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Abstract

We review recent advances in Object Oriented Spatial Statistics, a system of
ideas, algorithms and methods that allows the analysis of high dimensional
and complex data when their spatial dependence is an important issue. At the
intersection of different disciplines – including mathematics, statistics, computer
science and engineering – Object Oriented Spatial Statistics provides the right
perspective to address key problems in varied contexts, from Earth and life
sciences to urban planning. We illustrate a few paradigmatic methods applied
to problems of prediction, classification and smoothing, giving emphasis to the
key ideas Object Oriented Spatial Statistics relies upon.
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1. Introduction: a few paradigmatic problems

Object Oriented Spatial Statistics (O2S2) is a new branch of statistics, that
aims to provide a unifying viewpoint to address a variety of application-oriented
challenges of modern spatial statistics. In O2S2 the “atom” of the analysis is
typically a complex data point (such as a curve or a surface), spatially dis-
tributed. The object oriented viewpoint to the statistical treatment of these
types of data consists in considering as building block of the analysis the whole
data point, regardless of its complexity. The datum is interpreted as a point
within an appropriate space of objects (called feature space), which should prop-
erly represent all the salient data features through its geometry. Implicit or
explicit formalization of the notion that nearby data provide similar informa-
tion then enables one to develop statistical procedures that take full advantage
of the information content embedded within the data for the purpose of mod-
eling, classifying or predicting spatial data. As such O2S2 is part of Object
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Oriented Data Analysis, the seminal name chosen by Wang & Marron (2007)
to baptize a system of ideas according to which new statistical tools are devel-
oped urged by the analysis of populations of complex objects. Object Oriented
Data Analysis requires a strong interplay of statistics with other scientific dis-
ciplines, including maths (analysis, scientific computing, geometry and algebra,
operational research), engineering, scientific communication design, computer
graphics, computer science, and information technology (see Marron & Alonso
(2014) for a recent review on Object Oriented Data Analysis).

Nowadays, the analysis of complex spatial objects plays a key role in a vari-
ety of data-driven engineering and geoscience applications. Even though most
methods in OODA rely on the key assumption that the observations are inde-
pendent and identically distributed, collections of spatially distributed data are
increasingly available in field studies. O2S2 then meets the need of analysing
populations of spatially dependent object data. Here, we propose a first paradig-
matic example in O2S2, to engage the reader in the object oriented viewpoint
to spatial statistics. This example represents the fil rouge of the present review,
since it fully expresses our viewpoint on the way the research on O2S2 has been
motivated, interpreted and developed in recent years.

Example 1. Figure 1 displays a representation of a heterogenous aquifer sys-
tem at the Lauswiesen site, in the Neckar river valley, near the city of Tübingen
(Germany). Data at the site consist of particle-size densities (PSDs) measured
at 406 locations along 12 boreholes. PSDs describe the local distributions of grain
sizes within the aquifer system. From the mathematical viewpoint, a particle-
size density is a probability density function, associated with the distribution of
particle sizes within a given soil sample. As such, available data consist of a set
of constrained curves, spatially distributed. The statistical characterization of
PSDs plays a key role in the classification of soil types, for inferring hydraulic
parameters (e.g., porosity and hydraulic conductivity), and reconstructing the
internal architecture of the groundwater system. In this vein, the analysis of
PSDs may be concerned with, e.g., (a) the classification of PSDs to identify
geomaterials at the site, and (b) the spatial prediction and stochastic simula-
tion of the PSDs at unsampled locations of the system (Menafoglio et al., 2014,
2016b,c).

In Example 1, each data point is a complex object: here, critical elements
of complexity are the data dimensionality and constraints. Indeed, PSDs are
curves, thus infinite-dimensional data: they need an infinity of point evaluations
to be fully characterized. Furthermore, PSDs are distributional data, hence
constrained to be positive and integrate to unity. This cannot be just neglected:
capturing the complexity of the objects is key to precisely model and express
the information content embedded within data, which will then be used for
exploration, inference and prediction with the final aim of accruing knowledge.

Nevertheless, the spatial domain of Example 1 is relatively simple: the
aquifer can be thought of as a three-dimensional Euclidean parallelepiped, of
moderate size. In this setting, one can imagine to extend to object data the
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Figure 1: Three-dimensional representation of particle-size densities at the Lauswiesen site.
Grey points represent measurement locations, colored curves represent a subset of the dataset
of PSDs. Colors indicate the ordering of the curves along the borehole
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ensemble of model-based methodologies that are widely-employed in classical
geostatistics to deal with the spatial dependence (e.g., Kriging, Cressie, 1993).

In fact, one can readily envision situations of complex objects observed over a
more complex spatial domain. Here, complexity may be associated with the size
or the texture of the area of interest. For instance, data observed over very large
regions pose challenges related to the practical impossibility of employing ap-
proaches based on global models for spatial dependence. Similarly, local models
need to be employed to account for a very strong, irregular or sudden variability
induced by, e.g., the texture of the domain. An instance of this is found in the
study of vehicular traffic in urban areas: here, the road system induces a very
fine texture. The spatial variability can be then expressed through local models
of diffusion, governed by spatially varying tensors (see, e.g., Della Rossa et al.,
2010). In some cases, the process could develop over a complex and evolving
system such as a spatial network (Reggiani et al., 2001). In all these cases, local
models or fully non-parametric approaches appear to be more appropriate than
those inspired by classical geostatistics. An example in this class, based on a
computationally intensive, explorative approach, will be illustrated in Section
5.

A different kind of complexity is that pertaining to domains with holes or
highly irregular borders determined by, e.g., geographical constraints. For in-
stance, in the setting of Example 1, one may think at the Neckar river as a
peculiar boundary of the aquifer domain, and particular geological formations
within the aquifer as holes in the domain. Part of the modern literature on
spatial statistics – which in our view partially shares the approach of O2S2 –
has focused on developing methods for dealing with these issues. To get closer
to the topic, we now present an example where relatively simple data over a
complex domain are concerned.

Example 2. Sangalli et al. (2013) analyze census data in the Island of Montréal.
The data consists of population densities (scalar observations) collected at a
limited number of spatial locations over the region, depicted in Figure 2. The
Island of Montréal is located between two rivers – Saint Lawrence and Rivière de
Prairis – which form natural geographical constraints. Additionally, the harbour
and the public parks are areas where people cannot live. Hence the spatial do-
main is here defined by irregular boundaries and it also has holes. In this case,
the goal of the analysis is to reconstruct the target surface (density over the spa-
tial domain) by (a) including a set of covariates and possible prior knowledge
on the phenomenon (e.g., a set of known differential equations governing the
phenomenon) and (b) properly accounting for the topology of the spatial domain
and the shape of its boundary.

Note that highly textured spatial regions, characterized by irregular bound-
aries and holes, are inevitably associated with boundary conditions: for instance,
the population density of Example 2 needs to be zero in correspondence of the
uninhabited areas (e.g., the harbour or some parts of the river banks marked
with red in Figure , as noted by Sangalli et al. (2013). Furthermore, observa-
tions of the phenomenon might be also repeated in time, or other kinds of more
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Figure 2: Island of Montréal and sampling sites for the census data of Example 2. Red lines
along the boundary of the region denote places where population density needs to be zero.
(Figure modified from Sangalli et al. (2013), courtesy of Laura Sangalli).

complex objects might be observed at the measurement locations. This projects
us to the very cutting-edge of O2S2, where methods which jointly treat both
the object and the domain complexities are yet to be developed.

For the sake of completeness in the present overview on spatial object data,
we finally mention the viewpoint of those who interpret spatial patterns as ob-
ject data (Mateu et al., 2015). Here, data are a discrete collection of (possibly
linked) spatial points, such as point patterns, trees, graphs or networks. This
finds application, e.g., in the treatment of spike train datasets, which is rele-
vant in neuroscience (see, e.g., Brown et al., 2004). For instance, one may want
to analyze profiles of neuronal activation (i.e., random linked points) measured
on different patients in response to a stimulus, in order to identify healthy/un-
healty conditions. Additional examples of these types of data are available in
environmental studies: Mateu et al. (2015) deal with plant communities with
high biodiversity, aiming at the classification of plant species according to their
spatial structure and dislocation. Unlike traditional analyses of point patterns,
in the object oriented approach the attention is posed on revealing similarities
and correlations between entire spatial objects, rather than characterizing the
interactions between single points within a given object. Note that here the
target objects are independent observations of random spatial domains, rather
than spatially dependent objects distributed over a deterministic domain. This
case is somehow different from the previous examples and may be deemed part
of the general setting of OODA rather than O2S2, which will be the core of this
survey instead.

The remaining part of the work is organized as follows. Section 2 provides a
brief review of recent approaches to the analysis of complex data such as those
of Example 1. Section 3 serves as introduction to the following methodolog-
ical sections. Section 4 describes a model-based methodology which provides
a paradigmatic illustration of the way classical geostatistical methods can be
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extended to object data. Section 5 introduces a flexible fully non-parametric
method to deal with large or textured domains, whereas Section 6 illustrates a
method to treat data as those in Example 2. Finally, Section 7 concludes the
review, discussing some of the present open issues in O2S2.

2. Recent approaches to the analysis of object data

The statistical analysis of spatial data has a long history and dates back to
the beginning of the 20th century. Analysis of geostatistical, lattice and areal
data, as well as point processes, is grounded in a rich body of methods and
algorithms, when data are either univariate or multivariate (see, e.g., Cressie,
1993; Gelfand et al., 2010, for a comprehensive introduction to the topic and
a recent collection of reviews). Despite the richness of the available literature,
classical techniques prove to be somehow inadequate when data objects are
high-dimensional, constrained, or distributed over a complex spatial domain.

For instance, the particle-size densities (PSDs) introduced in Example 1
pose challenges related to the dimensionality of the data and their constraints.
Indeed, for each spatial point (soil sample) within the aquifer domain, the actual
datum is a curve, hence an infinite dimensional object (or high-dimensional
if it is discretely observed). Spatial statistical methods typically rely on the
assumption that the dimensionality of each datum does not exceed the size of
the sample. Thus, in the presence of high- or infinite-dimensional data, all those
methods inevitably turn out to be unsatisfactory (i.e., curse of dimensionality).

A novel viewpoint to the analysis of infinite dimensional data has been re-
cently fostered by the fast and extensive development of functional data analysis
(FDA, Ramsay & Silverman, 2005). This is a recent branch of statistics that
aims to develop explorative and inferential methods for the analysis of data
in the form of functions (i.e., functional data), such as curves or surfaces. In
recent years, FDA has become increasingly popular as an approach to face rel-
evant operational research problems (see, e.g., Martin-Barragan et al., 2014;
Laukaitis & Račkauskas, 2005; Laukaitis, 2008). The idea behind FDA is to
consider the curves as a unique entity, and analyze these within an appropriate,
functional space. In this sense, FDA is part of Object Oriented Data Analysis,
since both approaches share a common viewpoint in understanding the curve as
the building-block of the analysis, regardless of its dimension or complexity.

The functional approach to the analysis of georeferenced data was firstly
introduced as an alternative to the more classical methods of space-time geo-
statistics, that is a class of advanced statistical methodologies devoted to the
analysis and prediction of georeferenced data featured by a temporal dynamic
(e.g., Cressie & Wikle, 2011; Lohmann et al., 2016, and references therein). From
the point of view of applications, a justification of the functional approach in
this setting comes from the observation that the sample design over time is typ-
ically much finer than that in space. Indeed, one typically observes the dynamic
of the phenomenon over time along a fine grid of instants (e.g., hourly or daily
data), whereas only few given locations are considered for the spatial sampling.
Moreover, prior information on the time dynamic might dictate an appropriate
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model and analytical regularity conditions for its representation, for instance in
terms of a differential equations (Ramsay & Silverman, 2005). The FDA ap-
proach then allows to simplify the modeling of this type of data, by capturing
the time dynamics through the functional form of the curve. Note that this
strategy not only allows to cope with the curse of dimensionality that plagues
space-time geostatistics, but is apt to treat any kind of abscissa, not just time.

In this setting, a relatively large body of literature has been developed in
FDA to address several problems of spatial statistics, such as estimation of the
mean and principal component analysis (Horváth & Kokoszka (2012, Chap. 17),
Liu et al. (2014)), clustering (Giraldo et al., 2012; Ignaccolo et al., 2008; Romano
et al., 2010, 2015), uncertainty modeling (Ignaccolo et al., 2015) and estimation
of spatial auto-regressive processes (Ruiz-Medina, 2012). Particular attention
has been paid to the problem of spatial prediction, especially to the development
of novel notions of functional Kriging, both in the stationary (see, e.g., Delicado
et al., 2010, for a recent review) and in the non-stationary setting (e.g., Caballero
et al., 2013; Ignaccolo et al., 2014). This theory was widely applied, e.g., in
climatology (prediction of daily temperature profiles, see Delicado et al., 2010,
and references therein), oceanography (temperature profiles along depth of the
ocean, see Nerini et al., 2010), air quality monitoring (Ignaccolo et al., 2014),
wireless sensors networks (Lee et al., 2015), petroleum system modeling and
production forecast (Menafoglio et al., 2016a).

Although in principle functional geostatistics is concerned with the treat-
ment of functional data in its general acceptation, most FDA methods are
designed to deal with the particular case of square-integrable functions (i.e., el-
ements of the functional space L2). Even though actual functional observations
can often be embedded in this space, developing ad-hoc techniques for L2 rather
than for more general spaces of objects, has a number of limitations. For in-
stance, the PSDs of Example 1 are distributional data, thus a kind of functional
data with peculiar constrains: these modify the geometry of the sample space
and are thus crucial for the analysis. Furthermore, as we already mentioned,
one may want to account for the dynamic of the system, as described by a set of
differential equations in an appropriate functional space (e.g., a Sobolev space,
Azzimonti et al., 2015). In general, approaches developed in functional geostatis-
tics do not allow to (i) jointly consider both the point-wise and the differential
information embedded within the functions, (ii) account for irregularly shaped
domains or boundary conditions, (iii) properly account for data constraints that
requires particular geometrical approaches, and (iv) handle other kinds of ob-
jects, such as shapes, covariance matrices or spatial patterns. Developing an
object oriented viewpoint to spatial statistics then comes as a response to the
need of treating all these issues jointly, within a unifying and mathematically
sound framework.

3. Methods in Object Spaces

In O2S2, the data point – whether it is a curve, a constrained vector or
a shape – is seen as an object belonging to an appropriate (finite- or infinite-
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dimensional) feature space. The geometrical structure of the feature space deter-
mines the kind of operations and analyses that one is allowed to perform on the
data. For instance, if the feature space is an Euclidean space of finite dimension
(i.e., data are vectors of dimension p, lying in Rp), one can consider the en-
semble of techniques available in classical multivariate spatial statistics. When
infinite-dimensional data (e.g., curves) are concerned and the feature space is a
vector space with a Hilbert structure (i.e., an inner product is available and the
space is complete), one can imagine to extend all those statistical methods that
relies upon the concepts of angles, distances and projections, because these are
well-defined in the feature space. Most of this work is concerned with the latter
setting, as it is the most common in applications. Nevertheless, we will pro-
vide insights into more complex features spaces, such as Riemannian manifolds.
These allow treating, e.g., shapes and covariance matrices, but require the in-
troduction of complex mathematical constructions relying upon non-Euclidean
geometries.

The next Sections review three methodologies in O2S2 which follow quite
different approaches. We first introduce a generalization to object data of a
classical prediction technique in spatial statistics, Kriging (e.g., Cressie, 1993).
We then illustrate a fully non-parametric method allowing to treat the spatial
dependence in the presence of large or textured domains through a computa-
tionally intensive algorithm. Finally, we describe a semi-parametric method
that allows accounting for domains with holes and boundary conditions, such
as those described in Example 2.

4. Kriging for Object Data

Kriging is a widely-employed geostatistical technique that allows to perform
linear spatial prediction from a set of spatially distributed data. From the time
of the review of Kleijnen (2009), the geostatistical literature on Kriging has taken
several step forward in the direction of object data, as we shall see in this section.
Even though some advanced mathematical construction is needed to develop
Kriging in the generality of object data, most of the results detailed hereafter
closely resemble very analogue developments, well-known in the classical setting.

Let us denote by Xs a random object referred to the location s in the spatial
domain D, which is usually a subset of Rd, with d = 2, 3. In Example 1,
D is the three-dimensional aquifer domain (D ⊂ R3), whereas Xs denotes a
random PSD. Given n measurement locations s1, ..., sn, and the observations
Xs1

, ...,Xsn
at these locations, one may want to predict an unobserved object

Xs0
at a new location s0 in D (e.g., the PSDs at a new borehole). Note that the

aim is to predict the entire object, not only some of its features. In this sense,
an object oriented geostatistical viewpoint is considered.

Call H the feature space the objects Xs belongs to: H should represent
through its geometry all the data characteristics that one is willing to consider.
For instance, for the PSDs in Example 1 and Figure (1), one should consider a
feature space whose points are probability density functions (PDFs), or, more
generally, distributions. Hereafter, the focus is posed on feature spaces that are
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Hilbert spaces, that is, complete spaces with respect to a vector structure (+, ·)
and an inner product 〈·, ·〉 (with induced norm ‖f‖ =

√
〈f, f〉, for f ∈ H).

Informally, Hilbert spaces behave like Euclidean spaces, and may have finite or
infinite dimension. In the object oriented view, Xs1

, ...,Xsn
are interpreted as

a partial observation of a random field in the feature space H, {Xs, s ∈ D}.
Modeling the main distributional features of the field (e.g., mean, covariance)
is thus a key point of the spatial analysis.

The mean term ms of Xs is usually represented by the linear model in H

ms =

L∑
l=0

fl(s) · al, (1)

where

{al, l = 0, ..., L} are coefficients in H, independent of the spatial location s;

f0(s) = 1 for all s ∈ D and {fl(s), l = 1, ..., L} are known scalar regressors;

(+, ·) are operations in the sense of the geometry of H.

The coefficient al quantifies the effect of a unit variation of the spatial regres-
sor fl(s) – when all the others are fixed – on the mean value of the process,
l = 1, ..., L, whereas the coefficient a0 represents a “functional intercept”, in
the sense that it corresponds to the (functional) mean value of the response
when all the regressors fl(s), l = 1, ..., L, are null. This model was proposed by
Menafoglio et al. (2013), and, concurrently, for the L2 case by Caballero et al.
(2013) . It includes the model with spatially constant mean, studied in FDA by
Giraldo et al. (2011, 2010a); Gromenko et al. (2012) (see also Delicado et al.,
2010, for a recent review). Note that model (1) is quite general, and allows to
precisely describe any separable drift term (Menafoglio et al., 2013). Separabil-
ity of the drift term is generally considered as a viable assumption, and is widely
employed in the recent literature on space-time analysis (e.g., Augustin et al.,
2013; Bernardi et al., 2016; Cressie & Wikle, 2011; Marra et al., 2012; Wood
et al., 2008). Furthermore, model (1) can be used to account for cluster infor-
mation (Menafoglio et al., 2016c), or to model an external drift, as proposed by
Ignaccolo et al. (2014) in the FDA context. Note that model (1) is assumed to
be valid over the entire spatial domain D (in this sense, it is a global model for
the drift).

If H were the space of real numbers (H = R), one could describe the spatial
dependence through the covariogram, which is defined, for any pair of locations
(si, sj) ∈ D ×D, as the covariance of the variables at these locations, i.e.,

CR(si, sj) = ER[(Xsi −msi)(Xsj −msj )].

The latter is a measure of second-order dependence widely-employed in geo-
statistics (Cressie, 1993). Menafoglio et al. (2013) propose to define a similar
measure of second-order dependence for objects in H, called trace-covariogram.
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This is the real valued function CH , defined for (si, sj) in D ×D as

CH(si, sj) = EH [〈Xsi
−msi

,Xsj
−msj

〉]. (2)

The trace-covariogram describes, in a global sense, the covariation between cou-
ples of objects of the field, and thus measures the second-order spatial depen-
dence of the process. Intuitively, as the distance between locations increases,
the spatial dependence between the associated objects vanishes and thus the
absolute value of the corresponding trace-covariogram decreases toward zero
(stationarity and ergodicity conditions apply). Note that this definition is con-
sistent with that of CR, as in R the inner product is simply the product between
scalars and the trace-covariance is just the usual covariance. The definition
is also consistent with that given in functional geostatistics by Giraldo et al.
(2011) for data in L2. In this case, the trace-covariogram reads

CL2(si, sj) =

ˆ
T
EH [(Xsi(t)−msi(t))(Xsj (t)−msj (t))]dt =

ˆ
T
CR(si, sj ; t)dt,

(3)
with CR(si, sj ; t) the point-wise covariogram, defined for the point evaluations
at t in T of the functions Xs.

Methods in object oriented geostatistics usually assume that the function CH
only depends on the increment between locations (i.e., stationarity of centered
observations Xsi

− msi
, or residuals). Hereafter, we focus on this case, and

express CH as a function of si − sj .
Based on (1) and (3), prediction of the unobserved object Xs0 can be per-

formed through a Universal Kriging predictor. This is the best linear unbiased
predictor X ∗s0

=
∑n
i=1 λ

∗
i · Xsi

, in the sense that the scalar weights λ∗1, ..., λ
∗
n are

determined as to minimize the mean square error in H (MSEH) subject to the
unbiasedness constraint, i.e.,

min
λ1,...,λn

EH

∥∥∥∥∥Xs0
−

n∑
i=1

λi · Xsi

∥∥∥∥∥
2
 (4)

subject to EH

[
n∑
i=1

λi · Xsi

]
= EH [Xs0

] .

Note that, geometrically, MSEH is the expected square distance between the
prediction and the target, measured according to the metric of H. Object
oriented Kriging thus assumes the same geometrical interpretation as in one-
dimension (see, e.g., Chilès & Delfiner, 1999, Chap. 3). Furthermore, even
though the Kriging problem is formally posed in H (recall, the space H may be
of any dimension), the particular form of the predictor – as a linear combination
of the data – and the geometrical properties of H – as a Hilbert space – allow
finding the optimum with standard techniques. Specifically (Menafoglio et al.,
2013): (a) the MSEH and the unbiasedness constraints are expressed in terms
of the trace-covariogram CH , the regressors {fl(s)} and the weights λi, (b)
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Lagrange multipliers are employed to account for the unbiasedness constraints,
and (c) a Lagrange functional is differentiated to find the optimum. The vector
of optimal weights λ∗ = (λ∗1, ..., λ

∗
n)T is eventually found as

λ∗ = Σ−1
[
σ0 + F(F′Σ−1F)−1(f0 − F′Σ−1σ0)

]
, (5)

where

Σ ∈ Rn,n is the variance covariance matrix of the observations, in the sense
of the measure of dependence defined through the trace-covariogram CH :
Σij = CH(si − sj), i, j = 1, ..., n;

σ0 ∈ Rn is the vector of trace-covariances between Xs0 and the observations:
[σ0]i = CH(s0 − si), i = 1, ..., n;

F ∈ Rn,(L+1) is the design matrix of model (1): Fil = fl(si), i = 1, ..., n,
l = 0, ..., L;

f0 ∈ R(L+1) collects the values of the regressors at the target location s0
(assumed to be known): [f0]l = fl(s0), l = 0, ..., L.

Note that a very analogue result is found in the classical setting (see, e.g.,
Cressie, 1993, p. 154). The Universal Kriging prediction at s0 is then found
as X ∗s0

=
∑n
i=1 λ

∗
i · Xsi

, and a measure of the uncertainty associated with the
point estimate is provided by the Universal Kriging trace-variance, that is the
value of the MSEH attained at the optimum of problem (4) (i.e., for λ∗). The
latter can be computed explicitly by combining the expression of the objective
functional with that of λ∗ in (5).

The results illustrated so far assume that the covariance structure is known.
This is hardly verified in applications. An estimate Σ̂ of the covariance matrix Σ
is usually plugged-in in the above expressions, and X ∗s0

(Σ̂) is eventually used for
the purpose of prediction. Most of the literature advocates a two step procedure
to estimate CH , that is (i) use a method of moments estimator to provide a
raw estimate of the trace-covariogram (or the associated trace-variogram, e.g.,
Menafoglio et al., 2013), (ii) fit a parametric model (e.g., spherical, Matérn)
to the obtained estimate, by least squares. Note that least square methods are
usually preferred to maximum likelihood methods in the object oriented setting,
since the likelihood might not be defined in the space H (e.g., if it is infinite
dimensional); in fact, developing more effective estimation procedures is still an
open problem.

Although expression (5) does not depend on the (unknown) coefficients al,
trace-covariogram estimation requires to estimate the spatial mean (1) whenever
the mean function ms is not spatially constant. Indeed in practice, to estimate
CH one employes the identity CH(h) = CH(0)− γH(h), that relates the trace-
covariogram with the trace-semivariogram

γH(si − sj) =
1

2

[
E[‖Xsi

−Xsj
‖2]− ‖msi

−msj
‖2
]
, si, sj ∈ D. (6)
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The latter function is proportional to the global variance of increments of the
process, and approaches the variance of the process when the modulus of its
argument diverges, i.e., CH(0) = lim|h|→∞ γH(h) (stationarity and ergodicity
conditions apply). If the mean function ms is spatially constant, estimation of
the trace-covariogram can be then obtained by fitting a parametric valid model
(e.g., spherical, Matérn) to the empirical trace-semivariogram

γ̂H(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

‖Xsi
−Xsj

‖2, (7)

where N(h) is the set of pairs of locations (si, sj) whose separating vector is h
(or within h ± ∆h, with ∆h a given tolerance), and |N(h)| is its cardinality.
Note that, when H = L2, estimator (7) reads (Giraldo et al., 2011)

γ̂L2(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

ˆ
T

(Xsi(t)−Xsj (t))2dt,

that can be computed from data via numerical quadrature schemes (e.g., trape-
zoidal rule). When the mean functions ms is not spatially constant, estima-
tor (7) cannot be directly used to provide a meaningful estimate of the trace-
covariogram (it misses to estimate the second term in (6)), but should be applied

to the (estimated) residuals δ̂s = Xs−
∑L
l=0 fl(s) · âl instead. In fact, likewise in

the classical setting (Chilès & Delfiner, 1999), a good estimate of the drift (i.e.,
of the parameters {al, l = 0, ..., L}) is then crucial for the statistical analysis.
For this purpose, one may employ, e.g., Generalized Least Squares. Having esti-
mated {al, l = 0, ..., L}, one could optionally consider to perform Kriging of the

residuals δ̂s (i.e., Residual Kriging) instead of Universal Kriging, taking care of
setting the residuals mean to zero in the unbiasedness constraint appearing in
(4).

We finally remark that the predictor X ∗s0
(Σ̂) is generally characterized by a

higher uncertainty than that described by the Universal Kriging trace-variance.
For the purpose of uncertainty assessment, resampling methods can be consid-
ered. Recent works in this direction employ semi-parametric bootstrap (Franco-
Villoria & Ignaccolo, 2015; Pigoli et al., 2016), or conditional stochastic simu-
lation (Menafoglio et al., 2016b).

Example 1 (continued). Based on (Menafoglio et al., 2014, 2016c), we de-
scribe the results of Kriging for the dataset of PSDs of Example 1, displayed in
Figure 1. Since the data are PDFs, Menafoglio et al. (2014, 2016c) propose to
consider as feature space the Bayes Hilbert space A2(T ) of functional composi-
tions on T = [tm, tM ] (tm, tM denoting the minimum and maximum observable
grain-size), introduced by Egozcue et al. (2006); van den Boogaart et al. (2014).
A2(T ) is a space of functions with constant integral (such as PDFs), equipped
with the generalization to the infinite-dimensional setting of the Aitchison ge-
ometry for compositional data (Pawlowsky-Glahn et al., 2015), which is widely
employed in the multivariate setting to describe PDFs. The space A2(T ) is a
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Hilbert space if equipped with the following operations of perturbation (+) and
powering (·)

(f + g)(t) =
f(t)g(t)´

T f(s)g(s) ds
; (α · f)(t) =

f(t)α´
T f(s)α ds

and the inner product

〈f, g〉 =
1

2|T |

ˆ
T

ˆ
T

ln
f(t)

f(s)
ln
g(t)

g(s)
dt ds, f, g ∈ A2(T ).

The key point here is that the geometry of the space is precisely designed to
account for the inherent features of the data (for further details see Egozcue
et al., 2013; van den Boogaart et al., 2014). This would not be the case if
one just neglected the data constraint and worked in L2(T ). Note that other
choices of the feature space would be sensible as well for these distributional data.
Indeed, one could summarize the underlying distribution through the cumulative
distribution function or the quantile function instead of the PDFs, and then
embed these quantities in an appropriate (Hilbert) space. In this sense, we here
focus on one of the possible object oriented geostatistical analyses that could be
performed on this dataset; we refer the reader to Section 7 for further discussion
on the choice of the feature space.

Figure 3 represents the results of Kriging of the PSDs, based on the work
of Menafoglio et al. (2016c). Here, information regarding the presence of three
groups of data (associated with as many soil types) was included via linear model
(1), through binary variables. Unlike traditional approaches that focus on some
selected features of the PSDs (e.g., quantiles of the distribution), object oriented
Kriging allows to project the entire information embedded within the data –
including their grouping structure – to unsampled locations in the system. This
can be used for, e.g., global quantile assessment and hydrofacies characterization
in Monte Carlo simulations.

For the sake of completeness, we here mention some recent works that stand
at the very forefront of object oriented Kriging. Extensions of the methodol-
ogy here described have been considered, e.g., by Menafoglio & Petris (2016),
who develop a linear operatorial predictor, based on optimal linear operators
rather than optimal scalar weights. Further extensions in the direction of object
data in Riemannian manifolds are proposed by Pigoli et al. (2016). Informally,
Riemannian manifolds are curved spaces that admit local approximations via
Hilbert tangent spaces. As a key element of innovation, Pigoli et al. (2016)
propose to locally approximate the data through the Hilbert tangent space, and
accordingly employ the methodology here described for the purpose of predic-
tion. Finally, much effort has been recently devoted to the extension of Kriging
to more general feature spaces, like Banach spaces or Hadamard metric spaces.
The research field is still very open, and its development involves advanced and
convoluted mathematical constructions. Generally, in these settings Kriging so-
lutions are hardly obtainable in explicit form, and sub-optimal solutions might
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Figure 3: Prediction of PSDs via Kriging for object data: (a) results at boreholes B5, F4 and
F6 and at an undrilled location (“New”) having coordinates (3508600,5377670). (b) Vertical
distribution of kriged PSDs, for the samples at elevations 301 ≤ z ≤ 306 m above sea level
(a.s.l.), at borehole F6. In both panels: colors of the solid curves indicate the ordering of the
data along depth; the size of the symbols is proportional to the Kriging variance; smoothed
data are represented with solid curves colored according to the soil type (Figure modified from
Menafoglio et al. (2016c))

14



be employed; recent results in this direction are presented in Gouet et al. (2015).

5. Bagging Voronoi: an efficient algorithm for the statistical treat-
ment of complex spatial data

The methods discussed so far are based on global models for the mean and
the spatial dependence, and accordingly rely upon the assumption that a certain
regularity characterizes the spatial field (i.e., linear model for the drift, residual
stationarity). Even though this assumption may be viable in field scale studies
(e.g., Example 1), in the presence of very large or textured spatial domains
it might be too restrictive. Several probabilistic constructions have been pro-
posed in geostatistics to model non-stationary spatial (or space-time) processes
(see Sampson, 2010, for a recent review), e.g., smoothing and weighted-average
methods, basis function methods, process convolutions or spatially varying pa-
rameters (see, e.g., Fouedjio et al., 2016; Guttorp & Sampson, 1994; Guttorp &
Schmidt, 2013; Paciorek & Schervish, 2006; Sampson et al., 2001; Stein, 2005).
However it is hard to reformulate these methodologies and generalize them to
the context of object data analysis. A powerful alternative is represented by
non-parametric and computationally intensive approaches, that allow avoiding
strong distributional assumptions (e.g., Gaussianity) or parametric models for
the spatial dependence. In this setting, the Bagging Voronoi (BV) algorithm
(Secchi et al., 2013) is a notable instance of a fully non-parametric and flexible
method that allows working with general types of object data.

BV has been originally conceived to cluster functional data observed over
a lattice D0. Nevertheless, the algorithm can be applied without substantial
modifications to general object data, and for a variety of target statistical anal-
yses (e.g., dimensionality reduction or joint clustering and alignment of data
Secchi et al., 2015; Manfredini et al., 2015; Abramowicz et al., 2016). For ease
of exposition, we here focus on an Euclidean spatial domain D0, although more
complex situations may be considered as well; the reader is referred to Cressie
(1993, Part II) for an introduction to classical spatial statistics for lattice data.

We call Xs the observation at s ∈ D0: in most applications, observations
are given over the entire lattice D0. Suppose for the moment that the aim
of the analysis is to cluster the observations, i.e., unsupervised classification.
If data were independent, one could employ an extension to object data of
classical methods, for instance k-means (see Tarpey & Kinateder, 2003, for an
extension of k-means to functional data). To include the spatial information in
the procedure one might want to adapt the algorithm to explicitly account for
spatial dependence (e.g., by modeling a trace-covariogram, Menafoglio et al.,
2016c). The idea behind BV is however different and follows a divide et impera
approach. This avoids modifying the target statistical method (e.g., k-means),
by applying it to a batch of auxiliary data for which spatial dependence is
negligible. BV consists of two steps, bootstrap and aggregation, that are detailed
in the following paragraphs.
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Bootstrap. Aim of this step is to (i) build a batch of B auxiliary datasets char-
acterized by a negligible spatial dependence, and (ii) apply the target statistical
analysis to each of these datasets. More precisely, the following steps are re-
peated B times. First the spatial domain D0 is partitioned in n subregions
(neighborhoods): n sites (nuclei) in D0 are randomly sampled, and the re-
maining sites are assigned to the nearest nucleus (i.e., a Voronoi tessellation
is built). Second, associated with each nucleus a local representative is com-
puted as a summary of the data within the corresponding neighborhood (e.g.,
via a weighted average or the use of kernels, Genton (2002)). These steps ac-
tually weaken the spatial dependence: indeed, computation of representatives
via geographically weighted average (or spatial smoothing) acts as a filter of
the correlated random noise, whereas the spatial dependence of the local rep-
resentatives tends to be negligible when neighborhoods are large, as the local
representatives tend to be spread across the domain. The target analysis is
thus applied to the dataset of n local representatives by neglecting their spatial
information, and the result is stored.

Aggregation. The results of the B analyses performed on the auxiliary datasets
are aggregated in order to obtain the final result. Here, the kind of aggregation
which can be used is problem specific. For instance, in the case of clustering,
at each iteration of the bootstrap step, every datum is assigned the cluster
label pertaining to the nucleus of the neighborhood it belongs to. For the final
cluster label one may employ a majority vote and assign to each datum the
label obtained more often along the B analyses.

Note that two parameters needs to be initialized: the number of auxiliary
analyses B, and the number of nuclei n. Parameter B controls the “strength”
of the final result: the higher the number B of “weak” analyses performed,
the “stronger” the basis upon which the final result is obtained. Parameter
n controls the size of the auxiliary datasets as well as the mean size of the
neighborhoods. Thus, high values of n are associated with high complexity in
each weak analysis and with small neighborhoods. Note that the latter directly
reflects also on (a) the spatial correlation among representatives (higher when
the neighborhood size decreases) and (b) the number of data upon which the
local representative are computed. In fact, a bias variance trade-off exist when
setting parameter n, and this should be carefully evaluated (see Secchi et al.,
2013, Section 3.2). Several criterion, mainly empirical, can be employed to set
the parameters, e.g., minimization of the entropy (Secchi et al., 2013), or of the
total average variance (Secchi et al., 2015).

6. Smoothing spatial objects with a differential penalization

We finally illustrate an approach recently proposed to face the problem of
textured spatial domains D0 characterized by holes or irregular boundaries, as
those described in Example 2. For clarity of exposition we again focus on a
Euclidean spatial domain; extensions to non-Euclidean domains are discussed
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at the end of the section. In this setting, the available literature mostly focuses
on real-valued responses (i.e., H = R with the notation of Section 4), with a
few extensions to deal with spatio-temporal processes. Extensions dealing with
object data are still at the very cutting edge of the research on this field.

A semi-parametric model is here considered for the observations

Xsi
=

L∑
l=0

fl(si) · al + g(si) + εi, i = 1, ..., n, (8)

where

al, l = 0, ..., L, are coefficients in R (as in (1), with H = R);

fl(si), l = 0, ..., L, are known regressors (covariates) observed at point si (as
in (1), with H = R);

g is a twice differentiable real-valued function;

εi, i = 1, ..., n, are independent errors with zero mean and variance σ2.

We note that two main differences exist between this model and the Universal
Kriging model detailed in Section 4. Model (8) is semi-parametric, in the sense
that the term g is a non-parameterized spatial effect on the response, assumed to
be deterministic. This term is assumed to capture the entire spatial dependence,
and the regularity (e.g., smoothness) of the field is implicitly accounted for
through the functional properties of g. The random part of the model is here
simpler: the ε’s are assumed to be independent, the residuals of the Universal
Kriging approach are spatially correlated instead.

In this context, estimation of the surface g and of the parameters a =
(a0, ..., aL)T , can be performed by minimizing a penalized sum-of-square-error
(penalized SSE) functional

Jλ(a, g) =

n∑
i=1

(
Xsi −

L∑
l=0

fl(si) · al − g(si)

)2

+ λP(g), (9)

where P(g) is a penalty that controls the functional properties of the estimated
surface g (e.g., the curvature), and λ > 0 a parameter that set the importance of
the penalization with respect to the sum-of-square-error term. Popular choices
for P(g) account for the second derivative (i.e., curvature) of the surface g, to
control its roughness. For instance, Ramsay (2002) proposes to consider (in a
model without covariates)

P(g) =

ˆ
D

(
∂2g

∂x2
+

∂2g

∂x∂y
+
∂2g

∂y2

)2

, s = (x, y) ∈ R2,
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while Wood et al. (2008); Sangalli et al. (2013) consider the Laplacian

P(g) =

ˆ
D

(∆g)2 =

ˆ
D

(
∂2g

∂x2
+
∂2g

∂y2

)2

, s = (x, y) ∈ R2.

The penalization can express a prior knowledge on the phenomenon. For in-
stance, if a set of differential equations are known to govern the system – at least
in an ideal setting of the problem – one can consider as penalization the misfit
of the estimated surface from the solution of those equations (see Azzimonti
et al., 2015).

Note that this approach is quite different from that illustrated in Section 4.
Indeed, the first term of Jλ(a) is the sum of square errors between the model
and the observations: in this sense, Jλ(a) is conceived as in an estimation prob-
lem rather than in a prediction problem, even though the estimated surface is
eventually used for prediction purposes at unsampled locations. In addition, the
penalization represents a weaker constraint than the unbiasedness constraint in
problem (4), and its strength is governed by parameter λ. The latter controls
also the bias associated with the resulting estimators. For an interesting discus-
sion on the bias-variance trade-off in smoothing with regularization see Hastie
et al. (2009, Chap. 5.4).

In general, minimization of functional (9) cannot be performed explicitly.
Amongst the possible approaches, particularly powerful are those based on
spatial basis approximations (e.g Wood et al., 2008), especially finite elements
methods based on triangulations of the spatial domain – i.e., partition of the
domain in triangles (Ramsay, 2002; Sangalli et al., 2013; Azzimonti et al., 2015;
Bernardi et al., 2016). These procedures enable one to cope with irregularities
in the borders and texture of the domain; the numerical approximation finally
allows to minimize the functional (9) by solving a highly sparse linear system.
These methods can also deal with the presence of boundary conditions (Dirich-
let, Neumann, Robin), as in the case of geographical constraints (see Example
2). They are included in the minimization problem by restricting the class of
functions g to those fulfilling the boundary conditions. The numerical approxi-
mation of the problem is then performed as to guarantee that these conditions
are satisfied (e.g., via finite elements methods).

For the sake of completeness, we have to mention that much effort has been
recently spent to extend the perspective described in this section to spatial
domains more complex than Euclidean. Amongst the models aimed to handle
data distributed over non-planar domains, we cite the works devised for specific
Riemannian manifolds such as spheres, hyperspheres or sphere-like domains
(domains representable via spherical coordinates), e.g., Wahba (1981); Alfeld
et al. (1996); Baramidze et al. (2006); Jun & Stein (2007); Lindgren et al. (2011);
Gneiting (2013). Remarkable works in the direction of treating complex domains
are Ettinger et al. (2015); Dassi et al. (2015); Lila et al. (2016a); Wilhelm et al.
(2015), which extend the seminal approach of Sangalli et al. (2013) to manifolds,
such as the cerebral cortex of the brain, by combining methods from numerical
analysis (e.g., finite elements) and differential geometry.
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7. Discussion

Choice of the feature space. In any (geo)statistical analysis based on an object
oriented viewpoint, the choice of the feature space plays a key role. This has
been widely recognized in the literature on FDA (see, e.g., Ferraty & Vieu, 2006,
Chapter 3). Although most of the earliest papers on functional geostatistics
embedded data in L2(T ) (recall, L2(T ) denotes the space of square-integrable
functions on T ), the development of the object oriented approach to geostatis-
tics dramatically increased the awareness on the importance of the feature space
(see Menafoglio et al., 2013, p. 2214). Granted that in applications concern-
ing unconstrained functional data it is often tempting to set the feature space
H = L2(T ), this implies that the differential properties of the data will not be
explicitly accounted for in the analysis, since the L2(T ) geometry is based on
point-wise operations rather than differential information (i.e., the data deriva-
tives). Menafoglio et al. (2013) argue that a normed space H different from
L2(T ) should be chosen when the point-wise and differential properties of the
data carry valuable intelligence. For instance, one could consider Sobolev spaces,
i.e., Hilbert spaces whose norms jointly account for point-wise and differential
information. The proper setting of the feature space H becomes however de-
cidedly relevant for the analysis of constrained functional data, as for the PSDs
in Example 1. Here, the geometry of the feature space has to precisely repre-
sent the functional form of the data (i.e., functional compositions). Note that
the choice of the feature space is crucial even for multivariate data in the pres-
ence of constraints. For instance, in the presence of multivariate compositions
(i.e., positive vectors summing to a constant, Aitchison, 1982), one should adopt
an appropriate geometry such as that of Aitchison in the simplex (Billheimer
et al., 2001; Pawlowsky-Glahn & Egozcue, 2001). The reader is referred to
(Pawlowsky-Glahn & Egozcue, 2016) for a recent review on geostatistics for
compositional data.

O2S2 vs space-time geostatistics. As mentioned in Section 2, some of the prob-
lems described in the present review, and particularly those in Sections 4 and 6,
could be handled by a spatio-temporal geostatistical approach, for which a large
body of literature is available (e.g., Gneiting et al., 2006; Jun & Stein, 2008).
Even though the potential of O2S2 is clear when dealing with complex or con-
strained data as the PSDs in Example 1, understanding the formal relation, as
well as strength and weaknesses of the two approaches is yet to be fully investi-
gated. This could also foster the use of object oriented spatial statistics to face
relevant operational research issues, such as those related with simulations and
meta-modeling of complex systems, that are classically dealt with via Kriging
methods (e.g., Kleijnen, 2009; Kleijnen & Mehdad, 2014). Finding the formal
connections between (space and space-time) geostatistics and spatial smooth-
ing has stimulated extensive research since the work by Watson (1984), and it
still is an open problem within the theoretical framework based on differential
penalization discussed in Section 6.

Another issue which is still open concerns the possible interplay of the three
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methodologies discussed in Sections 4, 5 and 6. For instance, combining object
oriented Kriging and methods based on differential penalizations would enable
the benefits and the strengths of both approaches. On the other hand, the
trace-covariogram of Section 4 may represent a tool to set the dimension of
the Voronoi tessellations used in Section 5, following the intuition that the
neighborhood system should be such as to minimize the dependence among
representatives, which in turn can be described by a trace-covariogram function.
The BV strategy might be then combined with Universal Kriging to build up a
concise methodology allowing to deal with severe global non-stationarity.

O2S2 for Large datasets. One of the hottest topic in modern spatial statistics
regards the treatment of large datasets (e.g., Sun et al., 2012). O2S2 provides
a general framework to treat large amounts of data, as shown by Secchi et al.
(2015), who analyze space-time mobile-phone data through a Bagging Voronoi
approach. In general, high-dimensional spatial statistics may benefit from O2S2,
as the original viewpoint of the latter can provide efficient strategies to handle
classical problems. An instance of this is given by the object oriented Kriging of
Section 4, which is posed as a convenient and efficient alternative to Cokriging,
in high-dimensional problems (Menafoglio & Petris, 2016).

Software. Few pieces of software are available for O2S2; most of these are devel-
oped in R (R Core Team, 2013). Amongst these, the R package geofd (Giraldo
et al., 2010b) has been developed within the context of functional geostatis-
tics; it allows to perform a geostatistical analysis of a functional dataset of
square-integrable functions (i.e., setting the feature space to H = L2) accord-
ing to the approach introduced in Section 4, for the case of constant spatial
mean. Voronoi tessellations as those needed to implement a Bagging Voronoi
approach can be obtained through, e.g., the R package deldir (Turner, 2015).
The package fdapde by Lila et al. (2016b) implements smoothing with differ-
ential penalization as described in Sangalli et al. (2013), and also its extension
to the space-time context (Bernardi et al., 2016). For the models with differ-
ential penalizations described by Augustin et al. (2013); Marra et al. (2012),
alternative implementations can be considered, e.g., by exploiting the package
mgcv (Wood, 2006). An R package for O2S2 is going to be released shortly by
the authors of the present paper.
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