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Abstract

In this paper we present a certified reduced basis (RB) framework for the efficient solution
of PDE-constrained parametric optimization problems. We consider optimization problems
(such as optimal control and optimal design) governed by elliptic PDEs and involving possibly
non-convex cost functionals, assuming that the control functions are described in terms of a
parameters vector. At each optimization step, the high-fidelity approximation of state and
adjoint problems is replaced by a certified RB approximation, thus yielding a very efficient
solution through an “optimize-then-reduce” approach. We develop a posteriori error estimates
for the solutions of state and adjoint problems, for the cost functional, its gradient and the
optimal parameters. We confirm our theoretical results in the case of optimal control/design
problems dealing with potential and thermal flows.

1 Introduction

PDE-constrained optimization problems are widespread in applied sciences and engineering because
of the ubiquitous need to control a system in order to reach some target. Two well-known cases
are the optimal control of thermal flows in heating/cooling devices or the optimal design of airfoils.
These problems, and more in general optimal control, optimal design and (deterministic) inverse
identification problems, are usually cast within a constrained optimization framework in order to
exploit a well-established theoretical setting and powerful approximation techniques [6, 15].

A very common assumption to handle the solution of PDE-constrained optimization prob-
lems is to express control variables, shapes, or unknown features to be recovered through a set
of parameters, thus recasting these problems in a more affordable finite-dimensional framework.
Nevertheless, even under this assumption, numerical optimization stands over iterative procedures
which usually requires a large amount of PDE solutions, evaluations of the cost functional, and pos-
sibly of its gradient with respect to control/design variables, such as in the case of descent methods
or nonlinear programming techniques [15]. Obtaining a significant computational speedup within
this context has been one of the leading motivations behind the development of efficient reduced
order models for PDE systems in the last decade. Reduced basis (RB) method and Proper Orthog-
onal Decomposition (POD) have been widely applied to the solution of optimal control and shape
optimization problems; among many contributions, we cite [32, 13, 36, 9, 10, 38, 27, 12, 11, 42]
regarding the former technique, and [20, 17, 18, 39, 1] concerning the latter. More recently, con-
versely to the parametric optimization problems considered in this paper, the case of parametrized
optimal control problems has also been addressed.

∗We are grateful to Prof. Sandro Salsa (Politecnico di Milano) for the scientific discussions and the support
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Within this latter class of problems, parameters affect either differential operators or data, but not
the control/design variables, thus characterizing multiple scenarios where an (infinite dimensional)
optimal control has to be determined; see e.g. [30, 29, 14, 19] and also the recent review presented
in [5].

In this paper we consider PDE-constrained parametric optimization problems (µ-OPs) where
control/design variables are expressed in terms of a vector of parameters µ ∈ P ⊆ Rd, thus yielding
finite-dimensional control variables. Parameters may affect boundary data, source terms, physical
coefficients, or the geometrical configuration of the domain. Indeed, our framework is able to
account for – apparently different – problems such as optimal control, inverse identification, optimal
design, which can be unified under the parametric assumption and cast under the following form:

min
µ∈Pad

J(µ) s.t. a(u(µ), v;µ) = f(v;µ) ∀v ∈ X. (µ-OP)

Here u(µ) ∈ X is the state solution, X is a suitable Sobolev space defined over a spatial domain
Ω ⊂ Rm, m = 1, 2, 3, and the state constraint is given by a linear, steady, elliptic PDE. Moreover,
Pad ⊆ P ⊆ Rd denotes a closed set of admissible parameters. Furthermore, J(µ) = J̃(u(µ),µ) is
a suitable cost functional, being J̃ a quadratic function of the state u. Since the map µ 7→ u(µ) is
usually nonlinear, J is not a quadratic functional of µ; in general, J might not even be convex.

In several works, RB methods have been applied to parametric optimization problems just for
the sake of state reduction, yielding a reduce-then-optimize approach, where the state system is
solved in a reduced state space and numerical optimization is performed according to black-box
(or derivative-free) methods. These latter simply require the solution of the state problem and
the evaluation of J , relying on (e.g. finite differences) approximations of its derivatives. In this
work we rely instead on RB methods for the reduction of the adjoint problem (or the sensitivity
equations), too, thus enabling to perform the evaluation of the gradient of J at the reduced level.
This can be seen as an optimize-then-reduce approach, meaning that first we express optimality
conditions and derivatives in PDE form, then we construct a RB method for any µ-dependent
PDE to be solved. Relying on this approach is also mandatory for deriving effective a posteriori
error estimators on J , its gradient and the optimal solution.

Extending some results shown in [12, 24], in this work:

1. we state a well-posedness result, showing that the assumption of affine parametric dependence
usually required in the RB context is crucial also for the sake of theoretical analysis of µ-OPs;

2. we derive optimality conditions by either evaluating the parametric sensitivities of the cost
functional (involving the directional derivatives of the state solution with respect to parameter
components), or applying an adjoint approach;

3. we implement a certified RB method for µ-OPs and show that the adjoint-based approach
yields a stronger speedup than the sensitivity-based one (considered instead in [12]);

4. we extend previous results shown in [12] and provide a complete and detailed characterization
of error bounds for the cost functional, its gradient and the optimal solution;

5. we take advantage of these error bounds to set descent methods where the stopping crite-
ria are motivated by the reliability of the reduced-order approximation, showing that both
optimization and reduction stages require a simultaneous (and careful) tuning.

Several problems which can be cast in this framework have been already tackled with RB
methods – such as optimal control [30], optimal design [27, 22, 26], inverse parameter identification
[13], model identification [2], uncertainty quantification problems [21, 23, 26] – but very often
without relying on adjoint-based approaches, neither developing a rigorous error bound for the
optimal solution. The general framework proposed in this paper allows a unified analysis (related to
both well-posedness and a posteriori error analysis) and a possible extension to several applications
also in view of cross-intersections among those class of problems (e.g., simultaneous control and
design, or optimization under uncertainty problems).
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The paper is organized as follows. In Sect. 2 we provide a general formulation of the class of
problems we are interested to, whereas in Sect. 3 we show some well-posedness results and derive
optimality conditions (of both first and second order). We set a RB method for the solution of
µ-OPs in Sect. 4, by considering either the evaluation of parametric sensitivities, or the solution
of an adjoint problem. In Sect. 5 we derive a posteriori error bounds for the quantities of interest
in setting the optimization procedure. Finally, we confirm our theoretical results by showing some
numerical results dealing with thermal and potential flows in Sect. 6.

2 Problem setting

We deal with steady scalar problems defined over a regular and bounded domain Ω ⊂ Rm, m =
1, 2, 3. Let us denote by X a Sobolev space such that H1

0 (Ω) ⊆ X ⊆ H1(Ω), taking into account
boundary conditions over Γ = ∂Ω; X∗ denotes the dual of X. The parametrized bilinear form
a(·, ·;µ) : X × X → R corresponds to the weak form of an elliptic, second-order parametrized
differential operator; we require that, for any µ ∈ P ⊂ Rd, a is continuous and coercive, i.e. there
exist α(µ) > 0 and Ma(µ) < +∞ such that

α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2X
, Ma(µ) = sup

u∈X
sup
v∈X

a(u, v;µ)

‖u‖X‖v‖X
∀µ ∈ P, (1)

and that f(·;µ) ∈ X∗ is continuous for any µ ∈ P, that is, there exist Mf (µ) < +∞

Mf (µ) = sup
v∈X

f(v;µ)

‖v‖X
∀µ ∈ P. (2)

As already remarked, control/design parameters µ might be related to: (i) distributed and/or
boundary control, and then affect the right-hand side f(·;µ); (ii) physical coefficients of the PDE
operator, and then affect the left-hand side a(·, ·;µ); (iii) the shape of the domain, and then affect
both terms of the state equation. Through these choices, we can deal with optimal control, iden-
tification or optimal design problems, or even possible combinations among them. When dealing
with optimal design, we rely on a fixed domain approach, that is, the state problem originally
posed on a parametrized domain Ω̃ = Ω̃(µ) is mapped back onto a reference configuration Ω, by
introducing a suitable, µ-dependent geometric map (or collection of maps) from Ω to Ω̃. This is
a standard procedure when dealing with RB methods (see e.g. [35, 37] for further details), which
also enables a strong speedup of optimal design problems by avoiding remeshing when the domain
undergoes shape deformations. Moreover, we assume that J : P → R is given by

J(µ) = J̃(u(µ),µ) =
1

2
‖Cu(µ)− zd‖2Z +

β

2
‖µ− µd‖2Rd (3)

being C : X → Z a continuous observation operator, that is, ‖Cv‖Z ≤ γ‖v‖X ∀v ∈ X, with Z a
suitable (Hilbert) space of observations defined over Ω. Here zd ∈ Z is the desired target, whereas
β ≥ 0 and µd ∈ P is a prescribed parameter value. Here J̃ is a quadratic functional of the state
u(µ), whereas in the more standard optimal control problems, the quadratic penalization term
shall enforce the cost functional to be convex. However, we set β = 0 from now on, to take into
account the more general case of possibly nonconvex functionals. Note that the cost functional
might depend on the control/design parameters through both the domain and the state solutions;
hence, we denote by J(µ) = J̃(u(µ),µ) where no ambiguity occurs.

Furthermore, we require the following affine decomposition (or parametric separability) for the
forms appearing in (µ-OP), by expressing for any µ ∈ P

a(u, v;µ) =

Qa∑
q=1

Θa
q (µ) aq(u, v), f(v;µ) =

Qf∑
q=1

Θf
q (µ) fq(v), (4)

for Qa, Qf (real) functions Θa
q ,Θ

f
q : P → R, and (continuous) bilinear (resp. linear) forms aq(·, ·) :

X ×X → R, q = 1, . . . , Qa (resp. fq(·) : X → R, q = 1, . . . , Qf ). We denote by Mq
a , q = 1, . . . , Qa

(resp. Mq
f , q = 1, . . . , Qf ) the continuity factor of the µ-independent bilinear (resp. linear) forms.
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Moreover, we express the cost functional (3) as

J(µ) = g(u(µ), u(µ);µ) =

Qg∑
q=1

Θg
q(µ)

(
1

2
sq(u(µ), u(µ)) + lq(u(µ))

)
, (5)

for Qg functions Θg
q(µ) : P → R, q = 1, . . . , Qg and bilinear (resp. linear) forms sq(·, ·) : X×X → R

(resp. lq(·) : X → R). In the remainder, we consider two classes of functionals which can be cast
under the form (3), by choosing either Z = H1(Ωobs) or L2(Ωobs), C as the restriction operator
over a prescribed observation region Ωobs ⊂ Ω and zd a prescribed target function. Thus, we end
up with the following formulation of problem (µ-OP):

min
µ∈Pad⊆P

Qg∑
q=1

Θg
q(µ)

(
1

2
sq(u(µ), u(µ)) + lq(u(µ))

)

s.t.

Qa∑
q=1

Θa
q (µ) aq(u(µ), v) =

Qf∑
q=1

Θf
q (µ) fq(v) ∀v ∈ X.

(6)

3 Well-posedness analysis and optimality conditions

Problem (6) is a special case of PDE-constrained optimization problem, where the control vari-
able is set in a closed subset of Rd rather then to an infinite dimensional (Banach or Hilbert)
space. Although the existence of a minimizer follows from Weierstrass theorem (see e.g. [40]) in
a straightforward way, its uniqueness is not ensured. A natural requirement for uniqueness would
be the strict convexity of the cost functional with respect to the control variable µ; however, this
is in general hard to satisfy, because of the nonlinear µ-dependency of the state solution, already
in the simplest case of a quadratic functional of the state variable and a linear state problem.

After analyzing the well-posedness of problem (6) and the differentiability of the state solution
with respect to µ, we derive a set of first and second order optimality conditions.

3.1 Existence of a minimizer

A further assumption concerning the map µ → u(µ), which also affects the cost functional, is
required in order to apply Weierstrass theorem to problem (µ-OP), as stated in the following

Proposition 3.1. Under the following assumptions:

1. Pad ⊂ Rd is a closed set;

2. Θa
q , q = 1, . . . , Qa and Θf

q , q = 1, . . . , Qf are Lipschitz continuous functions, with constants

Λaq , Λfq > 0, respectively;

3. J is sequentially lower continuous (with respect to µ),

problem (µ-OP) admits (at least) a minimization point (û, µ̂) = (u(µ̂), µ̂).

Proof. Thanks to Lax-Milgram lemma (see e.g. [34]), the properties (1)-(2) of the bilinear and
linear forms, and assumption 2., we have that the map µ → u(µ) defines a bounded injective
operator; moreover,

‖u(µ)− u(µ̄)‖X ≤
1

α(µ)

Qf∑
q=1

Mq
fΛfq +

Mf (µ̄)

α(µ̄)

Qa∑
q=1

Mq
aΛaq

 ‖µ− µ̄‖Rd . (7)

Assumption 3. is verified since J is given by the composition of a continuous function and a
semi-continuous one. The existence of a minimizer follows thanks to the Weierstrass theorem.
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3.2 Differentiability of the cost functional

Let us now investigate the differentiability of the cost functional, for which we require that the
functions Θa

q , q = 1, . . . , Qa and Θf
q , q = 1, . . . , Qf are of class C1(P). Numerical optimization

procedures such as descent methods require the evaluation of the derivatives of the cost functional
J(µ) = J̃(u(µ),µ) with respect to the parameters, given by

∇µJ(µ) · ei =
∂J

∂µi
(µ) =

∂J̃

∂u

∂u

∂µi
(µ) +

∂J̃

∂µi
(µ). (8)

To ensure that J is differentiable, we require that the map µ 7→ u(µ) is differentiable, too. This
property results from the implicit function theorem1 (see e.g. [41]), according to the following

Theorem 3.2. Let A ⊂ X × P be an open subspace and Φ : A→ X∗ such that:

• Φ ∈ C1(A),

• Φ(µ̂, u(µ̂)) = 0 and Φu(µ̂) is an isomorphism from X to X∗.

Then, µ→ u(µ) is a C1(U) map in a neighbourhood U of µ̂, and Φ(µ, u(µ)) = 0 for any µ ∈ U .

Proof. In order to apply the implicit function theorem to the problem at hand, we rewrite the state
problem appearing in (6) by isolating a µ-independent operator Π corresponding to an injective
operator2. Hence, we rewrite the state problem under strong form in X∗ as: find u ∈ X such
that

Πu+

Qa∑
q=2

Θ̂a
q (µ)Aqu−

Qf∑
q=1

Θ̂f
q (µ)Fq = 0 in X∗.

Then, we define the operator

Φ : X × P → X∗ : (u,µ)→
Qf∑
q=1

Θ̂f
q (µ)Fq −

Qa∑
q=2

Θ̂a
q (µ)Aqu.

Thanks to the continuity of the forms aq(·, ·) and fq(·) and since the functions Θa
q , q = 1, . . . , Qa

and Θf
q , q = 1, . . . , Qf are of class C1(P), Φ is a C1(X × P) map. For any µ, let us denote by

Π−1 : X∗ → X the inverse of the injective operator yielding the unique solution of Πy = v in X∗.
We can formulate the state problem as

F (u,µ) = u−Π−1(Φ(u,µ)) = 0; (9)

Π−1 is continuously differentiable (because it is linear) and, for a reference value µ̄ (ū = u(µ̄)), we
obtain

Fu(ū, µ̄)v = v −Π−1(Φu(ū, µ̄)v) ∀v ∈ X,
by applying the chain rule to F . Here Fu(ū, µ̄) is an isomorphism in X, since the problem

v −Π−1(

Qa∑
q=1

Θa
q (µ)Aqv) = w (10)

has a unique solution ∀w ∈ X. Thanks to the implicit function theorem, (9) defines u = u(µ) with
u ∈ C1(P).

By deriving (9) w.r.t. µ we can obtain the expressions of the first-order parametric sensitivities
of the state solution. In fact, the directional derivative ∇µu(µ) ·k, for any k ∈ Rd, is given by the
solution of

a(∇µu(µ) · k, v;µ) =

Qf∑
q=1

(∇µΘf
q (µ) · k) fq(v)−

Qa∑
q=1

(∇µΘa
q (µ) · k) aq(u(µ), v) ∀v ∈ X. (11)

1We follow this approach also in view of possible extensions to nonlinear state problems.
2If one of the bilinear forms aq(·, ·) is coercive, identifying Π is straightforward thanks to the Riesz representation

theorem, by taking Θ̂aq (µ) = Θaq (µ)/Θa1(µ), q = 2, . . . , Qa, and Θ̂fq (µ) = Θfq (µ)/Θa1(µ), q = 1, . . . , Qf .
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By choosing k = ei, where ei denotes the i-th unit vector of the canonical basis of Rd, (11) yields
d equations for the first-order parametric sensitivities ∂u(µ)/∂µi, i = 1, . . . , d, required to express
the first order optimality conditions. The derivation of these latter expressions is the goal of the
following section.

3.3 First order optimality condition

Thanks to Propositions 3.1 and 3.2 we can show the following result yielding a first-order optimality
condition to characterize a minimizer of (5); see, e.g., [15] for the proof.

Proposition 3.3. Let µ̂ ∈ Pad ⊆ P such that J(µ̂) = minµ∈Pad
J(µ). Under the following

assumptions:

1. Pad ⊂ Rd is a convex bounded and closed set;

2. J is µ-differentiable,

the following variational inequality holds

∇µJ(µ̂) · (µ̂− η) ≥ 0 ∀η ∈ Pad. (12)

We remark that (12) is a first-order necessary optimality condition. Therefore, we can apply
the chain rule in order to evaluate

∇µJ(µ) · k =
∂J̃(u(µ),µ)

∂u
∇µu(µ) · k +∇µJ̃(u(µ),µ) · k ∀k ∈ P, (13)

where

∂J̃(u(µ),µ)

∂u
∇µu(µ) · k =

Qg∑
q=1

Θg
q(µ)

(
sq(u(µ),∇µu(µ) · k) + lq(∇µu(µ) · k)

)
= dg(u(µ),∇µu(µ) · k;µ)

(14)

∇µJ̃(u(µ),µ) · k =

Qg∑
q=1

∇µΘg
q(µ) · k

(
1

2
sq(u(µ), u(µ)) + lq(u(µ))

)
(15)

where we have denoted by

dg(u, ψ;µ) =

Qg∑
q=1

Θg
q(µ) (sq(u, ψ) + lq(ψ)) (16)

the Fréchet derivative (with respect to u) of g(u, u;µ), being g(·, ·;µ) the bilinear form defined in
(5). In order to exploit formula (13), we need to evaluate ∇µu(µ) · k for any k ∈ P. As shown in
the previous section, sensitivities entail in principle the solution of d further parametrized PDEs
(11), thus implying an extensive computational effort, although the left-hand side is still equal to
the state operator. A more feasible approach is based on the solution of an adjoint problem, in
addition to the state problem. In fact, by adding (11) to (13) and choosing v = p(µ) in this latter
equation, we can make the evaluation of ∇µJ independent of ∇µu(µ) · k. This goal is achieved
by choosing p = p(µ) ∈ X as the solution of the adjoint problem

Qa∑
q=1

Θa
q (µ)a∗q(p(µ), ψ) =

Qg∑
q=1

Θg
q(µ) {sq(u(µ), ψ) + lq(ψ)} ∀ψ ∈ X (17)

being for any q = 1, . . . , Qa a∗q(p, ψ) = aq(ψ, p) ∀p, ψ ∈ X
q µ-independent adjoint bilinear forms. In this way, for any k ∈ P we obtain

∇µJ(µ) · k = ∇µJ̃(µ) · k −
Qa∑
q=1

∇µΘa
q (µ) · k aq(u(µ), p(µ)) +

Qf∑
q=1

∇µΘf
q (µ) · k fq(p(µ)). (18)
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Remark 3.1. Our approach does not need the introduction of the Lagrangian formalism associated
to the sensitivity-based approach. However, we can always recast the adjoint-based approach in the
Lagrangian functional formalism; see, e.g. [15].

When relying on the adjoint problem, the evaluation of ∇µJ(µ) for any k ∈ Rd requires the
solution of just two PDEs, in contrast to d + 1 PDEs which would be required when considering
the solution of p sensitivity equations. This is the main reason why we consider an adjoint-based
approach, instead of the sensitivity-based approach proposed e.g. in [12]. We can summarize the
results obtained so far in the following

Proposition 3.4. Let µ̂ ∈ Pad be an optimal solution of (µ-OP). Then, under the assumptions
of Proposition 3.3, there exists an adjoint state p = p(µ̂) such that (u(µ̂), p(µ̂), µ̂) satisfy the
first-order (necessary) optimality conditions:

Qa∑
q=1

Θa
q (µ̂) aq(u(µ̂), v) =

Qf∑
q=1

Θf
q (µ̂) fq(v) ∀v ∈ X,

Qa∑
q=1

Θa
q (µ̂)a∗q(p(µ̂), ψ) =

Qg∑
q=1

Θg
q(µ̂) {sq(u(µ), ψ) + lq(ψ)} ∀ψ ∈ X,

∇µJ(µ̂) · (µ̂− k) ≥ 0 ∀k ∈ Pad.

(19)

3.4 Second-order optimality condition

Provided that the functions Θλ
q (·), λ = a, f, g, are of class C2(P), a similar adjoint-based approach

can be exploited to evaluate the Hessian of the cost functional HJ(µ) : H → Rd×d. Indeed, this
latter quantity is required to implement a Newton method for numerical optimization, as well as to
characterize a posteriori error bounds for the solution of the optimization problem. Furthermore, a
sufficient second-order condition ensuring the strict local convexity of J is the positive-definiteness

of the Hessian matrix. We aim at evaluating the Hessian matrix (HJ(µ))ij = ∂2J
∂µj∂µi

(µ), 1 ≤ i, j ≤
d of J without relying on the second-order parametric sensitivities of the state solution, defined

as the components of the Hessian (Hu(µ))ij = ∂2u
∂µj∂µi

(µ), 1 ≤ i, j ≤ d, i.e. by solving less then

d2 + d + 1 PDE problems; note that each component of Hu is an element of X. For the sake of
simplicity, instead of the generic directional derivatives ∇µu(µ) · k, ∇µJ(µ) · k here we directly
consider the partial derivatives with respect to parameter components. By taking k = ei in (15)
and deriving with respect to µj we get

(HJ(µ))ij =
∂2J

∂µj∂µi
(µ) =

∂

∂µj

(
∂J̃

∂u
(u(µ),µ) · ∂u

∂µi
(µ)

)
+

∂

∂µj

(
∂J̃

∂µi
(u(µ),µ)

)
where

∂

∂µj

(
∂J̃

∂u
(u(µ),µ) · ∂u

∂µi
(µ)

)
=

Qg∑
q=1

∂Θg
q

∂µj
(µ)

{
sq(u(µ),

∂u

∂µi
(µ)) + lq(

∂u

∂µi
(µ))

}

+

Qg∑
q=1

Θg
q(µ)

{
sq(u(µ),

∂2u

∂µj∂µi
(µ)) + lq(

∂2u

∂µj∂µi
(µ))

}

+

Qg∑
q=1

Θg
q(µ)sq

(
∂u

∂µj
(µ),

∂u

∂µi
(µ)

)
(20)

and

∂

∂µj

(
∂J̃

∂µi
(u(µ),µ)

)
=

Qg∑
q=1

∂2Θg
q

∂µj∂µi
(µ)

{
1

2
sq(u(µ), u(µ)) + lq(u(µ))

}

+

Qg∑
q=1

∂Θg
q

∂µi
(µ)

{
sq(

∂u

∂µj
(µ), u(µ)) + lq(

∂u

∂µj
(µ))

}
.
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The second term appearing at the right-hand side of (20), namely

P (µ) =

Qg∑
q=1

Θg
q(µ)

{
sq(u(µ),

∂2u

∂µj∂µi
(µ)) + lq(

∂2u

∂µj∂µi
(µ))

}
= dg((Hu(µ))ij , u(µ);µ) (21)

is nothing but the right-hand side of the adjoint problem (17) with ψ = (Hu(µ))ij , so that

P (µ) =

Qa∑
q=1

Θa
q (µ)a∗q(p(µ), (Hu(µ))ij) =

Qa∑
q=1

Θa
q (µ)aq((Hu(µ))ij , p(µ)).

To avoid the evalauation of Hu(µ), we can derive the state equation with respect to parameter
components (similarly to what we have done in (11)) to obtain

Qa∑
q=1

Θa
q (µ)aq((Hu(µ))ij , v) =

Qf∑
q=1

∂2Θf
q

∂µj∂µi
(µ)fq(v)−

Qa∑
q=1

∂2Θa
q

∂µj∂µi
(µ) aq(u(µ), v)

− ∂a

∂µi
(
∂u

∂µj
(µ), v;µ)− ∂a

∂µj
(
∂u

∂µi
(µ), v;µ) ∀v ∈ X

(22)

being

∂a

∂µi
(u, v;µ) =

Qa∑
q=1

∂Θa
q (µ)

∂µi
aq(u, v), i = 1, . . . , d. (23)

By taking v = p(µ) in (22), we can thus evaluate (21) as P (µ) = P̃
(
u(µ), ∂u∂µ1

(µ), . . . , ∂u∂µd
(µ)
)

.

Hence, computing the Hessian matrix HJ(µ) requires to evaluate only the state u(µ), the adjoint
state p(µ) and the sensitivities ∂µiu(µ), that is, to solve d+ 2 instead of d2 +d+ 1 PDE problems.

4 Reduced basis method for PDE-constrained optimization

In this section we illustrate a reduced basis (RB) method for the efficient solution of PDE-
constrained parametric optimization problems under the form (µ-OP). We exploit a descent
method for numerical optimization (such as the the projected gradient, Newton or quasi-Newton
methods; see e.g. [31, 15]). To speedup the evaluation of the cost functional (and its gradient),
which requires the solution of the state and the adjoint problems, we rely on a very cheap RB
approximation of both these problems instead than on a much more expensive high-fidelity ap-
proximation. Such a procedure, to which we can refer to as optimize-then-reduce, has already been
exploited to tackle several optimal control and optimal design problems. Nevertheless, a complete
framework for the error control on the optimal solution (and on other quantities required to set
a reduced descent method) is still lacking, except for the results shown in [12]. However, in these
works only a sensitivity-based approach has been presented; our goal is to develop instead an
adjoint-based approach, and then compare these two approaches.

4.1 High-fidelity FE approximation

Our RB method relies upon a high-fidelity Finite Element (FE) approximation of the state and
the adjoint problems – the reduction stage does not replace the discretization stage of the usual
optimize-then-discretize approach, rather it is built upon. We introduce a FE subspace Xh ⊂ X of
dimension Nh < +∞, and denote by uh(µ) ∈ Xh, ph(µ) ∈ Xh the FE approximation for the state
and the adjoint solution, respectively, which are obtained by solving

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Xh

a∗(ph(µ), ψh;µ) = dg(uh(µ), ψh;µ)Z ∀ψh ∈ Xh;
(24)

here we use a more compact notation, without expliciting the affine parametric dependence. The
high-fidelity approximation of problem (µ-OP) reads

µ̂h = arg minµ∈Pad
Jh(µ) = J̃(uh(µ),µ)

s.t. a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Xh.
(µ-OPh)
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Hence, a descent method based on the high-fidelity approximation (24) yields a convergent sequence

{µ(k)
h }k≥0 ∈ Pad such that

µ
(k+1)
h = ΠPad

(µ
(k)
h + σkd

(k)
h ), k = 0, 1, . . .

where ΠPad
: Rd → Pad denotes the projection operator onto Pad and d

(k)
h is a descent direction,

such that 〈∇µJ(µ
(k)
h ),d

(k)
h 〉 < 0. Here we denote by ∇µJh(µ) = ∇µJ̃(uh(µ),µ) and by d

(k)
h the

descent direction, that is

d
(k)
h =


−∇µJh(µ

(k)
h ) Gradient method

−H(k)
dfp∇µJh(µ

(k)
h ) quasi-Newton method

−(HJ,h(µ
(k)
h ))−1∇µJh(µ

(k)
h ) Newton method,

(25)

where the step size σk > 0 such that J(µ
(k+1)
h ) < J(µ

(k)
h ) can be selected through an inexact line

search or the so-called Armijo rule [31]. H(k)
dfp is the approximation of the inverse H−1

J,h(µ) of the
high-fidelity Hessian, obtained according to the iterative Davidon-Fletcher-Powell (DFP) formula:

H(k+1)
dfp = H(k)

dfp +
(δµkδµ

T
k )

yTk δµk
−

(H(k)
dfpyky

T
kH

(k)
dfp)

yTkH
(k)
dfpyk

, (26)

where δµk = −σkH(k)
dfp∇µJh(µ(k)) and yk = ∇µJh(µ(k+1)) − ∇µJh(µ(k)). Note that H(k)

dfp does
not require to solve problem (22) to evaluate second-order parametric sensitivities; these latter are
instead required in the case of a Newton method. Finally, given a a prescribed tolerance εtolopt > 0,

we iterate until, e.g., ‖∇µJh(µ̂h)‖Rd < εtolopt or ‖dh‖Rd < εtolopt. Any nonlinear programming solver
can be applied to find a local optimum, such as interior point methods, penalty methods, or
sequential quadratic programming, see e.g. [31]. Here we rely on simpler methods by assuming
to start the optimization process with an initial guess not too far from the optimal solution in
order to keep under control (and estimate) the reduction error at each stage of the minimization
procedure.

4.2 RB approximation

The RB approximation of a parametrized PDE is obtained by solving a reduced problem, resulting
from the (Galerkin) projection of the original problem onto a low dimensional subspace, spanned
by (possibly few) snapshots of the high-fidelity problem obtained for properly selected parameter
values [35]. For the case at hand, the RB approximation of the state un(µ) ∈ Xu

n ⊂ Xh and the
adjoint ph(µ) ∈ Xp

n ⊂ Xh variables solve

a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Xu
n

a∗(pn(µ), ψn;µ) = dg(un(µ), ψn;µ) ∀ψn ∈ Xp
n.

(27)

The RB approximation of problem (µ-OPh) thus reads

µ̂n = arg minµ∈Pad
Jn(µ) = J̃(un(µ),µ)

s.t. a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Xn.
(µ-OPn)

Hence, a descent method which exploits at each step the RB approximation (µ-OPn) yields a

convergent sequence {µ(k)
n }k≥0 ∈ Pad such that

µ(k+1)
n = ΠPad

(µ(k)
n + d(k)

n ), k = 0, 1, . . .

where d
(k)
n is a reduced descent direction defined as in (25)–(26) by replacing Jh with Jn; here

∇µJn(µ) = ∇µJ̃(un(µ),µ). Finally, given a a prescribed tolerance εtolopt > 0, we iterate until, e.g.,

‖∇µJn(µ̂h)‖Rd < εtolopt or ‖dn‖Rd < εtolopt. The proposed framework can also be extended to other
constrained optimization algorithms – such as trust region or active set methods: our choice to
adopt a more straightforward optimization method aims at better highlighting the computational
performances of the reduced-order model.
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4.3 RB space construction

We now address the construction of the RB spaces Xu
n , Xp

n for the state and the adjoint problem,
respectively. The two mostly exploited techniques are POD and greedy algorithms, see, e.g. [1, 9,
10, 38, 18, 39] for recent applications to PDE-constrained optimization problems. Here we exploit
a greedy algorithm relying on a posteriori error bounds, comparing different strategies for the
construction of state space and adjoint (or, alternatively, sensitivity) spaces.

First, we propose a simultaneous strategy for the state-adjoint formulation: since these two
problems are not disjoint – the right-hand side of the adjoint problem depends on the state solution
u(µ) – we can take advantage of the state basis when constructing the adjoint space in order to
speedup the whole procedure. This yields to the simultaneous state/adjoint greedy algorithm 1. A
second option consists in selecting the same parameter value for both state and adjoint problems
at each iteration, see Algorithm 2. As we will see in the considered test cases, parameter sampling
in this case is mainly driven by one of the two problems, with a consequent loss of information
in the two RB spaces Xu

n , Xp
n. The greedy algorithm can be also performed when relying on a

state-sensitivity approach, instead than on a state-adjoint approach. In this case, considering for
instance a different sampling for each problem, we obtain Algorithm 3. A comparison among these
three algorithms is presented in Sect. 6. We denote by Gram− Schmidt(Xn, u) the result of the
orthonormalization of u with respect to the n elements of Xn, whereas ∆u

n(µ), ∆p
n(µ) are two error

bounds for state and adjoint solutions, such that (see Sect. 5.1)

‖uh(µ)− un(µ)‖X ≤ ∆u
n(µ) ‖ph(µ)− pn(µ)‖X ≤ ∆p

n(µ) ∀µ ∈ P.

Algorithm 1 Offline stage / state/adjoint, two samplings

1: procedure State-adjoint Greedy algorithm, two samplings
Require: nmax, εtolRB , Ξtrain ⊂ P, µ1

u,µ
1
p ∈ P

Ensure: RB state and adjoint spaces Xu
n , Xp

n

2: Sun = ∅, Xu
n = ∅, Spn = ∅, Xp

n = ∅
3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µnu)
7: ζun = Gram− Schmidt(Xu

n , uh(µnu))
8: Xu

n ← Xu
n ∪ ζun , Sun ← Sun ∪ {µnu}

9: [δun,µ
n
u] = arg maxµ∈Ξtrain ∆u

n(µ)
10: compute ph(µnp )
11: ζpn = Gram− Schmidt(Xp

n, ph(µnp ))
12: Xp

n ← Xp
n ∪ ζpn, Spn ← Spn ∪ {µnp}

13: [δpn,µ
n
p ] = arg maxµ∈Ξtrain ∆p

n(µ)
14: δn = max(δun, δ

p
n)

Algorithm 2 Offline stage / state/adjoint, one sampling

1: procedure State-adjoint Greedy algorithm, one sampling
Require: nmax, εtolRB , Ξtrain ⊂ P, µ1 ∈ P
Ensure: RB state and adjoint spaces Xu

n , Xp
n

2: Sn = ∅, Xu
n = ∅,

3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µn), ph(µn)
7: ζun = Gram− Schmidt(Xu

n , uh(µn)), Xu
n ← Xu

n ∪ ζun
8: ζpn = Gram− Schmidt(Xp

n, ph(µn)), Xp
n ← Xp

n ∪ ζpn
9: Sn ← Sn ∪ {µn}

10: [δn,µ
n] = arg maxµ∈Ξtrain(∆u

n(µ),∆p
n(µ))
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Algorithm 3 Offline stage / sensitivities

1: procedure State-sensitivities Greedy algorithm
Require: nmax, εtolRB , Ξtrain ⊂ P, µ1

u,µ
1
1, . . . ,µ

1
d ∈ P

Ensure: RB state and sensitivity spaces Xu
n , Xk

n, k = 1, . . . , d
2: Sun = ∅, Xu

n = ∅, Skn = ∅, Xk
n = ∅, k = 1, . . . , d

3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µnu)
7: ζun = Gram− Schmidt(Xu

n , uh(µnu))
8: Xu

n ← Xu
n ∪ ζun , Sun ← Sun ∪ {µnu}

9: [δun,µ
n
u] = arg maxµ∈Ξtrain ∆u

n(µ)
10: for k = 1 : d do
11: compute ∂uh

∂µk
(µnk )

12: ζkn = Gram− Schmidt(Xk
n,

∂uh
∂µk

(µnk ))

13: Xk
n ← Xk

n ∪ ζkn, Skn ← Skn ∪ {µnk}
14: [δkn,µ

n
k ] = arg maxµ∈Ξtrain ∆k

n(µ)

15: δn = max(δun, δ
1
n, . . . , δ

d
n)

4.4 Reduced optimization

We now summarize the reduced computational procedure for the solution of a generic optimization
problem through the RB method. This procedure is based on a suitable offline-online splitting,
ensured by the affine parameter dependence assumption (4). RB spaces are thus built during a first
expensive stage, performed offline, whereas the online stage consists in the optimization procedure,
which requires a large number of evaluations of the reduced cost functional J̃(un(µ),µ) and the
reduced descent direction dn(µ). Each evaluation entails the solution of the reduced state and
adjoint problem; see Algorithm 4.

Algorithm 4 Online procedure

1: procedure Reduced descent method
Require: nmax, εtolopt, µ

(0) ∈ P, d
(0)
n ∈ P

Ensure: RB optimal solution µ̂n
2: n = 0
3: while n < nmax and ‖∇µJn(µn)‖ > εtolopt do
4: n← n+ 1
5: compute un(µ(k)), pn(µ(k)); evaluate Jn(µ(k)), ∇µJn(µ(k))
6: if Gradient method then
7: evaluate σk (Armijio rule / line-search)

8: d
(k)
n = −σk∇µJn(µ(k))

9: if quasi-Newton method then
10: update H

(k)
dfp (DFP formula)

11: d
(k)
n = −H(k)

dfp(µ(k))∇µJn(µ(k))

12: if Newton method then
13: compute ∂un

∂µi
(µ(k)), i = 1, . . . , d and evaluate RB Hessian HJ,n(µ(k))

14: d
(k)
n = −(HJ,n(µ(k)))−1∇µJn(µ(k))

15: µ(k+1) = PHad(µ(k) + d
(k)
n )

16: k ← k + 1

17: µ̂n = µ(k+1)

The construction of the reduced-order algebraic structures required to assemble the reduced
state and adjoint problems (27) can be performed very efficiently, relying on the µ-independent
high-fidelity structures. Being able to express high-fidelity structures decoupling µ-dependent
functions and µ-independent structures hinges upon the affine parameter dependence and is a
standard procedure in the context of RB approximation, see, e.g. [35, 37].
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In this work, we want to show that a reduced order optimization framework based on a state-
adjoint approach ensures the best trade-off between accuracy and efficiency. By relying on a RB
approximation for both the state and the adjoint problems, we are able to perform efficient evalu-
ations of the cost functional and its gradient, thus enabling to implement a reduced order gradient
or quasi-Newton method. Instead, if willing at implementing a reduced order Newton method, the
RB approximation of sensitivity equations is required in order to evaluate the Hessian of the cost
functional efficiently. This has a remarkable computational impact, as it implies increasing costs
associated with the offline procedure. Moreover, we compare different descent methods, assessing
their computational speedup and the break-even between offline and online costs.

5 A posteriori error estimation

A key ingredient of the proposed framework is the capability to provide rigorous, sharp and in-
expensive error bounds for any quantity involved in the optimization process. We thus manage
to keep the error between high-fidelity and reduced-order quantities under control at each opti-
mization step, preventing the reduced optimization framework to provide inaccurate results. We
highlight that evaluating efficiently a tight lower-bound αh(µ) ≥ αLBh (µ) > 0 ∀µ ∈ P of the
µ-dependent, high-fidelity stability factor αh(µ) plays a key role in the a posteriori error bounds;
to do this, we can rely on either the successive constraint method [16] or a suitable interpolation
procedure [25, 30].

5.1 State, adjoint and sensitivities approximation

For the sake of completeness, we first report some well-known results related with the error bound
on the state and adjoint solutions, see, e.g. [35, 37]. Let us denote by

ru(v;µ) = f(v;µ)− a(un(µ), v;µ) ∀v ∈ Xh

rnp (v;µ) = dg(v, un(µ);µ)− a(v, pn(µ);µ) ∀v ∈ Xh

(28)

the high-fidelity residuals for the state and the adjoint problem, evaluated over the RB solution.

Proposition 5.1. For any µ ∈ P, the error between the high-fidelity and the RB approximation
of the state (resp. adjoint) solution is bounded by

‖uh(µ)− un(µ)‖X ≤ ∆u
n(µ) :=

‖ru(·;µ)‖X′
αLBh (µ)

, (29)

‖ph(µ)− pn(µ)‖X ≤ ∆p
n(µ) :=

‖rnp (·;µ)‖X′
αLBh (µ)

. (30)

�

Note that the lower bound αLBh (µ) is the same in both estimates, and that the adjoint residual
depend on the RB approximation of both state and the adjoint problems. Moreover, we can write

rp(v;µ) = dg(v, uh(µ);µ)− a(v, pn(µ);µ) = rnp (v;µ) + dg(v, uh(µ)− un(µ);µ)

where the second term at the right-hand side can be easily bounded by using (29). It is indeed
straightforward to obtain an error estimate for the (first-order) sensitivity equations. Subtracting
the correspondent high-fidelity and reduced sensitivities (11), we obtain, for any i = 1, . . . , d:

a

(
∂uh(µ)

∂µi
− ∂un(µ)

∂µi
, vh;µ

)
=

∂a

∂µi
(uh(µ)− un(µ), vh;µ) ∀vh ∈ Xh.

Then, by using (29) and the stability estimate provided by the Lax-Milgram lemma, we obtain∥∥∥∥∂uh(µ)

∂µi
− ∂un(µ)

∂µi

∥∥∥∥
V

≤ ∆i
n(µ) :=

Ma,µi
(µ)

αLBh (µ)
∆u
n(µ),

where Ma,µi
(µ) is the continuity constants associated to the form ∂a

∂µi
(·, ·;µ) defined by (23).
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5.2 Cost functional

We now derive an error bound for a generic quadratic functional of u(µ) – such as the one appearing
in (3) – based on a “primal-dual” approach. In a “primal only” approach such a bound would only
depend on ∆u

n(µ) and would loose the so-called “quadratic effect” – see, e.g., [37, 33]).
Even if we do not need to introduce the Lagrangian formalism for deriving the optimality

conditions (17)–(18), we find it useful for deriving the a posteriori error estimation on the cost
functional provided by the following proposition, inspired by the goal-oriented analysis of [4]:

Proposition 5.2. Let J(µ) = g(u(µ), u(µ);µ) be a quadratic functional, where g : X×X×P → R
is a symmetric coercive bilinear form, for any µ ∈ P. Let us denote by Jh(µ) = g(uh(µ), uh(µ);µ)
and Jn(µ) = g(un(µ), un(µ);µ), respectively. Then, for any µ ∈ P,

|Jh(µ)− Jn(µ)| ≤ ∆J
n(µ) := αLBh (µ)∆u

n(µ)∆p
n(µ). (31)

Proof. For the sake of proving this result, we rely on the introduction of the Lagrangian functional
associated to the constrained optimization problem (6). We rewrite |Jh(µ)− Jn(µ)| by combining
in an appropriate manner the state and adjoint problems in order to identify the residuals. This
yields

|Jh(µ)− Jn(µ) = |Jh(µ)− a(uh, ph;µ) + f(ph;µ)− Jn(µ) + a(un, pn;µ)− f(pn;µ)|
= |L(uh, ph;µ)− L(un, pn;µ)|

=
1

2

∣∣∣∣L′((uh, ph); eh;µ) + L′((un, pn); eh;µ) +

∫ 1

0

L′′′((un, pn) + teh; eh;µ)dt

∣∣∣∣ .
The first and the third terms are null respectively for the assumption that the high-fidelity solution
is the optimal one (L′ = 0) and for the linearity of a(·, ·;µ) and of F (·;µ). Using the definition
(28) of the residuals we obtain, for any µ ∈ P,

|Jh(µ)− Jn(µ)| ≤ 1

2
|ru(un(µ); ph(µ)− pn(µ))|+ 1

2
|rp(pn(µ);uh(µ)− un(µ))|

≤ 1

2
‖ru‖X′‖ph(µ)− pn(µ)‖X +

1

2
‖rp‖X′‖uh(µ)− un(µ)‖X .

thanks to Cauchy-Schwarz inequality; (31) follows by (29)–(30).

5.3 Gradient of the cost functional

Being able to estimate the error on the gradient of the cost functional ensures that the descent

directions d
(k)
n of the reduced minimization algorithm are indeed very close to the directions d

(k)
h we

would have built by considering the high-fidelity approximation. Estimating the error ‖∇µJh(µ)−
∇µJn(µ)‖Rd is usually quite involved and results in not so tight error bounds.

In this work we take advantage of the primal-dual approach in order to improve this estimate.
For any i = 1, . . . , d, let us denote by

∂f

∂µi
(v;µ) =

Qf∑
q=1

∂Θf
q (µ)

∂µi
fq(v), (32)

∂s

∂µi
(u, v;µ) =

Qg∑
q=1

∂Θg
q(µ)

∂µi
sq(u, v),

∂l

∂µi
(v;µ) =

Qg∑
q=1

∂Θg
q(µ)

∂µi
lq(v), (33)

and by Mf,µi(µ), Ms,µi(µ), Ml,µi(µ) the continuity constants of the forms defined in (32)–(33).

Proposition 5.3. Under the assumptions of Proposition 5.2, for any µ ∈ P

‖∇µJh(µ)−∇µJn(µ)‖Rd ≤ ∆∇Jn (µ) :=

(
d∑
i=1

(Cui (µ)∆u
n(µ) + Cpi (µ)∆p

n(µ))d

)1/d

, (34)
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where

Cui (µ) = Ma(µ)‖pn(µ)‖X
Ma,µi(µ)

αLBh (µ)
+ (2Ms,µi

Mf (µ)

αLBh (µ)
+Ml,µi(µ)),

Cpi (µ) = Mf,µi(µ) +Ma,µi(µ)
Mf (µ)

αLBh (µ)
.

Proof. For each component µi, i = 1, . . . , d, using the chain rule (8) and the adjoint problem (17)
we obtain∣∣∣∣DJhDµi

− DJn
Dµi

∣∣∣∣ ≤ ∣∣∣∣ (∂Jh∂uh
,
∂uh(µ)

∂µi

)
−
(
∂Jn
∂un

,
∂un(µ)

∂µi

) ∣∣∣∣+

∣∣∣∣∂Jh∂µi
− ∂Jn
∂µi

∣∣∣∣
=

∣∣∣∣a∗(ph(µ),
∂uh(µ)

∂µi
;µ

)
− a∗

(
pn(µ),

∂un(µ)

∂µi
;µ

) ∣∣∣∣+

∣∣∣∣∂Jh∂µi
− ∂Jn
∂µi

∣∣∣∣ = I + II

Henceforth, we proceed separately for the two terms, given by the error weighted by the bilinear
form and by the term concerning the derivative with respect to µi, respectively. For the for-
mer term, we add and subtract a (pn(µ), ∂uh(µ)/∂µi;µ) and apply Cauchy-Schwarz inequality,
obtaining

I ≤
∣∣∣∣a∗(ph(µ)− pn(µ),

∂uh(µ)

∂µi
;µ

) ∣∣∣∣+

∣∣∣∣a∗(pn(µ),
∂uh(µ)

∂µi
− ∂un(µ)

∂µi
;µ

) ∣∣∣∣ = Ia + Ib.

We estimate Ib using the continuity of a∗(·, ·;µ), that is,

Ib ≤Ma(µ)‖pn(µ)‖X
∥∥∥∥∂uh(µ)

∂µi
− ∂un(µ)

∂µi

∥∥∥∥
X

≤Ma(µ)‖pn(µ)‖X
Ma,µi

(µ)

αLBh (µ)
∆u
n(µ);

while, using the problem for the (first-order) sensitivity, we obtain

Ia =

∣∣∣∣a(∂uh(µ)

∂µi
, ph(µ)− pn(µ);µ

) ∣∣∣∣ =

∣∣∣∣ ∂f∂µi (ph(µ)− pn(µ))− ∂a

∂µi
(uh(µ), ph(µ)− pn(µ);µ)

∣∣∣∣
≤Mf,µi(µ)‖ph(µ)− pn(µ)‖X +Ma,µi(µ)

Mf (µ)

αLBh (µ)
‖ph(µ)− pn(µ)‖X

≤
(
Mf,µi

(µ) +Ma,µi
(µ)

Mf (µ)

αLBh (µ)

)
∆p
n(µ).

Using the continuity of the operators in the cost functional and its quadratic form, we obtain

II =

∣∣∣∣ ∂s∂µi (uh(µ), uh(µ);µ) +
∂l

∂µi
(uh(µ))− ∂s

∂µi
(un(µ), un(µ))− ∂l

∂µi
(un(µ))

∣∣∣∣
≤Ms,µi(‖uh(µ)‖X + ‖un(µ)‖X)‖uh(µ)− un(µ)‖X +Ml,µi‖uh(µ)− un(µ)‖

≤
(

2Ms,µi
(µ)

Mf (µ)

αLBh (µ)
+Ml,µi

(µ)

)
∆u
n(µ).

By combining the previous inequalities, (34) follows.

5.4 Optimal solution

Finally, we can provide an estimate for the error ‖µ̂h − µ̂n‖Rd between the optimal parameters
obtained with the high-fidelity and the reduced optimization framework, respectively. By combin-
ing the previous results, we ensure that the reduced optimization method converges to an optimal
solution µ̂n which is close to the high-fidelity solution µ̂h up to a prescribed threshold.

Let us denote by µh ∈ P the solution to problem (µ-OPh), such that ∇µJh(µ̂h) = 0, by
HJ,h(µ) the high-fidelity Hessian of the cost functional (see Sect. 3.4) and by B̄r(µ) a closed ball
with center µ ∈ P and radius r > 0. Moreover, let µ̂n ∈ P be the approximate solution to problem
(µ-OPn) fulfilling, for some εJ > 0,

‖∇µJn(µ̂n)‖Rd ≤ εJ .
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Theorem 5.4. Denote by

λ = ‖HJ,h(µ̂n)−1‖Rd×d , ε = ‖∇µJh(µ̂n)−∇µJn(µ̂n)‖Rd + εJ .

Moreover, define by L(r) = supµ∈B̄r(µ̂n) ‖HJ,h(µ̂n)−HJ,h(µ))‖Rd×d . Provided that

2λL(2λε) ≤ 1 (35)

there exists a unique solution µ̂h ∈ B̄2λε(µ̂n) of the optimization problem (µ-OPh), such that

‖µ̂h − µ̂n‖ ≤ 2λε. (36)

Proof. We do not report the full proof for the sake of space; the interested reader can refer, e.g.,
to [7, 8]. It is straightforward to see that the solution µ̂h to problem (µ-OPh) is a fixed point of
the map Φ : Rd → Rd defined by Φ(µ) = µ − HJ,h(µ̂n)−1∇µJh(µ), since ∇µJh(µ̂h) = 0. The
general Brezzi-Rappaz-Raviart theory (see, e.g. [8, Section 2] provides existence and uniqueness
of the fixed point, as well as the error bound (36).

Similarly to previous bounds, the error bound (36) combines two terms: λ, which plays the
role of a stability factor, and ε, which can be considered as the dual norm of the residual of the
minimization problem ∇µJh(µ) = 0. Evaluating the (inverse norm of the) high-fidelity Hessian
HJ,h(·) entails the solution of the high-fidelity state (and adjoint) problem for µ = µ̂n; however,
this computation has to be performed only when reaching the stopping criterion on the reduced
optimization, if we want to certify the optimal solution through a bound of the error ‖µ̂h− µ̂n‖Rd .
A possible alternative in the case when multiple evaluations of the error bound (36) are required
would be to rely on interpolation procedures (in the parameter space), similarly to what has been
recently proposed in [25] for the fast and reliable approximation of stability factors related to
parametrized PDE operators. In the following section we show the effectivity of the proposed error
estimates, and we assess the computational performances of our reduced optimization framework.

6 Numerical results

In this section we present some numerical results dealing with quadratic cost functional and elliptic
scalar stationary PDE, characterized by physical and/or geometric parameters playing the role of
control variables2. After performing the offline stage, the inexpensive RB online evaluation takes
place at each iteration of the optimization scheme. Although in our results the target zd is fixed,
we highlight that the proposed framework can also be used to solve optimization problems for
different target functions zd (possibly depending on µ ∈ P) without requiring a new offline stage.

6.1 Graetz conduction-convection problem

The Graetz problem concerns the forced convection of a heat flow in a pipeline with walls at variable
temperature [3]. We deal with a parametrized version of this problem, where d = 4 parameters
are:

• µ1 ∈ [1, 5] the length of the pipe section;

• µ2 ∈ [1, 7], being µ2
2 the Péclet number;

• µ3 ∈ [0, π4 ] the angle of incidence of the advection field;

• µ4 ∈ [0, π2 ] the amplitude of the inlet Dirichlet boundary condition.

We consider the domain Ω̃(µ) = (0, 3 + µ1) × (0, 1); in the first subregion (0, 1 + µ1) × (0, 1)
the flow comes in contact with the hot wall Γin, whereas in the second (observation) region (1 +
µ1, 3 + µ1)× (0, 1) the fluid flows through cold walls.

2Computations have been run on a laptop with a 2,2 GHz Intel Core i7 processor and 8 GB of RAM.
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The state problem (for the temperature variable) reads as follows: find u(µ) such that

− 1

µ2
2

∆u(µ) + b(µ3) · ∇u(µ) = 0 in Ω̃(µ1)

u(µ) = 0 on Γ̃D

u(µ) = cos(µ4)(1− x1)(x1 − 1− µ1) on Γ̃in(µ1)

u(µ) = sin(µ4)(1− x1)(x1 − 1− µ1) on Γ̃in(µ1)
∂u(µ)

∂n
= 0 on Γ̃out,

(37)

where b(µ3) = [cos(µ3)10x2(1 − x2),− sin(µ3)]. Given a target zd, the goal is to approximate,
through the reduced framework, the solution

µ̂h = arg min
µ∈P

Jh(µ), Jh(µ) =
1

2
‖uh(µ)− zd‖2L2(Ω̃obs(µ))

, (38)

the minimum of Jh being reached for µ̂ = µtarget, i.e. Jh(µ̂) = 0. For the sake of numerical test,
we set µtarget = [3, 4, π10 , 1] and the corresponding high-fidelity solution uh(µtarget) as target zd.

6.1.1 Offline stage

After mapping the problem (37)-(38) onto a fixed reference domain Ω, we construct a high-fidelity
approximation through the Galerkin FE method, using piecewise linear elements; the dimension of
the corresponding space is Nh = 4033. The affine parametric dependence (4) is recovered through
Qa = 7 and Qf = 15 terms, respectively. Then, we turn to the construction of a RB approximation
for both the state and the adjoint problem.

For the sake of comparison, we consider the three greedy algorithms introduced in Sect. 4.3.
Numerical results presented in Fig. 1 outline two main evidences: the adjoint-based approach
enables to obtain a RB space of lower dimension keeping the same accuracy level with respect to
the sensitivity-based approach (see Fig. 1, left). Moreover (see Fig. 1, right), the adjoint-based
approach performs better when the snapshots for the state and the adjoint problems are computed
with respect to parameter values independently sampled (Algorithm 1, two samplings) – that is,
the retained parameter sets Sun and Spn are different (see Fig. 2). For this reason, we consider only
Algorithms 1 and 3 for the sake of comparison.
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Figure 1: Convergence of the three greedy algorithms presented in Section 4.3.

The three proposed strategies show different offline computational costs: indeed, the need of
constructng a RB space for each of the d > 1 sensitivity equations has a considerable impact, which
becomes larger and larger as the desired dimension Nh of the RB spaces increases; see Table 1.

The adjoint-based strategy relying on two independent sampling for the construction of state
and adjoint subspaces (Algorithm 1) is the best approach in terms of both efficiency and accuracy.
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Figure 2: Sampled parameters during the greedy algorithm for state (left) and adjoint (right)
problems.

N = 30 N = 50 N = 70 N = 90 N = 110

state+adjoint (Alg. 1) 6 m 9.5 m 13.5 m 17.5 m 22 m

state+sensitivities (Alg. 3) 8 m 13 m 19 m 25 m 32 m

Table 1: CPU time (minutes) for the offline stage, for different greedy algorithms.

6.1.2 Online stage

We now compare the (reduced) descent methods introduced in Sect. 4.2 – namely, projected gradi-
ent, quasi-Newton and Newton methods – prescribing a stopping criterium based on the gradient
of the cost functional ‖∇µJn‖Rd . In a first test case we start from µ(0) = (1, 1, 0.01, π2 ) and we
apply the gradient algorithm by considering either the Armijio rule or the line-search method for
choosing the step size. The method converges to the optimal value µtarget, although it requires a
large number of iterations (and subiterations for the step size criterium); the corresponding state
and adjoint solutions are reported in Fig. 3.

Figure 3: RB solutions of state and adjoint problems for µ = µ(0) (top), µ = µ(3) =
(3.1, 3, 0.18, 0.91) (middle), µ = µ̂n (bottom).

Provided that the cost functional is nonconvex with respect to µ, the reduced quasi-Newton
method converges only if the starting value µ(0) is sufficiently close to the optimal value. As a
consequence, we exploit the gradient algorithm (globally convergent) to generate a suitable starting
point for the quasi-Newton method. In this case, we run the gradient method until it satisfies the
stopping criterium with tolerance tol = 10−2, then we turn to the quasi-Newton method. This
combination allows us to achieve very high accuracy with a limited number of iterations (e.g. 18
iterations of gradient method with line-search rule plus 7 of Newton method in order to reach a
tolerance of 10−9 in the stopping criterium). A stagnation effect on the cost functional, yielding
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a convergence of the reduced descent method to an optimal value µ̂n 9 µtarget, is observed in
the case of a poor RB approximation, see Fig. 4, for both Newton and quasi-Newton methods; a
similar conclusion is found for the gradient method.

Hence, already for RB subspaces of relatively small dimension (N = 75, 100), a remarkable
accuracy is reached. Concerning the CPU time required to perform optimization, we pursue a
computational speedup ranging from 17 in the Newton case to 93 in the gradient case. The
smallest number of iterations required to reach convergence is obtained in the Newton case (see
Table 2).
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Figure 4: Cost functional values at each iteration of Newton (left) and quasi-Newton (right)
methods for different RB dimensions N and comparison with the high-fidelity FE approximation.

#itRB CPUtime/itRB CPUtime/itFE
Gradient (Armijio) 2502 0.0104 s 0.9327 s

Gradient (line search) 173 1.926 s 59.027 s

Gradient (line search) + quasi-Newton 18 + 17 0.0088 s 0.1249 s

Gradient (line search) + Newton 18 + 7 0.0235 s 0.4047 s

Table 2: Number of iterations and computational times of the Gradient method with Armijio
rule and inexact line-search in (10−2, 50) with 500 samples, of quasi-Newton and Newton methods
(N = 100 RB functions).

The best option concerning computational efficiency is the quasi-Newton method. For the case
at hand, using the gradient method to generate a suitable starting point µ̃0, the quasi-Newton
(DFP) method converges in 17 iterations to the sub-optimal value µ̂n = (2.99996, 4.00002, 0.31416,
0.99996), with cost functional Jn(µ̂n) = 2.51 10−10. In particular, we initialize the surrogate of the
Hessian matrix HJ(µ) with a diagonal matrix of elements equal to the step size identified by the
inexact line search (as in a step of the gradient method). Starting form the same initial guess µ̃0,
the Newton method converges in 7 iterations to µ̂n = (2.99996, 4.00003, 0.314164, 0.99996), with
cost functional Jn(µ̂n) = 2.51 10−10. We remark that the accuracy of the reduced-order model
(in terms of the number n of basis functions) has a relevant role in achieving the minimum value
of the cost functional: the larger n, the smaller Jn(µ̂n), see Fig. 4 – recall that µ̂ = µtarget. In
addition to its better efficiency with respect to the sensitivity-based approach, the adjoint-based
method yields inexpensive a posteriori error bounds for the cost functional and its gradient. In
this case, the effectivities

ηJ(µ) =
∆J
n(µ)

|Jh(µ)− Jn(µ)|
, η∇J(µ) =

∆∇Jn (µ)

‖∇µJh(µ)−∇µJn(µ)‖Rd

for J and ∇J , respectively, are indeed very close to 1 – that is, the proposed error bounds show to
be very tight for the case at hand, see Fig. 5. This is in our opinion a remarkable result, since error
bounds usually show large effectivities in the case of optimal control problems, see e.g. [9, 10].
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ηJ η∇J
N = 30 2.0716 4.3478
N = 65 1.2286 4.5187
N = 90 1.1121 4.1614

Figure 5: A posteriori error bounds for the cost functional and its gradient: effectivities (left) and
behavior with respect to RB dimension N , average on a sample Ξtest ⊂ P of dimension 100 (right).

Finally, to assess the accuracy of the proposed framework, we evaluate the error ‖µ̂j − µ̂n‖
between the high-fidelity and the reduced-order solution of the optimization problems. We also
verify from a computational standpoint the result of Theorem 5.4, focusing on the dependence
of the error bound (36) on the RB dimension n and the tolerance εtolopt of the stopping criterium.
These results confirm that it is fundamental to achieve a very good approximation of the optimality
conditions in a neighborhood of the optimal solution in order to guarantee a good approximation
of the optimal parameters. In fact, the estimate is only certified for a number of basis greater than
90, which decreases noticeably the error ‖∇µJn(µ)−∇µJh(µ)‖Rd (and so ε). On the other hand
for tolerances smaller than 10−5 and 100 basis the estimate is always verified.

Figure 6: A posteriori error estimates for the optimal parameters (Newton method started with
line search gradient iterations) varying the number of basis N at fixed tolerance εJ = 10−6 of the
stopping criterium for the optimization (left) and varying εJ at fixed N = 100 (right).

6.2 NACA airfoil shape design

We now turn to the optimal design of NACA airfoils. Parametrizing the airfoil shape enables to
cast the problem into the PDE-constrained parametric optimization framework presented in this
paper. In our case we deal with d = 3 parameters, namely

• µ1 ∈ [0.04, 0.24] the maximum thickness of the airfoil;

• µ2 ∈ [0, 0.012] the curvature of the wing profile;

• µ3 ∈ [−0.45π, 0.45π] the angle of incidence of the flow w.r.t. the chord of the airfoil.
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We consider a set of affine maps (naturally induced by the selected parameters) defined over a
domain decomposition in order to recover the affine parametric dependence property (4), as shown
e.g. in [37]. This yields Qa = 184 and Qf = 188 terms in expression (4), respectively. Other
options to deal with more general nonaffine maps – such as (discrete) empirical interpolation –
can also be used, see e.g. [24]. We describe the flow around the airfoil through a potential model,
leading to the following state problem for the velocity potential: find φ ∈ X such that

−∆φ = 0 in Ω̃(µ1, µ2)

φ = φref (µ3) on Γ̃out
∂φ

∂n
= uin(µ3) · n on Γ̃in

∂φ

∂n
= 0 on Γ̃wing(µ1, µ2).

(39)

The velocity-pressure formulation follows by the identity u = −∇φ and the Bernoulli equation.
Following [28, Chapter 2], we aim at reconstructing the airfoil shape corresponding to a given
target velocity field in the rear Ω̃obs ⊂ Ω of the airfoil, that is, to approximate

µ̂h = arg min
µ∈P

Jh(µ), Jh(µ) =
1

2

∫
Ω̃obs

|∇(φh(µ)− zd)|2dΩ. (40)

Here the target zd is the high-fidelity solution φh(µtarget) with µtarget = [0.15, 0.006, π6 ].

6.2.1 Offline stage

The approximation of the problem (39)–(40), mapped onto the fixed reference domain Ω, is firstly
obtained through the Galerkin FE method with linear finite elements, resulting in a high-fidelity
approximation of dimension Nh = 10886. Then, we exploit the greedy Algorithms 1 and 3 for
constructing the RB spaces for state and adjoint (resp., sensitivity) problems. Also in this case,
the adjoint-based method seems to be more effective in terms of accuracy and efficiency, see Fig. 7
and Table 3; the retained snapshots are reported in Fig. 8.

Figure 7: Convergence of greedy Algorithm 1 (resp. 3) for state and adjoint (resp. sensitivity)
problems.

Basis computation N = 10 N = 20 N = 30

state+adjoint (Alg. 1) 10 m 20 m 31 m

state+sensitivities (Alg. 3) 24 m 47 m 72 m

Table 3: CPU time for the offline stage, for different greedy algorithms.

As expected, the offline computational cost are higher with respect to the previous case, because
of the larger dimension Nh of the FE space and the larger number Qa, Qf of terms in the affine
expansion. Indeed, this yields a higher complexity in the µ-dependence of the PDE solutions and
additional costs in the assembling of µ-independent arrays.
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Figure 8: Sampled parameters during the greedy algorithm for state (left) and adjoint (right)
problems.

6.2.2 Online stage

Starting from the initial guess µ(0) = (0.08, 0.012,−π4 ), we compare the results obtained with the
reduced and the high-fidelity optimization framework (see Algorithm 4), testing different options
concerning the descent directions. For the case at hand, the Newton method converges considering

µ
(0)
n = (0.08, 0.012,−π4 ) as initial guess. The iterations generated by the high-fidelity and the

reduced Newton method (varying the number of basis functions) are displayed in Fig. 9, top and
Fig. 10, left. Clearly, the results obtained with the reduced optimization algorithm get closer and
closer to the high-fidelity solution as the number of RB functions increases. The RB approximation
of both state and adjoint problems are reported in Fig. 11 for different parameter values (initial
guess, second iteration of the Newton method and optimal parameter value); the corresponding
velocity and pressure fields are reported in Fig. 12.

On the other hand, the quasi-Newton method (with H(0) equal to the identity matrix) requires
about the same number of iterations to converge as the Newton method, yet entailing a remarkably
lower computational effort (both during the offline and online phase). The iterations generated
by the high-fidelity and the reduced quasi-Newton method are displayed in Fig. 9, bottom and
Fig. 10, right.

In order to control the reduction error at each step of the minimization procedure, we can rely
on the proposed error estimates. In particular, we compute the effectivities of the error estimator
for the cost functional and its gradient (see Fig. 13). As in the previous example, the goal-oriented
analysis provides a tight error bound for the cost functional J , and a reliable (but less tight) error
bound in the case of the gradient ∇J . Moreover, we can assess the influence of reduction errors
on the optimal solution thanks to the result of Theorem 5.4. We report in Fig. 14 the error bound
(36) for different RB dimensions n and tolerances εtolopt of the stopping criterium.

By considering a RB dimension greater than 9 and a tolerance εtolopt < 5 · 10−3, the hypothesis
of Theorem 5.4 are verified. Hence, the error bound (36) provide a reliable estimate of the error
‖µ̂h − µ̂n‖Rp on the optimal parameter values.

Finally, we report some details concerning the computational costs, by considering as starting

point µ
(0)
n = (0.22, 0.01, 0.4π) with a tolerance εtolopt = 10−10 for the reduced optimization procedure.

As expected, the gradient method requires several iterations to satisfy the stopping criterium –
this is due to the elongated shape of the level sets of the cost functional, see Fig. 9. The smallest
number of iterations required to reach convergence is obtained in the Newton case (see Table 4).

For the sake of comparison, we report in Table 5 the total computational cost entailed by the
reduced optimization, including also the offline construction of the RB spaces, see Table 3 for the
CPU times concerning this latter operation. We consider N = 30 RB functions and (i) the greedy
Algorithm 1 for the gradient and the quasi-Newton methods, (ii) the greedy Algorithm 3 including
the reduction of the sensitivity equations for the Newton method, respectively.
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Figure 9: Iterations of Newton (top) and quasi-Newton methods (bottom) in the parameter space.
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Figure 10: Trend of the cost functional for Newton (left) and quasi-Newton method (right).

#itRB CPUtime/itRB CPUtime/itFE
Gradient (Armijio) 1699 0.0788 s 1.5001 s

Gradient (l-s) 626 10.58 s 191.5 s

Gradient (l-s) + quasi-Newton 12 + 37 0.0385 s 0.7951 s

Gradient (l-s) +Newton 12 + 8 0.0917 s 1.4944 s

Table 4: Number of iterations and CPU times of the Gradient method with Armijio rule and
inexact line-search in (10−2, 50) with 500 samples, of quasi-Newton and Newton methods (N = 30
RB functions).
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Figure 11: Solutions of the state and adjoint problems for µ
(0)
n = (0.08, 0.012,−π4 ) (left), µ

(2)
n =

(0.2029, 0, 0.5759) (center) and µ̂n = (0.1501, 0.006, 0.5236) (right).

Figure 12: Velocity and pressure fields for µ
(0)
n = (0.08, 0.012,−π4 ) (left), µ

(2)
n = (0.2029, 0, 0.5759)

(center) and µ̂n = (0.1501, 0.006, 0.5236) (right).

RB offline RB online FE

Gradient (Armijio) 31 m 2.21 m 42.47 m

Gradient (l-s) 31 m 110.38 m 1998 m

Gradient (l-s) + quasi-Newton 31 m 2.14 m 38.69 m

Gradient (l-s) +Newton 72 m 2.13 m 38.39 m

Table 5: Overall computational times for the high-fidelity and the reduced (offline+online) opti-
mization.

Performing the reduced optimization during the online stage provides a speedup of about 20 for
any chosen method. We get a computational speedup also including both offline and online costs,
except for the Newton method, which requires however the construction of d + 1 > 2 RB spaces
(state + d sensitivity equations). In the case of a single solution of the optimization problem,
we save about 20%, 90% and 15% of the CPU time in the case of the gradient method with the
Armijio rule, with line search and of the quasi-Newton method, respectively. The gain is even
larger if more than one optimization problem has to be solved online, for instance by varying the
target function zd: in this case the offline stage must not be run again, and the optimization just
requires a very fast online stage (order of 2 minutes). Last but not least, a possible restarting of
the optimization algorithm, whenever required, can be performed inexpensively.
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ηJ η∇J
N = 10 28.4091 1000
N = 20 2.2999 454.5455
N = 30 1.9201 416.6667

Figure 13: A posteriori error bounds for the cost functional and its gradient: effectivities (left)
and behavior with respect to the RB dimension N , average on a sample Ξtest ⊂ P of dimension
100 (right).

Figure 14: A posteriori error estimates for the optimal parameters (Newton method started with
line search gradient iterations) varying the number of basis (left) and the tolerance of the stopping
criterium (right).

7 Conclusions

In this work we have proposed a certified reduced basis method for the efficient solution of PDE-
constrained parametric optimization problems. We have compared (i) a sensitivity-based and (ii)
an adjoint-based approach, relying in both cases on the reduced basis method to speedup the PDE
solution at each step of a descent optimization algorithm. We have also provided a posteriori
error bounds for the cost functional, its gradient and the optimal solution in order to control the
accuracy of both descent directions evaluated through the RB framework and optimal solutions
resulting from the application of the proposed reduced framework. Numerical test cases dealing
with linear-quadratic optimal control problems assess the validity of the theoretical results shown
in this paper and the efficiency of the proposed reduced-order methodology. Two cases have been
considered, dealing with (i) the optimal control of thermal flows and (ii) the optimal design of
airfoil profiles in the case of a potential flow model. In both cases the adjoint-based approach,
together with a quasi-Newton method for numerical optimization, provide the best tradeoff in
terms of accuracy and computational efficiency.
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