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Abstract

This work concerns the construction and the convergence analysis of a Discontinuous Galerkin Finite
Element approximation of a Cahn-Hilliard type equation with degenerate mobility and single-well singular
potential of Lennard-Jones type. This equation has been introduced in literature as a diffuse interface
model for the evolution of solid tumors. Differently from the Cahn-Hilliard equation analyzed in the
literature, in this model the singularity of the potential does not compensate the degeneracy of the
mobility at zero by constraining the solution to be strictly positive. In previous works a finite element
approximation with continuous elements of the problem has been developed by the author and co-
authors. In the latter case, the positivity of the solution is enforced through a discrete variational
inequality, which is solved only on active nodes of the triangulation where the degenerate operator
can be inverted. Moreover, a lumping approximation of the L2 scalar product is introduced in the
formulation in order to select the solutions with a moving support with finite speed of velocity from the
unphysical solutions with fixed support. As a consequence of this approximation, the order of convergence
of the method is lowered down with respect to the case of the classical Cahn-Hilliard equation with
constant mobility. In the present discretization with discontinuous elements, the concept of active nodes
is delocalized to the concept of active elements of the triangulation and no lumping approximation of the
mass products is needed to select the physical solutions. The well posedness of the discrete formulation
is shown, together with the convergence to the weak solution. Different algorithms to solve the discrete
variational inequality, based on iterative solvers of the associated complementarity system, are derived
and implemented. Simulation results in two space dimensions are reported in order to test the validity
of the proposed algorithms, in which the dynamics of the spinodal decomposition and the evolution
behaviour in the coarsening regime are studied. Similar results to the ones obtained in standard phase
ordering dynamics are found, which highlight nucleation and pattern formation phenomena and the
evolution of single domains to steady state with constant curvature. Since the present formulation does
not depend on the particular form of the potential, but it’s based on the fact that the singularity set
of the potential and the degeneracy set of the mobility do not coincide, it can be applied also to the
degenerate CH equation with smooth potential.
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1 Introduction

In this paper a Discontinuous Galerkin finite element approximation of the following initial and bound-
ary value problem for a Cahn-Hilliard type equation with degenerate mobility and single-well potential of
Lennard-Jones type is considered:

Problem P: Find c(x, t) such that

∂c

∂t
= ∇ · (b(c)∇(−γ∆c+ ψ′(c))) in ΩT := Ω× (0, T ), (1)

c(x, 0) = c0(x) ∀x ∈ Ω, (2)

∇c · ν = b(c)∇(−γ∆c+ ψ′(c)) · ν = 0 on ∂Ω× (0, T ), (3)

where Ω ⊂ Rd, d = 1, 2, 3 is a given bounded domain with a Lipschitz boundary ∂Ω, ν is the unit normal
vector pointing outward to ∂Ω, c is the volume fraction of cancerous cells, c0 is a given initial concentration
and

ψ(c) = ψ1(c) + ψ2(c), (4)

where

ψ1(c) = −(1− c∗) log(1− c), (5)

ψ2(c) = −c
3

3
− (1− c∗)c

2

2
− (1− c∗)c+ k.

Here c∗ is the volume fraction at which the cells would naturally be at mutual equilibrium and k > 0. A
spinodal decomposition can be triggered if c < c̄, where ψ′′(c̄) = 0. The derivative of the potential is

ψ′(c) =
c2(c− c∗)

1− c
. (6)

Correspondingly, the mobility is given by

b(c) = c(1− c)2. (7)

In [8, 9] Problem P is derived as a result of the application of mixture model to solid tumors. Note that ψ1

is a convex function defined on [0, 1) while ψ2 is concave. Also, the product bψ′′ is a continuous function in
[0, 1].

In [4] the existence of different classes of weak solutions of Problem P and their positivity properties, for
the cases of spatial dimension d = 1 and d = 2, 3 separately, were studied, and a continuous finite element
approximation of the problem was formulated, studying its well posedness in d = 1, 2, 3 spatial dimensions
and its convergencence, in d = 1 spatial dimension, to the weak solutions. In [3] the error analysis of
the discretization introduced in [4] was studied, showing that in that case the order of convergence of the
approximation method is lowered down with respect to the case of the classical Cahn-Hilliard equation
with constant mobility. As a consequence of the fact that (1) degenerates on the set {c = 0; c = 1}, and
the singularity is concentrated on the set {c = 1} only, one cannot exploit the relationship between b and
ψ at 0 in order to ensure that c > 0 at a discrete level. Moreover, the Entropy inequalities obtained in
[4], which guarantee the positivity property of the continuous solutions, are not straightforwardly available
at the discrete level. Therefore, following [6], this condition was imposed in [4] as a constraint and a
discrete variational inequality was formulated, solved only on the active nodes of the triangulation where
the degenerate operator can be inverted. Moreover, a lumping approximation of the L2 scalar product
was introduced in the formulation in order for the discrete solution to be able to track compactly supported
solutions of (1) with a free boundary which moves with a finite speed of velocity (whose existence is discussed
in, e.g., [6]).

In this work a finite element approximation of Problem P with discontinuous elements, which is an
extension of the finite element approximation with continuous elements introduced in [4], is formulated.
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Discontinuous Galerkin Finite element discretizations of the Cahn-Hilliard equation with non degenerate
mobility and a smooth or a double-well logarithmic type potential have been studied previously in [13, 18, 19].
In the present paper, the discretization with discontinuous elements is studied for the degenerate case. Note
that, since the present formulation does not depend on the particular form of the potential, but it’s based on
the fact that the singularity set of the potential and the degeneracy set of the mobility do not coincide, it can
be applied also to the degenerate CH equation with smooth potential. The well-posedness of the formulation
in d = 1, 2, 3 spatial dimensions and its convergence in one spatial dimension is proved. In particular, in
order to handle the singular cellular potential, a regularized problem is introduced as an intermediate step.

The discretization with discontinuous elements, delocalizing the concept of passive and active nodes,
introduced in the case of the discretization with continuous elements, to passive and active elements of
the partition of the domain, eliminates the necessity of using a lumped mass scalar product in order to
obtain an expanding support of the discrete solution with finite velocity, thus avoiding to introduce the
lumping approximation in the variational formulation of the problem. Moreover, the discretization with
discontinuous elements is useful when advective terms are present, ensuring local mass conservation and
regularizing hyperbolic instabilities; a fully coupled model of the Cahn-Hilliard equation for cellular mixtures
coupled with transport equations will be studied in a furthcoming work.

The paper is organized as follows. In section 2 we introduce the Discontinuous Galerkin finite element
approximation of (1)−(7), showing its well posedness in d spatial dimensions and its convergence in one space
dimension. In particular, due to the singularity in the cellular potential, a regularized problem is studied
in subsection 2.1 as an intermediate step. Section 3 is devoted to the convergence analysis in one space
dimension. In Section 4 we present different numerical algorithms which can be used to solve the discrete
variational inequality, based on proper iterative solvers of the corresponding complementarity system. In
Section 5 we present some numerical simulations in two dimensions, in order to discuss the dynamics of
the spinodal decomposition and the evolution behaviour in the coarsening regime of the obtained discrete
solution and to show the validity of the proposed numerical algorithms. The final Section 6 contains a
discussion of the main results.

1.1 Notation and functional setting

For a given domain ω ⊂ Ω, d = 1, 2, 3, let’s indicate with Lp(ω), Wm,p(ω), Hm(ω) = Wm,2(ω) and
Lp((0, T );V ) the usual Lebesgue, Sobolev and Bochner spaces, (see, e.g., [2]), for a p ∈ [1,∞] and m ∈ N,
endowed with the corresponding canonical norms and seminorms || · ||m,p,ω, || · ||m,ω, | · |m,p,ω and | · |m,ω,
respectively. Throughout, (·, ·)ω denotes the standard L2 inner product over ω, and < ·, · >ω denotes the
duality pairing between (H1(ω))′ and (H1(ω)). We omit the index ω when ω = Ω. Let’s moreover denote
by < ·, · >σ the (d − 1) dimensional L2(σ) inner product on σ ⊂ Rd−1. With C(ω̄), Cn(I1, I2), n ≥ 0, and
Cs1,s2x,t (ω̄T ), 0 < s1, s2 < 1, let’s indicate the space of continuous functions from ω̄ to R, the space of Cn

continuous functions from interval I1 ⊂ R to interval I2 ⊂ R, and the space of Hölder continuous functions
from ω̄T to R with Hölder exponents s1 and s2 in the arguments x and t, respectively.

Furthermore, C denotes throughout a generic positive constant independent of the unknown variables, the
discretization and the regularization parameters, the value of which might change from line to line; C1, C2, . . .
indicate generic positive constants whose particular value must be tracked through the calculations; C(a)
denotes a constant depending on the non-negative parameter a, such that, for C1 > 0, if a ≤ C1, there exists
a C2 > 0 such that C(a1) ≤ C2.

We will use the following Sobolev interpolation result, (see, e.g., [2]): let p ∈ [1,∞], m ≥ 1,
r ∈ [p,∞] if m− d

p > 0,

[p,∞) if m− d
p = 0,

[p,− d
m−(d/p) ] if m− d

p < 0,
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and µ = d
m

(
1
p −

1
r

)
. Then there is a constant C such that for all v ∈Wm,p(ω)

||v||0,r,ω ≤ C||v||1−µ0,p,ω||v||µm,p,ω. (8)

Let Th be a quasi-uniform conforming decomposition of Ω into disjoint open simplices K, and let’s
introduce the following discontinuous finite element spaces:

S(Ω, Th) := {χ ∈ L2(Ω) : χ|K ∈ P1(K) ∀K ∈ Th},
K(Ω, Th) := {χ ∈ S(Ω, Th) : χ ≥ 0 in Ω}

where P1(K) indicates the space of polynomials of total order 1 on K. Let’s also define the broken Sobolev
spaces

Hs(Ω, Th) := {v ∈ L2(Ω) : v|K ∈ HsK (K) ∀K ∈ Th},

where s = {sK}K∈Th is a set of positive integers, endowed with the broken norms

||v||s,Th :=

( ∑
K∈Th

||v||2sK ,K
)1/2

.

The finite element space S(Ω, Th) is a subset of Hs(Ω, Th) for any set {sK}K∈Th .
The traces of functions in H1(Ω, Th) belong to the space T (Γ) :=

∏
K∈Th L

2(∂K), where Γ := ∪K∈Th∂K.
For v ∈ H1(Ω, Th), let’s define the piecewise gradient ∇hv of v by (∇hv)|K := ∇(v|K), for K ∈ Th. For
q ∈ T (Γ), let’s define the average {q} and the jump [[q]] of q on Γ0 := Γ \ ∂Ω as follows. Let e be an interior
edge shared by elements K+ and K−. Assuming that the unit normal vector ne is oriented from K+ to K−,
with q± := q|∂K± , let’s set

[[q]]e := q+|e − q−|e; {q}e :=
1

2
(q+|e + q−|e).

For ease of writing we shall suppress the subscript e in the notations.
In the particular case of d = 1, denoting by 0 = x0 < x1 < · · · < xN = L a partition Th of the interval [0, L],
with In = (xn, xn+1), and, given a function v|In ∈ P1(In), denoting with v(x+

n ) := lim
ε→0,ε>0 v(xn + ε) and with

v(x−n ) := lim
ε→0,ε>0 v(xn − ε), let’s define the jump and average of v at the endpoints of In as

[[v(xn)]] := v(x−n )− v(x+
n ); {v(xn)} :=

1

2
(v(x−n ) + v(x+

n )).

Let’s now define the DG SIPG isotropic and anisotropic bilinear forms, (see, e.g., [16]), BTh(v, w) : S(Ω, Th)×
S(Ω, Th)→ R and BTh(u; v, w) : S(Ω, Th)× S(Ω, Th)× S(Ω, Th)→ R, which penalizes the continuity of the
discrete solutions at the interelement boundaries,

BTh(v, w) :=
∑
K∈Th

(∇v,∇w)K −
∑
e∈Γ0

[([[v]], {∇w · ne})e + ([[w]], {∇v · ne})e −
σ

|e|
([[v]], [[w]])e], (9)

BTh(u; v, w) :=
∑
K∈Th

(b(u)∇v,∇w)K −
∑
e∈Γ0

[([[v]], {b(u)∇w · ne})e + ([[w]], {b(u)∇v · ne})e (10)

− σ

|e|
([[v]], [[w]])e],

where σ is a sufficiently large positive constant. In the particular case of d = 1, denoting by hn = xn+1−xn,
hn−1,n = max(hn−1, hn), h = max

0≤n≤N−1
hn, let’s define the following DG SIPG isotropic and anisotropic
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bilinear forms:

BTh(v, w) :=

N−1∑
n=0

(v′(x), w′(x))In (11)

−
N−1∑
n=1

(
[[v(xn)]]{w′(xn)}+ [[w(xn)]]{v′(xn)} − σ

hn−1,n
[[v(xn)]][[w(xn)]]

)
,

BTh(u; v, w) :=

N−1∑
n=0

(b(u(x))v′(x), w′(x))In (12)

−
N−1∑
n=1

(
[[v(xn)]]{b(u(xn))w′(xn)}+ [[w(xn)]]{b(u(xn))v′(xn)} − σ

hn−1,n
[[v(xn)]][[w(xn)]]

)
.

Let’s define the energy seminorm on H2(Ω, Th)

|||v|||c :=

(
|v|21,Th +

∑
K∈Th

h2
K |v|22,K + Jp(v, v)

)1/2

, (13)

where

Jp(v, v) :=
∑
e∈Γ0

σ

|e|
([[v]], [[v]])e for d > 1, (14)

Jp(v, v) :=

N−1∑
n=1

σ

hn−1,n
[[v(xn)]][[v(xn)]] for d = 1.

On S(Ω, Th), by application of the local inverse inequality (19) with m = 2, the norm (13) is equivalent to
the weaker norm

|||v|||d :=

(
|v|21,Th + Jp(v, v)

)1/2

, (15)

Remark 1.1 The bilinear form BTh(·, ·) and the seminorms ||| · |||c and ||| · |||d have the following properties
(see, e.g., [16]):

1. Continuity: There exists a positive constant C, independent of the discretization parameter h, such
that

|BTh(v, w)| ≤ C|||v|||c |||w|||c ∀v, w ∈ H2(Ω, Th).

2. Coercivity: There exists a positive constant σ0, and for each σ ≥ σ0 there exists a positive constant
C0 = C0(σ), independent of the discretization parameter h, such that

C0|||v|||2d ≤ BTh(v, v) ∀v ∈ S(Ω, Th).

Henceforth, we shall assume that σ = σ0 in the definition of the penalty parameter in (9) and (11). In the
following we will indicate both the seminorms (13) and (15) with the notation ||| · |||, meaning |||v||| ≡ |||v|||c
if v ∈ H2(Ω, Th), and |||v||| ≡ |||v|||d if v ∈ S(Ω, Th).

Analogous results will be derived and used later for the anisotropic bilinear form BTh(·, ·, ·).
Whenever BTh(v, v) ≥ 0 let’s also define the seminorm on H2(Ω, Th)

|||v|||B := BTh(v, v). (16)
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As a consequence of remark 1.1, ||| · |||B is equivalent to ||| · ||| on S(Ω, Th) as a seminorm.
Let JK be the set of local nodes of K ⊂ Th, with |JK | = d + 1, and let {φKj }K∈Th , j = 1, . . . , d + 1

be the standard basis functions for S(Ω, Th), with supp[φKj ] ≡ K. Let’s introduce the local Lagrangian

interpolation operator πhK : C(K̄)→ S(Ω, Th)

πhK(v) :=

d+1∑
j=1

v(xKj )φKj ,

where xKj are the coordinates of the nodes in the set JK . Let’s introduce also the L2 projection operator

ph : L2(Ω)→ S(Ω, Th) defined by

(ph(η), χ) = (η, χ) ∀χ ∈ S(Ω, Th). (17)

We recall some well known local inverse, interpolation and trace inequalities on S(Ω, Th), (see, e.g., [15, 16]).

Lemma 1.1

|χ|m,p2,K ≤ Ch
−d( 1

p1
− 1
p2

)

K |χ|m,p1,K ∀χ ∈ S(Ω, Th), 1 ≤ p1 ≤ p2 ≤ ∞, m = 0 or 1; (18)

|χ|m,p,K ≤ Ch−1
K |χ|m−1,p,K ∀χ ∈ S(Ω, Th), 1 ≤ p ≤ ∞ m ≥ 1; (19)

lim
h→0
||(I − πhK)η||0,∞,K = 0 ∀η ∈ C(K̄); (20)

||(I − ph)η||0,K + h||(I − ph)η||1,K ≤ ChmK ||η||m,K ∀η ∈ Hm(K), m = 1 or 2; (21)

||(I − πhK)η||m,r,K ≤ Ch1−m||η||1,r,K ∀η ∈W 1,r(K), m = 0 or 1, r ∈ [1,∞] if d = 1; (22)

lim
h→0
||(I − πhK)η||1,K = 0 ∀η ∈ H1(K) if d = 1. (23)

||v||e ≤ C|e|1/2|K|−1/2(||v||K + hK ||∇v||K) ∀v ∈ Hs(K), s ≥ 1, ∀e ⊂ ∂K; (24)

||∇v · n||e ≤ C|e|1/2|K|−1/2(||∇v||K + hK ||∇2v||K) ∀v ∈ Hs(K), s ≥ 2, ∀e ⊂ ∂K; (25)

where hK := supx,y∈K ||x − y||, and in (24), (25) we have indicated, with an abuse of notation, v|e ≡ γ0v,
(∇v ·n)|e ≡ γ1v, with γ0 and γ1 the usual trace operators onto Sobolev spaces on the boundary of a domain.

Using (19) in (24) and (25) we get

||v||e ≤ C|e|1/2|K|−1/2||v||K ∀v ∈ Pk(K), ∀e ⊂ ∂K; (26)

||∇v · n||e ≤ C|e|1/2|K|−1/2||∇v||K ∀v ∈ Pk(K), ∀e ⊂ ∂K; (27)

In the particular case d = 1 we have

|v(xn)| ≤ Ch−1/2
n−1,n||v||In ∀v ∈ Pk(In), (28)

|v′(xn)| ≤ Ch−1/2
n−1,n||v′||In ∀v ∈ Pk(In), (29)

Let’s introduce also the following broken Friedrichs’ inequality, (see, e.g., [16]),

||v|| ≤ C
(
|v|21,Th + Jp(v, v)

)1/2

∀v ∈ H1(Ω, Th) with (v, 1) = 0. (30)

Using (19), (26), (27), the fact that |e| ≤ hd−1
K , the regularity and quasi-uniformity of the partition Th, the

Cauchy-Schwarz and Young inequalities we obtain

|||v||| ≤ Ch−1||v||, |||v|||B ≤ Ch−1||v|| ∀v ∈ S(Ω, Th). (31)
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Let’s define the operators GTh : F ∩ L2(Ω) → H2
∗ (Ω, Th) and GhTh : F ∩ L2(Ω) → V (Ω, Th), where F :=

{v ∈ (H1(Ω))′ :< v, 1 >= 0}, H2
∗ (Ω, Th) := {v ∈ H2(Ω, Th) : (v, 1) = 0} and V (Ω, Th) := {vh ∈ S(Ω, Th) :

(vh, 1) = 0}, such that
BTh(GThv, χ) = (v, χ) ∀χ ∈ H2(Ω, Th), (32)

BTh(GhThv, χ) = (v, χ) ∀χ ∈ S(Ω, Th). (33)

Existence and uniqueness of GThv and GhThv, for any v ∈ F ∩ L2(Ω), follows from the Lax-Milgram theorem
on H2

∗ (Ω, Th) and V (Ω, Th), on noting that BTh(·, ·) is continuous and coercive on V (Ω, Th)× V (Ω, Th) with
respect to the energy norm ||| · |||, and is continuous and coercive on H2

∗ (Ω, Th)×H2
∗ (Ω, Th) with respect to

the stronger norm ||| · ||| := (|v|21,Th + h2
K |v|22,Th + Jp(v, v))1/2, (cf. the trace inequality (25). See, e.g., [16]).

Note that, since v ∈ F∩L2(Ω), from elliptic regularity and the fact that BTh(GThv, 1) = 0, we have effectively
that GThv ∈ H2

∗ (Ω, Th).
We can define a norm on F ∩ L2(Ω) by setting

||v||F∩L2(Ω) :=

(
BTh(GThv,GThv)

)1/2

= (v,GThv)1/2 ∀v ∈ F ∩ L2(Ω). (34)

2 Discontinuous Galerkin Finite Element approximation

In this section we introduce the finite element and time discretization of (1)-(3). While at the continuous
level Entropy estimates guarantee the positivity of the solution (see [4], in particular Estimate (2.24) and
Theorems 2.2 and 2.3 therein), at a discrete level such estimates are not straightforwardly available. In
[12], a suitable approximation of the mobility has been introduced in order to guarantee the validity of an
Entropy estimate and consequently the positivity of the solution also at a discrete level, which consists of
an harmonic average of the mobility on a structured mesh.

Following [6] and [4], let’s impose this property as a constraint through a variational inequality. In the
sequel we will show that the solution of the discrete formulation, for the discretization parameters tending
to zero, satisfies a mixed weak formulation of (1)-(3) and is thus consistent.

Let’s set ∆t = T/N for a N ∈ N, and tn = n∆t, n = 1, ..., N . For d = 1, 2, 3, starting from a datum
c0 ∈ H1(Ω) and c0h|K = πhKc0 (if d = 1) or c0h|K = ph(c0)|K , with 0 ≤ c0h < 1, consider the following fully
discretized problem:

Problem Ph. For n = 1, . . . , N , given cn−1
h ∈ K(Ω, Th), find (cnh, w

n
h) ∈ K(Ω, Th) × S(Ω, Th) such that,

for all (χ, φ) ∈ S(Ω, Th)×K(Ω, Th),
(
cnh − c

n−1
h

∆t
, χ

)
+BTh(cn−1

h ;wnh , χ) = 0,

γBTh(cnh, φ− cnh) + (ψ′1(cnh), φ− cnh) ≥ (wnh − ψ′2(cn−1
h ), φ− cnh)

(35)

Defining the discrete Energy functional F1 : S(Ω, Th)→ R+ by

F1[cnh] =
γ

2
BTh(cnh, c

n
h) +

∫
Ω

{ψ1(cnh) + χR+(cnh)}dx, (36)

where χR+(·) is the indicator function of the closed and convex set R+, we can rewrite, using the simmetry
of the bilinear form BTh(·, ·), the second equation of system (35) as

(wnh − ψ′2(cn−1
h ), φ− cnh) + F1[cnh] ≤ F1[φ], ∀φ ∈ S(Ω, Th), (37)

which is equivalent to
wnh − ψ′2(cn−1

h ) ∈ ∂F1[cnh], (38)

where ∂ is the subdifferential of the convex and lower-semicontinuous function F1. The convexity and lower-
semicontinuity properties of F1 are a consequence of remark 1.1 and of the properties of ψ1 and χR+ . Note
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Figure 1: A partition of the domain Ω into regions where qh ≡ 0 (the colored region) and qh 6= 0.

that the formulation (38) represents the generalized discrete analogous of the subdifferential approach to the
standard Cahn-Hilliard equation with constraints introduced in [14]. Here that approach is generalized to
the present case. Inequality (37) will be used in (97) and (98) in order to study the convergence of a suitable
regularized problem to the original one.

Remark 2.1 Given the assumption 0 ≤ c0h < 1, the term (ψ′1(cnh), χ − cnh) in the second equation of (35)
is well defined, since we will show that |c0h|0,∞ < 1 implies that |cnh|0,∞ < 1 for all n ≥ 1 (see Lemma
2.4). From now on, let’s assume that 0 ≤ c0h < 1. Notice that this is a physically-consistent assumption,
since subregions in the domains where the cellular phase concentrates against infinite cell-cell repulsion are
unphysical.

We introduce now the broken discrete Green operator of the degenerate elliptic form in the first equation of

system (35), which will be used to express the chemical potential wnh in terms of
cnh−c

n−1
h

∆t and to show the
well posedness of Problem Ph. We modify the approach with continuous elements introduced in [4] to invert
the degenerate elliptic form on a proper closed and convex subset of S(Ω, Th).

In order to introduce the subset of S(Ω, Th) on which the degenerate elliptic form BTh(cn−1
h ;wnh , χ) can

be inverted, we must subdivide properly the partition T h of Ω into elements on which cn−1
h ≡ 0 and elements

on which cn−1
h 6= 0. Given qh ∈ K(Ω, Th), let’s define a set of passive elements K0(qh) ⊂ Th by

K ∈ K0(qh)⇔ πhKq
h ≡ 0 ∧ πhN (∂K,K)q

h ≡ 0⇔ (qh, φKj ) = (qh, φ
N (∂K,K)
j ) = 0, (39)

for each j = 1, . . . , d + 1, where N (∂K,K) denotes the elements in Th that are neighbors of K through an
edge e ⊂ ∂K \ ∂Ω. The elements in the set K+(qh) = Th \K0(qh) are called active elements; these elements

can be partitioned into mutually disjoint and maximally connected subsets K+(qh) ≡
⋃M
m=1Km(qh), for

which any couple of elements K1 and K2 in Km(qh) belongs to a maximally connected set of elements of
T h on which (qh 6= 0) or (qh = 0 ∧ [[qh]]e 6= 0) for some e ⊂ ∂Ki, i = 1, 2. In Figure 1 we show a possible
partition of the domain in regions where qh ≡ 0 (the colored region) and qh 6= 0. Note that the element
M ∈ K0(qh), and all other elements are in K+(qh). In particular, (qh = 0 ∧ [[qh]]n̄s 6= 0) on the element T .

Defining

Σm(qh) :=
∑

K∈Km(qh)

∑
j∈J

Km(qh)

φKj ,

note that
Σm(qh) ≡ 1 on Km(qh). (40)
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Finally we introduce the set

V h(qh) :={vh ∈ S(Ω, T h) : πhKv
h ≡ 0 ∧ [[vh]]e = 0 ∀e ⊂ ∂K \ ∂Ω, ∀K ∈ K0(qh), (41)

and (vh,Σm(qh)) = 0, m = 1, . . . ,M}

Observe that any vh ∈ S(Ω, T h) can be written as

vh ≡
∑
K∈T h

∑
j∈JK

vh(xKj )φKj (42)

≡ v̄h +
∑

K∈K0(qh)

∑
j∈JK

vh(xKj )φKj +

M∑
m=1

[
−
∫
Km(qh)

vh
]
Σm(qh)

+

M∑
m=1

∑
K∈Km(qh)

∑
j∈JK

∑
K′∈K0(qh)

∑
e⊂∂K′

[
vh(xKj )−−

∫
Km(qh)

vh
](
φKj

∣∣∣∣
e

)
,

where

−
∫
Km(qh)

vh :=
(vh,Σm(qh))

(1,Σm(qh))
. (43)

and v̄h is the ph projection of vh onto V h(qh), i.e.

v̄h :=

M∑
m=1

∑
K∈Km(qh)

∑
j∈JK

[
vh(xKj )−−

∫
Km(qh)

vh
]
φKj (44)

−
M∑
m=1

∑
K∈Km(qh)

∑
j∈JK

∑
K′∈K0(qh)

∑
e⊂∂K′

[
vh(xKj )−−

∫
Km(qh)

vh
](
φKj

∣∣∣∣
e

)
.

Note that [[v̄h]]e = 0 ∀e ⊂ ∂K \ ∂Ω, ∀K ∈ K0(qh), and in particular

v̄h(xKj ) = 0 ∀xKj ∈ e ⊂ ∂K ′ \ ∂Ω, ∀K ′ ∈ K0(qh),∀K ∈ Km(qh). (45)

We can now define, for all qh ∈ K(Ω, Th) with qh < 1, the broken discrete anisotropic Green’s operator
Gh(qh,Th) : V h(qh)→ V h(qh) such that

BTh(qh;Gh(qh,Th)v
h, χ) = (vh, χ) ∀χ ∈ S(Ω, Th). (46)

To show the well posedness of Gh(qh,Th) we need the following lemma.

Lemma 2.1 There exists a positive constant σ1, and for each σ ≥ σ1 there exists a positive constant
C1 = C1(σ), independent of the discretization parameter h, such that

C1|||v|||2qh ≤ BTh(qh; v, v) ∀v ∈ V h(qh), (47)

where the anisotropic energy seminorm |||v|||qh is defined as

|||v|||qh :=

(
||[b(qh)]1/2∇v||20,Th + Jp(v, v)

)1/2

, (48)

Henceforth, we shall assume that σ = σ1 in the definition of the penalty parameter in (10) and (12).
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Proof. Let’s show the proof for the case d = 2, 3. The proof can be adapted straightforwardly to the case d = 1.
Let’s rewrite the energy seminorm (48) and the anisotropic bilinear form (10) as follows:

|||v|||qh =

( ∑
K∈K0(qh)

||[b(qh)]1/2∇v||2K +
∑

K∈K0(qh)

∑
e∈∂K

σ

|e| ([[v]], [[v]])e (49)

+

M∑
m=1

∑
K′∈Km(qh)

||[b(qh)]1/2∇v||2K′ +

M∑
m=1

∑
K′∈Km(qh)

∑
K∈K0(qh)

∑
e∈∂K′\∂K

σ

|e| ([[v]], [[v]])e

)1/2

,

BTh(qh; v, v) =
∑

K∈K0(qh)

(b(qh)∇v,∇v)K (50)

−
∑

K∈K0(qh)

∑
e∈∂K

[
2([[v]], {b(qh)∇v · ne})e −

σ

|e| ([[v]], [[v]])e

]
+

M∑
m=1

∑
K′∈Km(qh)

(b(qh)∇v,∇v)K′

−
M∑
m=1

∑
K′∈Km(qh)

∑
K∈K0(qh)

∑
e∈∂K′\∂K

[
2([[v]], {b(qh)∇v · ne})e −

σ

|e| ([[v]], [[v]])e

]
.

Since v ∈ V h(qh), from (41) it can be seen that the first two terms on the right hand sides of equations (49) and (50)
are identically equal to zero. For this same reason we have omitted to write the contributions from the trace terms
on e ∈ ∂K′ ∩ ∂K in the last terms on the right hand side of (49) and (50). Using now the trace inequality (27) and
the Cauchy-Schwarz inequality for an e ∈ ∂K′ \ ∂K shared by elements K+ and K− in Km(qh) on which qh 6= 0, we
get

([[v]], {b(qh)∇v · ne})e ≤ C||b(qh)||0,∞(|v|21,K+ + |v|21,K−)1/2

(
1

|e|

)1/2

||[[v]]||e. (51)

Let’s define the set K∗m(qh) := {K ∈ Km(qh) : qh|K 6= 0}. Analogously, for an e ∈ ∂K′ \ ∂K shared by elements
K+ ∈ K∗m(qh) and K− ∈ Km(qh) \K∗m(qh), for which qh ≡ 0 ∧ [[qh]]e 6= 0 on K− (note that K− ∩K 6= ∅ for some
K ∈ K0(qh)), we get

([[v]], {b(qh)∇v · ne})e ≤ C||b(qh)||0,∞(|v|1,K+)

(
1

|e|

)1/2

||[[v]]||e. (52)

Using (51) and (52) in (50), using Young inequality and denoting

b∗min(qh) := min
K∈K∗m(qh)

1

|K|

∫
K

b(qh)dx,

We get

BTh(qh; v, v) ≥ 1

2

M∑
m=1

∑
K′∈Km(qh)

||[b(qh)]1/2∇v||2K′ (53)

+

M∑
m=1

∑
K′∈Km(qh)

∑
K∈K0(qh)

∑
e∈∂K′\∂K

[σ − 2
C2||b(qh)||20,∞

b∗min(qh)

|e|

]
([[v]], [[v]])e.

Choosing

σ1 = 2
C2||b(qh)||20,∞
b∗min(qh)

,

we get (47). �
Let’s show now the well posedness of the operator Gh(qh,Th). Choosing in (46) χ ≡ φKj , for K ∈ K0(qh),

j ∈ JK , leads to both sides vanishing, on noting (39) and (41). Choosing χ ≡ Σm(qh), m = 1, . . . ,M
leads to both sides of (46) vanishing. Indeed, observing that the sum of the trace terms on the boundaries

10



of the elements in the set Km(qh) which are not shared with elements in K0(qh) cancels out, (which is a
consequence of the local conservativity of the method), we get

−
∑

K∈K0(qh)

∑
e∈∂K

[
{b(qh)∇Gh(qh,Th)v

h · ne}e −
σ

|e|
[[Gh(qh,Th)v

h]]e

]
= (vh,Σm(qh)), (54)

and all the terms in (54) are identically equal to zero, due to (39) and (41).
Therefore, to prove the well posedness of the operator Gh(qh,Th) : V h(qh) → V h(qh) it remains to prove

uniqueness, as V h(qh) has finite dimension. If there exist two solutions Zhi ∈ V h(qh), i = 1, 2, with
BTh(qh;Zhi , χ) = (vh, χ) ∀χ ∈ S(Ω, Th), then Zh := Zh1 − Zh2 ∈ V h(qh) satisfies, choosing χ ≡ Zh and
using lemma 2.1,

C1|||Zh|||2qh ≤ BTh(qh;Zh, Zh) = 0. (55)

Using (49), (39) and (41), we can rewrite (55) as

M∑
m=1

∑
K′∈Km(qh)\K∗m(qh)

∑
K∈K0(qh)

∑
e∈∂K′\∂K

σ

|e|
||[[Zh]]||2e +

M∑
m=1

∑
K′∈K∗m(qh)

||[b(qh)]1/2∇Zh||2K′ (56)

+

M∑
m=1

∑
K′∈K∗m(qh)

∑
e∈∂K′

σ

|e|
||[[Zh]]||2e = 0.

As a first consequence of (56) we get that [[Zh]]e = 0 in L2(e) on e ∈ ∂K ′\∂K, where K ′ ∈ Km(qh)\K∗m(qh)
and K ∈ K0(qh) (i.e. [[Zh]]e on the boundaries of elements on which qh ≡ 0 ∧ [[qh]]e 6= 0). Since Zh ∈ P1,
we effectively have [[Zh]]e = 0. Similarly, as a second consequence of (56), since b(qh) > 0 on K∗m(qh),
we obtain that Zh is equal to a constant on each K∗m(qh), m = 1, . . . ,M . Given an e ∈ ∂K ′ \ ∂K, where
K ′ ∈ Km(qh)\K∗m(qh) and K ∈ K0(qh), shared by two elements K− ∈ Km(qh)\K∗m(qh) and K+ ∈ K∗m(qh),
indicating ZhK± := Zh|K± , the following facts hold:

1. ZhK+ |e is equal to a constant;

2. [[Zh]]e = 0;

3. since K−∩K 6= ∅ for some K ∈ K0(qh), we have from (45) that ZhK−(xK
−

j ) = 0 for xK
−

j ∈ ∂K−∩∂K.

These facts together imply that Zh = 0 on Km(qh), and hence Zh ≡ 0 on Ω. Thus Gh(qh,Th) is well posed.

Note that the previous reasoning is valid only for d > 1, since in this case the set Γ is connected. In the
case d = 1 we have to use (55) and the property that (Zh, 1) = 0 on Km(qh) in order to simply show that
Zh ≡ 0 on [0, L].

Remark 2.2 By comparing (46) with (35), choosing qh ≡ cn−1
h and vh ≡ cnh−c

n−1
h

∆t in (46), note that the

definition of the space V h(cn−1
h ) introduces the property of a moving support of the discrete solution of (35)

with a finite speed of velocity, since the support can expand at most of a length hK locally at each time step.

Let’s proceed now by studying a regularized version of problem (35), in order to deal with the singularity
in the cellular potential and to show the well posedness of problem (35) when the regularization parameter
tends to zero.

2.1 Regularized problem

Let’s introduce the following regularization of the cellular potential near cnh = 1: for ε > 0, set

ψ′′1,ε(c
n
h) :=

{
ψ′′1 (1− ε) for cnh ≥ 1− ε,
ψ′′1 (cnh) for cnh < 1− ε.

(57)
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By expanding ψ1(cnh) in (5) in a neighborhood of (1− ε) when cnh ≥ 1− ε, ψ1,ε is obtained, i.e.

ψ1,ε(c
n
h) :=

{
−(1− c∗) log ε+ 3

2 (1− c∗)− 2
ε (1− c∗)(1− cnh) + 1−c∗

2ε2 (1− cnh)2,

ψ1(cnh),
(58)

and ψ′1,ε, i.e.

ψ′1,ε(c
n
h) :=

{
2
ε (1− c∗)− 1−c∗

ε2 (1− cnh),

ψ′1(cnh),
(59)

for cnh ≥ 1 − ε and cnh < 1 − ε respectively. Furthermore, expanding ψ1,ε(c
n
h) in the Taylor series around

(1− ε), with an argument s > 1 and with ε < 1, using (57), (58) and (59) we obtain

ψ1,ε(s) = ψ1,ε(1− ε) + ψ′1,ε(1− ε)(s− (1− ε)) +
1

2
ψ′′1,ε(1− ε)(s− (1− ε))2

= −(1− c∗) log ε+
1− c∗
ε

(s− (1− ε)) +
1− c∗

2ε2
(s− (1− ε))2 ≥ 1− c∗

2ε2
(s− 1)2.

Hence we have that

ψ1,ε(s) ≥
1− c∗

2ε2
([s− 1]+)2 ∀s ∈ R, (60)

where [·]+ = max{0, ·}. Introducing the concave preserving extension ψ̄2 ∈ C1(R+) of ψ2 ∈ C1([0, 1]),

ψ̄2(cnh) :=

{
ψ2(1) + (cnh − 1)ψ′2(1) for cnh ≥ 1,

ψ2(cnh) for 0 ≤ cnh < 1,
(61)

let’s set ψε(c
n
h) := ψ1,ε(c

n
h) + ψ̄2(cnh). Note that

ψ1,ε(r) + ψ̄2(r) = −(1− c∗) log ε− 1

3
+

[
2

ε
(1− c∗) + (2c∗ − 3)

]
(r − 1) +

(
1− c∗

2ε2

)
(r − 1)2 (62)

for r ≥ 1. Since there exists a sufficiently small positive value ε0 such that the expression in the square
brackets in (62) is positive ∀ε ≤ ε0, we obtain that

ψε(s) +
1

3
≥ 1− c∗

2ε2
([s− 1]+)2 ∀s ∈ R, ε ≤ ε0. (63)

In order to show the well posedness of Problem Ph, let’s introduce the following regularized version of (35):
Problem Ph

ε . For n = 1, . . . , N , given cn−1
h ∈ K(Ω, Th), with cn−1

h < 1 and |||cn−1
h ||| ≤ C, find

(cnh,ε, w
n
h,ε) ∈ K(Ω, Th)× S(Ω, Th) such that for all (χ, φ) ∈ S(Ω, Th)×K(Ω, Th),

(
cnh,ε − c

n−1
h

∆t
, χ

)
+BTh(cn−1

h ;wnh,ε, χ) = 0,

γBTh(cnh,ε, φ− cnh,ε) + (ψ′1,ε(c
n
h,ε), φ− cnh,ε) ≥ (wnh,ε − ψ̂′2(cn−1

h ), φ− cnh,ε)
(64)

The following result shows that Problem Ph
ε is well posed.

Lemma 2.2 There exists a solution (cnh,ε, w
n
h,ε) to Problem Ph

ε . Moreover, the solution {cnh,ε}Nn=1 is unique,

and wnh,ε is unique on Km(cn−1
h ), for m = 1, . . . ,M , n = 1, . . . , N .

Proof. From the first equation in system (64) and from (46) it follows that, given cn−1
h ∈ K(Ω, Th), cn−1

h < 1, a
cnh,ε ∈ Kh(cn−1

h ) is searched, where

Kh(cn−1
h ) := {χ ∈ K(Ω, Th) : χ− cn−1

h ∈ V h(cn−1
h )}. (65)
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Moreover, a solution wnh,ε ∈ S(Ω, Th) can be expressed in terms of cnh,ε − cn−1
h through the discrete anisotropic Green

operator (46), recalling (42), as

wnh,ε ≡ −Gh(cn−1
h

,Th)

[
cnh,ε − cn−1

h

∆t

]
+

∑
K∈K0(cn−1

h
)

∑
j∈JK

µK,nj,ε φ
K
j +

M∑
m=1

λnm,εΣm(cn−1
h ) (66)

+

M∑
m=1

∑
K∈Km(cn−1

h
)

∑
j∈JK

∑
K′∈K0(cn−1

h
)

∑
e⊂∂K′

δK,nj,ε

(
φKj

∣∣∣∣
e

)
,

where {µK,nj,ε }j∈JK ,K∈K0(cn−1
h

)
, {λnm,ε}Mm=1 and {δK,nj,ε }j∈JK ,K∈Km(cn−1

h
),m=1,...,M

are constants which express the val-

ues of wnh,ε on the nodes of passive elements, its average value on Km(cn−1
h ) and its values on the nodes on boundaries

between active and passive elements respectively. Hence, Problem Ph
ε can be restated as follows:

given cn−1
h ∈ K(Ω, Th), with cn−1

h < 1, find cnh,ε ∈ Kh(cn−1
h ) and constant Lagrange multipliers {µK,nj,ε }j∈JK ,K∈K0(cn−1

h
)
,

{λnm,ε}Mm=1 and {δK,nj,ε }j∈JK ,K∈Km(cn−1
h

),m=1,...,M
such that, for all φ ∈ K(Ω, Th),

γBTh(cnh,ε, φ− cnh,ε) +

(
Gh

(cn−1
h

,Th)

[
cnh,ε − cn−1

h

∆t

]
+ ψ′1,ε(c

n
h,ε), φ− cnh,ε

)
(67)

≥
( ∑
K∈K0(cn−1

h
)

∑
j∈JK

µK,nj,ε φ
K
j +

M∑
m=1

λnm,εΣm(cn−1
h )− ψ̂′2(cn−1

h ), φ− cnh,ε
)

+

M∑
m=1

∑
K∈Km(cn−1

h
)

∑
j∈JK

∑
K′∈K0(cn−1

h
)

∑
e⊂∂K′

δK,nj,ε (φKj , φ− cnh,ε)e.

Note that (67) represents, together with cnh,ε ∈ Kh(cn−1
h ), the Karush-Kuhn-Tucker optimality conditions, (see, e.g.

[10]), of the minimization problem

inf
vh,ε∈S(Ω,Th)

sup
µKj,ε,λm,ε,δ

K
j,ε,νε≥0

{
γ|||vh,ε|||2B + 2(ψ1,ε(vh,ε) + ψ̂′2(cn−1

h )vh,ε, 1) (68)

+
1

∆t
BTh

(
cn−1
h ;Gh

(cn−1
h

,Th)
(vh,ε − cn−1

h ),Gh
(cn−1
h

,Th)
(vh,ε − cn−1

h )

)
− (νε, vh,ε)−

∑
K∈K0(cn−1

h
)

∑
j∈JK

µKj,ε(φ
K
j , vh,ε)−

M∑
m=1

λm,ε(Σm(cn−1
h ), vh,ε)

−
M∑
m=1

∑
K∈Km(cn−1

h
)

∑
j∈JK

∑
K′∈K0(cn−1

h
)

∑
e⊂∂K′

δKj,ε([[φ
K
j ]], [[vh,ε]])e

}
,

with νε ∈ K(Ω, Th) the Lagrange multiplier of the inequality constraint. Noting the convexity of ψ1,ε(·), remark
1.1, lemma 2.1 and the fact that cn−1

h ∈ K(Ω, Th), the primal form associated to the Lagrangian (68) is a convex,
proper, lower semi continuous and coercive function from the closed convex set Kh(cn−1

h ) to R, and the primal
problem is stable. Hence, from the Kuhn-Tucker theorem, (see, e.g., [10]), there exist cnh,ε ∈ Kh(cn−1

h ), solution of

the primal problem, and Lagrange multipliers {µK,nj,ε }j∈JK ,K∈K0(cn−1
h

)
, {λnm,ε}Mm=1, {δK,nj,ε }j∈JK ,K∈Km(cn−1

h
),m=1,...,M

and νε ∈ −∂χR+(cnh,ε), for each n. Therefore, from (66) follows the existence of a solution (cnh,ε, w
n
h,ε)

N
n=1 to Problem

Ph
ε .

For what concerns uniqueness, if, for fixed n ≥ 1, (67) has two solutions

(cn,ih,ε, {µ
K,n,i
j,ε }

j∈JK ,K∈K0(cn−1
h

)
, {λn,im,ε}Mm=1, {δK,n,ij,ε }

j∈JK ,K∈Km(cn−1
h

),m=1,...,M
), i = 1, 2,

by taking φ = cn,2h,ε in the inequality for cn,1h,ε and cn,1h,ε in the inequality for cn,2h,ε and taking the difference between the
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two inequalities, on noting that cn,1h,ε − c
n,2
h,ε := c̄nh,ε ∈ V h(cn−1

h ) and (41), it follows that

γ|||c̄nh,ε|||2B + (ψ′1,ε(c
n,1
h,ε )− ψ

′
1,ε(c

n,2
h,ε ), c̄

n
h,ε)

+
1

∆t
BTh

(
cn−1
h ;Gh

(cn−1
h

,Th)
c̄nh,ε,Gh(cn−1

h
,Th)

c̄nh,ε

)
≤ 0

→ γ|||c̄nh,ε|||2B +
1

∆t
BTh

(
cn−1
h ;Gh

(cn−1
h

,Th)
c̄nh,ε,Gh(cn−1

h
,Th)

c̄nh,ε

)
≤ 0,

where we have used the monotonicity of ψ′1,ε(·) in the second step. Therefore the uniqueness of cnh,ε follows from

remark 1.1, lemma 2.1, the fact that, since c̄nh,ε ∈ V h(cn−1
h ), (c̄nh,ε, 1) = 0, and (30). For any δ ∈ (0, 1), choosing

φ = cnh,ε ± δ[cnh,εΣm(cn−1
h )] in (67), for m = 1, . . . ,M , yields uniqueness of the Lagrange multipliers {λnm,ε}Mm=1,

{δK,nj,ε }j∈JK ,K∈Km(cn−1
h

),m=1,...,M
. Hence the uniqueness result for wnh,ε follows from (66). �

In order to pass to the limit for ε→ 0 in system (64), we need to deduce suitable ε−independent bounds for
the solution (cnh,ε, w

n
h,ε). The following result holds.

Lemma 2.3 For every sequence ε→ 0, there exist a subsequence ε′ → 0 and a cnh ∈ K(Ω, Th) such that

cnh,ε′ → cnh and ∇cnh,ε′ |K → ∇cnh|K for ε′ → 0,K ∈ Th. (69)

For the case d > 1, there exists a subsequence {cnh,ε′} such that, for each e ∈ Γ0,

[[cnh,ε′ ]]e → [[cnh]]e and {∇cnh,ε′ · ne}e → {∇cnh · ne}e, (70)

for ε′ → 0. For the case d = 1, there exists a subsequence {cnh,ε′} such that

[[cnh,ε′(xn̄)]]→ [[cnh(xn̄)]] and {c
′n
h,ε′(xn̄)} → {c

′n
h (xn̄)} for ε′ → 0, n̄ = 1, . . . , N̄ − 1, (71)

where 0 = x0 < x1 < · · · < xN̄ = L is a partition of Th.
For every sequence ε→ 0, there exist a subsequence ε′ → 0 and a wnh ∈ S(Ω, Th) such that

wnh,ε′ → wnh and ∇wnh,ε′ |K → ∇wnh |K for K ∈ K∗m(cn−1
h ), for ε′ → 0. (72)

For the case d > 1, there exists a subsequence {wnh,ε′} such that, for each e ∈ ∂K and for each e′ ∈ ∂K ′,
K ′ ∈ K∗m(cn−1

h ), m = 1, . . . ,M ,

[[wnh,ε′ ]]e → [[wnh ]]e and (73)

{b(cn−1
h )∇wnh,ε′ · ne′}e′ → {b(cn−1

h )∇wnh · ne′}e′ ,

for ε′ → 0. For the case d = 1, there exists a subsequence {wnh,ε′} such that

[[wnh,ε′(xn̄)]]→ [[wnh(xn̄)]] and {b(cn−1
h )(xn̄∗)w

′n
h,ε′(xn̄∗)} → {b(cn−1

h )(xn̄∗)w
′n
h (xn̄∗)}, (74)

for ε′ → 0, n̄ = 1, . . . , N̄ − 1, n̄∗ = 1, . . . , N̄ − 1 ∧ cn−1
h (In̄∗) 6= 0.

Proof. Let’s start by proving stability bounds for the regularized problem (64). Choosing χ = wnh,ε in the first
equation of (64) and φ = cn−1

h in the second equation of (64), it follows that

γBTh(cnh,ε, c
n
h,ε − cn−1

h ) + (ψ′1,ε(c
n
h,ε) + ψ̂′2(cn−1

h ), cnh,ε − cn−1
h ) + ∆tBTh(cn−1

h ;wnh,ε, w
n
h,ε) ≤ 0.

Using now the identity 2s(s − r) = s2 − r2 + (s − r)2, ∀r, s ∈ R, and the convexity and the concavity properties of
ψ1,ε(·) and ψ̂2(·), it follows that

γ

2
|||cnh,ε|||2B +

γ

2
|||cnh,ε − cn−1

h |||2B + (ψε(c
n
h,ε), 1) + ∆tBTh(cn−1

h ;wnh,ε, w
n
h,ε) (75)

≤ (ψε(c
n−1
h ), 1) +

γ

2
|||cn−1

h |||2B ≤ C.
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From (75) and (63) it follows that
||[cnh,ε − 1]+||2 ≤ Cε2. (76)

Let’s introduce the function

f1,ε(r) := −(1− c∗) log ε+
3

2
(1− c∗)− 2

ε
(1− c∗)(1− r).

Note from (58) that

ψ1,ε(c
n
h,ε) = f1,ε(c

n
h,ε) +

1− c∗

2ε2
(1− cnh,ε)2, (77)

for cnh,ε ≥ 1 − ε, and that there exists a value ε0 such that f1,ε(c
n
h,ε) ≥ 0 for cnh,ε ≥ 1 − ε and ε ≤ ε0. Calling Ωε the

support of the base functions corresponding to nodes on which cnh,ε ≥ 1− ε, we get from (75), (77) and (76) that

(f1,ε(c
n
h,ε), 1)Ωε ≤ C, (78)

independently on ε. Since f1,ε(c
n
h,ε) ∈ S(Ω, Th) and f1,ε(c

n
h,ε) ≥ 0 for cnh,ε ≥ 1− ε and ε ≤ ε0, using (18) it follows that

||f1,ε(c
n
h,ε)||0,∞,Ωε ≤ Ch

−d, (79)

independently on ε. Due to the logarithmic term in f1,ε(·), (79) implies that, for each ε ≤ ε0,

cnh,ε < 1, (80)

uniformly in ε. It follows from (75), the fact that (cnh,ε, 1) = (cn−1
h , 1), remark 1.1, (30) and the Bolzano-Weierstrass

theorem that there exist a subsequence {cnh,ε′} and a cnh ∈ K(Ω, Th) such that (69) holds.

For what concerns the convergence properties of wnh,ε, let’s start by using (30) on the setsK∗m(cn−1
h ), m = 1, . . . ,M ,

obtaining, using lemma 2.1 and noting (75), that

||[(I −−
∫
K∗m(cn−1

h
)

)wnh,ε]Σ
∗(cn−1

h )||2 ≤ C(h−1)

(
|wnh,ε|1,K∗m(cn−1

h
)

+ Jp(w
n
h,ε, w

n
h,ε)

)
(81)

≤ C(h−1)[b∗min(cn−1
h )]−1|||wnh,ε|||2cn−1

h
dx ≤ C(h−1, (∆t)−1)[b∗min(cn−1

h )]−1,

where Σ∗(cn−1
h ) :=

∑
K∈K∗m(qh)

∑
j∈J

K∗m(qh)
φKj . Let’s now bound −

∫
K∗m(cn−1

h
)
wnh,ε.

Let’s take
K(Ω, Th) 3 φ = cnh,ε + Σ∗m(cn−1

h )

in the second equation of system (64). We get

(wnh,ε,Σ
∗
m(cn−1

h )) ≤ γBTh(cnh,ε,Σ
∗
m(cn−1

h )) + (ψ′1,ε(c
n
h,ε),Σ

∗
m(cn−1

h )) + (ψ̂′2(cn−1
h ),Σ∗m(cn−1

h )). (82)

On noting that Σ∗m(cn−1
h ) ≡ 1 on K∗m(cn−1

h ), m = 1, . . . ,M , and is zero elsewhere, using (9), (26), (27) and (75), the

Young inequality, the facts that ψ̂′2(cn−1
h ) and ψ′1,ε(c

n
h,ε) are bounded, due to (80), it follows that

|(wnh,ε,Σ∗m(cn−1
h ))| ≤ Ch−1||cnh,ε||21,Th + C + |(ψ′1,ε(cnh,ε),Σ∗m(cn−1

h ))|+ (83)

C||Σ∗m(cn−1
h )||0,∞ ≤ C + C(h−1).

Now, combining (81) with (83), on noting the definition (43) , we get

||(wnh,εΣ∗m(cn−1
h ))|| ≤ C + C(h−1) + C(h−1, (∆t)−1)[b∗min(cn−1

h )]−1. (84)

From (75) and (47) it follows that, in the case d > 1,

||[[wnh,ε]]e||e ≤ Ch1/2
e (∆t)−1/2. (85)

From (84) and the fact that wnh,ε ∈ S(Ω, Th) has finite dimension we deduce that wnh,ε is bounded on K∗m(cn−1
h ),

uniformly in ε. Moreover, from (85) it can be deduced that [[wnh,ε]]e is bounded for each e ∈ Γ0, uniformly in ε.
Hence, it follows from (84), (85) and (75) that there exist a subsequence {wnh,ε′} and a wnh ∈ S(Ω, Th) such that

(72) holds. This is valid also for the case d = 1, where (85) takes the form [[wnh,ε(xn)]] ≤ Ch
1/2
n−1,n(∆t)−1/2, for each

n = 1, . . . , N − 1.
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Remark 2.3 Note that the presence of the jump terms in (10), (12) and (75) makes it possible to have a convergence
wnh,ε′ → wnh on the whole domain Ω, whereas in the case of discretization with continuous elements this convergence

property is valid only on subdomanis where cn−1
h 6= 0 (see [4]).

From (75) and (27) we have that (in the case d > 1)

||[[cnh,ε]]e||e ≤ Ch1/2
e , ||{∇cnh,ε · ne}e||e ≤ Ch−1/2

e (86)

Hence from the Bolzano-Weierstrass theorem there exist two elements ξ1, ξ2 ∈ P1(e) and a subsequence {cnh,ε′} such
that, for each e ∈ Γ0,

[[cnh,ε′ ]]e → ξ1 and {∇cnh,ε′ · ne}e → ξ2, (87)

for ε′ → 0. Moreover, from (26), the second bound in (86) and an interpolation inequality (see [2]) it follows that
[[cnh,ε]]e ∈ H1/2(e) ↪→ L2(e) and

||γ0c
n
h,ε′ ||1/2,e ≤ C||γ0c

n
h,ε||1/2e |γ0c

n
h,ε|

1/2
1,e ≤ Ch

−1/2
e . (88)

Hence, from (69), the linearity of the trace operator γ0 : H1(K)→ H1/2(e) and the bound (88), we get ξ1 ≡ [[cnh]]e.
Let’s now introduce the lifting operator (see [5]) l : L2(Γ0)→ S(Ω, Th), defined by∫

Ω

l(q)τdx = −
∫

Γ0

q[[τ ]]ds ∀τ ∈ S(Ω, Th). (89)

From an inverse inequality (see [5]) and the second bound in (86) it is obtained that

||l({∇cnh,ε · ne}e)||K ≤ Ch−1/2
e ||{∇cnh,ε · ne}e||e ≤ Ch−1

e (90)

From (69), the linearity of the lifting operator and bound (90) we have that there exists a subsequence {cnh,ε′} such
that

l({∇cnh,ε′ · ne}e)→ ({∇cnh · ne}e), (91)

for ε′ → 0. Applying the lifting operator defined in (89) to both sides of the second limit in (87) and using (91) we
get

l({∇cnh,ε′ · ne}e)→ l(ξ2) ≡ l({∇cnh · ne}e),
for ε′ → 0. Hence, it follows that ξ2 ≡ {∇cnh · ne}e. For the case d = 1, from (75) and (29) we have that

[[cnh,ε(xn̄)]] ≤ Ch1/2
n̄−1,n̄, {c

′n
h,ε(xn̄)} ≤ Ch−1/2

n̄−1,n̄ (92)

Hence from the Bolzano-Weierstrass theorem there exist two elements η1, η2 ∈ R and a subsequence {cnh,ε′} such that

[[cnh,ε′(xn̄)]]→ η1 and {c
′n
h,ε′(xn̄)} → η2 for ε′ → 0, n̄ = 1, . . . , N̄ − 1. (93)

From (75), the Sobolev embedding H1((In)) ⊂⊂ C0([In]), and using a lifting operator technique analogous to that

used for the case d > 1, it follows that η1 ≡ [[cnh(xn̄)]], η2 ≡ {c
′n
h (xn̄)}. Note that the limit point cnh ∈ Kh(cn−1

h ).

The convergence properties (73), (74) can be obtained analogously to (70), (71), on noting that 0 < b(cn−1
h ) < 1

on K∗m(cn−1
h ) and using (27) and (29) on K∗m(cn−1

h ), using moreover (75) and (72). �

Lemma 2.4 The limit point cnh introduced in Lemma 2.3 satisfies the property that ||cnh||0,∞ < 1.

Proof. Since ψ1,ε(c
n
h,ε) ≥ 0, from the Fatou’s Lemma and (75) it follows that∫

Ω

lim inf
ε→0

ψ1,ε(c
n
h,ε) ≤ lim inf

ε→0

∫
Ω

ψ1,ε(c
n
h,ε) ≤ C. (94)

From the convergence property (69) and from (58) it follows that

lim inf
ε→0

ψ1,ε(c
n
h,ε) =

{
ψ1(cnh) if cnh < 1,

∞ elsewhere.
(95)

Hence, from (95) and (94) it follows that the set {x | cnh(x, t) = 1} has zero measure. �
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2.2 Well posedness of Problem P h

We are now in a position to show the well posedness of problem (35).

Theorem 2.1 Let Ω ⊂ Rd, and let c0h ∈ K(Ω, Th), with c0h < 1 and |||c0h||| ≤ C. Then, for all ∆t > 0, there
exists a solution (cnh, w

n
h) to problem (35).

Moreover, the solution {cnh}Nn=1 is unique, while wnh is unique on Km(cn−1
h ), for m = 1, . . . ,M and

n = 1, . . . , N .

Proof. Let’s take the limit for ε → 0 in (64). Recalling the definition (36), on noting the convexity of ψ1,ε(·), it
can be introduced a regularized convex energy functional

F1,ε[c
n
h,ε] =

γ

2
BTh(cnh,ε, c

n
h,ε) +

∫
Ω

{ψ1,ε(c
n
h,ε) + χR+(cnh,ε)}dx, (96)

and rewrite system (64) as 
(
cnh,ε − cn−1

h

∆t
, χ

)
+BTh(cn−1

h ;wnh,ε, χ) = 0,

(wnh,ε − ψ̂′2(cn−1
h ), φ− cnh,ε) + F1,ε[c

n
h,ε] ≤ F1,ε[φ],

(97)

for each χ, φ ∈ S(Ω; Th). We may now pass to the limit in (97), considering the convergence properties introduced in
lemma 2.3 and the uniform boundedness of cnh,ε. For any (χ, φ) ∈ S(Ω, Th)× S(Ω, Th) ⊂ H2(Ω, Th)×H2(Ω, Th), we
have

lim
ε→0

(
cnh,ε − cn−1

h

∆t
, χ

)
=

(
cnh − cn−1

h

∆t
, χ

)
;

lim
ε→0

BTh(cn−1
h ;wnh,ε, χ) = BTh(cn−1

h ;wnh , χ);

lim
ε→0

(wnh,ε − ψ̂′2(cn−1
h ), φ− cnh,ε) = (wnh − ψ′2(cn−1

h ), φ− cnh).

Since ψ1,ε is uniformly bounded and cnh,ε ≥ 0, since moreover ψ1,ε(·)→ ψ1(·) uniformly for ε→ 0, from the convergence
properties introduced in lemma 2.3, the dominated convergence theorem and the semi continuity property of the
indicator function χR+(·), it can be deduced that

lim
ε→0

F1,ε[c
n
h,ε] ≥ F1[cnh];

lim
ε→0

F1,ε[φ] = F1[φ].

Hence, the limit point (cnh, w
n
h) satisfies

(
cnh − cn−1

h

∆t
, χ

)
+BTh(cn−1

h ;wnh , χ) = 0,

(wnh − ψ′2(cn−1
h ), φ− cnh) + F1[cnh] ≤ F1[φ]

(98)

Finally, since ||cnh||0,∞ < 1 (see Lemma 2.4) and ψ1(cnh) is convex and Lipschitzian for cnh < 1, system (98) is equivalent

to system (35) (see (37)), hence the limit point (cnh, w
n
h) is the unique solution of Problem Ph. �

We now proceed to obtain the energy estimates.

Lemma 2.5 (Energy estimates) Let (cnh, w
n
h), n = 1, . . . , N be the solution of system (35). Then, the

following stability bounds hold:

max
n=1→N

|||cnh|||2 + (∆t)2
N∑
n=1

|||
cnh − c

n−1
h

∆t
|||2 + ∆t

N∑
n=1

BTh(cn−1
h ;wnh , w

n
h) (99)

+ ∆t

N∑
n=1

[bn−1
max ]−1|||GhTh

[cnh − cn−1
h

∆t

]
|||2 ≤ C(|||c0h|||2),

where bmax ≥ maxn=1→N ||b(cn−1
h )||0,∞.
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Proof. Taking the limit for ε→ 0 in (75) we get

γ

2
|||cnh|||2B +

γ

2
|||cnh − cn−1

h |||2B + (ψ(cnh), 1) + ∆tBTh(cn−1
h ;wnh , w

n
h) ≤ (ψ(cn−1

h ), 1)+ (100)

γ

2
|||cn−1

h |||2B .

Summing from n = 1 → m, for m = 1 → N , noting that 0 ≤ c0h < 1 and ψ(c0h) ≤ C, that |||c0h|||B ≤ C, that
||cnh||0,∞ < 1, using a Poincaré inequality (on noting that −

∫
cnh = −

∫
c0h) and remark 1.1, we get the first three bounds

in (99).

Choosing now χ = GhTh
[ cnh−cn−1

h
∆t

]
in the first equation of system (35), using (33), remark 1.1, lemma 2.1, (27), the

facts that b(cn−1
h > 0 and ||b(cn−1

h )||0,∞ < 1, Cauchy-Schwarz and Young inequalities, we get

C0

∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2≤ ∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2
B

=

(
cnh − cn−1

h

∆t
,GhTh

[cnh − cn−1
h

∆t

])
=

−BTh
(
cn−1
h ;wnh ,GhTh

[cnh − cn−1
h

∆t

])
≤
∑
K∈Th

||b(cn−1
h )∇wnh ||K

∣∣∣∣∣∣∣∣∇GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣
K

+ C
∑
K∈Th

∑
e∈Γ0

||b(cn−1
h )∇wnh ||K

(
1

he

∣∣∣∣∣∣∣∣[[GhTh[cnh − cn−1
h

∆t

]]]∣∣∣∣∣∣∣∣2
e

)1/2

+D
∑
K∈Th

∑
e∈Γ0

∣∣∣∣∣∣∣∣∇GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣
K

(
1

he
||[[wnh ]]||2e

)1/2

+

∑
e∈Γ0

σ

he
||[[wnh ]]||e

∣∣∣∣∣∣∣∣[[GhTh[cnh − cn−1
h

∆t

]]]∣∣∣∣∣∣∣∣
e

≤ Cbn−1
maxBTh(cn−1

h ;wnh , w
n
h)+

C0

2

∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2.
Summing from n = 1→ N and using the third bound in (99) we get the last bound in (99). �

Remark 2.4 Note from (100) that the function γ
2 |||c

n
h|||2B + (ψ(cnh), 1) is a decreasing (Lyapunov) function

for the discrete solutions. Hence the finite element and time discretization (35) has the gradient stability
property in the sense of Eyre (see [11]).

3 Convergence analysis

In this section we present the convergence analysis for the discrete scheme (35). The analysis will be restricted
to the d = 1 case (see Remark 3.1).

To the sequence of discrete solutions cnh of Problem Ph it can be associated the following time continuous
approximation:

Ch(t) :=
t− tn−1

∆t
cnh +

tn − t
∆t

cn−1
h , (101)

for t ∈ [tn−1, tn], n = 1, · · · , N , which is a family of linear time interpolants that depend on the parameters
h and ∆t. Let’s also define the piecewise constant-in-time functions

C+
h (t) := cnh, C−h (t) := cn−1

h , (102)

W+
h (t) := wnh , W−h (t) := wn−1

h ,

for t ∈ (tn−1, tn], n = 1, · · · , N .
By multiplying system (35) by a C∞0 ([0, T ]) function, and integrating in time from 0 to T , it is obtained
that (Ch,Wh) satisfies the following weak formulation:
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Find {Ch,Wh} ∈ L2(0, T ;K(Ω, Th)) × L2(0, T ;S(Ω, Th)) such that, for all (χ, φ) ∈ L2(0, T ;S(Ω, Th)) ×
L2(0, T ;K(Ω, Th)),

∫ T

0

[(
∂Ch
∂t

, χ

)
+BTh(C−h ;W+

h , χ)

]
dt = 0,∫ T

0

[γBTh(C+
h , φ− C

+
h ) + (ψ′1(C+

h ), φ− C+
h )]dt ≥

∫ T

0

(W+
h − ψ

′
2(C−h ), φ− C+

h ),

(103)

with Ch(0) = c0h.
In order to pass to the limit in (103), for h,∆t→ 0, and identify the system satisfied by the limit points, we
need the following results.

Lemma 3.1 Let d = 1 and c0h|In = πhIn(c0), with 0 ≤ c0 < 1 and |||c0||| ≤ C. Then there exist a subsequence
of continuous and piecewise constant in time interpolants, with Ch(0)→ c0 strongly in H1([0, L]) as h→ 0,

and functions c ∈ L∞(0, T ;H1([0, L]))∩H1(0, T ; (H1([0, L]))′)∩C
1
2 ,

1
8

x,t ([0, L]T ) and w ∈ L2
loc(0 < c < 1) with

∂w
∂x ∈ L

2
loc(0 < c < 1), such that, for (h,∆t)→ 0,

Ch, C
±
h ⇀ c weakly in L2(0, T ;H1([0, L], Th)), (104)

Ch, C
±
h → c uniformly on

∏
In∈Th

Īn × [0, T ], (105)

W+
h ⇀ w,

∂W+
h

∂x
⇀

∂w

∂x
weakly in L2

loc(0 < c < 1)Th , (106)

where {0 < q < 1}Th := {(x, t) ∈
∏
In∈Th Īn × [0, T ] : 0 < q(x, t) < 1}.

Proof. From the definition (101) we have

|||Ch|||2 = |||cn−1
h + [cnh − cn−1

h ]
t− tn−1

∆t
|||2 ≤ 2|||cn−1

h |||2 + 2
(t− tn−1)2

(∆t)2
|||cnh − cn−1

h |||2.

Hence, using the first bound in (99) and the parallelogram identity, we get

|||Ch|||2 ≤ C, |||C±h |||
2 ≤ C. (107)

From (23) it follows that Ch(0) → c0 strongly in H1([0, L]) as h → 0. This implies that −
∫
Ch(0) = −

∫
Ch = −

∫
C±h ∈

(0, 1), and hence, by (107) and (30), that

||Ch||2L∞(0,T ;H1([0,L],Th)) ≤ C, (108)

and
[[Ch(xn̄)]]2 ≤ Ch2, for n̄ = 1, . . . , N̄ . (109)

Furthermore, using (99) and the definition (101) it follows that∫ T

0

|||∂tCh|||2dt =

N∑
n=1

∫ tn

tn−1

|||
cnh − cn−1

h

∆t
|||2dt ≤

N∑
n=1

∆t|||
cnh − cn−1

h

∆t
|||2 ≤ C(∆t)−1,

∫ T

0

BTh(cn−1
h ;wnh , w

n
h)dt =

N∑
n=1

∫ tn

tn−1

BTh(cn−1
h ;wnh , w

n
h)dt ≤

N∑
n=1

∆tBTh(cn−1
h ;wnh , w

n
h)dt ≤ C,

∫ T

0

∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2dt =

N∑
n=1

∫ tn

tn−1

∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2dt ≤ N∑
n=1

∆t

∣∣∣∣∣∣∣∣∣∣∣∣GhTh[cnh − cn−1
h

∆t

]∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ Cbmax ≤ C. (110)
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Hence, we have, using (108), (110) and lemma 2.1

||Ch||2L∞(0,T ;H1([0,L],Th)) + ∆t||Ch||2H1(0,T ;H1([0,L],Th))+ (111)∣∣∣∣∣∣∣∣[b(C−h )]1/2
∂W+

h

∂x

∣∣∣∣∣∣∣∣2
L2(0,T ;L2((0,L),Th))

≤ C,

and
||[[W+

h (xn̄)]]||2L2((0,T )) ≤ Ch
2, for n̄ = 1, . . . , N̄ . (112)

In the next step we show that the continuous interpolants Ch are uniformly Hölder continuous on
∏
In̄∈Th

Īn̄× [0, T ].
The first bound in (111) gives

|Ch(x2, t)− Ch(x1, t)| =
∣∣∣∣∫ x2

x1

∂Ch
∂x

(s, t)ds

∣∣∣∣ ≤ |x2 − x1|1/2
(∫ x2

x1

∣∣∣∣∂Ch∂x
(s, t)

∣∣∣∣2dx)1/2

≤ |x2 − x1|1/2
∣∣∣∣∣∣∣∣∂Ch∂x

∣∣∣∣∣∣∣∣
L∞(0,T ;L2(In̄))

≤ Ch|x2 − x1|1/2 ∀x1, x2 ∈ Īn̄, ∀t ≥ 0,

for each n̄ = 1, . . . , N̄ . In addition it follows from (8), the definition (33), remark 1.1, the Cauchy-Schwarz inequality,
(107) and the third bound in (110) that

||Ch(·, t2)− Ch(·, t1)||0,∞,In̄ ≤ Ch||Ch(·, t2)− Ch(·, t1)||1/2||Ch(·, t2)− Ch(·, t1)||1/21,Th

≤ ChBTh(GhTh(Ch(·, t2)− Ch(·, t1)), (Ch(·, t2)− Ch(·, t1)))1/4|||Ch(·, t2)− Ch(·, t1)|||1/2

≤ Ch|||GhTh(Ch(·, t2)− Ch(·, t1))|||1/4|||Ch(·, t2)− Ch(·, t1)|||3/4

≤ Ch
∣∣∣∣∣∣∣∣∣∣∣∣∫ t2

t1

GhTh
∂Ch
∂t

(·, t)dt
∣∣∣∣∣∣∣∣∣∣∣∣1/4 ≤ Ch(t2 − t1)1/8

(∫ t2

t1

∣∣∣∣∣∣∣∣∣∣∣∣GhTh ∂Ch∂t (·, t)
∣∣∣∣∣∣∣∣∣∣∣∣2dt)1/8

≤ Ch(t2 − t1)1/8 ∀t2 ≥ t1 ≥ 0, (113)

for each n̄ = 1, . . . , N̄ . From the first bound in (111) and the Sobolev embedding theorem (8) with r = ∞,m = 1,
we get that the norm of Ch is uniformly bounded on

∏
In∈Th

Īn × [0, T ] independently on h,∆t and T ; moreover,

from the previous bounds we have that its C
1
2
, 1
8

x,t (
∏
In∈Th

Īn × [0, T ]) norm is uniformly bounded independently on

h,∆t and T . Hence, every sequence Ch is uniformly bounded and equicontinuous on
∏
In∈Th

Īn × [0, T ], and by the
Ascoli-Arzelá theorem and (109) there exists a subsequence of Ch such that (105) holds, with c ≥ 0, ||c||0,∞ < 1 and

c ∈ C
1
2
, 1
8

x,t ([0, L]T ). Moreover, the first bound in (111) and (109) implies, by means of the Banach-Alaoglu theorem
and the fact that H1([0, L]) is the subset of H1([0, L], Th) characterized by interelement continuity , that this same
subsequence satisfies (104).
From the fact that

Ch − C±h = (t− t±n )
∂Ch
∂t

, t ∈ (tn−1, tn), n ≥ 1,

we deduce, using the second bound in (111) and taking t1 = t±n in (113), that

||Ch − C±h ||
2
L∞(0,T ;H1([0,L],Th)) ≤ (∆t)2||∂Ch

∂t
||2L∞(0,T ;H1([0,L],Th)) ≤ C∆t;

||Ch − C±h ||L∞(Īn×[0,T ]) ≤ C(∆t)1/8.

Hence, the same convergence results (105) and (104) hold for the piecewise constant interpolants C±h .
We now show the compactness of {W+

h }h on compact subsets of {0 < c < 1}. For any δ > 0, let’s set

D+
δ,Th := {(x, t) ∈

∏
In∈Th

Īn × [0, T ] : δ < c(x, t) < 1},

D+
δ,Th(t) := {x ∈

∏
In∈Th

Īn : δ < c(x, t) < 1}.

20



From the uniform convergence (105) it follows that, for a fixed δ > 0, there exists a h(δ) ∈ R+ such that, for all
h ≤ h(δ),

0 ≤ C±h (x, t) < min{2δ, 1} ∀(x, t) 6∈ D+
δ,Th , (114)

1

8
δ ≤ C±h (x, t) < 1 ∀(x, t) ∈ D+

δ
4
,Th
.

From the third bound in (111) and from (114) we have

bmin(
δ

8
)

(∫
D+
δ
4
,Th

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt) ≤ ∫
D+
δ
4
,Th

b(C−h )

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt ≤ C, (115)

where bmin(δ) := minδ≤z<1 b(z).
From (114) we have that for all h ≤ h(δ) and for a.e. t ∈ (0, T )

φ(·, t) ≡ C+
h (·, t)± 1

8

ηh(·, t)
||ηh(·, t)||∞

∈ K(Ω, Th), ∀ηh ∈ L2(0, T ;S(Ω, Th)),

with supp(ηh) ⊂⊂ D+
δ
4
,Th

.

Choosing such φ in the second equation of system (103) yields, ∀h < h(δ), that∫ T

0

[
γ BTh(C+

h , η
h) + (ψ′1(C+

h ) + ψ′2(C−h ), ηh)

]
dt =

∫ T

0

(W+
h , η

h)dt. (116)

We introduce now a cut-off function θδ ∈ C∞0 (D+
δ
2
,Th

) such that

θδ(·, t) ≡ 1 on D+
δ,Th(t), 0 ≤ θδ(·, t) ≤ 1. (117)

Noting that, since c ∈ C
1
2
, 1
8

x,t ([0, L]T ), it follows that Cδ ≤ |x2 − x1|1/2 for x1, x2 ∈ D+
δ
2
,Th
\ D+

δ,Th , we can choose a

θδ(·, t) such that
|∇θδ(·, t)| ≤ Cδ−2. (118)

Since θ2
δW

+
h ∈ L

2(Ω), and there exists an h1(δ) ≤ h(δ) such that supp(ph(θ2
δW

+
h )) ⊂ supp(θ2

δW
+
h ) ⊂⊂ D+

δ
4
,Th

, for all

h ≤ h1(δ), we can choose ηh = ph(θ2
δW

+
h ) in (116). Using the definition (17), the fact that ||C±h ||0,∞ < 1 and that

ψi(·) ∈ C1([0, 1)), i = 1, 2, the regularity of θδ, remark 1.1, the estimates (107), (112) and the following inequality,
obtained from (21) and (24),

|||(I − ph)η||| ≤ C|η|1,Th ∀η ∈ H1([0, L], Th), (119)

we get ∫ T

0

(W+
h , p

h(θ2
δW

+
h ))dt =

∫
[0,L]T

θ2
δ(W

+
h )2dxdt∫ T

0

[
γ BTh

(
C+
h , p

h(θ2
δW

+
h )
)

+ (ψ′1(C+
h ) + ψ′2(C−h ), ph(θ2

δW
+
h ))

]
dt

≤ C
∫ T

0

|||C+
h ||| |θ

2
δW

+
h |1,Th + C

∫ T

0

|||C+
h |||+ E||θδW+

h ||L2([0,L]T )

≤ C(1 + δ−2)||θδW+
h ||L2([0,L]T ) + C

∫
D+
δ
4
,Th

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt.
Now, using a Young inequality and bound (115), it follows that∫

[0,L]T

θ2
δ(W

+
h )2dxdt ≤ C(δ)−1. (120)

Therefore, combining (120) and (115) and recalling the definition of θδ(·, t), it follows that, for all δ > 0,

||W+
h ||L2(0,T ;H1(D+

δ,Th
(t)))
≤ C(δ−1) ∀h ≤ h1(δ). (121)

Applying the Banach Alaoglu theorem on compact subsets of the set {0 < c < 1}Th and using (112) we get finally

(106). �
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Remark 3.1 In the case d = 1 the uniform convergence (105), together with the convergence result (106),
makes it possible to calculate the h,∆t → 0 limit of the degenerate elliptic term in the first equation of
system (103) on the set {0 < c < 1}Th . To the best of our knowledge, in the case d > 1 there does not
exist in literature a convergence result which shows the convergence of the discrete solution of (103) to the
continuous solution of a weak formulation of (1).

We can now obtain the limit equations of system (103) as (h,∆t)→ (0, 0). Indeed, setting
∫

0<c<1
( , )dt :=∫ T

0
( , )D+

0 (t)dt, we have

Theorem 3.1 The limit point (c, w) of lemma 3.1 satisfies the weak formulation

∫ T

0

〈
∂c

∂t
, η

〉
dt+

∫
0<c<1

(
b(c)

∂w

∂x
,
∂η

∂x

)
dt = 0, ∀η ∈ L2(0, T ;H1([0, L])),∫

0<c<1

γ

(
∂c

∂x
,
∂θ

∂x

)
dt+

∫
0<c<1

(ψ′(c), θ)dt−
∫

0<c<1

(w, θ)dt = 0,

∀θ ∈ L2(0, T ;H1([0, L])),

(122)

with c(·, 0) = c0(·), and with supp(θ) ⊂ {0 < c < 1}.

Proof. Let’s choose η ∈ H1(0, T ;H1([0, L])) and θ ∈ L2(0, T ;H1([0, L])), with supp(θ) ⊂ D+
δ,Th . Choosing

χ|In̄ = πhIn̄η, φ|In̄ = πhIn̄θ in (103), considering (116), (11), (12) and using the fact that [[η(xn̄)]] = [[θ(xn̄)]] =
[[πh(η(xn̄))]] = [[πh(θ(xn̄))]] = 0, for n̄ = 1, . . . , N̄ − 1, where πh is the global continuous interpolant, we rewrite
(103) as 

∫ T

0

(
∂Ch
∂t

, η

)
dt+

N̄−1∑
n̄=0

∫ T

0

(
b(C−h )

∂W+
h

∂x
,
∂η

∂x

)
In̄

dt

−
N̄−1∑
n̄=1

∫ T

0

(
[[W+

h (xn̄)]]

{
b(C−h (xn̄))

∂η

∂x
(xn̄)

})
dt =

N∑
n=1

∫ tn

tn−1

(
∂Ch
∂t

, (η − πhη)

)
dt

+

N∑
n=1

N̄−1∑
n̄=0

∫ tn

tn−1

(
b(C−h )

∂W+
h

∂x
,
∂

∂x
(η − πhIn̄η)

)
In̄

dt

−
N∑
n=1

N̄−1∑
n̄=1

∫ tn

tn−1

(
[[W+

h (xn̄)]]

{
b(C−h (xn̄))

∂

∂x
(η − πhIn̄η)(xn̄)

})
dt

N̄−1∑
n̄=0

∫ T

0

γ

(
∂C+

h

∂x
,
∂θ

∂x

)
In̄

dt− γ
N̄−1∑
n̄=1

∫ T

0

(
[[C+

h (xn̄)]]

{
∂θ

∂x
(xn̄)

})
dt

+

∫ T

0

([ψ′1(C+
h ) + ψ′2(C−h )], θ)dt−

∫ T

0

(W+
h , θ)dt =

N∑
n=1

N̄−1∑
n̄=0

∫ tn

tn−1

γ

(
∂C+

h

∂x
,
∂

∂x
(θ − πhθ)

)
In̄

dt

−γ
N∑
n=1

N̄−1∑
n̄=1

∫ tn

tn−1

(
[[C+

h (xn̄)]]

{
∂

∂x
(θ − πhIn̄θ)(xn̄)

})
dt

+

N∑
n=1

∫ tn

tn−1

(ψ′1(C+
h ) + ψ′2(C−h ), θ − πhθ)dt−

N∑
n=1

∫ tn

tn−1

(W+
h , θ − π

hθ)dt

(123)

Let’s start from considering the first equation of system (123). The left hand side converges to the limit, for h,∆t→ 0,

(c(·, T ), η(·, T ))− (c(·, 0), η(·, 0))−
∫ T

0

(c,
∂η

∂t
)dt+

∫
0<c<1

(
b(c)

∂w

∂x
,
∂η

∂x

)
dt (124)

For the first term we have∫ T

0

(
∂Ch
∂t

, η

)
dt = −

∫ T

0

(
Ch,

∂η

∂t

)
dt+ (Ch(·, T ), η(·, T ))− (Ch(·, 0), η(·, 0)). (125)
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From the uniform convergence (105) and the regularity of η we deduce the first limit term in (124). For the second

term, we write the domain of integration as
∏
In̄∈Th

Īn̄ × [0, T ] =

(∏
In̄∈Th

Īn̄ × [0, T ] \D+
δ,Th

)
∪D+

δ,Th . On noting

the third bound in (111) and (114), we get∣∣∣∣ ∑
In̄∈Th

∫
∏
In̄∈Th

Īn̄×[0,T ]\D+
δ,Th

(
b(C−h )

∂W+
h

∂x

∂η

∂x

)
dxdt

∣∣∣∣ ≤ (126)

||(b(C−h ))1/2||
L∞(

∏
In∈Th

Īn̄×[0,T ]\D+
δ,Th

)

∣∣∣∣∣∣∣∣(b(C−h ))1/2 ∂W
+
h

∂x

∣∣∣∣∣∣∣∣
L2(0,T ;L2((0,L),Th))

||η||L2(0,T ;H1([0,L],Th)) ≤ C(bmax(2δ))1/2||η||L2(0,T ;H1([0,L],Th)),

where bmax(2δ) = max0≤z≤2δ b(z), for all h ≤ h(δ). Next, we write∑
In̄∈Th

∫
D+
δ,Th

(
b(C−h )

∂W+
h

∂x

∂η

∂x

)
dxdt = (127)

∑
In̄∈Th

∫
D+
δ,Th

(
b(c)

∂W+
h

∂x

∂η

∂x

)
dxdt+

∑
In̄∈Th

∫
D+
δ,Th

(
[b(C−h )− b(c)]

∂W+
h

∂x

∂η

∂x

)
dxdt

Due to the uniform convergence (105), the Lipshitz continuity of b(·) and the bound (115) it follows, concerning the
second term on the right hand side of equation (127), that∣∣∣∣ ∑

In̄∈Th

∫
D+
δ,Th

(
[b(C−h )− b(c)]

∂W+
h

∂x

∂η

∂x

)
dxdt

∣∣∣∣ ≤
||b(C−h )− b(c)||L∞([0,L]T )

∑
In̄∈Th

(∫
D+
δ,Th

∣∣∣∣∂W+
h

∂x

∣∣∣∣2dxdt)||η||L2(0,T ;H1([0,L],Th)) (128)

≤ C[bmin(
δ

8
)]−1||b(C−h )− b(c)||L∞([0,L]T )||η||L2(0,T ;H1([0,L],Th)) → 0 for h,∆t→ 0. (129)

Hence, from (106), (127) and (128), we get∑
In̄∈Th

∫
D+
δ,Th

(
b(C−h )

∂W+
h

∂x

∂η

∂x

)
dxdt→

∫
0<c<1

(
b(c)

∂w

∂x

∂η

∂x

)
dxdt for h,∆t→ 0. (130)

For the third term, let’s consider for a moment η ∈ L2(0, T ;H2([0, L]))∩H1(0, T ;L2((0, L))) ↪→ C([0, T ], H1([0, L])).
Using (112), (25) and the Cauchy-Schwarz inequality we get∣∣∣∣N̄−1∑

n̄=1

∫ T

0

(
[[W+

h (xn̄)]]

{
b(C−h (xn̄))

∂η

∂x
(xn̄)

})
dt

∣∣∣∣ ≤ (131)

Ch

N̄−1∑
n̄=0

bmax,±(C−h (xn̄))h
−1/2
n̄−1,n̄

∫ T

0

(
|η|21,In̄ + h2

n̄−1,n̄|η|22,In̄
)1/2

≤ Ch1/2 → 0 for h→ 0,

where bmax,±(C−h (xn̄)) := max[b(C−h (x−n̄ )), b(C−h (x+
n̄ ))].

Note. It should be sufficient to consider η ∈ L2(0, T ;H2([0, L], Th))∩H1(0, T ;L2((0, L))) or η ∈ L2(0, T ;H3/2([0, L], Th))∩
H1(0, T ;L2((0, L))). Moreover, from (131), it should be sufficient to consider |η|2,In̄ ∼ h−1.

Considering (126), (130) and (131) for all δ > 0, on noting that bmax(2δ) → 0 as δ → 0, we get (124) for
η ∈ L2(0, T ;H2([0, L])) ∩ H1(0, T ;L2((0, L))) ↪→ C([0, T ], H1([0, L])). Note that (124) for η ∈ H1(0, T ;H1([0, L]))
can be recovered by density arguments.

We now show that the terms in the right hand side of the first equation of system (123) converge to zero for
(h,∆t)→ 0. Let’s denote these terms by the notation I1, · · · , I3.
Taking an integration by parts in time, considering (105), (22), the regularity of η and the Cauchy-Schwarz inequality
we get

|I1| ≤ Ch
(∫ T

0

||Ch||2dt
)1/2( N∑

n=1

∫ tn

tn−1

||∂η
∂t
||21dt

)1/2

+ Ch||Ch(·, T )|| ||η(·, T )||1 + Ch||Ch(·, 0)|| ||η(·, 0)||1 ≤ Ch||η||H1(0,T ;H1(Ω)) → 0 (132)
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Using the third bound in (111), (23) and the Cauchy-Schwarz inequality we can write

|I2| ≤ (133)

||(b(C−h )1/2)||L∞([0,L]T )||(b(C−h ))1/2 ∂W
+
h

∂x
||L2(0,T ;L2((0,L),Th)

( N∑
n=1

N̄−1∑
n̄=0

∫ tn

tn−1

|| ∂
∂x

(η − πhIn̄η)||2In̄dt
)1/2

≤ C||η − πhη||L2(0,T ;H1([0,L])) → 0.

Restricting to η ∈ L2(0, T ;H2([0, L]))∩H1(0, T ;L2((0, L))), using (112), (25), (22) and the Cauchy-Schwarz inequality
we get

|I3| ≤ Ch
N̄−1∑
n̄=0

bmax,±(C−h (xn̄))h
−1/2
n̄−1,n̄

∫ T

0

(
h2
n̄−1,n̄|η|22,In̄

)1/2

→ 0. (134)

Hence, the first equation of system (123) converges to the limit, for h,∆t→ 0,

(c(·, T ), η(·, T ))− (c(·, 0), η(·, 0))−
∫ T

0

(c,
∂η

∂t
)dt+

∫
0<c<1

(
b(c)

∂w

∂x
,
∂η

∂x

)
dt = 0. (135)

Since, from lemma 3.1, b(c) ∂w
∂x
∈ L2(0 < c < 1)Th , from (131) we deduce that c ∈ H1(0, T ; (H1([0, L]))′), and the

first equation in (122) is valid. Moreover, due to the uniform convergence (105), c(·, 0) = c0(·).
We consider now the second equation in (123). The left hand side converges to the limit, for h,∆t→ 0,∫

0<c<1

γ

(
∂c

∂x
,
∂θ

∂x

)
dt+

∫
0<c<1

(ψ′(c), θ)dt−
∫

0<c<1

(w, θ)dt,

∀θ ∈ L2(0, T ;H1(Ω)) with supp(θ) ⊂ D+
0 . (136)

The first and the fourth terms of the second equation in (123) converges to the first and the third terms of (136) as
a direct consequence of the convergence results (104) and (106). Restricting to θ ∈ L2(0, T ;H2([0, L])), using (109),
(25) and the Cauchy-Schwarz inequality we get∣∣∣∣N̄−1∑

n̄=1

∫ T

0

(
[[C+

h (xn̄)]]

{
∂θ

∂x
(xn̄)

})
dt

∣∣∣∣ ≤ (137)

Ch

N̄−1∑
n̄=0

h
−1/2
n̄−1,n̄

∫ T

0

(
|θ|21,In̄ + h2

n̄−1,n̄|θ|22,In̄
)1/2

≤ Ch1/2 → 0 for h→ 0.

From the facts that ψ1(·) ∈ C1([0, 1)), ψ2(·) ∈ C1([0, 1]), that C±h ≥ 0, ||C±h ||0,∞ < 1 and from the uniform
convergence (105) we have that∣∣∣∣∫ T

0

([ψ′1(C+
h ) + ψ′2(C−h )− ψ′1(c)− ψ′2(c)], θ)dt

∣∣∣∣ ≤
C||ψ′1(C+

h )− ψ′1(c)||L∞([0,L]T )||θ||L2([0,L]T ) + C||ψ′2(C−h )− ψ′2(c)||L∞([0,L]T )||θ||L2([0,L]T ) → 0.

Hence the third term on the left hand side of (123) converges to the second term in (136).
We now show that the terms in the right hand side converge to zero for (h, τ) → 0. Let’s denote these terms
by the notation I1, · · · , I4. Using the first bound in (111), (23) and the Cauchy-Schwarz inequality it can be
deduced, similarly to (133), that |I1| → 0. Restricting to θ ∈ L2(0, T ;H2([0, L])), using (109), (25), (22) and the
Cauchy-Schwarz inequality we deduce, similarly to (134), that |I2| → 0. Using the facts that ψ1(·) ∈ C1([0, 1)),
ψ2(·) ∈ C1([0, 1]), that C±h ≥ 0, ||C±h ||0,∞ < 1, the first bound in (111), the bound (121), (22) and the Cauchy-
Schwarz inequality, on noting that supp(θ) ⊂ D+

δ we deduce that |I3| → 0 and |I4| → 0.

Collecting (135) and (136) we obtain (122). �

4 Algorithms for solving the variational inequality

In this section we propose different algorithms for solving the variational inequality at each time level in
Problem Ph.

24



4.1 Algorithm 1

The first algorithm proposed is based on solving directly the KKT conditions of the functional (68) without
regularization, (i.e. with ε = 0). A null space method is used, i.e. the KKT system is reduced onto the null
space of the operator associated to the equality constraints imposed on the nodes of passive elements and
on the nodes on boundaries between active and passive elements.
Let’s introduce the following reduced matrices:

M̄ij :=
∑
K

(φKi , φ
K
j ); Āij := BTh(φKi , φ

K
j ); Ācn−1

h ,ij := BTh(cn−1
h ;φKi , φ

K
j ); (138)

for j = 1, . . . , d + 1,K ∈ K+(cn−1
h ), with xKj 6∈ e ⊂ ∂K

′
,K

′ ∈ K0(cn−1
h ). These are the matrices of the

algebraic formulation of system (35) reduced on the domain Ω \ K0(cn−1
h ), with homogeneous Dirichlet

boundary conditions on the internal boundaries ∂K,K ∈ K0(cn−1
h ). Indicating with v̄h the vector of com-

ponents vh(xKj ), for a generic vh ∈ S(Ω, Th), we can express wnh =
∑
j,K w

n
h(xKj )φKj , cnh =

∑
j,K c

n
h(xKj )φKj ,

cn−1
h =

∑
j,K c

n−1
h (xKj )φKj , for j = 1, . . . , d + 1,K ∈ K+(cn−1

h ), with xKj 6∈ e ⊂ ∂K
′
,K

′ ∈ K0(cn−1
h ), in the

first equation of (35), and obtain, on noting that Ācn−1
h

is invertible, that

w̄nh = − 1

∆t
Ā−1

cn−1
h

M̄(c̄nh − c̄n−1
h ).

Substituting this relation in the second inequality of (35), we get

BTh(cnh, φ− cnh) +

(
ψ′1(cnh) +

1

∆t

∑
j,K

[
Ā−1

cn−1
h

M̄ c̄nhφ
K
j

]
+ ψ′2(cn−1

h )−

1

∆t

∑
j,K

[
Ā−1

cn−1
h

M̄ c̄n−1
h φKj

]
, φ− cnh

)
≥ 0. (139)

Let’s now introduce the symmetric and positive definite matrix

Q := Ā+
1

∆t
M̄Ā−1

cn−1
h

M̄.

Inequality (139) is equivalent to the following complementarity problem: Qc̄nh + M̄ψ′1(c̄nh) + M̄

(
ψ′2(c̄n−1

h )− 1
∆t Ā

−1

cn−1
h

M̄ c̄n−1
h

)
− λ̄ = 0,

0 ≤ λ̄ ⊥ c̄nh ≥ 0,
(140)

where λ̄ is the vector of Lagrange multipliers of the inequality contstraint c̄nh ≥ 0. System (140) can be
solved by a preconditioned accelerated gradient method.

We finally derive the following algorithm:

Require: α0 > 0, cn−1
h , wn−1

h , J ′ := {j ∈ JK , K ∈ K0(cn−1
h )∧

(
j ∈ JK , K ∈ Km(cn−1

h ), m = 1, . . . ,M, xj ∈
e ⊂ ∂K ′, K ′ ∈ K0(cn−1

h )
)
};

Step 1
for k ≥ 0 do
Initialization

cn,0h = cn−1
h , wn,0h = wn−1

h ;

Find cn,k+1
h ∈ K(Ω, Th) such that:

if j ∈ J ′ then
cn,k+1
h (xj)← cn−1

h (xj),
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else

c̄n,k+1
h,j = max

(
0, c̄n,kh,j − αk(diag(Q))−1× (141)[

Qc̄n,kh + M̄ψ′1(c̄n,kh ) + M̄

(
ψ′2(c̄n−1

h )− 1

∆t
Ā−1

cn−1
h

M̄ c̄n−1
h

)]
j

)
,

end if

if ||cn,K+1
h − cn,Kh ||0,∞ < 10−6 then

cnh ← cn,K+1
h ; break.

end if
end for
Step 2 Find wnh ∈ Sh, such that:

w̄h
n = − 1

∆t
Ā−1

cn−1
h

M̄(c̄nh − c̄n−1
h )

.

The acceleration parameter αk is dinamically chosen by a projected search in such a way that the functional
associated to (140) is decreased at each iterative step k (see e.g. [1], chapter 12, for details). Note that,

since the operator acting on c̄n,kh in the square bracket in (141) is continuous and strictly monotone, the
projection map defined in (141) has a unique fixed point (see e.g. [17], chapter 2, for details). The main
drawback of Algorithm 1 is the necessity of assembling and calculating the inverse of the matrix Ācn−1

h
at

each time step, which renders the algorithm very time demanding. Another drawback is the presence of
the non linearity in (140), which makes the complementarity problem non linear and the convergence of the
map (141) quite slow. In order to deal with the latter problem, we formulate in the following subsection an
alternative algorithm.

4.2 Algorithm 2

The second algorithm proposed is based on solving the complementarity problem (140) by means of a Newton
like method. Let’s introduce the symmetric and positive definite matrix

Qlin := Q+ ψ′′1 (cnh)M̄,

and the vector

∇f(c̄nh) := Qc̄nh + M̄ψ′1(c̄nh) + M̄

(
ψ′2(c̄n−1

h )− 1

∆t
Ā−1

cn−1
h

M̄ c̄n−1
h

)
.

The following algorithm is derived:

Require: α0 > 0, cn−1
h , wn−1

h , J ′ := {j ∈ JK , K ∈ K0(cn−1
h )∧

(
j ∈ JK , K ∈ Km(cn−1

h ), m = 1, . . . ,M, xj ∈
e ⊂ ∂K ′, K ′ ∈ K0(cn−1

h )
)
};

Step 1
for k ≥ 0 do
Initialization

cn,0h = cn−1
h , wn,0h = wn−1

h ; λ̄0
i =

{
0 if c̄n,0h,i > 0,

∇f(c̄n,0h )i if c̄n,0h,i = 0.

Find cn,k+1
h ∈ K(Ω, Th) such that:

if j ∈ J ′ then
cn,k+1
h (xj)← cn−1

h (xj),
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else
for l ≥ 0 do

Initialization
∆ck,0 = 0

∆ck,l+1
j = max

(
0, c̄n,kh,j + ∆ck,lj − αl(diag(Qlin))−1

[
Qlin∆ck,l +∇f(c̄n,kh )− λ̄k

]
j

)
− c̄n,kh,j , (142)

if ||∆ck,L+1 −∆ck,L||0,∞ < 10−6 then
∆ck ← ∆ck,L+1; break.

∆λ̄kj =

{
0 if ∆ckj > 0,

Qlin∆ckj +∇f(c̄n,kh )j − λ̄kj if ∆ckj = 0.

end if
end for {

cn,k+1
h = cn,kh + ∆ck,

λ̄k+1 = λ̄k + ∆λ̄k.

end if
if ||cn,K+1

h − cn,Kh ||0,∞ < 10−6 then

cnh ← cn,K+1
h ; break.

end if
end for
Step 2 Find wnh ∈ Sh, such that:

w̄h
n = − 1

∆t
Ā−1

cn−1
h

M̄(c̄nh − c̄n−1
h )

.

The acceleration parameter αl is dinamically chosen such that (142) defines a steepest-descent gradient
method (see e.g. [15], chapter 2, for details). Note that, thanks to the definition of passive elements (39),
λ̄0
i > 0 if c̄n,0h,i = 0 and ∆λ̄kj > 0 if ∆ckj = 0. The main drawback of Algorithm 2 is the necessity of assembling

and calculating the inverse of the matrix Ācn−1
h

at each time step, which again renders the algorithm very

time demanding. In order to deal with this problem, we formulate in the following subsection an alternative
algorithm.

4.3 Algorithm 3

The third algorithm proposed is the generalization to discontinuous elements of the splitting algorithm
proposed in [6].

The following algorithm is formulated:

Require: µ > 0 (a relaxation parameter), α0 > 0, cn−1
h , wn−1

h , J ′ := {j ∈ JK , K ∈ K0(cn−1
h ) ∧

(
j ∈

JK , K ∈ Km(cn−1
h ), m = 1, . . . ,M, xj ∈ e ⊂ ∂K ′, K ′ ∈ K0(cn−1

h )
)
};

for k ≥ 0 do
Initialization

cn,0h = cn−1
h , wn,0h = wn−1

h ;

Step 1 Find Zn,k ∈ S(Ω, Th) such that ∀q ∈ S(Ω, Th):

(Zn,k, q) = (cn,kh , q)− µ[λBTh(cn,kh , q) + (ψ′2(cn−1
h )− wn,kh , q)];

Step 2 Find c
n,k+1/2
h ∈ K(Ω, Th) such that:
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if j ∈ J ′ then

c
n,k+1/2
h (xj)← cn−1

h (xj)
else

for l ≥ 0 do
Initialization

c̄
n,k+1/2,0
h,j = c̄n,kh,j

c̄
n,k+1/2,l+1
h,j = max

(
0, c̄

n,k+1/2,l
h,j − αl(diag(M̄))−1× (143)[

M̄ c̄
n,k+1/2,l
h + µM̄ψ′1(c̄

n,k+1/2,l
h )− M̄Z̄n,k

]
j

)

if ||cn,k+1/2,L+1
h − cn,k+1/2,L

h ||0,∞ < 10−6 then

c
n,k+1/2
h ← c

n,k+1/2,L+1
h ; break.

end if
end for

end if
Step 3 Find (cn,k+1

h , wn,k+1
h ) ∈ S(Ω, Th)× S(Ω, Th), ∀q ∈ S(Ω, Th), such that:

(
cn,k+1
h − cn−1

h

∆t
, q

)
+BTh(wn,k+1

h , q) = BTh(wn,kh , q)−BTh(cn−1
h ;wn,kh , q),

(cn,k+1
h , q) + µ[λBTh(cn,k+1

h , q) + (ψ′2(cn−1
h )− wn,k+1

h , q) = (2c
n,k+1/2
h − Zn,k, q).

if ||cn,K+1
h − cn,Kh ||0,∞ < 10−6 then

(cnh, w
n
h)← (cn,K+1

h , wn,K+1
h ); break.

end if
end for

The acceleration parameter αl is dinamically chosen by a projected search in such a way that the functional

1

2
(c
n,k+1/2,l
h , c

n,k+1/2,l
h ) + µ(ψ1(c

n,k+1/2,l
h ), 1)− (Zn,k, c

n,k+1/2,l
h )

is decreased at each iterative step l (see e.g. [1], chapter 12, for details). Note that, since the operator acting

on c̄
n,k+1/2,l
h in the square bracket in (143) is continuous and strictly monotone, the projection map defined

in (143) has a unique fixed point (see e.g. [17], chapter 2, for details). The present algorith does not require
the necessity of assembling and calculating the inverse of the matrix Ācn−1

h
at each time step, and, since in

(143) no elliptic term is present, the projection step (143) can be solved element by element independently.
These features make Algorithm 3 much faster than Algorithm 1 and 2, even if it converges more slowly, since
it requires the convergence of the fixed point iteration associated to the splitting step.

5 Numerical results

In this section we investigate the evolution dynamics of the solution of Problem Ph with an initial con-
centration characterized by a small uncorrelated white noise over a constant value c0, for different average
values c0 < c̄ and homogeneous Neumann boundary conditions for the 2− d case. In these cases the system
undergoes a spinodal decomposition and evolves, after a transitory regime, towards an equilibrium state
consisting of regions which are rich (c ∼ c∗) or empty (c = 0) of cells.

Moreover, we also study the evolution for long time scales of the solution of a test case with an initial
condition of cross-like shape.
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We report results of numerical tests in which Algorithm 3 has been implemented, even if we have tested
also Algorithms 1 and 2 on the three proposed test cases for the spinodal decomposition dynamics. Even if
Algorithms 1 and 2 solves directly, by a preconditioned projected gradient method, the original variational
inequality, whereas Algorithm 3 solves it indirectly through a splitting method, Algorithm 3 has the advantage
that it doesn’t need to assemble and invert the degenerate elliptic operator on its proper domain at each
time step and it can be solved element by element independently, needing much less computational resources
than Algorithms 1 and 2. In the perspective of a parallel implementation of Algorithms 1 and 2, their faster
convergence should make them more performing than Algorithm 3.

Note that an approximative analogue of the sets K0(cn−1
h ) and K+(cn−1

h ) has been introduced where
cn−1
h > 10−6 is meant for cn−1

h > 0. We remark that this approximation introduces a small error in the mass
conservation of the algorithms.

Note moreover from Remark 2.2 that the discrete solution is able to track compactly supported solutions
of (1) with a free boundary which moves with a finite speed of velocity if

∆t = Chmin, C <
1

maxK∈Th maxK vsupp,K
, (144)

where hmin := mink∈Th hK and vsupp,K := −(1 − (cn−1
h )2)(∇hwnh)|K (see, e.g., [8] for the definition of the

expanding velocity of the cancerous cells). In the implementation of Algorithms 1, 2 and 3 the condition
(144) is checked at each time step.

5.1 Spinodal decomposition

Let’s consider three test cases in which the initial value c0 is chosen to be a small uniformly distributed
random perturbation around the values c0 = 0.05, c0 = c∗/2 = 0.3 and c0 = 0.36. We consider homogeneous
Neumann boundary conditions. We set γ = 0.000196 and ∆t = 10γ. The relaxation parameter is chosen
to be µ = 1/2, and α0 = 1/2. The domain is Ω = (−3, 3) × (−3, 3), and a uniform partition of 32-by-32
triangular elements is introduced. The results are collected in Figures 2, 3, 4, showing that the system
exhibits two kinds of subregions after a transitory regime, one empty in cells, i.e. c = 0, and the other rich in
cells, with c ∼ c∗. The initial separation of the two phases is fast compared to the overall growth timescale
of the segregated pattern.

In Figures 2, 3, 4 it can be observed that if c0 < c∗/2 (resp. c > c∗/2) then the segregated solution is
made of isolated clusters of cells (resp. voids), while if c0 = c∗/2 the system forms maze-like patterns and the
domain is equally spaced in subregions rich in each phase. These behaviours reply the main features of the
phase order dynamics as predicted by the classical theory of coarsening in systems with a locally conserved
order parameter, described, e.g., in [7, 8].

Check also that the mass, i.e. the value of (cnh, 1), is conserved up to a small error, and that the value of
the Energy γ

2BTh(cnh, c
n
h) + (ψ(cnh), 1) decreases.

5.2 Evolution of a cross-like shape

In this test case an initial datum c0 is chosen given by a piecewise constant function whose jump set has
the shape of a cross, with values c0 = 0.55 inside the cross and c0 = 0 outside it. Homogeneous Neumann
boundary conditions are considered. We set γ = 0.000196 and ∆t = 10γ in the initial stages of the evolution,
in which the concentration relaxes fastly to the equilibrium value c∗, and ∆t = 50γ in the late coarsening
stages. The relaxation parameter is chosen to be µ = 1/2, and α0 = 1/2. The domain is Ω = (−3, 3)×(−3, 3),
and a uniform partition of 64-by-64 triangular elements is introduced. The results are collected in Figure 5,
showing as expected that the system evolves to a steady state exhibiting a circular interface (see, e.g., [7]
for a description of the coarsening dynamics associated to the degenerate CH equation).

Check also that the mass, i.e. the value of (cnh, 1), is conserved up to a small error, and that the value of
the Energy γ

2BTh(cnh, c
n
h) + (ψ(cnh), 1) decreases.
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c0 = 0.05

(a) t = 0. (b) t = 1.0586.

(c) t = 6.28004.

Figure 2: Values of c(x, y) for c0 = 0.05 at different instants of time. The values of mass and energy are
reported. The values of the parameters are γ = 0.000196, c∗ = 0.6 and ∆t = 10γ.

6 Conclusions

This work investigated a discontinuous Galerkin finite element approximation of a degenerate CahnHilliard
equation with a single-well potential, which models the evolution and growth of biological cells such as solid
tumors. In contrast to the models studied in the literature, where the degeneracy and the singularity sets
coincide, here the degeneracy set is {c = 0, c = 1} and the singularity set is {c = 1}. This constitutive choice
introduces further complications, since the singularity in c = 1 does not guarantee that c > 0 and at the
discrete level no Entropy estimates are straightforwardly available to guarantee the positivity of the solution.

Unlike the standard discontinuous finite element methods proposed in the literature for the non degenerate
CH equation, the discontinuous Galerkin method proposed here for the degenerate case is non standard
and consists of a discrete variational inequality, in which the positivity of the solution is imposed as a
constraint, solved on the active elements of the triangulation on which the degenerate elliptic operator can
be inverted. The proposed discretization method does not require the additional approximation of the mass
scalar products by a lumping procedure, which was needed in the approximation with continuous elements
in order to select the physical solutions with compact support and moving boundary from the ones with
fixed support.

A suitable formulation of the discrete variational inequality with discontinuous elements has been pro-
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c0 = 0.3

(a) t = 0. (b) t = 0.0196.

(c) t = 0.317716.

Figure 3: Values of c(x, y) for c0 = 0.3 at different instants of time. The values of mass and energy are
reported. The values of the parameters are γ = 0.000196, c∗ = 0.6 and ∆t = 10γ.

posed, proving the existence and uniqueness of the discrete solution, using a regularization approach. More-
over, the convergence in one space dimension of the discrete solution to the weak solution of the continuous
problem has been established.

Three numerical algorithms have been proposed to solve the discrete variational inequality, based on
different iterative solvers of the corresponding complementarity system. In particular, the Algorithms 1 and
2 solves directly, by a preconditioned projected gradient method, the original variational inequality, whereas
Algorithm 3 solves it indirectly through a splitting method, which is a generalization to discontinuous
elements of the one proposed in [6]. Algorithm 3 has the advantage that it can be solved element by
element independently, but as a disadvantage it needs the convergence of a further fixed point iteration
associated to the splitting step. Algorithms 1 and 2 converge faster than Algorithm 3, but they require
heavy computational resources in order to assemble and invert the degenerate elliptic operator on its proper
domain at each time step.

Finally, some numerical results for different test cases in two space dimensions have been reported in
order to discuss the validity of the proposed numerical algoritms. It is found that the dynamics of the
spinodal decomposition for the discrete solution is analogous to the one obtained in standard phase ordering
dynamics. In fact the geometry of the segregated domains is driven by the initial value of the concentration,

31



c0 = 0.36

(a) t = 0. (b) t = 0.0784.

(c) t = 1.1076.

Figure 4: Values of c(x, y) for c0 = 0.36 at different instants of time. The values of mass and energy are
reported. The values of the parameters are γ = 0.000196, c∗ = 0.6 and ∆t = 10γ.

with the appearance of isolated clusters of cells for c0 < c∗/2, maze-like patterns for c0 = c∗/2, and isolated
clasters void in cells for c∗/2 < c0 < c̄. A different feature of this model concerns the evolution and growth
of single domains in the coarsening regime of the dynamics. As expected, the evolution of a single domain
with a cross-like shape to a steady state with constant curvature has been highlighted.

A further development of this work will concern the error analysis of the discrete solution, which will be
presented in a forthcoming paper.
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(a) t = 0. (b) t = 2.39453.

(c) t = 23.9643. (d) t = 99.0323.

Figure 5: Values of c(x, y) for different instant of times with an condition given by a piecewise constant
function with cross like shape, with values c0 = 0.55 inside the cross and c0 = 0 outside it. The values of the
parameters are γ = 0.000196, c∗ = 0.6, ∆t = 10γ at first stages of simulation and ∆t = 50γ for later stages.
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