest for hemodynamic configurations [5, 20, 32]. The leading dynamics
is aligned with the main stream of the flow, while transverse dynamics are gener-
ally induced by geometric irregularities in the computational domain and play a
role only in localized areas. In practice, the idea is to discretize the different dy-
namics by resorting to different numerical methods, in the spirit of a separation
of variable. For instance, in the original proposal of HiMod reduction, the main
direction of the flux is discretized with 1D finite elements, while the transverse
dynamics are reconstructed by using few degrees of freedom via a suitable modal
basis. This separate discretization, independently of the dimension of the (full)
problem at hand, leads to solve a system of coupled 1D problems, whose coeffi-
cients include the effect of the transverse dynamics. This ensures to the HiMod
reduction a reliability which is considerably higher compared with standard 1D
reduced models, and at a computational cost which remains absolutely afford-
able. The computational advantages provided by a HiMod discretization have
been also verified for simulations in real geometries [3, 20, 27]. In particular,
HiMod reduction guarantees a linear dependence of the computational cost on
the number of degrees of freedom in contrast to a standard full finite element
model which demands a suitable power of such a number.

The interest of this paper is on a parametric setting, where the reference
model, coinciding with a parametric Partial Differential Equation, has to be
solved several times, for many different values of the parameter. The goal we
pursue is to approximate, for each value of the parameter, the HiMod discretiza-
tion by a modeling procedure which turns out to be computationally cheaper
than HiMod reduction itself.
A first effort in such a direction is proposed in [6, 26]. The authors apply a Proper
Orthogonal Decomposition procedure to HiMod approximations, to extract a re-
duced basis which allows us to predict the HiMod discretization associated with
any value of the parameter. The new procedure, named HiPOD, is numerically
investigated on scalar elliptic problems and on the Stokes equations in [6]. In
this paper, we investigate a new procedure, alternative to HiPOD, to pursue the
same goal of managing, in a cheap way, a parametric framework. In particu-
lar, we aim at exploiting the computational advantages provided by a greedy
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algorithm in the construction of a reduced basis [16, 22]. For this purpose, we
combine HiMod reduction with the Reduced Basis (RB) approach [37, 21], into
the new technique called HiRB. HiPOD or HiRB approximations considerably
decrease the computational effort due to the lower dimension of the high fidelity
problems. According to an offline/online paradigm, the offline stage remains
the bottleneck from a practical viewpoint. However, the employment of HiMod
discretizations as high fidelity solutions significantly reduces the computational
effort of this phase. Finally, a system of very small order is solved during the
online phase and yields a reliable approximation for the parametric problem at
hand.

The paper is organized as follows. Section 2 introduces the HiMod setting,
and particularizes such a procedure both to a scalar advection-diffusion-reaction
problem and to the Stokes equations. Sections 3 and 4 exemplify the HiPOD
and the HiRB procedures, respectively on the test problems introduced in the
previous section. Particular care is devoted to the inf-sup condition characteriz-
ing the discretization of the Stokes problem. Actually, although the high fidelity
solutions satisfy the Ladyzhenskaya-Brezzi-Babuška (LBB) condition, this is not
ensured either by the POD and the reduced basis formulations. To overcome
this issue, we propose here to resort to the supremizer enrichment stabilization
technique [4]. Section 5 performs a preliminary comparison between HiPOD and
HiRB, starting from the (two-dimensional) test cases considered throughout the
paper. Finally, some conclusions are drawn in Section 6 and future developments
are summarily itemized.

2 The HiMod setting

We summarize here the main features of the Hierarchical Model (HiMod) reduc-
tion technique, following the original setting in [17, 31, 34, 30]. We assume that
the d-dimensional domain, Ω, with d = 2, 3, coincides with the fiber bundle

Ω =
⋃

x∈Ω1D

{x} × γx, (1)

where Ω1D is the supporting fiber aligned with the main flow, while γx denotes the
(d− 1)-dimensional transverse fiber at point x ∈ Ω1D, parallel to the secondary
dynamics. In practice, computations are performed in a reference domain, Ω̂,
so that Ψ(Ω) = Ω̂, Ψ : Ω → Ω̂ being a sufficiently regular map (see Figure 1).
In general, domain Ω̂ coincides with a rectangle (d = 2) or with a right circular
cylinder (d = 3). For simplicity, we consider a rectilinear axis Ω1D = (0, L) with
L > 0, so that Ψ(x,y) = (x,ψx(y)), for any (x,y) ∈ Ω. Map Ψ preserves the
supporting fiber and deforms only the transverse shape of the domain via the
map ψx : γx → γ̂ between the generic, γx , and the reference, γ̂, transverse
section. This induces a decomposition similar to (1) on the reference domain as
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Figure 1: HiMod map between the physical and the reference domain.

well, being Ω̂ =
⋃
x∈Ω1D

{x}× γ̂. We refer to [29, 32, 5] for the more general case
of a curvilinear fiber Ω1D.

In the next sections, we apply the HiMod discretization to a scalar and to a
vector problem, in order to detail the involved procedures.

2.1 HiMod reduction for advection-diffusion-reaction problems

We consider as full problem to be reduced the generic scalar advection-diffusion-
reaction (ADR) problem, find u : Ω→ R such that

−∇ ·
(
ν∇u

)
(x,y) + b(x,y) · ∇u(x,y) + σ(x,y)u(x,y) = f(x,y) in Ω,

u(x,y) = g(x,y) on ΓD,

ν(x,y)
∂u

∂n
(x,y) = h(x,y) on ΓN ,

ν(x,y)
∂u

∂n
(x,y) + ρ(x,y)u(x,y) = l(x,y) on ΓR,

(2)

with ΓD, ΓN , ΓR portions of the boundary ∂Ω of Ω, such that
◦
ΓD ∩

◦
ΓN ∩

◦
ΓR=

∅ and ΓD ∪ ΓN ∪ ΓR = ∂Ω, n being the unit outward normal vector to ∂Ω.
Concerning the problem data, ν ∈ L∞(Ω), with ν(x,y) ≥ ν0 > 0 a.e. in Ω,
denotes the diffusion coefficient, b = [bx, by]T ∈ [L∞(Ω)]d, with ∇ · b ∈ L2(Ω),
the advective field, σ ∈ L2(Ω), with σ(x,y) ≥ 0 a.e. in Ω, the reaction, f ∈ L2(Ω)
the forcing term, g ∈ H1/2(ΓD), h ∈ L2(ΓN ) and l ∈ L2(ΓR) are the boundary
data, with ρ ∈ L∞(ΓR) and where standard notation are adopted for function
spaces [15].

HiMod reduction applies to the weak form of the full problem,

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (3)
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with V = H1
ΓD

(Ω),

a(u, v) =

∫
Ω
ν∇u · ∇v dΩ +

∫
Ω
b · ∇uv dΩ +

∫
Ω
σuv dΩ +

∫
ΓR

ρuv dS

F (v) =

∫
Ω
fv dΩ +

∫
ΓR

lv dS +

∫
ΓN

hv dS

(4)
where, to simplify notation, we assume g = 0 in (2) and we drop the dependence
on (x,y). The assumptions above on the problem data ensure the well-posedness
of (3) [15].

Thus, the HiMod formulation for problem (2) can be stated as

find um ∈ Vm : a(um, vm) = F (vm) ∀vm ∈ Vm, (5)

for a certain m ∈ N+, and with

Vm =

{
vm(x,y) =

m∑
k=1

ṽk(x)ϕk(ψx(y)), with ṽk ∈ V h
1D, x ∈ Ω1D, y ∈ γx

}
, (6)

the HiMod space, where V h
1D is a one-dimensional (1D) discrete subspace of

H1(Ω1D) associated with a subdivision, Th, of Ω1D, {ϕk}mk=1 is a modal basis of
functions defined on γ̂, orthonormal with respect to the L2(γ̂)- scalar product,
and m is the modal index, i.e., the number of modes employed to model the
transverse dynamics. In the sequel, we identify V h

1D with the standard space
of the (continuous) finite elements (FE) [15], while referring to [29, 32, 5] for
different discretizations. As far as the choice of m is concerned, it can be fixed
a priori, thanks to heuristic considerations or to a partial knowledge of the full
problem, or a posteriori, driven by a modeling error analysis as in [33, 35].

The HiMod space has to be endowed with a conformity and a spectral ap-
proximability assumption to ensure the well-posedness of formulation (5), as well
as a standard density hypothesis has to be advanced on the discrete space V h

1D

to guarantee the convergence of the HiMod approximation, um, to u (we refer
to [31] for the details).

Concerning the boundary conditions completing problem (2), we have to
distinguish between data assigned on the inflow/outflow boundaries and on the
lateral surface of Ω. In the first case, we employ a modal expansion of the data to
be imposed in an essential way. With reference to lateral boundary conditions,
we resort to the approach proposed in [3], where the authors set a general way to
incorporate, essentially, the lateral boundary data by defining a customized basis
referred to as an educated modal basis. The effectiveness of such a procedure is
successfully investigated both from a theoretical and a numerical point of view
in the same work. In the numerical assessment below, we resort to an educated
modal basis to manage the lateral boundary conditions.

From a computational viewpoint, discretization (5) turns the full model (2)
into a system of m coupled 1D problems defined on Ω1D. This represents the
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Figure 2: ADR test case: comparison between the full solution (left) and the
HiMod approximation, u8, (right).

strength-point of a HiMod formulation due to the expected saving in terms of
computational effort, for m reasonably small. Actually, we are led to solve the
HiMod linear system

Amum = fm, (7)

where Am ∈ RmNh×mNh and fm ∈ RmNh are the HiMod stiffness matrix and
right-hand side associated with the bilinear and linear forms in (4), with Nh =
dim(V h

1D), and where um ∈ RmNh collects the (unknown) coefficients of the
HiMod expansion

um(x,y) =
m∑
k=1

Nh∑
i=1

ũk,iθi(x)ϕk(ψx(y)), (8)

with {θi}Nh
i=1 the FE basis. For a full characterization of system (7), we refer

to [17, 31].
To qualitatively investigate the reliability of the HiMod reduction, we solve

problem (2) by means of a FE solver and of a HiMod discretization on the two-
dimensional (2D) domain, Ω, identified by the map ψx(y) = y−0.2 sin

(
3πx/(2L)

)
,

with x ∈ [0, 4], L = 4 and Ω̂ = (0, 4)× (−0.5, 0.5). Concerning the problem data,
we assign ν = 5, b = [20, 75]T , σ = 25, f = f(x, y) = 1.8χS1(x, y)−1.8χS2(x, y),
with χω the characteristic function associated with the subset ω ⊂ Ω, S1 =
{(x, y) : 0.5(x − 0.75)2 + 0.4y2 − 0.02 < 0}, S2 = {(x, y) : 0.5(x − 1.5)2 +
0.4y2 − 0.02 < 0}; ΓD and ΓN are identified with the inflow and outflow bound-
ary, respectively while ΓR coincides with the lateral surface, being g = h = l = 0
and ρ = 1.
The FE solver employs affine finite elements on a 2D unstructured mesh consist-
ing of 12800 triangles. The HiMod reduction discretizes the main stream with
linear finite elements associated with a uniform subdivision of the supporting
fiber into 80 intervals, while resorting to m = 8 educated modal basis functions
in the transverse direction. Figure 2 compares the FE with the HiMod approxi-
mation and highlights the good qualitative matching between the two solutions.
A quantitative investigation of the HiMod procedure is beyond the goal of this
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paper and can be found, e.g., in [31, 3, 20], together with a modeling convergence
analysis both with respect to the modal expansion and the FE discretization.

2.2 HiMod reduction for the Stokes equations

In this section we generalize the HiMod procedure to a vector problem, namely,
to the Stokes equations, find u : Ω→ Rd and p : Ω→ R such that

−∇ ·
(
2νD(u)

)
(x,y) +∇p(x,y) = f(x,y) in Ω,

∇ · u(x,y) = 0 in Ω,

uy(x,y) = 0 on Γin ∪ Γout,

−∂ux
∂x

(x,y) + p(x,y) = −Cin(x,y) on Γin,

−∂ux
∂x

(x,y) + p(x,y) = Cout(x,y) on Γout,

u(x,y) = 0 on Γw,

(9)

where u = (ux, uy)T and p denote the velocity and the pressure of the flow,
ν > 0 is the kinematic viscosity, D(u) = 0.5

(
∇u+(∇u)T

)
is the strain rate, f =

[fx, fy]T is the force per unit mass, and Cin and Cout are the inflow and outflow
data, respectively. The boundary ∂Ω is partitioned so that the inflow and outflow
sections, Γin and Γout, coincide with the fibers γ0 and γL, respectively while Γw

denotes the lateral walls
⋃
x∈Ω1D

{x} × ∂γx. On Γin and Γout we impose a non-
homogeneous tangential Neumann condition, with Cin and Cout constant values,
and we assume the transverse component of the velocity to be null. Finally, a
no-slip boundary condition is enforced on the velocity along the wall surface.

By introducing the bilinear forms a(·, ·) : V ×V → R and b(·, ·) : V ×Q→ R,
defined as

a(u,v) =

∫
Ω

2νD(u) : ∇v dΩ, b(u, q) =

∫
Ω
∇ · u q dΩ,

and the functional F (·) : V → R, given by

F (v) =

∫
Ω
f · v dΩ +

∫
∂Ω
Cn · v dS,

being C = −Cin on Γin and C = Cout on Γout, with V = {v ∈ H1(Ω;Rd) : vy =
0 on Γin ∪ Γout and v = 0 on Γw} and Q = L2(Ω), the weak form of (9) can be
stated as find u ∈ V , p ∈ Q such that{

a(u,v) + b(v, p) = F (v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

(10)
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where the notation is simplified by removing the dependence on (x,y) and where
the natural boundary conditions still have to be properly included in F .

The generalization of a HiMod reduction to the Stokes equations deserves
particular attention, especially with reference to the two-field formulation in-
volved by saddle point problems [11, 12]. While the search for inf-sup (or LBB)
compatible spaces for velocity and pressure is largely investigated for standard
finite element and spectral discretizations [11, 12, 14], we are not aware of any
theoretical result for hybrid methods involving both the techniques. In [20, 27],
empirical criteria to select the HiMod velocity and pressure are provided and
numerically checked. A first theoretical assessment of these criteria is currently
under investigation [7].
The reduced spaces involved in the HiMod discretization of the Stokes equations
are

Vmu =
{
vmu(x,y) = (vx,mu(x,y), vy,mu(x,y))T : vx,mu ∈ Vmu , vy,mu ∈ [Vmu ]d−1

}
,

Qmp =
{
qmp(x,y) =

mp∑
k=1

q̃k(x)ηk(ψx(y)), with q̃k ∈ Qh1D, x ∈ Ω1D, y ∈ γx
}
,

for the velocity and the pressure, respectively where space Vmu is the scalar
space defined as in (6). Notice that we employ the same (educated) modal basis,
{ϕk}mu

k=1, for all the components of the HiMod velocity, while we resort to the
modal basis {ηk}

mp

k=1 to discretize the pressure.
For what concerns the compatibility of the velocity with the pressure HiMod

spaces, in this work we adopt the empirical criterion in [3, 20], so that we set
mu = mp + 2 and we choose the 1D FE pair (V h

1D, Q
h
1D) as the Taylor-Hood

P2/P1 elements [11]. We denote by Nh,u and Nh,p the dimension of V h
1D and

Qh1D, so that the dimension of Vmu and Qmp becomes dmuNh,u and mpNh,p,
respectively.

Let us now describe the algebraic formulation for the HiMod discretization
of the Stokes problem. After assembling the matrices Amu ∈ RdmuNh,u×dmuNh,u ,
Bmp,mu ∈ RmpNh,p×dmuNh,u and the vector fmu ∈ RdmuNh,u associated with the
HiMod discretization of the forms a(u,v), b(u, q) and F (v) in (10), the linear
system [

Amu BT
mp,mu

Bmp,mu 0

] [
umu

pmp

]
=

[
fmu

0

]
(11)

has to be solved, where umu ∈ RdmuNh,u and pmp ∈ RmpNh,p collect the unknown
coefficients of the HiMod expansion for the velocity, umu , and the pressure, pmp ,
respectively and with 0 the null vector in RmpNh,p .

We conclude this section by exemplifying the HiMod procedure on a bench-
mark Stokes test case. The reference domain is Ω̂ = (0, L) × (−0.5, 0.5) ⊂ R2,
while the map ψx is given by

ψx(y) =
y

1 + 2
5 sin

(
6πx
L + π

2

)
2
H

,
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so that Ω coincides with a sinusoidal domain. In particular, we select L = 6 and
H = 1. Furthermore, we assign ν = 5, f = [3, 0]T , Cin = 10, Cout = 0.
Concerning the HiMod discretization, we enrich the Taylor-Hood P2/P1 dis-
cretization of the mainstream by resorting to mp = 5 and mu = 7 educated
modes to discretize the transverse components of the pressure and the veloc-
ity, respectively. In particular, both the finite element approximations rely on
a uniform subdivision of the supporting fiber into 80 subintervals. Figures 3-5
compare the HiMod approximation with a full P2/P1 FE solution computed on
a unstructured mesh consisting of 12800 elements. The two discretizations lead
to fully comparable approximations both in terms of velocity and pressure.

Figure 3: Stokes test case: comparison between the full solution (left) and the
HiMod approximation, u7/p5, (right) for the horizontal component of the veloc-
ity.

Figure 4: Stokes test case: comparison between the full solution (left) and the
HiMod approximation, u7/p5, (right) for the vertical component of the velocity.

Figure 5: Stokes test case: comparison between the full solution (left) and the
HiMod approximation, u7/p5, (right) for the pressure.
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Remark 2.1 As investigated more into the details in [42], the conservative form
(9) of the Stokes problem allows one to obtain a more accurate HiMod approxima-
tion with respect to a non-conservative formulation. This is due to the coupling
between the velocity components (namely, between the off-diagonal blocks of the
HiMod matrix) ensured by the conservative form.

Remark 2.2 Cylindrical domains demand a careful selection of the modal basis
as investigated in [20], where a polar coordinate system is employed to model the
transverse dynamics in circular and elliptic pipes. As a first alternative, one can
resort to the Transversally Enriched Pipe Element Method (TEPEM) [27]. In
such a case, the physical domain is mapped to a reference slab, so that the modal
basis coincides with the tensor product of the one-dimensional modal functions.
In [20] TEPEM is compared with the HiMod reduction based on polar coordinates
to highlight pros and cons of the two approaches. As expected, TEPEM turns out
to be easier to implement but less accurate than HiMod, especially in the presence
of highly oscillatory flows. The higher reliability characterizing the HiMod scheme
can be ascribed to the tight correspondence between the domain geometry and the
modal basis. Another alternative to a polar coordinate system is represented by
the isogeometric version of the HiMod approach, as recently investigated in [5]
for patient-specific geometries.

3 The HiPOD approach

HiMod reduction allows one to recast a d-dimensional problem as a system of
1D problems. Even though this leads to a computational benefit, the overall
computational cost might be still not negligible when dealing with multi-query
or inverse problems or, more in general, with parametrized settings. In this
context, to further lighten the computational effort, we rely on projection-based
model reduction techniques, by properly combining the HiMod discretization
with the Proper Orthogonal Decomposition (POD). In particular, we adopt the
standard offline/online paradigm [21]. The offline phase is meant to build the
POD basis, starting from the hierarchical reduction of a certain number of full
problems associated with a sampling of the parameter domain. The online phase
approximates the HiMod discretization for any new value of the parameter by
employing the POD basis. The combination between HiMod and POD justifies
the name of this method, HiPOD [6, 26, 28].

3.1 HiPOD reduction for ADR problems

We generalize problem (3) to a parameter dependent setting, so that the new
problem is

find u(µ) ∈ V : a(u(µ), v;µ) = F (v;µ) ∀v ∈ V, (12)
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where µ ∈ D ⊂ RP denotes a vector of P real numbers collecting the problem
parameters, and D is the parameter domain.

3.1.1 The offline phase

We choose the sampling S = {µ(1),µ(2), . . . ,µ(M)} ⊂ DM for the parameter µ.
For each value µ(j) ∈ S, we approximate the corresponding solution, u(µj), to
(12) by computing the HiMod discretization, um(µ(j)), for a certain value, m,
of the modal index. According to the modal expansion in (8), this yields the M
vectors

um(µ(j)) = [ũµ
(j)

1,1 , . . . , ũµ
(j)

1,Nh
, . . . , ũµ

(j)

m,1 , . . . , ũ
µ(j)

m,Nh
]T ∈ RmNh j = 1, . . . ,M

collecting, by mode, the HiMod coefficients. These vectors are employed to
assemble the response matrix

U =
[
um(µ(1)),um(µ(2)), . . . ,um(µ(M))

]
=



ũµ
(1)

1,1 ũµ
(2)

1,1 . . . ũµ
(M)

1,1
...

...
...

...
ũµ

(1)

1,Nh
ũµ

(2)

1,Nh
. . . ũµ

(M)

1,Nh
...

...
...

...
ũµ

(1)

m,1 ũµ
(2)

m,1 . . . ũµ
(M)

m,1
...

...
...

...
ũµ

(1)

m,Nh
ũµ

(2)

m,Nh
. . . ũµ

(M)

m,Nh


in RmNh×M , which will be used to extract the POD basis. To this aim, we define
the correlation matrix associated with U ,

C = UTXm,u U ∈ RM×M , (13)

with Xm,u ∈ RmNh×mNh the HiMod matrix associated to the inner product in
Vm. Then, we consider the spectral decomposition of matrix C, so that

Cϕ∗k = λkϕ
∗
k k = 1, . . . ,M, (14)

with ϕ∗k/λk the k-th eigenvector/eigenvalue pair of C, being ϕ∗k ∈ RM and
λk ∈ R. The POD basis is thus identified by the vectors

ϕk =
1

λk
Uϕ∗k ∈ RmNh k = 1, . . . , N, (15)

with N ≤ M . Integer N can be selected driven by heuristic considerations
(e.g., by studying the trend of the spectrum of C) or by an energy criterion, for
instance, we pick N such that

E(N) > 1− ε with E(N) =

∑N
i=1 λi∑M
i=1 λi

,
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and ε a user-defined tolerance. Independently of the adopted criterion, we denote
the reduced POD space by Vm,N = span{ϕ1, . . . ,ϕN}, and the matrix collecting,
by column, the POD basis functions by Φm,N = [ϕ1, . . . ,ϕN ] ∈ RmNh×N .

Remark 3.1 As an alternative to the approach based on the correlation matrix,
one can exploit directly the spectral properties of the response matrix U to extract
the reduced POD basis, by setting Xm,u = I in (13), with I ∈ RmNh×mNh the
identity matrix [6]. This two-fold possibility is justified by the relation between
the singular vectors of U and the eigenvectors of C [19].

3.1.2 The online phase

Goal of the online phase is to build a HiMod approximation to problem (12) for
any value µ ∈ D of the parameter, by skipping the solution of the associated
HiMod system (7),

Am(µ)um(µ) = fm(µ), (16)

where the dependence on the parameter µ has been highlighted. This task is
accomplished by means of a projection step, i.e., by solving the system

Am,N (µ)um,N (µ) = fm,N (µ), (17)

with um,N (µ) ∈ RN ,

Am,N (µ) = ΦT
m,NAm(µ)Φm,N ∈ RN×N , fm,N (µ) = ΦT

m,N fm(µ) ∈ RN .

Notice that the order of system (17) is significantly smaller compared with the
HiMod system (16), being, in general, N � mNh. Successively, um,N (µ) is
projected back to the original HiMod space, thus obtaining the approximation

um(µ) ≈ Φm,Num,N (µ) := um,N,POD(µ).

In the sequel, we will denote by um,N,POD(µ) the HiPOD approximation for
the HiMod solution um(µ) associated with vector um,N,POD(µ). As known, the
bottleneck of the projection approach lies in the assembly of Am(µ) and fm(µ).
An efficient assembly can be obtained under an affine parameter dependence
hypothesis. This requirement will be accomplished in the considered test cases.
Alternative procedures, such as the empirical interpolation method, are adopted
in more complex cases [21].

3.1.3 Numerical assessment

We apply the HiPOD procedure to the test case in Section 2.1. We remind that
the high fidelity solution is provided, in such a case, by a HiMod approximation.
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Figure 6: ADR test case: eigenvalue trend of the correlation matrix for D = D1

(left) and D = D2 (right).

We identify the parameter µ in (12) with the vector µ = [ν, bx, by, σ]T , which
collects some data of problem (2). Concerning the parameter domain, we pick
two ranges characterized by a significantly different amplitude, i.e.,

D1 = [1, 100]4, D2 = [1, 10]× [15, 25]× [70, 80]× [20, 30]. (18)

In both the cases, we randomly select 100 different samples, so that S = {µ(1),µ(2),
. . . ,µ(100)}.

During the offline phase, we hierarchically reduce the corresponding 100 ADR
problems, by employing the same HiMod discretization as in Figure 2, right.
The number N of POD basis functions is picked by analyzing the spectrum of
the correlation matrix C (see Figure 6). The eigenvalues quickly decrease. For
the sake of comparison, we select N = 20 for both ranges. The corresponding
eigenvalue, normalized to the maximum one, is O(10−6) and O(10−7) for D1 and
D2, respectively.

Then, we run the online phase to approximate the HiMod solution associated
with the parameter µ = [5, 20, 75, 25]T , i.e., the solution in Figure 2, right.

By comparing the contour plot of the HiPOD approximation in Figure 7 (left
for D1, right for D2) with the HiMod discretization in Figure 2, right, we recog-
nize that the global trend of the HiMod solution is correctly detected by both the
HiPOD solutions. As shown in Figure 8, a more quantitative investigation based
on the distribution of the error u8(µ)−u8,20,POD(µ) shows that the solution asso-
ciated with the smallest parameter domain is, as expected, more accurate (about
of two orders of magnitude) with respect to the approximation obtained when
dealing with D1. The highest accuracy is particularly evident in correspondence
with the outflow boundary. In Section 5 we provide a further error analysis for
this test case, based on a random sampling.
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Figure 7: ADR test case: HiPOD approximation associated with D1 (left) and
D2 (right).

Figure 8: ADR test case: HiPOD modeling error associated with D1 (left) and
D2 (right).

3.2 HiPOD reduction for the Stokes equations

We generalize problem (10) to a parameter dependent setting as: find u(µ) ∈
V , p(µ) ∈ Q such that{

a(u(µ),v;µ) + b(v, p(µ);µ) = F (v;µ) ∀v ∈ V,
b(u(µ), q;µ) = 0, ∀q ∈ Q.

(19)

3.2.1 The offline phase

As in Section 3.1.1, we assume to deal with a training set S consisting of M
different parameters. According to a segregated approach, we generate the POD
basis for the velocity and for the pressure independently. In [6] it has been
shown that a segregated procedure is more effective compared with a monolithic
approach, where a unique POD basis (for both velocity and pressure) is built.
Moreover, we resort to a vector-valued POD basis for the velocity, in contrast to
what has been done in Section 2.2, where the same (scalar) modal basis is adopted
for each component of the velocity. This choice is consistent with standard
reduced order modeling techniques in a finite element framework [4, 40]. Thus,
we assemble two distinct response matrices, Uu ∈ RdmuNh,u×M for the velocity
and Up ∈ RmpNh,p×M for the pressure. Then, by mimicking the scalar case, we
compute the correlation matrices associated with Uu and Up, and we retain the
first Nu and Np eigenvectors for the velocity and for the pressure, respectively.
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This leads us to identify the reduced order spaces Vmu,Nu and Qmp,Np , together
with the corresponding matrices Υmu,Nu and Πmp,Np collecting, by column, the
POD basis functions for velocity and pressure, respectively.

The basic HiPOD procedure is here modified to take into account the stability
issue characterizing the approximation provided by a projection of the Stokes
equations. Actually, it turns out that, even though the solutions involved in
the offline phase are inf-sup stable, this does not guarantee a priori the inf-
sup condition to the reduced space, with the possible generation of spurious
pressure modes. Following [4, 40], to recover the inf-sup property for the POD
approximation, we enrich the velocity space Vmu,Nu with the so-called supremizer
solutions. In particular, to preserve the offline/online paradigm, we properly
modify the procedure proposed in [4]. Let pmp(µ(i)) be the i-th column of
matrix Up, for i = 1, . . . ,M . We solve the additional HiMod systems

Xmu,u smu(µ(i)) = BT
mp,mu

(µ(i))pmp(µ(i)), (20)

for = 1, . . . ,M , thus obtaining theM supremizer solutions smu(µ(i)) ∈ RdmuNh,u .
Here Xmu,u ∈ RdmuNh,u×dmuNh,u denotes the HiMod matrix associated with
the inner product in Vmu (so that we use the same modal basis for both ve-
locity and supremizers), while Bmp,mu(µ) encodes the HiMod discretization of
the bilinear form b(v, p(µ);µ). Successively, we assemble the response matrix
Us ∈ RdmuNh,u×M associated with the supremizers together with the correspond-
ing correlation matrix, and we build the matrix Ξmu,Ns collecting the first Ns
POD supremizer basis functions, with Ns < M . Finally, we define the matrix

Φmu,Nu+Ns = [Υmu,Nu ,Ξmu,Ns ] ∈ RdmuNh,u×(Nu+Ns)

and the enriched velocity space Vmu,Nu+Ns spanned by the columns of Φmu,Nu+Ns .
Throughout the paper, we will refer to Vmu,Nu+Ns simply as to the reduced ve-
locity space. Furthermore, we will always assume Nu = Ns = Np = N .

3.2.2 The online phase

We extend here the procedure introduced in Section 3.1.2. For any µ ∈ D, with
µ 6= µ(i) and i = 1, . . . ,M , rather than solving the corresponding HiMod system[

Amu(µ) BT
mp,mu

(µ)

Bmp,mu(µ) 0

] [
umu(µ)
pmp(µ)

]
=

[
fmu(µ)

0

]
, (21)

we rely on the reduced system[
Amu,N (µ) BT

mp,mu,N
(µ)

Bmp,mu,N (µ) 0

] [
umu,2N (µ)
pmp,N (µ)

]
=

[
fmu,N (µ)

0

]
, (22)

where umu,2N (µ) ∈ R2N and pmp,N (µ) ∈ RN denote the POD reduced ap-
proximations for the velocity and the pressure, 0 is the null vector in RN , and
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where we assume that matrices Amu,N (µ) = ΦT
mu,2N

Amu(µ)Φmu,2N ∈ R2N×2N ,
Bmp,mu,N (µ) = ΠT

mp,N
Bmp,mu(µ)Φmu,2N ∈ RN×2N and the vector fmu,N (µ) =

ΦT
mu,2N

fmu(µ) ∈ R2N can be efficiently assembled owing to affine parameter de-
pendence. Finally, POD solutions umu,2N (µ) and pmp,N (µ) are projected back
to the HiMod space, to yield the approximations

umu(µ) ≈ Φmu,2Numu,2N (µ) := umu,2N,POD(µ)

pmp(µ) ≈ Πmp,Npmp,N (µ) := pmp,N,POD(µ)

for the HiMod velocity and pressure in (21). The HiPOD approximations for the
HiMod solutions umu(µ) and pmp(µ) will be denoted in the sequel by umu,2N,POD

and pmp,N,POD, respectively.
Concerning the stability of the POD reduced problem, for any µ ∈ D, one

can numerically compare the inf-sup constant associated with the HiMod dis-
cretization,

βmu,mp(µ) = inf
qmp∈Qmp,

qmp 6=0

sup
vmu∈Vmu ,

vmu 6=0

b(vmu , qmp ;µ)

‖vmu‖V ‖qmp‖Q
, (23)

with the corresponding constant resulting from the POD reduction procedure,

βmu,mp,N,POD(µ) = inf
qmp,N,POD∈Qmp,N

,

qmp,N,POD 6=0

sup
vmu,2N,POD∈Vmu,2N,

vmu,2N,POD 6=0

b(vmu,2N,POD, qmp,N,POD;µ)

‖vmu,2N,POD‖V ‖qmp,N,POD‖Q
,

(24)
where, with an abuse of notation, we have adopted the same symbol for the con-
tinuous HiPOD spaces as for the corresponding discrete counterparts. Practical
computations for these constants rely on generalized eigenvalue problems (see,
e.g., [11]). In particular, we resort to the formulas

βmu,mp(µ) =

√
λ

(1)
mu,mp , βmu,mp,N,POD(µ) =

√
λ

(1)
mu,mp,N

,

where λ(1)
mu,mp , λ

(1)
mu,mp,N

, denote the minimum eigenvalue of the generalized prob-
lems[
Xmu,u BT

mp,mu
(µ)

Bmp,mu(µ) 0

] [
vmu(µ)
qmp(µ)

]
= −λmu,mp

[
0 0
0 Xmp,p

] [
vmu(µ)
qmp(µ)

]
,

[
Xmu,u,2N Bmp,mu,N (µ)T

Bmp,mu,N (µ) 0

] [
vmu,2N (µ)
qmp,N (µ)

]
= −λmu,mp,N

[
0 0
0 Xmp,p,N

] [
vmu,2N (µ)
qmp,N (µ)

]
,

respectively, where Xmu,u is defined as in (20), Xmp,p ∈ RmpNh,p×mpNh,p denotes
the HiMod matrix associated with the inner product in Qmp , while Xmu,u,2N ∈
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R2N×2N , Xmp,p,N ∈ RN×N are the corresponding reduced order matrices, given
by

Xmu,u,2N = ΦT
mu,2NXmu,uΦmu,2N , Xmp,p,N = ΠT

mp,NXmp,pΠmp,N ,

and where, to simplify the notation, we have removed the subscript POD to the
HiPOD approximations.

3.2.3 Numerical assessment

We refer to the test case in Section 2.2. We identify the parameter with the
vector µ = [ν, Cin, Cout, fx, fy]

T varying in the domain

D = [1, 10]× [5, 15]× [0, 10]× [1, 10]× [0, 10].

We consider a sampling set S consisting of 100 randomly selected values, {µ(1),
µ(2), . . . ,µ(100)}. Then, we hierarchically reduce problem (10) for each param-
eter in S, by preserving the same HiMod discretization as the one adopted in
Figures 3-5, right.

Figure 9 shows the trend of the eigenvalues of the correlation matrix as-
sociated with the HiMod velocity, pressure and supremizers. The drop to the
numerical precision occurring at the fourth eigenvalue in all the plots suggests
us to set N = 4. Indeed, due to the superposition property and since we deal
with a linear problem, four independent basis functions are enough to span the
space of the solutions to this parametrized Stokes problem. In the online phase
we yield an approximation for the HiMod discretization corresponding to the
parameter µ = [5, 10, 0, 3, 0]T , i.e., for the solution provided in Figure 3-5, right.
Figures 10-12, left show the contour plot of the HiPOD approximation for the two
components of the velocity and for the pressure. Comparing the three plots with
the corresponding ones in Figures 3-5, right we recognize that the selected POD
basis suffices to provide a reliable approximation, at least qualitatively. Neverthe-
less, if we investigate more into the details the distribution of the HiPOD error,
we remark that while the two components of the HiMod velocity are approxi-
mated up to the machine precision, this is not the case for the pressure as shown
by the contour plots in Figure 12, right. This lack of accuracy for the pressure is
consistent with what already observed in [6], and deserves a further investigation,
for instance, by considering different choices for the supremizers [38, 2].

Finally, in Figure 13 we compare the trend of the HiPOD inf-sup constant
βmu,mp,N,POD(µ) with βmu,mp(µ) in (23). For this purpose, we set Nu = Np = 4
and we make Ns varying between 0 and 4. To simplify notation, we preserve the
same notation as in (24) although hypothesis Nu = Np = Ns is here removed. It
is evident that the system is unstable for Ns = 0 so that supremizers are required
to recover a reliable pressure, while βmu,mp,N,POD(µ) reaches a value comparable
with βmu,mp(µ) when Ns = 4.
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Figure 9: Stokes test case: eigenvalue trend of the correlation matrix associated
with the velocity (left), the pressure (center) and the supremizers (right).

Figure 10: Stokes test case: HiPOD approximation for the x-component of the
velocity (left) and associated modeling error (right).

Figure 11: Stokes test case: HiPOD approximation for the y-component of the
velocity (left) and associated modeling error (right).

Figure 12: Stokes test case: HiPOD approximation for pressure (left) and asso-
ciated modeling error (right).

4 The HiRB approach

As an alternative to the HiPOD reduction, we introduce a new technique to deal
with a parametrized setting. We aim at applying a Reduced Basis (RB) approach
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Figure 13: Stokes test case: trend of the inf-sup constant βmu,mp,N,POD(µ) as a
function of Ns compared with βmu,mp(µ).

to HiMod solutions, by relying on a greedy algorithm during the offline phase
(see, e.g., [16, 22]). The combination of HiMod with RB justifies the name HiRB
adopted to denote the new procedure.

4.1 HiRB reduction for ADR problems

Analogously to what done in Section 3, we first exemplify the HiRB reduction on
problem (12). In particular, we focus on the offline stage since HiPOD and HiRB
essentially resort to the same projection procedure during the online phase.

4.1.1 The offline phase

Let S = {µ(1),µ(2), . . . ,µ(M)} ⊂ DM be the training set for the parameter µ.
The key idea of the RB method is to generate the reduced space, Ṽm,N , by
a greedy algorithm, i.e., by adding a single function at a time to the reduced
basis [21]. Let Ṽm,k denote the reduced space known at the k-th iteration. Addi-
tionally, we assume to have an error estimator, ηm,k(µ), for the modeling error
associated with the reduced solution um,k,RB(µ) ∈ Ṽm,k, such that

‖um(µ)− um,k,RB(µ)‖V ≤ ηm,k(µ) with µ ∈ D, (25)

with um(µ) the high fidelity HiMod discretization.
Algorithm 1 itemizes the steps constituting the offline phase of HiRB method.

First, the greedy algorithm identifies as new parameter the value

µ(k+1)
g = arg max

µ∈S
ηm,k(µ), (26)

which corresponds to the most informative HiMod solution not yet included in
the reduced space, since it maximizes the discrepancy between the HiMod space,
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Vm, and the reduced space, Ṽm,k (step 1.). The search performed by the greedy
algorithm starts from a random choice, µ(1)

g , for the parameter and goes on until
when a value k ∈ N is found such that maxµ∈S ηm,k(µ) < η, or the reduced
space dimension reaches N , with η a user-defined threshold.
Then, the HiMod approximation, um(µ

(k+1)
g ) ∈ RmNh , is computed (step 2.)

and orthonormalized with respect to the functions already included in the RB
basis, collected in the matrix Φ̃m,k = [ϕ̃1, . . . , ϕ̃k] ∈ RmNh×k (step 3.). This is
justified by the fact that solutions at step 2. can be linearly dependent so that
they cannot constitute a basis. We denote the new basis function yielded at step
3. by ϕ̃k+1 ∈ RmNh . Finally, the RB matrix is extended to include the new basis
function, so that we have

Φ̃m,k+1 = [Φ̃m,k, ϕ̃k+1] ∈ RmNh×(k+1)

(step 4.). This allows us to define the space Ṽm,k+1 of the HiRB approximations
associated with Φ̃m,k+1.

Algorithm 1 HiRB offline phase for ADR problems

1. select µ(k+1)
g = arg maxµ∈S ηm,k(µ). If ηm,k(µ

(k+1)
g ) > η, go to 2., other-

wise break;
2. compute um(µ

(k+1)
g );

3. compute the new element, ϕ̃k+1, of the basis by orthonormalizing
um(µ

(k+1)
g ) with respect to Φ̃m,k;

4. build the updated RB matrix Φ̃m,k+1 by including ϕ̃k+1 as the (k+ 1)-th
column, and then go back to 1.

Throughout the paper, the HiRB reduced space eventually yielded by Algo-
rithm 1 is denoted by Ṽm,N , with N possibly equal to k, for k < N , if the check
at step 1. succeeds at the k-th iteration.

Finally, the HiRB online phase follows, by mimicking exactly what per-
formed in Section 3.1.2, with matrix Φm,N replaced by Φ̃m,N . In particular,
we denote the HiRB approximation associated with the vector um,N,RB(µ) :=
Φ̃m,N ũm,N (µ) by um,N,RB(µ), with ũm,N (µ) the solution of the reduced system
corresponding to (17).

The choice of the error estimator, ηm,k(µ), represents a key issue of the RB
approach, in particular to ensure the convergence of the greedy algorithm as well
as the reliability of the reduced order model. In general, ηm,k(µ) demands the
computation of the reduced solution Φ̃m,kũm,k(µ), so that, at each iteration of
Algorithm 1, an online phase of dimension k has to be carried out. For additional
details in a standard RB setting, we refer the interested reader, e.g., to [10, 13,
16, 21, 38, 39]. The most common choice for the modeling error estimator relies
on the ratio between the dual norm of the weak residual associated with the
reduced model and a lower bound for the coercivity constant of the reduced
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problem [21]. This is the choice pursued to define ηm,k(µ) in (25), where we
set the coercivity constant to one since it is not trivial to compute exactly this
value. The reliability of this estimator is numerically verified in Section 5. The
extension of the successive constraint method proposed in [23] to the HiMod
setting represents a topic for a possible future investigation.

4.1.2 Numerical assessment

We adopt exactly the same setting as in Section 3.1.3, so that the parameter µ
coincides with the vector [ν, bx, by, σ]T and varies over the ranges, D1 and D2, in
(18). Algorithm 1 is run over a training set S consisting of 100 samples. Never-
theless, we omit to set the threshold η at step 1. and we fix a priori the dimension
N of the reduced space to 20, also with a view to the comparison performed in
Section 5. This leads to hierarchically reduce only 20 ADR problems, in contrast
to 100 ADR problems with the HiPOD procedure. Finally, we run the HiRB on-
line phase for µ = [5, 20, 75, 25]T to approximate the HiMod solution to problem
(2).

Figure 14 shows the contour plot of the HiRB approximation for the two
ranges of the parameter µ. The qualitative matching between these solutions
and the HiMod approximation in Figure 2, right is good. By analyzing the dis-
tribution of the modeling error, u8(µ)−u8,20,RB(µ), in Figure 15, it is confirmed
that the smaller the parameter range the higher the accuracy of the HiRB ap-
proximation. In particular, the maximum error reduces more than one order
when sampling µ in D2. A cross-comparison with the HiPOD approximations in
Figures 7-8 highlights a slightly higher reliability for the HiRB approach for this
test case. A more thorough investigation in such a direction will be performed
in Section 5, together with an error analysis over a random testing.

Figure 14: ADR test case: HiRB approximation associated with D1 (left) and
D2 (right).

4.2 HiRB reduction for the Stokes equations

We detail the offline step of the HiRB reduction procedure on problem (19), while
referring to Section 3.2.2 for the online phase.
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Figure 15: ADR test case: HiRB modeling error associated with D1 (left) and
D2 (right).

4.2.1 The offline phase

In this context, we assume to have an error estimator both for the velocity and
the pressure [18, 38], such that

‖umu(µ)−umu,2k,RB(µ)‖V +‖pmp(µ)−pmp,k,RB(µ)‖Q ≤ ηmu,mp,k(µ) with µ ∈ D,

with
(
umu(µ), pmp(µ)

)
the high fidelity HiMod solution pair and

(
umu,2k,RB(µ),

pmp,k,RB(µ)
)
the HiRB approximation belonging to the RB space Ṽmu,2k×Q̃mp,k.

Algorithm 2 details the operations characterizing the HiRB offline phase when
applied to the Stokes problem. Two are the main differences with respect to
Algorithm 1, namely i) we pursue a segregated approach to build the reduced
spaces for the velocity and the pressure, ii) the space for the velocity is enriched
via the supremizers.
After the greedy selection on the training set S (step 1.), we solve both the
HiMod problem (21) and the HiMod supremizer equation (20) by setting µ =

µ
(k+1)
g and µ(i) = µ

(k+1)
g , respectively thus obtaining the HiMod velocity and

pressure pair,
(
umu(µ

(k+1)
g ),pmp(µ

(k+1)
g )

)
∈ RdmuNh,u×RmpNh,p , and the HiMod

supremizer, smu(µ
(k+1)
g ) ∈ RdmuNh,u , (step 2.). Then, according to a segregated

approach, each HiMod solution is orthonormalized separately, with respect to
the corresponding previous basis functions, stored in matrices Υ̃mu,k, Π̃mp,k and
Ξ̃mu,k, respectively. This yields the (k + 1)-th RB snapshots, υ̃k+1, π̃k+1, ξ̃k+1,
(step 3.), which are successively used to enrich the corresponding matrices (steps
4a.− 4c.), so that

Υ̃mu,k+1 = [Υ̃mu,k, υ̃k+1] ∈ RdmuNh,u×(k+1),

Π̃mp,k+1 = [Π̃mp,k, π̃k+1] ∈ RmpNh,p×(k+1),

Ξ̃mu,k+1 = [Ξ̃mu,k, ξ̃k+1] ∈ RdmuNh,u×(k+1).

In particular, matrix Π̃mp,k+1 allows us to define the (k + 1)-th RB space for
the pressure. The corresponding space for the velocity is the one associated with
matrix

Φ̃mu,2(k+1) = [Υ̃mu,k+1, Ξ̃mu,k+1] ∈ RdmuNh,u×2(k+1)

which is finally built at step 4d.
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Algorithm 2 HiRB offline phase for the Stokes equations

1. select µ(k+1)
g = arg maxµ∈S ηmu,mp,k(µ). If ηmu,mp,k(µ

(k+1)
g ) > η, go to

2., otherwise break;
2a. compute the HiMod pair

(
umu(µ

(k+1)
g ),pmp(µ

(k+1)
g )

)
;

2b. compute the HiMod supremizer smu(µ
(k+1)
g );

3a. compute the new element, υ̃k+1, of the RB basis for the velocity by
orthonormalizing umu(µ

(k+1)
g ) with respect to Υ̃mu,k;

3b. compute the new element, π̃k+1, of the RB basis for the pressure by
orthonormalizing pmp(µ

(k+1)
g ) with respect to Π̃mp,k;

3c. compute the new element, ξ̃k+1, of the RB supremizer basis for the
velocity by orthonormalizing smu(µ

(k+1)
g ) with respect to Ξ̃mu,k;

4a. build the updated RB matrix Υ̃mu,k+1 by including υ̃k+1 as the (k+1)-th
column;
4b. build the updated RB matrix for the pressure Π̃mp,k+1 by including π̃k+1

as the (k + 1)-th column;
4c. build the updated RB matrix Ξ̃mu,k+1 by including ξ̃k+1 as the (k+1)-th
column;
4d. build the updated RB matrix for the velocity Φ̃mu,2(k+1), and then go
back to 1.

4.2.2 Numerical assessment

We adopt the same numerical setting as in Section 3.2.3 with the goal of approx-
imating the HiMod solution in Figures 3-5, right with a reduced basis approach.
Analogously to Section 4.1.2, we waive the opportunity to employ the threshold
η in Algorithm 2, and we fix the dimension of the reduced spaces to N = 4 to
match the choice in Section 3.2.3.

Figures 16-18, left show the contour plot of the HiRB approximation for the
two components of the velocity and for the pressure. The qualitative agree-
ment both with the HiMod solution and with the HiPOD approximation in Fig-
ures 3-5, right and 10-12, left respectively confirms the reliability of the proposed
procedure. The distribution of the HiRB modeling error in Ω is provided in Fig-
ures 16-18, right. The pressure is the quantity characterized by the worst accu-
racy, analogously to what obtained with the HiPOD approach. Nevertheless, we
remark that HiRB technique furnishes an approximation of lower quality also for
the y-component of the velocity when compared with the HiPOD approximation
(notice the difference in terms of order of magnitude for the corresponding mod-
eling errors in Figure 17, right and Figure 11, right, respectively). Finally, we
recognize a more uniform distribution of the modeling error in Figure 16, right
with respect to the corresponding trend of Figure 10, right. In the former case,
the error is spread across the whole domain, whereas in the latter the error is
mostly confined to the outflow boundary.
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Figure 16: Stokes test case: HiRB approximation for the x-component of the
velocity (left) and the associated modeling error (right).

Figure 17: Stokes test case: HiRB approximation for the y-component of the
velocity (left) and the associated modeling error (right).

Figure 18: Stokes test case: HiRB approximation for pressure (left) and the
associated modeling error (right).

5 HiPOD versus HiRB

This section is meant to compare HiPOD and HiRB techniques. The comparison
is carried out in terms of three main issues, which are investigated hereafter,
separately.

For this purpose, we remind that both HiPOD and HiRB approaches actu-
ally carry out a twofold reduction. The first one is obtained with the HiMod
discretization [3, 20, 27], while the second reduction is performed via a projec-
tion step during the online phase. The final expectation is the capability to have
a reliable approximation for the (full) problem at hand, with a very contained
computational effort.
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Figure 19: ADR test case, parameter range D1: H1(Ω)-norm of the modeling
error associated with the HiPOD (left) and with the HiRB (right) reduction as
a function of N .

5.1 Accuracy of the reduced problems

To compare HiPOD and HiRB in terms of accuracy, we plot the average of the
associated error over a testing set of 100 randomly selected parameters for both
the test cases in Sections 2.1 and 2.2.

In particular, in Figures 19 and 20 we show the trend of the H1(Ω)-norm of
the modeling error characterizing the ADR test case and for the two choices of
the parameter range in (18). For HiRB approximations, we provide also the trend
of the error estimator. HiPOD exhibits a slightly higher accuracy with respect
to HiRB (about half an order of magnitude), for both D1 and D2. This is likely
related to the adopted estimator which under-estimates the exact error of about
one order of magnitude (see Figures 19 and 20, right). Actually, ηm,k(µ) is an
error indicator rather than an error estimator, since we have set the coercivity
constant to one. This might result in a sub-optimal greedy selection, although
the (monotonic) decreasing trend of the exact error is correctly captured by
ηm,k(µ). Finally, as expected, the reduced order approximation associated with
D2 is more accurate for both the procedures.

The discrepancy between HiPOD and HiRB in terms of accuracy is less evi-
dent when considering the Stokes test case. For N = 4, the velocity is approxi-
mated almost at the machine precision, while the pressure is characterized by a
modeling error of the order of 10−2 with respect to the L2(Ω)-norm. The lower
accuracy of the pressure is consistent with what remarked in Figures 12 and 18.
Possible improvements in such a direction are suggested in Section 3.2.3. More-
over, the computation of separate error bounds for the velocity and the pressure
would be helpful in improving the accuracy, despite requiring further evaluation
of stability factors [18].
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Figure 20: ADR test case, parameter range D2: H1(Ω)-norm of the modeling
error associated with the HiPOD (left) and with the HiRB (right) reduction as
a function of N .

Figure 21: Stokes test case: H1(Ω)-norm of the modeling error associated with
the HiPOD (left) and with the HiRB (right) velocity as a function of N .

5.2 Speedup of the reduced problems

We investigate here the computational effort demanded by the online stage of
the HiPOD and HiRB methods. We quantify such an effort in terms of CPU
time1. In particular, we quantify the speedup characterizing the two approaches
with the ratio τm(µ)/τm,N (µ), where we denote the elapsed time associated with
the standard HiMod approximation by τm(µ), and the time required to solve the
corresponding HiPOD or HiRB system by τm,N (µ). A value of speedup greater
than one results in a computational gain.

Table 1 gathers the values of this investigation. In order to filter out any de-
pendence on µ, we compute the speedup index over a testing set of 100 randomly
selected parameters. We observe a large speedup for the Stokes test case and

1All the simulations are performed on a laptop with Intel R CoreTM i7 CPU and 4GB
RAM.
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Figure 22: Stokes test case: L2(Ω)-norm of the modeling error associated with
the HiPOD (left) and with the HiRB (right) pressure as a function of N .

N HiPOD-ADR HiRB-ADR HiPOD-Stokes HiRB-Stokes

1 169.7329 68.6832 866.3399 680.9745
2 182.3241 71.1751 977.5722 747.6919
3 178.6220 70.5680 843.5975 693.1631
4 182.1824 70.1519 793.0461 629.6215

Table 1: Speedup for HiPOD and HiRB methods applied to the test cases in
Sections 2.1 and 2.2.

a very mild sensitivity with respect to N for the ADR problem, independently
of the adopted technique. More in detail, we point out a general lower speedup
(of about one third) for the HiRB procedure when compared with HiPOD, in
particular for the ADR test case. This is due to the fact that quantity τm,N (µ)
includes also the time elapsed for the evaluation of the error estimator in the
HiRB case, whereas this is not required by the HiPOD procedure. Actually, the
HiPOD and the HiRB speedups become very similar for the Stokes test case.

5.3 Cost of the offline phase

We focus now on the offline phase, by comparing the total time required by the
HiPOD and HiRB procedures to build the reduced basis.

It is reasonable that, for a fixed dimension, N , of the reduced space, the
HiRB reduction requires less offline time than HiPOD. Actually, to extract the
reduced basis, the HiPOD approach computes the HiMod discretization for each
of the M parameters in the sampling set, S, and, only a posteriori, compresses
such information into a reduced basis of dimension N , with N < M . On the
contrary, the HiRB method iteratively generates the reduced basis by adding a
new basis function at each iteration of the greedy algorithm. Thus, we compute
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Figure 23: ADR test case: comparison between HiPOD and HiRB offline times
as a function of M .

exactly N HiMod solutions, out of the M possible approximations, associated
with the parameters in S.

Nevertheless, the offline stage of the HiRB method includes the evaluation
of the error estimator during the greedy selection. A key requirement is that
this evaluation is computationally cheap. However, the construction of the data
structures (e.g., higher order tensors [21]) required for this purpose usually entails
an additional computational cost, which might dominate the overall offline cost if
M is small. Finally, further less relevant differences between the two methods can
be pointed out, such as the CPU time required to solve the eigenvalue problem
associated with the HiPOD reduction.

Figure 23 compares the trend of the total CPU time demanded by the offline
stages of the HiPOD and HiRB procedures, as a function of the size M of the
sampling set, when applied to the test case in Section 2.1 and for N set to 20. In
agreement with what remarked above, it follows that the HiRB training is more
expensive than the HiPOD one for small values of M . For instance, for M = 50,
HiPOD takes 25s, whereas HiRB requires more than 90s, most of the time being
spent in the setup of the error estimator. Vice versa, for large values ofM , HiRB
demands less time than HiPOD. For example, when M = 300, HiPOD is more
time-consuming than HiRB, by requiring 140s to be compared with 110s.

Finally, we remark the different slope characterizing the two plots in Fig-
ure 23. The mild slope of the HiRB curve confirms that the computational effort
required by the evaluation of the error estimator is essentially independent of
the size M . On the contrary, the considerable slope of the HiPOD curve high-
lights that the computation of the HiMod approximations is not negligible and,
in general, heavier than the evaluation of ηm,k(µ).
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6 Conclusions

This work has to be meant as a first attempt to compare the new reduction tech-
niques HiPOD and HiRB, for the modeling of parametrized problems. HiPOD
has been introduced in [26, 6], whereas the HiRB approach is proposed here for
the first time. The two methods are then compared on a benchmark ADR and
Stokes problem. Starting from this comparison, we can state that HiRB is bet-
ter performing than HiPOD for large training sets, thus turning out to be the
ideal tool to tackle, for instance, time demanding fluid dynamics problems. As
expected, the greedy algorithm allows us to reduce the offline time. The weak
point of the HiRB approach remains the availability of a reliable error estimator.
So far, to simplify the introduction of the new method, we have adopted an error
indicator coinciding with the residual associated with the reduced solution, by
completely neglecting the coercivity constant. This rough choice actually leads
to under-estimate the exact error, with a consequent performance loss in terms
of speedup and slightly of accuracy with respect to the HiPOD procedure. How-
ever, these conclusions have to be considered as preliminary since we have limited
our analysis only to two test cases and, clearly, a more thorough investigation is
deserved.

An important issue related to both HiPOD and HiRB has concerned the
inf-sup stability which is not necessarily guaranteed for the reduced formula-
tions. To tackle this matter in both the cases, supremizer enrichment has been
employed with significative improvements. The pressure approximation for the
Stokes equations still demands some amendment for both the techniques. The
proposal of different supremizers likely represents a viable remedy in such a di-
rection.

Among other future developments of possible interest, we cite the generaliza-
tion to three-dimensional and to nonlinear problems, as well as to an unsteady
framework. Finally, to certify the reliability of the two methods, a more rigor-
ous investigation of the accuracy characterizing HiPOD and HiRB procedures
is desirable, by properly combining HiMod estimates in [31, 3] with the well-
established accuracy results on POD and RB [41, 21].
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