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Abstract

The fully coupled description of blood flow and mass transport in blood
vessels requires extremely robust numerical methods. In order to handle the
heterogeneous coupling between blood flow and plasma filtration, addressed by
means of Navier-Stokes and Darcy’s equations, we need to develop a numerical
scheme capable to deal with extremely variable parameters, such as the blood
viscosity and Darcy’s permeability of the arterial walls.

In this paper, we describe a finite element method for the approximation
of incompressible flow coupled problems. We exploit stabilized mixed finite
elements together with Nitsche type matching conditions that automatically
adapt to the coupling of different combinations of coefficients. We study in
details the stability of the method using weighted norms, emphasizing the
robustness of the stability estimate with respect to the coefficients. We also
consider an iterative method to split the coupled heterogeneous problem in
possibly homogeneous local problems, and we investigate the spectral proper-
ties of suitable preconditioners for the solution of the global as well as local
problems.

Finally, we present the simulation of the fully coupled blood flow and
plasma filtration problems on a realistic geometry of a cardiovascular artery
after the implantation of a drug eluting stent (DES). A similar finite element
method for mass transport is then employed to study the evolution of the
drug released by the DES in the blood stream and in the arterial walls, and
the role of plasma filtration on the drug deposition is investigated.

∗This work has been supported by the Italian Institute of Technology with the project
NanoBiotechnology - Models and Methods for Local Drug Delivery from Degradable Materials,
and by the ERC Advanced Grant N.227058 MATHCARD - Mathematical Modelling and Simula-

tion of the Cardiovascular System.
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1 Introduction

Mass transport driven by intramural plasma filtration is the basic process to supply
nourishment to tissues of medium/small size arteries. In the last decades, this
process has also been exploited to deliver drugs to arteries affected by atherosclerotic
pathologies, such as coronary arteries. Drug eluting stents represent a recent and
widespread example of this procedure. The design of these devices requires first
of all to determine the correct drug dosage and release rate, which mainly depend
on the transport properties of the substrate releasing the drug as well as on the
biochemical interaction between the drug and the arterial tissue. More recently,
preliminary computational studies [2, 21] have put into evidence that blood flow
local features and drug deposition into the artery are correlated. These phenomena,
may also significantly interact with intramural plasma filtration. However, to our
knowledge, such interplay has not yet been deeply investigated.

In this work, we discuss a finite element scheme using interior penalty techniques
to solve coupled problems in a domain accounting for both the arterial lumen and
the arterial wall. Specifically, we present a finite element method for the coupling of
blood flow and intramural plasma filtration in rigid arteries. Under the assumption
of Newtonian rheology, the former is described by the Navier-Stokes equations, while
the latter is modeled by the Darcy’s law. Suitable interface conditions are then set
at the interface between different subregions.

The development of a finite element scheme tailored to handle the heterogeneous
nature of the global problem is not trivial. To address heterogeneous coefficients, we
have considered in [14] a multi-domain formulation, in which the global domain Ω
is divided in N subregions Ωi, i = 1, . . . , N , characterized by hydraulic resistances
ηi and dynamic viscosities νi. A unified continuous–discontinuous finite element
method for the numerical approximation of the coupled incompressible flow problem
was introduced, exploiting a weighted interior penalty formulation, together with
an iterative splitting (block-Jacobi) method for the solution of the discrete problem
based on N local solvers. The challenge of such unified general formulation is related
to the coupling between heterogeneous problems, as it happens, for instance, when
viscosity is very small or possibly vanishing on one of the subdomains. In this
regard, the analysis of the method introduced in [14] encompasses the whole range
of admissible parameters ηi and νi; moreover, the convergence of the proposed
iterative method was proved.

In this paper, more precisely in section 2, we consider a similar method, in-
troducing suitable weights in the variational formulation that make the method
robust with respect to the coefficients of the problem. The robustness of the sta-
bility estimate is investigated in details using suitable weighted norms. In section
3 we propose preconditioning strategies for the local or global problems, we study
their spectral properties and we assess their performance, showing that they are
effective tools to be used in the framework of the iterative splitting method. We
extend the classical preconditioners based for the Schur complement to our stabi-
lized scheme (along the lines presented in [10]; see also [31, 20]), and assess the
performance of the couterparts of pressure matrix, Cahouet-Chabard as well as
monolithic block-diagonal preconditioners applied to the heterogeneous problems
under consideration.

The final aim of this work is to couple blood flow and mass transfer. For this
reason, in section 4 we adapt a continuous-discontinuous stabilized finite element
scheme, proposed in [8], to the approximation of the coupled advection-diffusion
equations governing the drug transport in the lumen and in the arterial wall.

Finally, in section 5 we perform a computational analysis of drug release from
DES. The study of drug eluting stents is challenging from both the modeling and the
computational points of view. On one side, a thorough derivation of mathematical
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models describing drug release from stents has been recently addressed in [15, 35,
26]. On the other side, several efforts have been devoted to achieve a computational
analysis of the problem. Concerning the mechanical analysis of stent deformation,
we refer to [24, 25]. For the analysis of how stents perturb blood flow and wall shear
stresses we mention, among others, [3]. Another relevant topic in this context is the
development of reduced models for mass transfer. We refer to [13] for an example
applied to DES, based on the ideas introduced in [11].

The coupled roles of stent expansion, blood flow and drug release have been only
recently and partially investigated. We refer to [2, 21] for a bio-medical overview
of the problem, supported by computational results, and to [37] for a fully three-
dimensional computational analysis. In the latter work, however, the plasma filtra-
tion was not considered. For this reason, we concentrate our efforts on the coupling
of the luminal flow inside a blood vessel with plasma filtration in the arterial wall,
in a complex geometry characterized by an endovascular stent implant interfer-
ing with the flow, and show that our method is able to effectively deal with this
heterogeneous problem.

We conclude observing that the application of the proposed numerical approxi-
mation scheme is not restricted to the analysis of DES. In the framwork of cardio-
vascular applications, the model and its discretization technique find, for instance,
a natural application in the study of atherosclerosis. More in general, our scheme
could be exploited in very different contexts, such as the simulation of free flows
coupled with groudwater flows in geophysics.

2 Modeling and approximation of coupled blood

flow

Let us consider the physical domains represented in figure 1, describing a stented
coronary artery. We denote by Ωl the lumen, that is the domain occupied by blood,
and by Ωw the arterial wall. Let ∂Ωl = Γin ∪ Γout ∪ Γint ∪ Γs,l, where Γin is the
inflow of the lumen, Γout is the outflow, Γint is the interface between the lumen and
the wall, and Γs,l is the interface between the lumen and the stent.

Analogously, let ∂Ωw = Γint∪Γext∪Γcut∪Γs,w, where Γext is the exterior part of
the vessel, Γcut is the artificial wall boundary, and Γs,w is the interface between the
wall and the stent. The exterior unit normal vectors on ∂Ωl, ∂Ωw, will be denoted
respectively by nl, nw.

Γext

Γint

Γcut

Γout

Γin
Γs,l

Γs,w

Figure 1: The lumen and the arterial wall with boundaries.
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2.1 Blood flow models

Let us denote by ui the blood velocity and by pi the blood pressure (normalized
with respect to the fluid density) in the arterial lumen (i = l) and in the arterial
wall (i = w). In the most general case, we will assume the unsteady Navier-Stokes
equations for blood flow in the lumen and the Darcy model for the filtration of
plasma through the wall,

∂ul

∂t
− ν∆ul + (ul · ∇)ul + ∇pl = 0 in Ωl × (0, T ), (1a)

∇ · ul = 0 in Ωl × (0, T ), (1b)

ηuw + ∇pw = 0 in Ωw × (0, T ), (2a)

∇ · uw = 0 in Ωw × (0, T ). (2b)

Obviously, if pulsatile effects are not relevant, steady Navier-Stokes equations can be
considered as well, because we focus on small and medium sized arteries where the
characteristic Reynolds number of the flow is low. Model (1), (2) and in particular
the validity of Darcy equation for plasma filtration in the arterial wall, is acceptable
under the simplificative assumption that the complex multilayer structure of the
coronary arteries can be approximated as an isotropic homogeneous medium. Since
the arterial wall permeability with respect to plasma is low and the artery is assumed
to be undeformable, the Darcy model is considered to be acceptable. We refer to
[27] for a review of possible generalization of the filtration model.

In equations (1) and (2), ν and η are respectively the fluid dynamic viscosity and
the hydraulic resistance of the arterial wall. Regarding the boundary conditions,
we assign the blood velocity at the inflow boundary Γin, we prescribe zero external
stress at the outflow Γout and a given external pressure on the exterior part of the
wall Γext, and impose vanishing normal velocity on the artificial boundaries. As in-
terface conditions on Γint, we assume the continuity of the normal component of the
velocity and the continuity of the normal component of the normal stress. We also
require the tangential component of the luminal velocity to be zero. Alternatively,
a Beavers-Joseph-Saffman law [28] for the jump of the tangential components of the
normal stress may be assumed. However, we prefer to consider the limit case of
very high frictional stresses, i.e. no slip conditions, because the friction coefficient is
often only poorly estimated. The previous assumptions correspond to the following
boundary and coupling conditions,

ul − Ul,in = 0 on Γin, σwnw − pextnw = 0 on Γext, (3a)

ul = 0 on Γs,l, uw · nw = 0 on Γs,w, (3b)

σlnl = 0 on Γout, uw · nw = 0 on Γcut, (3c)

nT
l σlnl − nT

wσwnw = 0 on Γint, (4a)

ul · nl + uw · nw = 0 on Γint, (4b)

nw × ul = 0 on Γint, (4c)

where σl = plI− ν∇ul, σw = pwI are the Cauchy stress tensors (we denote by I the
identity tensor).

Problem (1) is time-dependent and nonlinear. We consider implicit time ad-
vancing schemes (i.e. backward Euler) with time step τ , and Picard’s iterations
for the treatment of the nonlinear advective term of the Navier-Stokes equations.
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Conversely, the Darcy’s problem (2) depends on time only through interface condi-
tions, and it is linear. If a splitting method is adopted to solve the global nonlinear
problem by separately solve the local problems on each subdomain Ωi at each time
step, the Picard’s method can be included in the iterations of the splitting scheme
by evaluating the advection field at the previous iteration. In this case, the ab-
stract problem that has to be solved at each iteration of the splitting scheme has
the following form,

ηiui − νi∆ui + (wi · ∇)ui + ∇pi = fi in Ωi, (5a)

∇ · ui = 0 in Ωi, (5b)

complemented with boundary and interface conditions (3) and (4), where wi are
given advection fields for each i = l, w. If the backward Euler time advancing scheme

is considered, for the luminal flow problem we have ηl =
1

τ
, νl = ν, fl =

1

τ
u

(k−1)
l ,

whilst for the arterial wall filtration problem νw = 0, ww = 0. In particular, the
time discretization of the blood momentum equation gives rise to an additional
hydraulic resistance term ηl (the “inverse” of a permeability) corresponding to the
inverse time step. For this reason, we will focus only on the approximation of
the steady problem (5), since it is clear how to proceed when a time dependent
problem is considered. In each subregion we introduce a strictly positive coefficient
µi = νi + ηi, with i = l, w.

For the analysis of problem (5) with non negative viscosity νi ≥ 0, we follow the
approach addressed in [1], where a unified analysis of Stokes and Darcy problems is
addressed. In particular, we look at Darcy problem as the singular limit for νi → 0
of (5). In this case, the natural spaces for the variational problem setting are Vw =
Hdiv(Ωw), Qw = L2(Ωw) for Darcy problem and Vl = [H1(Ωl)]

d, Ql = L2(Ωl) for
the generalized Stokes/Oseen problem. In order to treat in a unified way the abrupt
transition between the two cases, we introduce the spaces Vi as the completion of
C∞(Ωi)

d with respect to the Sobolev norm defined by

‖u‖2
Vi

=

∫

Ωi

(

ηiu · u + µi(∇ · u)2 + νi∇u : ∇u
)

.

We point out that Vi is isomorphic to [H1(Ωi)]
d if νi > 0, or to Hdiv(Ωi) if νi = 0.

Then, we look for a weak solution of (5) in the spaces Vi ×Qi, where Qi = L2(Ωi),
equipped with the broken norm

|||ui, pi||| := ‖ui‖2
Vi

+ ‖µ− 1

2

i pi‖L2(Ωi). (6)

Theorem 2.1 of [1] shows that problem (5) is stable in the norm (6).
Concerning wi, we assume that it is divergence free, even though most of the

results of this work will still hold true for ‖∇ · wi‖0,Ωi
small enough. Moreover,

we assume that Γin is the only inflow of the boundaries, more precisely {wi · ni ≤
0} ⊆ Γin. We notice that both assumptions may not be exactly satisfied when wi is
given by a discrete velocity field computed by means of an iterative process to solve
the associated nonlinear Navier-Stokes problem (or to solve the coupled lumen-wall
problem). However, these minor exceptions do not compromise the validity of our
analysis.

2.2 Finite element discretization with penalties

The abstract problem (5) is an extension (i.e., including an advective term) of the
generalized Stokes problems considered in [14], and can be treated using similar tech-
niques, based on a H1-conforming approximation for velocities on each subdomain
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together with Nitsche type penalty method for the coupling between different sub-
problems. Simultaneously, for a more accurate approximation of the divergence free
constraint, we will seek the pressure into a fully discontinuous finite element space.
The combination of discontinuous velocities at the subdomain interface with fully
discontinuous pressures leads to a continuous–discontinuous Galerkin type penalty
method.

We assume that each Ωi is a convex polygonal domain, equipped with a family
of quasi-uniform triangulations Th,i made of affine simplexes K that are conforming
on Γint. Let h be their characteristic size. We also denote with Fh,i the set of all
interior faces F of Th,i, and set Th = ∪iTh,i, Fh = ∪iFh,i.

For the local approximation on each subregion we consider a (Pk, discontinuous
P

k−1) finite element pair,

Vh,i := {vh ∈ V (Ωi) : vh|K ∈ P
k(K), ∀K ∈ Th,i}, Vh,i = [Vh,i]

d,

Qh,i := {qh ∈ L2(Ωi) : qh|K ∈ P
k−1(K), ∀K ∈ Th,i}.

where k ≥ 1. As global approximation spaces, we consider

Vh :=
N

⊕

i=1

Vh,i, Qh :=
N

⊕

i=1

Qh,i. (7)

Notice that the pressure will be uniquely determined by the prescribed external
stresses in (3).

We define the jump of any finite element function φh across any (internal) face
F of the computational grid in the usual way,

JφhK(x) := lim
δ→0

[φh(x − δnF ) − φh(x + δnF )], x ∈ F.

Here, φh can be a scalar Qh function or a vector Vh function. The orientation of
the normal nF is arbitrary and does not influence the method. Finally, we denote
hF = diam(F ) the diameter of any face F . With little abuse of notation, we also
denote hF a piecewise constant function defined on Fh, taking the value diam(F )
on each face F . We also define the weighted and conjugate weighted averages on
Γint,

{φh}w :=
∑

i∈{l,w}

wiφh,i, {φh}w :=
∑

i∈{l,w}

w̄iφh,i,

where w = (wl, ww) are suitable weights, such that wl+ww = 1, and w̄i = 1−wi are
the conjugate weights. We also denote with {φh} the standard arithmetic average.

In this work, the choice of the weights is arbitrary: it does not influence the
consistency and unique solvability of our finite element scheme. However, as al-
ready shown in [8, 14], a specific choice of the weights affects the robustness of the
scheme with respect to the heterogeneity of the coefficients across the interface. The
choice of the weights is also relevant for the performance of the algebraic solvers for
the coupled problem, which will be discussed later on. For these reasons, we will
consider a specific pair, that will be shown to be particularly effective, given by

wl =
µw

µl + µw
, ww =

µl

µl + µw
, (8)

for which we have {µφh}w = {µ}w{φh}.
Let us denote by ΓD

i ⊂ ∂Ωi the Dirichlet boundaries (see eq. (3)), that are ΓD
l =

Γin∪Γs,l and ΓD
w = Γcut∪Γs,w, and set ΓD = ΓD

l ∪ΓD
w . For uh = (uh,l,uh,w) ∈ Vh,

vh = (vh,l,vh,w) ∈ Vh, and ph = (ph,l, ph,w) ∈ Qh, qh = (qh,l, qh,w) ∈ Qh we define
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the following forms,

a
(bf)
i (uh,i,vh,i;wi) :=

∫

Ωi

(

ηiuh,l · vh,i + νi∇uh,i : ∇vh,i + (wi · ∇uh,i) · vh,i

)

+

∫

ΓD
i

(1

2
(|wi · ni| − wi · ni) + γuh−1

F νi

)

uh,i · vh,i

+

∫

ΓD
i

γuh−1
F µi(uh,i · ni)(vh,i · ni)

−
∫

ΓD
i

(

νi∇uh,in · vh,i + νi∇vh,in · uh,i

)

+

∫

Γint

γuh−1
F νi(n × uh,i) · (n × vh,i), (9)

bi(ph,i,vh,i) := −
∫

Ωi

ph,i∇ · vh,i +

∫

ΓD
i

ph,ivh,i · ni, (10)

c(bf)(uh,vh) :=

∫

Γint

(

γuh−1
F {µ}wJuh · nKJvh · nK (11)

− {νnT∇uhn}wJvh · nK − {νnT∇vhn}wJuh · nK
)

,

d(ph,vh) :=

∫

Γint

{ph}wJvh · nK, (12)

j
(p)
i (ph,i, qh,i) :=

∫

Fh,i

γphF µ−1
i Jph,iKJqh,iK, (13)

j
(w)
i (uh,i,vh,i;wi) :=

∫

Fh,i

γwh2
F ‖wi · n‖∞,F J∇uh,inK · J∇vh,inK, (14)

where n is a unit normal vector on Γint, defined either as n = nl or n = nw

(all properties of our scheme being independent of this choice), γu, γp and γw are
constant parameters that guarantee the stability of the method. In particular, γw

is associated to an interior penalty stabilization of the convective term, see [6]. Let
us introduce

A(bf)(uh,vh;w) :=
∑

i=l,w

(a
(bf)
i + j

(w)
i )(uh,i,vh,i;wi) + c(bf)(uh,vh), (15)

B(ph,vh) :=
∑

i∈{i,l}

bi(ph,i,vh,i) + d(ph,vh), (16)

j(p)(ph, qh) :=
∑

i∈{i,l}

j
(p)
i (ph,i, qh,i), (17)

and denote the right hand side by

F (bf)(vh) :=

∫

Ωl

fl · vh,l −
∫

Γext

pextvh,w · nw

+

∫

Γin

(

1

2
(|wl · nl| − wl · nl) + γuh−1

F νl

)

Ul,in · vh,l

+

∫

Γin

γuh−1
F µl(Ul,in · nl)(vh,l · nl).
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Then, the mixed formulation of the discrete problem reads as follows: find (uh, ph) ∈
Vh × Qh such that,







A(bf)(uh,vh;w) + B(ph,vh) = F (bf)(vh), ∀vh ∈ Vh,

B(qh,uh) − j(p)(ph, qh) = 0, ∀qh ∈ Qh.
(18)

In order to analyze the consistency of the scheme, we need to ensure that problem
(18) makes sense for the exact weak solution of the problem. For this reason, we
require the following additional regularity,

(ul, pl) ∈ [H
3

2
+ǫ(Ωl)]

d × H
1

2
+ǫ(Ωl), and pw ∈ H

1

2
+ǫ(Ωw) for any ǫ > 0. (19)

2.3 Fundamental properties of the finite element scheme

In this section we aim to analyze the stability and the convergence of the discrete
scheme described in (18), with particular emphasis on the dependence of the the
stability properties on coefficients ηi, νi (and µi). Conversely, we disregard the
robustness of our scheme with respect to highly convection dominated problems.
In other words, defining Re := ‖wν−1‖∞ the Reynolds number, our analysis may
not be robust with respect to the limit Re → ∞. However, this is not a major
limitation in the hemodynamic conditions of small-medium sized arteries, which
typically feature moderate Re.

First, we observe that introducing the product space Wh := Vh ×Qh, the right
hand side G(vh, qh) = (F (bf)(vh), 0) and the bilinear form

C((uh, ph), (vh, qh)) := A(bf)(uh,vh;wl)+B(ph,vh)−B(qh,uh)+j(p)(ph, qh), (20)

problem (18) is equivalent to the following: given a sufficiently regular G(·), find
(uh, ph) ∈ Wh such that,

C((uh, ph), (vh, qh)) = G(vh, qh), ∀(vh, qh) ∈ Wh. (21)

Second, given Σ ⊂ ∂Ωi, for any vh ∈ Vh,i, qh,i ∈ Qh,i we define

‖vh,i‖2
± 1

2
,h,Σ :=

∫

Σ

h∓1
F v2

h, ‖Jqh,iK‖± 1

2
,h,Fh,i

:=

∫

Fh,i

h∓1
F Jqh,iK

2,

and we introduce suitable norms in Vh and Wh respectively,

|||vh|||2 :=
∑

i=l,w

[

‖η
1

2

i vh,i‖2
0,Ωi

+ ‖ν
1

2

i ∇vh,i‖2
0,Ωi

(22)

+ ‖ν
1

2

i vh,i‖2
+ 1

2
,h,ΓD

i
+ ‖ν

1

2

i n × vh,i‖2
+ 1

2
,h,Γint

]

,

|||(vh, qh)|||2 :=|||vh|||2 +
∑

i=l,w

[

‖µ
1

2

i ∇ · vh,i‖2
0,Ωi

+ ‖µ
1

2

i vh,i · n‖2
+ 1

2
,h,ΓD

i
(23)

+ ‖µ− 1

2

i qh,i‖2
0,Ωi

+ ‖µ− 1

2

i Jqh,iK‖2
− 1

2
,h,Fh,i

]

+ ‖{µ}
1

2

wJvhK · n‖2
+ 1

2
,h,Γint

.

Notice how the different terms are weighted by coefficients η, ν or µ in the bilinear
forms (9-14) as well as in the norms (22-23). These weights will allow us to get a
robust stability estimate, as stated by theorem 2.3.
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In the sequel, we will write x . y if and only if there exists a constant C > 0,
independent of x, y, h and the coefficients η, ν of the problem, such that x ≤ Cy.
We will use the symbol & similarly. To assess the robustness of our computational
method, we will emphasize the dependence of our estimates on the coefficients.

We will use the following inverse inequalities (see [30]) that hold true for all
K ∈ Th,i, vh ∈ Y k

h := {vh ∈ L2(Ω) : vh|K ∈ P
k(K), ∀K ∈ Th}, and any face

F ⊂ ∂K, provided that the mesh is shape regular,

(

hF

k2

)
1

2 ‖vh‖0,F . ‖vh‖0,K ,
(

hK

k2

)

‖∇vh‖0,K . ‖vh‖0,K . (24)

For the ease of notation, we introduce ‖vh‖2
0,∪Ωi

:=
∑

i=l,w ‖vh,i‖2
0,Ωi

. For a

similar purpose, we introduce the broken Sobolev space Hs(Ω) :=
⊕N

i=1 Hs(Ωi)
equipped with the broken norm ‖v‖2

s,∪Ωi
:=

∑

i=l,w ‖vi‖2
s,Ωi

and the seminorm

|v|2s,∪Ωi
:=

∑

i=l,w |vi|2s,Ωi
. We also set H1

0(Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}.
Now, we aim to briefly review the fundamental properties of problem (21) in

terms of consistency, boundedness, stability and convergence. Some parts of this
analysis have already been addressed in [14]. For this reason, we will rigorously
state all the results providing a detailed proof only for the topics that have not
been developed in [14] or elsewhere.

Lemma 2.1
(Consistency) Let (u, p) be the weak solution of the coupled problem (5), (3), (4),
with the additional regularity stated in (19), and let (uh, ph) ∈ Wh be the solution
of (21). Then, we have,

C((u − uh, p − ph), (vh, qh)) = 0 ∀(vh, qh) ∈ Wh.

(Boundedness) For all (uh, ph), (vh, qh) ∈ Wh, the bilinear form C(·, ·) satisfies,

C((uh, ph), (vh, qh)) . (1 + Re) |||uh, ph||| |||vh, qh|||.

(Positivity) Provided that γu is large enough, there exists a positive constant Cpos,
independent of h, νi, ηi, and wi, such that, for all (vh, qh) ∈ Wh.

A(bf)(vh,vh) ≥ Cpos



|||vh|||2 +
∑

i=l,w

‖µ
1

2

i vh,i · n‖2
+ 1

2
,h,ΓD

i
+ ‖{µ}

1

2

wJvhK · n‖2
+ 1

2
,h,Γint



 .

Proof. Consistency is easily verified proceeding as in [14], under the assump-
tion that the weak solution (u, p) of (5), (3) and (4) is regular enough, using the
identity J(σ(u, p)n) · vK = {σ(u, p)n}w · JvK + Jσ(u, p)nK{v}w, and the stress inter-
face condition (4) to cancel the second term on the right hand side of the previous
identity.

Boundedness follows from standard Cauchy-Schwarz and inverse inequalities
(24), the latter being used to estimate the boundary interface and penalty terms.
As an example, let us consider the boundedness of the bilinear forms bi. First,
thanks to the Cauchy-Schwarz inequality,

bi(ph,i,vh,i) = −
∫

Ωi

ph,i∇ · vh,i +

∫

ΓD
i

ph,ivh,i · ni

≤ ‖µ− 1

2

i ph,i‖0,Ω‖µ
1

2

i ∇ · vh,i‖0,Ω + ‖µ− 1

2

i ph,i‖− 1

2
,h,ΓD

i
‖µ

1

2

i vh,i · ni‖+ 1

2
,h,ΓD

i
.

Second, from (24) we have ‖h
1

2

F µ− 1

2 ph‖0,F . ‖µ− 1

2 ph‖0,K on each face F of each

element K. Hence, we can estimate ‖µ− 1

2

i ph,i‖− 1

2
,h,ΓD

i
. ‖µ− 1

2 ph,i‖0,Ωi
. As a

consequence,
bi(ph,i,vh,i) . |||uh, ph||| |||vh, qh|||.

9



Analogously, all terms that are independent of the advection field w are bounded
with respect to the triple norm, uniformly with respect to the coefficients (we refer
the reader to lemma 4.2 in [14] for a similar analysis). Finally, the advective term
is estimated as follows,

∫

Ωi

(wi · ∇uh,i) · vh,i =

∫

Ωi

((wiν
−1 · ∇)ν

1

2 uh,i) · ν
1

2 vh,i . Re |||uh||| |||vh|||,

where we have used the following Poincaré inequality,

‖ν 1

2 vh,i‖2
0,Ωi

. ‖ν 1

2∇vh,i‖2
0,Ωi

+ ‖ν 1

2 vh,i‖2
+ 1

2
,h,ΓD

i
.

We proceed similarly for the upwind terms
∫

Γin

(wi · n−
i )ui · vi, where wi · n−

i =
|wi·ni|−wi·ni

2 . As a result, the continuity estimate of A(bf) depends on the Reynolds
number Re = ‖wν−1‖∞.

The positivity of A(bf) is proved following [14] for all terms except the advective
one. The latter is treated noticing that wi is divergence free, which implies

∫

Ωi

(wi · ∇)vh,i · vh,i =
1

2

∫

∂Ωi

(wi · ni)vh,i · vh,i.

Hence, Γin being the inflow boundary, we can control the advective term thanks to
the upwind term,

∫

Γin

(wi · n−
i )vh,i · vh,i +

∫

Ωi

(wi · ∇)vh,i · vh,i =
1

2

∫

∂Ωi

|wi · ni|vh,i · vh,i ≥ 0.

The inf-sup stability of the scheme (18) is not a trivial task, because of the
continuous–discontinuous nature of the velocity approximation space Vh, which
admits jumps across the interface Γint. An effective technique to study the inf-sup
stability of the scheme when dealing with the homogeneous Dirichlet conditions is
discussed in [14], following the Boland-Nicolaides approach, see [4]. This requires,
first, to verify that the inf-sup condition holds uniformly for a pair of subspaces
Vh × Q̄h, where Q̄h is the space of constant functions on each subdomain Ωi that
satisfy

∑

i∈{l,w}

∫

Ωi
q̄i = 0. Second, to locally check the inf-sup stability for the local

spaces Vh,i and Q̃h,i := Qh,i∩L2
0(Ωi), where L2

0(Ωi) is the subspace of L2 functions
having zero mean value. These two conditions are then combined to recover the
global inf-sup stability condition in (Vh ∩H1

0(Ω)) × (Qh ∩ L2
0(Ω)).

Let ΓN
i = ∂Ωi\(ΓD ∪Γint) 6= ∅ be the external boundaries of each domain where

the stresses are prescribed (i.e, ΓN
l = Γout, ΓN

w = Γext). In the particular case
ΓN

i 6= ∅ for i = l, w, a similar but simpler procedure can be used to obtain the
global inf-sup condition on (Vh ∩H1

ΓD (Ω))×Qh, where now the pressure can have
non-zero mean value over Ω since we have homogeneous Dirichlet conditions for the
velocity on a subset ΓD strictly contained in the whole boundary ∂Ω, and external
stresses are prescribed on the remaining boundaries. We summarize these results
in the following lemma.

Lemma 2.2 (Global stabilized inf-sup condition) Provided that ΓN
i 6= ∅ for

i = l, w, for all ph ∈ Qh there exists vp,h ∈ Vh ∩ H1
ΓD (Ω) such that,

B(ph,vp,h) & ‖µ− 1

2 ph‖2
0,Ω − C‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

,

‖µ 1

2 vp,h‖1,Ω . ‖µ− 1

2 ph‖0,Ω,

where C is a positive constant independent of h, νi, ηi.
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Proof. For the sake of simplicity, we only consider the lowest order case (k =
1), referring the reader to [14] for the extension to k > 1. We will write ph =
∑

i=l,w p̃h,i + p̄h,i, where p̃h,i ∈ Qh,i ∩ L2
0(Ωi), p̄h,i ∈ Qh,i is a constant function on

Ωi, and both p̃h,i and p̄h,i are extended to Qh by zero. We observe that, by means
of the surjectivity of the divergence operator from [H1

0 (Ωi)]
d to Qh ∩ L2

0(Ωi), and
since µi is a positive constant, there exists ṽp,i ∈ [H1

0 (Ωi)]
d such that,

∇ · ṽp,i = −µ−1
i p̃h,i, ‖µ

1

2

i ṽp,i‖1,Ωi
. ‖µ− 1

2

i p̃h,i‖0,Ωi
. (25)

Let us introduce the H1
0 -conformal L2-projector π

H1

0

h,i : [H1
0 (Ωi)]

d → Vh,i∩[H1
0 (Ωi)]

d.

Thanks to the H1-stability of the L2-projection on finite element spaces (see [5])
we have

‖πH1

0

h,i ṽp,i‖1,Ωi
. ‖ṽp,i‖1,Ωi

, ‖πH1

0

h,i ṽp,i − ṽp,i‖0,K . hK |ṽp,i|1,K , (26)

for any triangle K ∈ Th. Now, define ṽp,h,i = π
H1

0

h,i ṽp,i. Since ṽp,h,i ∈ [H1
0 (Ωi)]

d we
have di(p̃h,i, ṽp,h,i) = 0. Now, we proceed as in [7], theorem 2. By means of (24),
(25), (26), applying integration by parts and observing that ∇p̃h,i|K = 0 we obtain,

bi(p̃h,i, ṽp,h,i) = ‖µ− 1

2

i p̃h,i‖2
0,Ωi

−
∫

Fh,i

Jp̃h,iK{ṽp,h,i · nF − ṽp,i · nF }

& ‖µ− 1

2

i p̃h,i‖2
0,Ωi

− 1

ǫ
‖µ− 1

2

i Jp̃h,iK‖2
− 1

2
,h,Ωi

−ǫ

∫

Fh,i

h−1
F µi{ṽp,h,i · nF − ṽp,i · nF }2,

where {·} denotes the arithmetic average. Using inverse inequalities (24) and (26)
to estimate the term depending on velocities, we have

∫

Fh,i

h−1
E µi{ṽp,h,i · nF − ṽp,i · nF }2 . ‖µ

1

2

i ṽp,i‖2
1,Ωi

,

and thanks to (25),

bi(p̃h,i, ṽp,h,i) ≥ (1 − ǫ)‖µ− 1

2

i p̃h,i‖0,Ωi
− 1

ǫ
‖µ− 1

2

i Jp̃h,iK‖2
− 1

2
,h,Fh,i

. (27)

Now, let us consider the piecewise constant function p̄h = p̄h,l + p̄h,w. For any
v̄p,h = v̄p,h,l + v̄p,h,w with v̄p,h,i ∈ Vh,i ∩ H1

ΓD∪Γint

(Ωi), by observing that p̄h,i is

constant on Ωi, v̄p,h,i = 0 on ΓD
i ∪ Γint and Jv̄p,hK|Γint

= 0, after integrating by
parts we have

B(p̄h, v̄p,h) =
∑

i=l,w

p̄h,i

∫

ΓN
i

v̄p,h,i · ni.

For i = l, w, let hi ∈ Vh,i be the finite element harmonic lifting such that hi = 0
on Γint ∪ ΓD

i and
∫

ΓN
i

hi · ni = 1. Functions v̄p,h,i = µ−1
i |Ωi|p̄h,ihi satisfy

‖µ
1

2

i v̄p,h,i‖2
1,Ωi

= µ−1
i |Ωi|2|p̄h,i|2‖hi‖1,Ωi

= ‖µ− 1

2

i p̄h,i‖2
0,Ωi

|Ωi|‖hi‖1,Ωi
. ‖µ− 1

2

i p̄h,i‖2
0,Ωi

,

so that we have

B(p̄h, v̄p,h) = ‖µ− 1

2 p̄h‖2
0,Ω, ‖µ 1

2 v̄p,h‖2
1,Ω . ‖µ− 1

2 p̄h‖2
0,Ω. (28)
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Let be ṽp,h :=
∑

i=l,w ṽp,h,i and p̃h :=
∑

i=l,w p̃h,i. To conclude, let us take vp,h =
ṽp,h + δv̄p,h, δ > 0. We have B(p̄h,i, ṽp,h,i) = 0, which gives

B(ph,vp,h) = B(p̃h, ṽp,h) + δB(p̃h, v̄p,h) + δB(p̄h, v̄p,h)

= δ‖µ− 1

2 p̄h‖2
0,Ω +

∑

i=l,w

[

(1 − ǫ)‖µ− 1

2

i p̃h,i‖2
0,Ωi

− 1

ǫ
‖µ− 1

2

i Jp̃h,iK‖2
− 1

2
,h,Ωi

]

+ δB(p̃h, v̄p,h).

Thanks to the second estimate in (28), for any ǫ′ > 0 we have

B(p̃h, v̄p,h) =
∑

i=l,w

∫

Ωi

p̃h,i∇ · v̄p,h,i ≥ −‖µ− 1

2 p̃h‖0,Ω‖µ
1

2 v̄p,h‖1,Ω

& − 1

ǫ′
‖µ− 1

2 p̃h‖2
0,Ω − ǫ′‖µ− 1

2 p̄h‖2
0,Ω,

so that

B(ph,vp,h) & δ(1 − ǫ′)‖µ− 1

2 p̄h‖2
0,Ω

+
∑

i=l,w

[(

1 − ǫ − δ

ǫ′

)

‖µ− 1

2

i p̃h,i‖2
0,Ω − 1

ǫ
‖µ− 1

2

i Jp̃h,iK‖2
− 1

2
,h,Fh,i

]

& ‖µ− 1

2 ph‖2
0,Ω − C‖µ− 1

2 Jp̃hK‖2
− 1

2
,h,Fh

,

where the inequality is satisfied taking for instance ǫ′ = 1
2 , δ = ǫ = 1

4 . We can now
assess the stability of our finite element method.

Lemma 2.3 (Stability) Under the assumptions of lemmas 2.1, 2.2 for all (uh, ph) ∈
Wh, there exists (vh, qh) ∈ Wh such that

C((uh, ph), (vh, qh)) &
1

(1 + Re)2
|||(uh, ph)||| |||(vh, qh)|||.

Proof. Let vp,h be the function associated to ph as in lemma 2.2. Owing to the
property ∇ · Vh,i ⊂ Qh,i, we choose

(vh, qh) = (uh + δ1vp,h, ph + δ2µ∇ · uh), δ1, δ2 > 0.

First, we prove that C((uh, ph), (vh, qh)) & (1 + Re)
−2|||(uh, ph)|||2, then we show

that |||(vh, qh)||| . |||(uh, ph)|||. For the first part, we exploit the bilinearity of
C(·, ·) to obtain,

C((uh, ph), (vh, qh)) = C((uh, ph), (uh, ph))

+ δ1C((uh, ph), (vp,h, 0)) + δ2C((uh, ph), (0, µ∇ · uh)). (29)

Owing to lemma 2.1 the first term on the right hand side of (29) can be estimated
as,

C((uh, ph), (uh, ph)) ≥Cpos

[

|||uh|||2 +
∑

i=l,w

‖µ
1

2

i uh,i · n‖2
+ 1

2
,h,ΓD

i
(30)

+ ‖{µ}
1

2

wJuhK · n‖2
+ 1

2
,h,Γint

]

+ γp‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

.

Let us consider the second term of (29). Since vp,h = 0 on ΓD
i ∪ Γint, we have

|||vp,h||| ≤ ‖µ 1

2 vp,h‖1,Ω. Hence, using lemma 2.1 (Boundedness), and |||vp,h||| .

‖µ− 1

2 ph‖0,Ω, for all ǫ1 > 0 we get

A(bf)(uh,vp,h;w) . (1+Re) |||uh||| |||vp,h||| ≤ (1+Re)
2 C1

ǫ1
|||uh|||2+C1ǫ1‖µ− 1

2 ph‖2
0,Ω,
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so that

C((uh, ph), (vp,h, 0)) = A(bf)(uh,vp,h;w) + B(ph,vp,h)

≥ B(ph,vp,h) − C1ǫ1‖µ− 1

2 ph‖2
0,Ω − (1 + Re)

2 C1

ǫ1
|||uh|||2.

Then, thanks to lemma 2.2 we have

C((uh, ph), (vp,h, 0)) ≥(1 − C1ǫ1)‖µ− 1

2 ph‖2
0,Ω − C‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

− (1 + Re)
2 C1

ǫ1
|||uh|||2.

Now consider the third term of (29). Thanks to (24), it is easily found that j(p)(µ∇·
uh, µ∇·uh) . γp‖µ

1

2∇·uh‖2
0,Ω,

∫

Γint

{µ∇·uh}wJuh ·nK . ‖µ 1

2∇·uh‖2
0,Ω+‖{µ}

1

2

wJuh ·
nK‖2

+ 1

2
,h,Γint

. Using the Young inequality and the previous estimates, for any ǫ2 > 0

the third term on the right hand side of (29) is expressed as

C((uh, ph), (0, µ∇ · uh)) = ‖µ 1

2∇ · uh‖2
0,Ω + j(p)(ph, µ∇ · uh)

−
∫

∂Ω

(µ∇ · uh)(uh · n) −
∫

Γint

{µ∇ · uh}wJuh · nK

≥ (1 − C2γpǫ2)‖µ
1

2∇ · uh‖2
0,Ω − C2

ǫ2

[

γp‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

+‖µ 1

2 uh · n‖2
+ 1

2
,h,∂Ω + ‖{µ}

1

2

wJuh · nK‖2
+ 1

2
,h,Γint

]

.

Collecting the previous results we obtain the following estimate,

C((uh, ph), (vh, qh)) &

(

Cpos − (1 + Re)
2C1

δ1

ǫ1

)

|||uh|||2

+

(

Cpos − C2
δ2

ǫ2

) [

‖µ 1

2 uh · n‖2
+ 1

2
,h,∂Ω + ‖{µ}

1

2

wJuh · nK‖2
+ 1

2
,h,Γint

]

+ δ1(1 − C1ǫ1)‖µ− 1

2 ph‖2
0,Ω + δ2(1 − C2γpǫ2)‖µ

1

2∇ · uh‖2
0,Ω

+

[

γp

(

1 − C2
δ2

ǫ2

)

− δ1C

]

‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

. (31)

Now, let us choose sufficiently small parameters ǫi and δi such that all the norms
in (31) are multiplied by positive coefficients. We have that ǫ1 . 1/C1 and ǫ2 .

1/(C2γp) regardless of the coefficients ν, η. Conversely, the constants δi depend on
Re: we have to chose δ1 . (1 + Re)

−2, δ2 . 1. From (31) we get

C((uh, ph), (vh, qh)) & |||uh|||2 + ‖∇ · uh‖2
0,Ω + ‖µ 1

2 uh · n‖2
+ 1

2
,h,∂Ω

+ ‖{µ}
1

2

wJuh · nK‖2
+ 1

2
,h,Γint

+
1

(1 + Re)2
‖µ− 1

2 ph‖2
0,Ω + ‖µ− 1

2 JphK‖2
− 1

2
,h,Fh

&
1

(1 + Re)2
|||(uh, ph)|||2. (32)

For the second part of the proof, since δ2 . 1, and |||(0, µ∇ · uh)||| . |||(uh, ph)|||,
we have |||(vh, qh)||| . |||(uh, ph)||| + δ1|||(vp,h, 0)|||. Moreover, using lemma 2.2
and δ1 . (1 + Re)

−2 . 1,

δ1|||(vp,h, 0)||| . ‖µ 1

2 vp,h‖1,Ω . ‖µ− 1

2 ph‖0,Ω . |||(uh, ph)|||,

which completes the proof. Let us comment on this stability result. It states that,
at least for small Reynolds numbers, the stability constant with respect to the norm
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|||(uh, ph)||| is independent of the coefficients νi, ηi, of the problem. Starting from
this point, we will show that it is possible to build up suitable preconditioners that
are optimal for the problem at hand.

To conclude the present analysis, we briefly summarize the approximation prop-
erties of our finite element scheme (we refer to [14] for more details).

Lemma 2.4 (Cea) Let (u, p) be the weak solution of (5), (3), (4) with the regu-
larity assumptions (19), and let (uh, ph) ∈ Wh be the solution of (21). Then, the
following a-priori error estimate holds true,

|||(u − uh, p − ph)||| .
1

(1 + Re)2
inf

(zh,rh)∈Wh

|||(u − zh, p − rh)|||.

(Convergence) In the case of P
1−P

0 for velocity and pressure respectively, under
the additional regularity assumption u ∈ [∪i∈{l,w}H

2(Ωi)]
d and p ∈ ∪i∈{l,w}H

1(Ωi)
we have,

|||(u − uh, p − ph)||| .
h

(1 + Re)2
(|u|∪Ω,2 + |p|∪Ω,1).

3 Solution strategies for the discrete coupled blood

flow problem

3.1 An iterative splitting method

In this section, we present an iterative technique to reduce the solution of the
coupled problem (21) to a sequence of local subproblems. The main advantages
of this approach are the possible parallel implementation, and the fact that the
iterative splitting strategy can naturally include the Picard’s fixed point scheme to
treat the nonlinear term.

The proposed iterative method is obtained simply by computing the local so-
lutions uh,i, ph,i considering in eq. (21) test functions respectively restricted to
the local sub-spaces Vh,i, Qh,i. Each of these local sub-problems is coupled to
the variables on the other sub-domain by interface terms defined on Γint, that are
c(bf)(·, ·) and d(·, ·) defined in (11) and (12), respectively. Let Rivh = vh,i in Ωi, and
Rivh = 0 in Ωj , where j ∈ {l, w}\i. Let us introduce the splitting c(bf)(uh, Rivh) =

c
(bf)
ii (uh,i,vh,i)−c

(bf)
ij (uh,j ,vh,i), d(ph, Rivh) = dii(ph,i,vh,i)−dij(ph,j ,vh,i), where

c
(bf)
ii (uh,i,vh,i) :=

∫

Γint

(

γuh−1
F {µ}wuh,i · ni vh,i · ni

− wiνin
T
i ∇uh,ini vh,i · ni − wiνin

T
i ∇vh,ini uh,i · ni

)

,

c
(bf)
ij (uh,j ,vh,i) :=

∫

Γint

(

γuh−1
F {µ}wuh,j · nivh,i · ni

+ wjνjn
T
i ∇uh,jni vh,i · ni − wiνin

T
i ∇vh,ini uh,j · ni

)

,

dii(ph,i,vh,i) :=

∫

Γint

wiph,ivh,i · ni, dij(ph,j ,vh,i) := −
∫

Γint

wjph,jvh,i · ni.

Notice that we have d(Riqh,uh) = dii(qh,i,uh,i)+dji(qh,i,uh,j). Given the following
relaxation operators,

s(u)(uh,i,vh,i) =(σuh−1
F νiuh,i,vh,i)Γint

+ (σuh−1
F µiuh,i · ni,vh,i · ni)Γint

,

s(p)(ph,i, qh,i) =(σph
−1
F µ−1

i ph,i, qh,i)Γint
,
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σu, σp being positive relaxation constants, we define the bilinear forms

A(bf)
i (uh,i,vh,i;wi) := a

(bf)
i (uh,i,vh,i;wi) + c

(bf)
ii (uh,i,vh,i), (33)

Bi(ph,i,vh,i) := bi(ph,i,vh,i) + dii(ph,i,vh,i), (34)

Ci

(

(uh,i, ph,i), (vh,i, qh,i)
)

:= A(bf)
i (uh,i,vh,i;wi) + Bi(ph,i,vh,i) − Bi(qh,i,uh,i)

+ j
(p)
i (ph,i, qh,i). (35)

Then, the iterative method is defined as follows. For i ∈ {l, w}, j ∈ {l, w}\{i}, given
u0

h,i ∈ Vh,i, p0
h ∈ Qh,i, for m ≥ 1 until convergence we aim to find um

h,i ∈ Vh,i,
pm

h ∈ Qh,i such that

A(bf)
i (um

h,i,vh,i;wi) + Bi(p
m
h,i,vh,i) + s(u)(um

h,i,vh,i) = F (bf)(vh) (36a)

+ dij(p
m−1
h,j ,vh,i) + c

(bf)
ij (um−1

h,j ,vh,i) + s(u)(um−1
h,i ,vh,i) ∀vh,i ∈ Vh,i,

Bi(qh,i,u
m
h,i) − s(p)(pm

h,i, qh,i) − j
(p)
i (pm

h,i, qh,i) = −dji(q
m−1
h,i ,um−1

h,j ) (36b)

− s(p)(pm−1
h,i , qh,i) ∀qh,i ∈ Qh,i.

The convergence of such block-Jacobi iterative scheme, for wi = 0 and for
relaxation coefficients σu, σp big enough, has been proved in [14]. A block-Gauss-
Seidel scheme can be set up similarly. We point out that the Picard’s nonlinear
iterations can be included in this scheme letting wi = um−1

h,i for i = l in (36), thus
providing an effective strategy for the solution of the coupled nonlinear problem.

One interesting feature of the penalty method for interface conditions is to al-
low an equivalent (symmetric) formulation with respect to the neighboring domains.
The corresponding coupling conditions depend on the choice of the weights in the
weighted averages that appear in the definition of the coupling operators c(bf)(·, ·)
and d(·, ·). In the framework of an iterative splitting strategy, the choice of the
weights allows to switch between the Dirichlet-to-Neumann and the Neumann-to-
Dirichlet schemes, spanning a family of intermediate schemes. In particular, choos-
ing the weights using eq. (8) in a coupled luminal/transmural blood flow problem,
in which typically, ηw ≫ νl, one finds ww ≃ 0, wl ≃ 1. This corresponds to a
splitting method where the Stokes/Oseen problem receives Dirichlet data for the
normal velocity at the interface from the Darcy’s problem, and returns the normal
component of the normal stresses. In the opposite case, for ww ≃ 1, wl ≃ 0, the
normal component of the normal stresses from the Darcy’s problem are transferred
to the Stokes/Oseen problem, which returns the values of the normal velocity. Ob-
viously, for ηw ≫ νl the former scheme is more stable than the latter, since in that
case the Darcy stresses are very sensitive to interface velocity data.

These observations are confirmed by numerical experiments, as described by
the following benchmark test in dimension two. Let us consider problem (5) on
Ωw = [−1, 0]2, Ωl = [0, 1]2, with constant coefficients νl = 1, ηw = 100. For the sake
of simplicity, we consider wi = 0, and assume homogeneous Dirichlet conditions
on [−1, 1] × {0, 1} for the velocity; we prescribe1 the normal stresses pw = 1 on
{−1} × [0, 1] and consider a mass loss term ∇ · ul = −2x instead of ∇ · ul = 0.
The convergence history of the iterative method (36) is quantified by the number
of iterations required to satisfy a fixed tolerance on the incremental error, reported
in table 1 for different combinations of weights and relaxation parameters, which in
this case were chosen as σu = σp = σ.

1This benchmark test is based on the exact solution uw = η
−1
w e1, pw = 1 + νl − x −

5

2
,

ul = (η−1
w − x

2)e1, pl = 1 + (1 − 2x)νl −
5

2
.
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σ ww = 0 ww = 0.2 ww = 0.4 ww = 0.6 ww = 0.8 ww = 1
10−1 1024 1013 997 981 963 946
10−2 187 132 200 307 363 401
10−3 19 160 276 336 425 425

0 5 67 unstable unstable unstable unstable

Table 1: Number of iterations required to reduce the incremental error
|||(um+1

h − um
h , pm+1

h − pm
h )||| from 100 to 10−4. Different combinations of the relax-

ation parameters σu = σp = σ and of the weights ww, wl = 1 − ww are considered.

From this experiment, two conclusions about the behavior of our iterative method
in the highly heterogeneous case ηw ≫ νl can be drawn. First, for large σ the con-
vergence rate is slow and dominated by the relaxation operators, regardless of the
weights. Second, as σ → 0, the convergence rate improves if ww is sufficiently small.
Otherwise, as σ gets smaller, deceleration is observed and eventually the iterative
method (36) may become unstable. This is clearly shown in table 1, where the
unrelaxed scheme with σ = 0 is convergent only for the two smallest ww considered.
Notice that the optimal combination is σ = 0, ww = 0, and wl = 1, in which only
5 iterations are required.

We finally point out that the flexibility of choosing the proper weights to opti-
mize the convergence of the iterative method is a remarkable feature of our scheme.
This would not be possible with the approach proposed in [7], in which the inter-
face normal stresses have not been treated separately in the normal and tangential
component (so that the only admissible weights are ww = 1, wl = 0, i.e. the less
performing for our applications), neither with a primal formulation of the Darcy’s
problem as an elliptic equation for the pressure, see [16].

3.2 Preconditioning strategy for the solution of the algebraic

problem

Since problems (36) have to be solved many times at each time step, we need an
efficient solution strategy for the associated algebraic linear systems. A very efficient
strategy would be to make use of direct methods for the sparse factorization of
the linear system, to be precomputed before the iterations are started. However,
this approach is very memory consuming and computationally costly; moreover, at
each Picard’s iteration the factorization step should be updated since the system
matrix is modified. A different approach consists in applying a preconditioned
Krylov method, such as GMRes, for the iterative solution of the linear systems. In
this case, the performance of the method critically depends on the preconditioner.
In this section, we will describe some useful preconditioning strategies that can
be exploited in this regard. Our considerations will apply for both the local and
the global problem. In fact, it is easy to see that the boundedness and stability
(inf-sup condition) properties of global problem (18) can be proved for the local
problems (36) as well. For this reason, in this section we will consider an abstract
generalized saddle point problem and study the spectral properties of the related
algebraic system starting from general boundedness and stability properties. The
consequences of such analysis will then apply to both local and global problems.

3.2.1 An abstract framework for generalized saddle point problems

Let us denote by V , Q a couple of finite dimensional Hilbert spaces (meant to be
generic finite element velocity and pressure spaces, respectively), and let W = V ×Q.
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We consider three abstract bilinear forms A : V × V → R, B : Q × V → R and
j : Q × Q → R. We define

C((u, p), (v, q)) = A(u, v) + B(p, v) − B(q, u) + j(p, q), (37)

and assume the following properties where the product space W is endowed with
the norm ‖v, q‖2

W = ‖v‖2
V + ‖q‖2

Q.

Hypothesis 3.1 There exist positive constants α, β, γ, γ, independent of u, v, p,
q such that

α‖v‖2
V ≤ A(v, v), (38)

β‖p‖Q‖v‖V ≥ B(p, v), (39)

γ‖u, p‖W ≤ sup
v,q 6=0

C((u, p), (v, q))

‖v, q‖W
, (40)

γ‖u, p‖W ≥ sup
v,q 6=0

C((u, q), (v, q))

‖v, q‖W
. (41)

Analogously, there exists γ′ ≤ γ such that

γ′‖u, p‖W ≥ sup
q 6=0

B(u, q) − j(p, q)

‖q‖Q
. (42)

Remark. The existence of γ′ trivially follows from (41) with γ′ = γ. However, we
are considering the case in which a better estimate of γ′ (i.e., smaller than γ) may
be available.

In this section, with little abuse of notation, we will use the same symbols to
denote u ∈ V , p ∈ Q, and the vectors u ∈ R

dim(V ), p ∈ R
dim(Q) of the components

with respect to the bases of the spaces V , Q. According to this notation, we focus
on the following abstract linear system,

C

[

u
p

]

=

[

A BT

−B J

] [

u
p

]

=

[

fu

fp

]

, (43)

whose blocks are related to the bilinear forms as follows,

A(u, v) = (v,Au), B(q, u) = (q,Bu), j(p, q) = (q, Jp),

where (·, ·) is the Euclidean scalar product.
First, let us show that problem (21) fits the abstract framework introduced so

far.

Lemma 3.1 The bilinear forms A(bf)(·, ·; ·), B(·, ·) and C(·, ·) defined in (15), (16),
(20) respectively, satisfy hypothesis 3.1 with V = Vh, Q = Qh and the following
norms,

‖vh‖2
V =|||vh|||2 + ‖{µ}

1

2

wJvhK · nΓ‖2
+ 1

2
,h,Γint

+
∑

i=l,w

[

‖µ
1

2

i ∇ · vh,i‖2
0,Ωi

+ ‖µ
1

2

i vh,i · n‖2
+ 1

2
,h,ΓD

i

]

‖qh‖2
Q =

∑

i=l,w

[

‖µ− 1

2

i qh,i‖2
0,Ωi

+ ‖µ− 1

2

i Jqh,iK‖2
− 1

2
,h,Fh,i

]

with constants β = C, γ = C(1 + Re), γ = C(1 + Re)
−2, γ′ = C and α =

C max
{

h2,mini
νi

µi

}

, where C denotes a generic constant independent on h, νi, µi.
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Proof. Owing to lemma 2.1 (Boundedness), observing that the convective term
appears in A(bf) only, we have that inequalities (39) and (42) are verified with
constants β . 1 and γ′ . 1, whilst (41) is satisfied with γ . (1 + Re). Lemma
2.3 (Stability) ensures that (40) holds with γ & (1 + Re)

−2. Concerning inequality
(38), recall the positivity result of lemma 2.3 (Positivity). Therefore, it will suffice
to find a positive constant K such that

∑

i=l,w

(

‖η
1

2

i vh,i‖2
0,Ωi

+ ‖ν
1

2

i ∇vh,i‖2
0,Ωi

)

& K
∑

i=l,w

‖µ
1

2

i ∇ · vh,i‖2
0,Ωi

. (44)

To this purpose, we have to distinguish between the case mini νi > 0 and mini νi = 0.
In the former case, (44) holds true with K = mini

νi

µi
. In the latter case, thanks

to the inverse inequalities (24), (44) is satisfied with K = h2. The local problems
(36) enjoy the same boundedness, positivity and stability estimates as the global
problem with respect to the local norms. Hence, lemma 3.1 holds also locally, as
stated below.

Lemma 3.2 The bilinear forms A(bf)
i (·, ·; ·), Bi(·, ·) and Ci(·, ·) defined in (33),

(34), (35) respectively, satisfy hypothesis 3.1 with V = Vh,i, Q = Qh,i and the
following norms,

‖vh,i‖2
V =‖η

1

2

i vh,i‖2
0,Ωi

+ ‖ν
1

2

i ∇vh,i‖2
0,Ωi

+ ‖µ
1

2

i ∇ · vh,i‖2
0,Ωi

+ ‖ν
1

2

i vh,i‖2
+ 1

2
,h,ΓD

i
+ ‖ν

1

2

i n × vh,i‖2
+ 1

2
,h,Γint

+ ‖µ
1

2

i vh,i · n‖2
+ 1

2
,h,ΓD

i
+ ‖(µiwi)

1

2 vh,i · n‖2
+ 1

2
,h,Γint

‖qh,i‖2
Q =‖µ− 1

2

i qh,i‖2
0,Ωi

+ ‖µ− 1

2

i Jqh,iK‖2
− 1

2
,h,Fh,i

,

with constants β = C, γ = C(1 + Re), γ = C(1 + Re)
−2, γ′ = C and α =

C max
{

h2, νi

µi

}

, where C denotes a generic constant independent on h, νi, µi.

The eigenvalue analysis of the generalized saddle point system (43) has been
carried out in several works; we cite among others [19, 36, 31], for symmetric A, and
[32], [20] for the nonsymmetric case. The concept behind almost all such eigenvalue
analysis is norm-equivalence (or, more generally, field-of-values equivalence, see [32,
20]), which implies spectral equivalence.

We provide here an original and alternative approach that exploits singular value
analysis to prove the norm and spectral equivalence in the non-symmetric case. We
start directly from the stability and boundedness properties of the global form C.
The SVD tools that we will use are recalled in the following lemma.

Lemma 3.3 Let M ∈ R
N×N be a square matrix. Let σ1(M) ≥ σ2(M) ≥ . . . ≥

σN (M) ≥ 0 be the singular values and λn(M), n = 1, . . . , N , the eigenvalues of M .
Then,

σN (M) = inf
y 6=0

sup
x6=0

(y,Mx)

‖y‖2‖x‖2
; σ1(M) = sup

y 6=0
sup
x6=0

(y,Mx)

‖y‖2‖x‖2
, (45)

σN (M) ≤ |λn(M)| ≤ σ1(M), n = 1, . . . , N. (46)

Proof. For inequalities (45) see for instance [18], Th. 7.3.10. Estimates (46) are
standard as well and directly follow from (45) taking y = en a unit left eigenvector
of M associated with λn(M) = λn(MT ).
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3.2.2 Preconditioners for the Schur complement.

Typically, one may consider block-diagonal or block-triangular preconditioners of
system (43), as discussed in [17]. We shall focus on a special instance of block-
triangular (left) preconditioners. In particular, we will consider the preconditioner P
based on the exact A block and a suitable approximation Ŝ of the Schur complement
S := BA−1BT + J ,

P−1 =

[

A 0

B −Ŝ

]−1

=

[

A−1 0

Ŝ−1BA−1 −Ŝ−1

]

, (47)

such that the preconditioned system matrix reads,

P−1C =

[

I A−1BT

0 Ŝ−1S

]

. (48)

Of course, we could replace a suitable approximation Â of A in the expression of
the preconditioner; in the sequel, we restrict our analysis to exact solution of the
momentum equation. From (48), we have that the eigenvalues of the preconditioned
system are

λn(P−1C) =

{

1 n = 1, . . . ,dim V,

λn(Ŝ−1S) n = dim(V ) + 1, . . . ,dim(W ).

In the symmetric case (AT = A, which implies ST = S and S positive), the conver-
gence of Krylov iterative methods for symmetric systems, such as PCG or MinRes,
depends on the ratio between the largest and the smallest eigenvalue of the precon-
ditioned matrix Ŝ−1S. In particular, if this ratio does not depend on dim(W ), the
preconditioner Ŝ will be optimal (i.e. the number of iterations of the Krylov method
will be independent on the mesh size). Optimality of Ŝ for methods for unsymmet-
ric/undefinite systems, such as GMRes, requires field-of-values (FOV) equivalence
between Ŝ and S, see [22]. However, experience shows rapid convergence of GMRes
if the eigenvalues of the preconditioned system matrix are clustered in a bounded
region away from zero. From these observations, it is clear that finding a precondi-
tioner Ŝ with good spectral properties is a crucial step in order to efficiently solve
system (43).

The goal of this section is to show that the Schur complement is spectrally
equivalent to a suitable preconditioner. The simplest case of spectrally equivalent
preconditioner is given by the (Grammian) symmetric positive definite matrix HQ

inducing the scalar product in Q, satisfying (p,HQp) = ‖p‖2
Q. For instance, in

[10] estimates of the eigenvalues of the Schur complement are obtained starting
from boundedness, positivity and stabilized inf-sup conditions for a similar gen-
eralized saddle point problem. Using a separate analysis of the symmetric and
skew-symmetric part of the Schur complement, the authors show that Ŝ = HQ is
an optimal preconditioner for S. Here we provide a similar result by means of SVD
analysis.

Theorem 3.1 (Schur complement spectral equivalence) Under assumption 3.1,
the eigenvalues of H−1

Q S are localized as follows,

λn(H−1

Q S) ∈

8

<

:

z ∈ C : γ ≤ |z| ≤ γ
′

s

1 +

„

β

α

«2

9

=

;

.

Proof. For each p ∈ Q, let up ∈ V be defined by

A(up, v) + B(p, v) = 0 ∀v ∈ V, that is, up = −A−1BT p. (49)
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Taking u = up in (37) makes C((up, p), (v, q)) = j(p)(p, q) − B(up, q) = (q, Sp)
independent of v; hence, using (40) and (42),

γ‖up, p‖W ≤ sup
(v,q) 6=0

(q, Sp)

‖v, q‖W
= sup

q 6=0

(q, Sp)

‖q‖Q
≤ γ′‖up, p‖W . (50)

From (49) and (38), (39) we have,

α‖up‖2
V ≤ A(up, up) = −B(p, up) ≤ β‖p‖Q‖up‖V ,

so that ‖up‖V ≤ β

α
‖p‖Q, yielding the following estimate,

‖p‖Q ≤ ‖up, p‖W ≤

√

1 +

(

β

α

)2

‖p‖Q, (51)

and equation (50) becomes

γ‖p‖Q ≤ sup
q 6=0

(q, Sp)

‖q‖Q
≤ γ′

√

1 +

(

β

α

)2

‖p‖Q. (52)

Now, let p̃ = H
1

2

Qp, q̃ = H
1

2

Qq; using ‖p‖Q = ‖p̃‖2, ‖q‖Q = ‖q̃‖2 and (52), we have

γ ≤ sup
q̃ 6=0

(q̃, S̃p̃)

‖q̃‖2‖p̃‖2
≤ γ′

√

1 +

(

β

α

)2

∀p̃ ∈ Q, (53)

where S̃ = H
− 1

2

Q SH
− 1

2

Q .

Thanks to lemma 3.3, applying (46), (45) with M = S̃, using estimates (53)
and the fact that λn(S̃) = λn(H−1

Q S), the eigenvalue bounds follow. Notice that
matrix HQ is well-conditioned, as stated below.

Lemma 3.4 Matrix HQ is spectrally equivalent to the mass matrix MQ defined by

(p,MQq) = (µ− 1

2 p, µ− 1

2 q)L2 , uniformly with respect to h, η, ν.

Proof. Thanks to the inverse inequality (24), the norms ‖q‖Q and ‖µ− 1

2 q‖L2 are
equivalent, uniformly with respect to h, η, ν. Combining lemma 3.2 with theorem
3.1, we obtain the following result, establishing the optimality of preconditioner
(47) with Ŝ = HQ or Ŝ = MQ.

Corollary 3.1 Let C be the matrix associated to the bilinear form C of (37), P
be the preconditioner given by (47) with Ŝ = HQ or Ŝ = MQ, and assume that
hypothesis 3.1 holds. Then, we have

max |λn(P−1C)|
min |λn(P−1C)| =

max |λn(Ŝ−1S)|
min |λn(Ŝ−1S)|

. (1 + Re)
2

(

max

{

ν

µ
, h2

})−1

. (54)

Hence, Ŝ = HQ (Ŝ = MQ) will be an optimal preconditioner for the viscous case
only. In fact, the preconditioned Krylov solver will be efficient at least for moderate
Re and in the low µ/ν regime. For instance, if the resistive term η dominates the
viscosity ν, then the spectral ratio (54) becomes proportional to h−2. To overcome
such difficulties, we introduce below a modified preconditioner that is specifically
tailored to the inviscid terms (Darcy) in the problem.
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Let us treat separately the viscous and resistive terms by introducing the pre-
conditioners Ŝν , Ŝη defined as follows:

Ŝν = MQ 1

ν

, Ŝη =

{

BM̂−1
Vη

BT + J for k = 1,

∆V 1

η

for k > 1,
(55)

where MQ 1

ν

is defined by (p,MQ 1

ν

q) = (ν− 1

2 p, ν− 1

2 q)L2 , M̂Vη
is the diagonal matrix

obtained by summing row-wise (lumping) the elements of the matrix MVη
such that

(u,MVη
v) = (η

1

2 u, η
1

2 v)L2 , and ∆V 1

η

is the matrix associated to the bilinear form

(η− 1

2∇u, η− 1

2∇v)L2 .
As for lemma 3.4, it is easy to see that Ŝν is equivalent to the preconditioner

HQ. Conversely, Ŝη is an approximation of the Schur complement of a pure Darcy’s

problem. When the polynomial degree of the pressure space is k− 1 = 0, Ŝη is con-
structed taking the approximation of the exact Schur complement S = BM−1

Vη
BT +J

by lumping the matrix MVη
. Since the lumped matrix is diagonal, it is easily in-

verted, so that the construction of Ŝη is straightforward and based on immediately

available matrices. Otherwise, for k > 1, we define Ŝη as a stiffness matrix on the
pressure space.

The two preconditioners can be combined, giving the following compound pre-
conditioner,

Ŝ−1
ν,η := Ŝ−1

ν + Ŝ−1
η . (56)

In the classical setting of the Stokes equation, it is well known that this precondi-
tioner is optimal [9]. However, as we will see in the next section, Ŝη is not easily
dealt with by classical ILU/IC solvers, which can limit its applicability as Schur
complement preconditioner.

3.2.3 Monolithic preconditioners

Instead of addressing the usual Schur complement, we now look at (43) as a mono-
lithic system and we propose a convenient preconditioner. To this purpose, we intro-
duce the Grammian matrix of the space W , satisfying

(

(v, q),HW (v, q)
)

= ‖v, q‖2
W .

This is a symmetric, positive definite, block-diagonal matrix, whose blocks are the
Grammian matrices HV and HQ associated to spaces V and Q respectively. Thanks
to our boundedness and stability estimates, which are uniform not only in h but in
ν, η as well, a suitable monolithic preconditioner for matrix C is given by HW , as
stated by the following result.

Theorem 3.2 (Monolithic preconditioner spectral equivalence) Under the
assumptions 3.1, the eigenvalues of H−1

W C satisfy

λn(H−1
W C) ∈

{

z ∈ C : γ ≤ |z| ≤ γ
}

.

Proof. We proceed as in the case of theorem 3.1 and the result immediately follows

for matrix C̃ = H
− 1

2

W CH
− 1

2

W from the combination of (40) and (41) with lemma

3.3. The proof follows since C̃ and H−1
W C are similar. Owing to lemmas 3.2

and 3.1, it is straightforward to conclude that HW is an optimal preconditioner
for the single domain problems (36) as well as for the coupled problem (21). The
choice of the monolithic preconditioner HW has several advantages. First, the
preconditioned system turns out to be insensitive of the mesh characteristic size
and of the heterogeneity of the coefficients ν and η of the problem, as long as
inequalities (40) and (41) of hypothesis 3.1 are satisfied. They actually are, at
least if Neumann boundary conditions are prescribed on a non-empty subset of the
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external boundaries of each subdomain, which is the fundamental assumption of
theorem 2.2. Second, the monolithic preconditioner does not require to resort to
any (possibly inexact) second order pressure problem. We are instead obliged to do
so, by introducing matrix Ŝη, at least when viscous terms are dominated by mass
terms, if the Schur complement approach is adopted.

3.3 Numerical experiments

3.3.1 Performance of the Schur complement preconditioners

Let us check the performance of the preconditioners Ŝν and Ŝν,η introduced in
section 3.2. To this end, we consider 2D benchmark problems on one domain only,
using lowest order (k = 1) polynomials. In particular, we consider problem (5) on
Ω = [0, 1]2, with constant coefficients ν > 0, η ≥ 0. As boundary conditions, we
assign a parabolic velocity profile U = 4y(1 − y) on the inflow Γin (x = 0), no-slip
conditions at the walls y = 0, y = 1, and prescribe the stress σn = 0 at the outflow
Γout (x = 1). We set w = νRey(1 − y)ex, where Re is the Reynolds number.

Let us consider the number of GMRes iterations required to solve this one-
domain problem for several values of the parameters η, ν and w, and for the two
proposed preconditioners. In the numerical experiments reported in table 2 we
address problems that are dominated by viscosity, in which η ≤ ν and Re ≤ 1. In
this region, the spectral ratio estimate (54) is mesh and parameter independent. As
expected, the preconditioner Ŝν is optimal regardless of the mesh size and parameter
values in the selected range. The same consideration holds for Ŝν,η (in this case the
number of iterations is slightly bigger).

In the experiments reported in table 3 we consider more realistic data, using
values in typical ranges of hemodynamics. Specifically, we consider low viscosity
and medium Reynolds number, η = 103 ≫ ν = 8.5·10−5 and Re = 300. These values
are obtained after suitable rescaling from the physiological data reported in section

5. According to (54), since
(

max{ν/µ, h2}
)−1

= h−2 (for not too small values of
h), the spectral ratio estimate is inversely dependent on the mesh characteristic

size. As expected, the GMRes iterations required with Ŝν , which scale as
√

h−2,
almost double at each mesh refinement by bissection. Conversely, preconditioning
by Ŝν,η significantly improves the performance of GMRes, especially at low Reynolds
numbers. A practical drawback of using the latter preconditioner is that it requires
solving linear systems associated to the matrix Ŝη, which suffers from fill-in effect.
To quantify the extra memory requirements, the indicator CMEM , defined as the
ratio between the memory allocated for an Incomplete Cholesky (IC) factorization
of Ŝη and the memory occupied by Ŝη,

CMEM =
Memory[IC(Ŝη)]

Memory[Ŝη]

is reported in table 3. The Incomplete Cholesky matrix is computed by choosing
the fill-in threshold such that the number of iterations to solve the preconditioned
system associated to Ŝη is constant (15 iterations). The coefficient CMEM is not
constant: it grows as the square root of the system size, which means that memory
allocation is superlinear.

3.3.2 Performance of the monolithic preconditioner

In this section we are going to show that the proposed method is robust with respect
to the coefficients ηi and νi, and that the monolithic preconditioner is optimal (for
low Reynolds numbers). Let us consider a (bidomain) problem analogous to that of
section 3.1, using lowest order (k = 1) polynomials, where we assign different values
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(a) (b) (c)

h Ŝν Ŝν,η Ŝν Ŝν,η Ŝν Ŝν,η

1/20 18 - 18 25 18 25
1/40 21 - 21 28 21 28
1/80 22 - 22 29 22 29
1/160 22 - 23 29 23 29

Table 2: Number of GMRes iteration required to reduce the error by a factor 10−9.
Three cases are considered: (a) ν = 1, η = 0, Re = 0, (b) ν = 1, η = 1, Re = 0, (c)
ν = 1, η = 1, Re = 1.

(a) (b) (c)

h Ŝν Ŝν,η Ŝν Ŝν,η Ŝν Ŝν,η CMEM

1/10 14 - 55 19 58 45 1.00
1/20 18 - 105 25 147 89 1.19
1/40 21 - 243 34 403 167 1.64

Table 3: Number of GMRes iteration required to reduce the error by a factor 10−9,
and memory coefficient CMEM. (a) ν = 8.5 ·10−5, η = 0, Re = 0, (b) ν = 8.5 ·10−5,
η = 103, Re = 0, (c) ν = 8.5 · 10−5, η = 103, Re = 300.

to the viscosity coefficient ν. Precisely, let Ωw = [−1, 0] × [0, 1], Ωl = [0, 1] × [0, 1],
νw = 0, ηw = 1, νl = ν > 0, ηl = 0, wi = 0, i = w, l. (i.e. Re = 0), pw = ν − 1

2
on [0, 1] × {1, 0}, pl = − 3

2 − ν on {1} × [0, 1], uw · nw = 0 on [−1, 0] × {1, 0} and
ul = 0 on [0, 1]×{1, 0}. As interface conditions on Γint = {0}× [0, 1], we apply (4).
We point out that in this simple case we have Γs,i = Γout,l = ∅. The stabilization
parameters are set to γu = γp = 2.

We aim to verify the spectral equivalence of matrix C associated to the global
bilinear form C of problem (21) with the monolithic preconditioner HW (theorem
3.2), for different values of the mesh size h and of the viscosity ν, and discuss the
convergence rate of the preconditioned GMRes method. To this end, we compute
(through the eigs command provided by Matlab 7.5.0, i.e. using arpack) the
smallest and largest magnitude eigenvalues λmin, λmax of the generalized eigenvalue
problem Cw = λHW w. Moreover, we report the number of preconditioned GMRes
iterations required to compute the approximate solution within the tolerance of
10−10 on the preconditioned residual.

h Cµ = 100 Cµ = 10−3 Cµ = 10−6

λmin λmax It. λmin λmax It. λmin λmax It.
1/8 0.178 2.023 156 0.178 2.000 134 0.178 2.000 146
1/16 0.178 1.996 175 0.178 1.987 145 0.178 1.987 184
1/32 0.177 1.995 177 0.177 1.995 147 0.177 1.995 176

Table 4: The smallest and the largest eigenvalues [λmin, λmax] of the generalized
eigenvalue problem Cw = λHW w, for the coupled heterogeneous Darcy-Stokes
problem of section 3.3.2, and the number of HW -preconditioned GMRes iterations
required to reduce the error by a factor 10−10 for the linear system Cw = f , for
different values of h and Cµ = µw/µl.

As expected, the results presented in table 4 for various combinations of the

23



heterogeneity ratio Cµ := µl/µw = ν/1 and the mesh characteristic size h, show
that HW is an optimal preconditioner for matrix C. Indeed, λmin and λmax are
independent of Cµ, and the number of GMRes iterations is always less than 190 for
all considered cases. This also confirms the robustness of the stability estimate of
theorem 2.3 with respect to coefficients. As a consequence, HW can be successfully
applied as a preconditioner to solve the global problem by Krylov iterative solvers
such as GMRes. The computational cost of each preconditioning step is even re-
duced with respect to the Schur complement approach, since HW is efficiently dealt
with (symmetric positive definite and block-diagonal). However, the number of
GMRes iterations is generally increased, at least in the viscosity dominated regime.
Again, the splitting method (36) and/or the preconditioning techniques based on
the Schur complement introduced in section 3.2 may be useful to further reduce the
cost of each iteration.

4 Modeling and approximation of mass transfer

We assume that the drug released by the stent behaves as a passive scalar. By con-
sequence, our drug release model features just one chemical species, the drug, whose
concentration is governed by standard advection-diffusion equations. Precisely, the
governing equations for drug concentration in the lumen and in the arterial wall,
denoted with cl(t,x) and cw(t,x) respectively, read as follows,

∂ci

∂t
+ ∇ · (−Di∇ci + uici) = 0 in Ωi, with i = l, w, (57)

where Di is a diffusion coefficient and ui is the advection field (the blood/plasma
velocity). Equations (57) are complemented by an initial condition prescribing
the initial state of the concentration in the blood stream and the arterial walls,
i.e. ci(t = 0) = 0 in Ωi, and suitable boundary conditions. For the arterial lumen, Ωl,
on the inflow boundary Γin we prescribe cl = 0 since the blood does not contain drug
proximally to the stent. Assuming that the outflow boundary is far enough from
the stent, we can neglect any diffusive effects across this section and set ∇cl ·nl = 0
on Γout. Also for the arterial wall we prescribe ∇cw · nw = 0 on Γext ∪ Γcut.

According to [21], the coupling between equations (57) is provided by the fol-
lowing conditions,

{

−Dl∇cl · n + ul · ncl = −Dw∇cw · n + uw · ncw on Γint,
cl = cw, on Γint.

(58)

Finally, particular attention should be payed to the condition on the interface be-
tween the stent and the lumen, because it is primarily responsible to determine the
drug release rate. We remind that DES for cardiovascular applications are minia-
turized metal structures that are coated with a micro-film containing the drug that
will be locally released into the arterial walls for healing purposes. The thickness
of this film generally lays within the range of microns. Owing to the fact that the
stent coating is extremely thin, we apply the model proposed in [35] where it has
been derived the following formula for the release rate,

J(t,x) = ϕ(t)(c0
s − ci) on Γs,i with i = l, w, (59)

being c0
s the initial drug charge of the stent that is equal to the unity in the nondi-

mensional setting for the concentration. Given the thickness of the stent coating,
∆l, and its diffusion parameter, Ds, the scaling function ϕ(t) is defined as follows,

ϕ(t) =
2Ds

∆l

∞
∑

n=0

e−(n+1/2)2kt with k = π2Ds/∆l2.
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Owing to (59), the boundary condition on Γs,l and Γs,w for equation (57) turns out
to be the following Robin type condition,

−Di∇ci · ni + ϕ(t)(c0
s − ci) = 0 on Γs,i with i = l, w. (60)

We notice that the validity of the coupled mass transfer model (57), (58), (60)
is submitted to some simplifications concerning the complexity of the structure and
mass transport characteristics of the arterial wall.

First, we assume that the drug does not react with the arterial walls. This is a
zero-level simplification of a number of chemical phenomena that involve the drug as
a ligand and suitable sites of the extracellular matrix as receptors. It is well known
that such phenomena may strongly influence the distribution of the drug into the
arterial walls, as discussed in [29, 34]. However, it is not definitely clarified how to
translate these phenomena into equations and how to feed them with parameters.
Furthermore, under the aforementioned assumption that the arterial wall can be
described as a homogeneous and isotropic medium, the drug diffusivity parameter
is considered to be uniform and it will be taken from [21]. As regards the transmis-
sion conditions between Ωl and Ωw we notice that we have neglected the presence
of the endothelium, a single layer of specific cells at the interface between the lu-
men and the arterial wall. The presence of such layer can be addressed by means
of a Robin type boundary condition accounting for the characteristic endothelial
resistance to mass transfer. Indeed, the endothelium represents a selective barrier
for the absorption of molecules, such as lipids, into the arterial wall. However, clin-
ical evidence shows that the endothelium is severely injured after an angioplastic
procedure with stent grafting. Then, our simplistic assumption, which neglects the
endothelial resistance, is basically motivated by the lack of information about the
corresponding residual functionality of this layer of cells.

4.1 Finite element approximation

For the discretization of problem (57), (58), (60) we apply a numerical scheme sim-
ilar to the one proposed for the blood flow and again we omit the explicit notation
for the time level n. Here, the discrete blood and plasma filtration velocities repre-
sent the advection fields for the discrete mass transport problem. We notice that
continuous–discontinuous finite element method allows the global velocity field to
have a jump across the interface Γint. In this regard, we adopt a simple modification
of the scheme presented in [8] by considering the average of the advection fields at
the interface.

Let us introduce the following bilinear forms,

a
(mt)
i (ch,i, dh,i) :=

∫

Ωi

[(

1

τ
−∇ · uh,i

)

ch,idh,i + Di∇ch,i · ∇dh,i − ch,iuh,i · ∇dh,i

]

+

∫

Fh,i

γuh2
F ‖uh,i · n‖L∞(E)J∇ch,i · nKJ∇dh,i · nK

+

∫

∂Ωi∩Γin

(

1
2

(

|uh,i · ni| − uh,i · ni

)

+ γcDih
−1
F

)

ch,idh,i

+

∫

∂Ωi∩Γin

(

− Di∇ch,i · nidh,i − Di∇dh,i · nich,i

)

+

∫

∂Ωi\Γint

uh,i · nich,idh,i +

∫

Γs,i

ϕ(tn)ch,idh,i, i = l, w,
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c(mt)(ch, dh) :=

∫

Γint

(

1
2

(

|uh · n| − {uh · n}
)

+ γc{D}wh−1
F

)

JchKJdhK

+

∫

Γint

(

{uh} · n{ch}wJdhK − {D∇ch · n}wJdhK − {D∇dh · n}wJchK
)

,

where γc > 0, γu > 0 are stabilization coefficients. Define the following trial and
test spaces,

Vh,i := {vh : vh ∈ H1(Ωi) : vh|K ∈ Pk(K),∀K ∈ Th,i}, Vh :=

N
⊕

i=1

Vh,i,

Then, the mass transfer problem for drug release consists in finding at each time
step a couple of functions (ch,l, ch,w) = ch ∈ Vh such that

A(mt)(ch, dh) = F (mt)(dh), ∀dh ∈ Vh,

where

A(mt)(ch, dh) :=
∑

i=l,w

a
(mt)
i (ch,i, dh,i) + c(mt)(ch, dh),

F (mt)(dh) :=
∑

i=l,w

[

1

τ

∫

Ωi

c
(n−1)
h,i dh,i +

∫

Γs,i

ϕ(tn)c0
sdh,i

]

.

5 Application to vascular hemodynamics and bio-

chemical transport

In this section, we will present the numerical simulation of blood flow and mass
transport in a realistic three-dimensional vascular district containing a stent. Specif-
ically, the geometry of lumen Ωl and of the wall Ωw are obtained by the simulation
of the mechanical expansion of a stent similar to the coronary Cordis BX-Velocity
(Johnson & Johnson, Interventional System, Warren, NJ, USA), as described in
[37]. The radius of the lumen is about 1.55 mm, the thickness of the wall is 0.5 mm.

The finite element methods described in the previous sections were implemented
in a C++ code using the lowest order finite element pair (k = 1).

According to standard physiological data [33], the dynamic viscosity of blood is
set to 3 mm2s−1 and the Darcy inverse permeability of the arterial wall to 1012s−1.
Moreover, at the inflow of the artery we impose a parabolic velocity profile (max ve-
locity 270 mm/s, corresponding to a physiological mean flow rate for the considered
artery).

5.1 Analysis of blood flow

We performed a blood flow simulation, in the steady case, using the iterative method
(36). The stabilization and relaxation parameters were chosen as follows: γu =
γp = γint = 20, σu = 0, σp = 10−8. We recall that, in general, convergence of the
iterative method is ensured only if all stabilization parameters are large enough.
On the other hand, we have already observed that smaller relaxation parameters
σu, σp are allowed thanks to the tilted choice of the weights (8) and lead to faster
convergence of the iterative method.

As discussed in [12], [37], we observe (fig. 2) that the luminal flow downstream
the stent struts is fully three-dimensional and shows recirculations, vortexes and
secondary motions. Obviously, it is very important to capture these features for
the subsequent simulation of the drug release process. In fig. 3, the blood pressure
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in each subdomain and the filtration velocity in the arterial wall are represented.
Notice how the method is able to capture the main features of the coupled problem,
characterized by fast flow and small pressure variations in the lumen, slow flow and
high pressure gap in the wall, and differences in blood velocity of about 5 orders of
magnitude.

Figure 2: The interaction between the stent and the blood flow visualized by means
of streamlines. The proximal section is located on the right while the distal section
is on the left. Velocity units correspond to 200 mm s−1.

Figure 3: On the left: pressure distribution in the domains Ωi (pressure units
correspond to 70 mmHg). On the right: filtration velocity (velocity units correspond
to 200 mm s−1) and intramural pressure.

5.2 Analysis of drug release

We simulate the release of heparin from a stent coated with a substrate that opposes
only moderate resistance to drug release. According to the experimental investiga-
tions presented in [23], this corresponds to Dl = 1.5 10−4 mm2/s, Dw = 7.7 10−6

mm2/s, and a large diffusivity of the drug into the stent coating, which is set to
Ds = 10−8 mm2/s.

The numerical simulation, based on the scheme proposed in section 4, shows that
the drug released into the lumen is very quickly lost in the blood stream. Indeed,
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the peak of drug concentration into the lumen is reached about 40 seconds after the
beginning of the process. Conversely, the drug dynamics into the arterial walls is
much slower. Again, the proposed computational method is able to capture the main
features of the coupled problem. In fig. 4, an isosurface is reported showing how the
drug is distributed in the blood stream near the device. The luminal concentration
rapidly vanishes moving off the stent. Notice that blood flow downstream the
stent causes a certain amount of drug to keep close the wall and eventually enter
it, as already discussed in [12]. The major contribution is of course given by the
diffusive flux through the interface Γs,w between the device and the wall. However,
the advantage of our method is that it is able to compute the combined effects
of luminal/wall blood flow on the release pattern, which has not been considered
before. Hence, in order to evaluate the impact of the filtration velocity in the
wall, we performed two simulations of the release process, first considering only
diffusion in Ωw and imposing no-slip interface conditions on Γint, then performing
a fully coupled simulation of blood flow and plasma filtration. The results are
reported in fig. 5. We observe that in the very first hours, considering the transmural
filtration results in increased drug delivery to the wall. This is due the enhanced
drug penetration associated to the advective term. Such effect reduces the local
drug accumulation in the neighborhood of the stent, facilitating further drug release
into the artery. As previously mentioned, the first source for drug absorption is
the interface between the artery and the stent, but also the drug trapped in the
recirculation zones and in the near-wall regions of the lumen may interact with the
wall. The presence of intramural plasma filtration may slightly increase the role of
this secondary absorption pathway. However, after a few hours, the plasma reaches
the external boundary Γext and the process is reversed, since the outgoing plasma
is carrying out a certain amount of drug. Hence, in the long term the filtration
velocity causes a diminished drug deposition into the walls.

Figure 4: The iso-surface corresponding to the value 10−5c0
s for the drug concentra-

tion in the arterial lumen and contour plots into the arterial walls, after 40 seconds
from the beginning of the process. Streamlines of luminal velocity emphasize the
role of fluid-dynamics in influencing the distribution of the drug in the blood near
the walls.

6 Conclusions

We have considered a robust numerical method for the approximation of heteroge-
neous incompressible flow problems. We have studied its fundamental properties,

28



0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

Time [h]

M
as

s

 

 

Filtration = 1

Filtration = 0

(a) (b)

Figure 5: (a) Time course of the total amount of drug in the arterial wall in two
cases, considering only diffusion (dashed line) in the mass transport equations, and
including the filtration velocity uw (solid line). (b) Comparison of drug concentra-
tion with (left) and without (right) transmural filtration velocity after 4h from the
beginning of the process

such as stability, relating them to the coefficients of the problem, in order to em-
phasize the robustness of the method. We have presented an iterative method to
split the coupled heterogeneous problem in possibly homogeneous, local problems,
showing that the flexible choice of the weights allows for considerable speed-up of
the iterations. Moreover, we have proposed and studied suitable preconditioners
for the solution of the global and local problems. In particular, the spectral proper-
ties of the proposed preconditioners have been investigated, and their performances
have been assessed by means of numerical experiments.

Finally, the proposed method has been applied for the computation of fully cou-
pled blood flow in a stented coronary artery, considering the Navier-Stokes equa-
tions in the arterial lumen and the Darcy’s filtration law in the arterial wall. The
computed blood velocities in both domains have been used to perform drug release
simulations and study the drug deposition into the walls. The method proved to
be robust with respect to the difference of about 5 orders of magnitude in lumi-
nal/filtration velocities, capturing the complex features of the luminal flow around
the stent. Moreover, it has been found that transmural filtration has a significant
impact on drug delivery. Numerical simulations suggest that plasma filtration im-
proves the release process only in the early stages, and promotes the migration of
the drug outside the arterial tissue in the long term.
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