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Abstract

We address the problem of predicting spatially dependent functional
data belonging to a Hilbert space, with a Functional Data Analysis ap-
proach. Having defined new global measures of spatial variability for func-
tional random processes, we derive a Universal Kriging predictor for func-
tional data. Consistently with the new established theoretical results, we
develop a two-step procedure for predicting georeferenced functional data:
first model selection and estimation of the spatial mean (drift), then Uni-
versal Kriging prediction on the basis of the identified dichotomy model,
sum of deterministic drift and stochastic residuals. The proposed method-
ology is tested by means of a simulation study and finally applied to daily
mean temperatures curves aiming at reconstructing the space-time field of
temperatures of Canada’s Maritimes Provinces.

1 Introduction

Functional Data Analysis (FDA, Ramsay and Silverman [2005]) has recently
received a great deal of attention in the literature because of the increasing
need to analyze infinite-dimensional data, such as curves, surfaces and images.
Whenever functional data are spatially dependent, FDA methods relying on the
assumption of independence among observations could fail because consistency
problems may arise [Hörmann and Kokoszka, 2011].
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In the presence of spatial dependence, not only ad hoc estimation and regres-
sion techniques need to be developed (e.g., Gromenko et al. [2012] and Yamanishi
and Tanaka [2003]), but also other topics need to be faced. Among them, spatial
prediction assumes a key role: the extension of kriging techniques [Cressie, 1993]
to the functional setting meets the need of interpolating complex data collected
in a limited number of spatial locations and thus could find application in differ-
ent areas of industrial and environmental research. Nevertheless, little literature
has been produced on this topic: indeed, theoretical results in this direction have
been recently derived (Giraldo et al. [2008b], Giraldo et al. [2010a], Delicado et al.
[2010], Giraldo et al. [2010b] and Monestiez and Nerini [2008]) but this theory is
still limited to stationary functional stochastic processes valued in L2.

However, in geophysical and environmental applications, natural phenomena
are typically very complex and they rarely show a uniform behavior over the
spatial domain: in these cases, non-stationary methods are needed, but, to the
best of our knowledge, a non-stationary kriging methodology for functional data
has yet to be developed. In this work, we tackle this problem both from a
theoretical point of view and from a computational one.

The methodological effort is here devoted to establish a general and coherent
theoretical framework for Universal Kriging prediction in any separable Hilbert
space, not just L2. For instance, in our setting both pointwise and differential
properties characterizing the functional data can be explicitly incorporated in the
measures of spatial dependence –namely trace-variogram and trace-covariogram–
if data are assumed to belong to a proper Sobolev space (see Remark 5 and
Subsection 4.2).

Together with the theoretical results –presented in Section 2–, new algorithms
to perform spatial prediction are developed in Section 3, while their performance
is tested through a simulation study in Section 4. Two main goals move this part
of the work: first to select an optimal linear model for the spatial mean –i.e. the
drift– in the absence of a priori information, second to estimate the structure
of spatial dependence of the associated residuals, which is that involved in the
kriging prediction.

Finally, the case study that first motivated this work is presented in Section 5.
It originates from a meteorological application and concerns the analysis of daily
mean temperature curves recorded in the Maritimes Provinces of Canada. The
aim of the study is to predict the whole space-time field of temperatures on the
basis of the available data, deriving furthermore estimates for the temperature
spatial trend. The problem of spatial prediction of temperatures is of interest in
microclimate prediction as well as in hydrological and forest ecosystem modeling.
It has been already faced in the literature about kriging for functional data
by means of stationary techniques (e.g., [Giraldo et al., 2010b]); here a non-
Euclidean distance is adopted for the spatial domain and a drift term is modeled.
We will show that the introduction of a drift term has a strong influence on the
analysis in terms of cross-validation performance and prediction accuracy, besides
allowing to deduce a climatical interpretation of the results.
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2 Universal Kriging for Functional Random Fields

2.1 Preliminaries and definitions

Let (Ω,F,P) a probability space and H a separable Hilbert space endowed with
the inner product 〈·, ·〉 and the induced norm ‖ · ‖, whose points are functions
X : T → R, where T is a compact subset of R. Call functional random variable
a measurable function X : Ω → H, whose realization X , called functional data,
is an element of H [Ferraty and Vieu, 2006].

Consider on H a (functional) random field:

{χs, s ∈ D ∈ Rd}, (1)

that is a set of functional random variables χs of H, indexed by a continuous
spatial vector s varying in D ∈ Rd (usually d = 2).

In this framework, a functional dataset χs1 , ..., χsn is the collection of n ob-
servations of the random field (1) relative to n locations s1, ..., sn ∈ D; in non-
trivial situations a vector of observations χs = (χs1 , ..., χsn)T is characterized
by a structure of spatial dependence reflecting the covariance structure of the
generating random process (1).

The aim of this work is the prediction of the realization χs0 in an unsampled
site s0 ∈ D, through a geostatistical approach, based on global definitions of
covariogram and variogram.

For 1 ≤ p <∞ denote with Lp(Ω;H) the vector space of (equivalence classes
of) measurable functions X : Ω→ H with ‖X‖ ∈ Lp(Ω) — i.e.

´
Ω ‖X (ω)‖pP(dω) =

E[‖X‖p] < ∞ where E indicates the expected value —, that is a Banach space
with respect to the norm:

‖X‖Lp(Ω;H) :=

(ˆ
Ω
‖X (ω)‖pP(dω)

)1/p

= (E[‖X‖p])1/p .

In this work, we assume that the following condition holds.

Assumption 1 (Square-integrability). Each element χs, s ∈ D, of the random
field (1) belongs to L2(Ω;H).

When Assumption 1 is true, the expected value ms of the random field (1)
can be defined as:

ms =

ˆ
Ω
χs(ω)P(dω), s ∈ D.

A global measure of spatial dependence can be provided defining the (global)
covariance function C : D×D → R as the function mapping each pairs (si, sj) ∈
D into:

C(si, sj) = Cov(χsi ,χsj ) := E[〈χsi −msi ,χsj −msj 〉], (2)

which is well-defined when Assumption 1 is true.
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In particular, the covariance function (2) is a positive definite function:∑
i

∑
j

λiλjC(si, sj) ≥ 0, ∀ si, sj ,∈ D, ∀ λi, λj ∈ R,

and defines a scalar product on L2(Ω;H).
The function C will be called trace-covariogram because of its relation –for

every fixed si, sj ∈ D– with the cross-covariance operator Csi,sj : H → H
defined, for x ∈ H, by:

Csi,sjx = E[〈χsi −msi , x〉(χsj −msj )]. (3)

As proved in [Bosq, 2000], the operator Csi,sj is a trace-class Hilbert-Schmidt
operator. Moreover, by applying Parsival Identity and following the arguments
presented in (Hörmann and Kokoszka [2011], Section 3), one can easily prove the
following:

Proposition 2. For every couple of locations si, sj in D, C(si, sj) is the trace
of the corresponding cross-covariance operator Csi,sj :

C(si, sj) =
∞∑
k=1

〈Csi,sjek, ek〉, (4)

where {ek, k ∈ N} is an orthonormal basis of H. In particular:

|C(si, sj)| ≤
∞∑
k=1

|λ(si,sj)
k |,

being λ(si,sj)
k , k = 1, 2, ..., the singular values of the cross-covariance operator

Csi,sj .

Notice that, the trace of Csi,sj is well defined by
∑∞

k=1〈Csi,sjek, ek〉, since
this series converges absolutely for any orthonormal basis {ek, k ≥ 1} of H and
the sum does not depend on the choice of the orthonormal basis (Zhu [2007],
Theorem 1.24).

Expression (2) induces a notion of global variance and of variogram, as well
as new global definitions of second-order and intrinsic stationarity.

Definition 3. The (global) variance of the process (1) is the function σ2 : D →
[0,+∞]:

σ2(s) = Var(χs) = E[‖χs −ms‖2], s ∈ D. (5)

The trace-semivariogram of the process (1) is the function γ : D×D → [0,+∞]:

γ(si, sj) =
1

2
Var(χsi − χsj ), si, sj ∈ D. (6)
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Definition 4. A functional spatial random field {χs, s ∈ D ⊂ Rd} is said to be
strongly stationary if for every h ∈ D, k ≥ 1 and every collection s1, ..., sk ∈ D:

(χs1 ,χs2 , ...,χsk) ∼ (χs1+h,χs2+h, ...,χsk+h). (7)

A process {χs, s ∈ D ∈ Rd} is said to be (globally) second-order stationary if
the following conditions hold:

(i) E[χs] = m, ∀ s ∈ D ⊆ Rd;

(ii) Cov(χsi ,χsj ) = E[〈χsi −m,χsj −m〉] = C(h), ∀ si, sj ∈ D ⊆ Rd, h =
si − sj .

A process {χs, s ∈ D ∈ Rd} is said to be (globally) intrinsically stationary if:

(i’) E[χs] = m, ∀ s ∈ D ⊆ Rd;

(ii’) Var(χsi−χsj ) = E[‖χsi−χsj‖
2] = γ(h), ∀ si, sj ∈ D ⊆ Rd, h = si−sj .

Function (6) has the same properties as its finite-dimensional analogue [Chilès
and Delfiner, 1999]; in particular the trace-semivariogram is a conditionally neg-
ative definite function:∑

i

∑
j

λiλjγ(si − sj) ≤ 0, ∀ si, sj ,∈ D, ∀ λi, λj s.t.
∑
i

λi = 0.

Remark 5. When H = L2 and global second-order stationarity and isotropy
for the process (1) is in force, the trace-semivariogram (6) corresponds to the
integrated version of pointwise variograms γ(hi,j ; t) = 1

2 Var(χsi(t)−χsj (t)) (as-
sumed to exist a.e.):

γ(hi,j) =

ˆ
T
γ(hi,j ; t)dt. (8)

This has been introduced in [Giraldo et al., 2008a] with the name of trace-
semivariogram. However our definition is more general and permits the analysis
of functional data in more complex situations. For instance, we might want to
take explicitly into account the regularity of the elements of H –which captures
the dependence along the coordinate t ∈ T – by assuming that H is an appropriate
Sobolev space and working with the inner product consistent with this assumption.

In particular, let Hk, k ≥ 1, be the subset of L2 consisting of the equivalence
classes of functions with weak derivatives DαX , α ≤ k, in L2:

Hk(T ) = {X : T → R, s.t. DαX ∈ L2,∀α ≤ k, α ∈ N}.

By considering on Hk the usual inner product and norm, the resulting trace-
variogram is (D0χs = χs):

2γ(si, sj) = Var(χsi − χsj )Hk =
k∑

α=0

Var(Dαχsi −D
αχsj )L2 ,
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where Var(Dαχsi−D
αχsj )L2 are the trace-variograms in L2 relative to the weak

derivative random fields {Dαχs, s ∈ D}, 0 ≤ α ≤ k (assumed to exist, for every
α = 0, 1, ..., k), which might significantly influence the overall trace-variogram.

The choice of the most proper Sobolev space may allow to distinguish among
functional random fields which might appear similar from a spatial dependence
point of view, but indeed very different in the structure of dependence along the
coordinate t ∈ T (see Subsection 4.2).

Moreover, suppose the random field to be the random path of a stochastic
dynamical system, {χτ , τ ∈ D ⊂ R}, whose state χτ is a functional random
variable belonging to a Sobolev space H –determined by the equations which gov-
ern the dynamics of the system– [Arnold, 2003]. In dynamical system theory,
the Sobolev norm of the state coincides with (twice) the energy of the system.
Therefore, the choice of the most proper Sobolev space for geostatistical analysis
implies a precise physical meaning for the measure of stochastic variability: in-
deed, the global variance represents (twice) the mean energy of the system, while
the trace-variogram (twice) the mean energy of the increments between two states.

In the light of the Proposition 2, existence of strong, second-order and in-
trinsic stationary functional processes can be established by direct construction
as in [Hörmann and Kokoszka, 2011]. Considering a basis {ej , j ≥ 1} of H, ev-
ery functional random process (1) with constant mean m admits the following
expansion:

χs = m+
∑
j≥1

ξj(s)ej . (9)

The scalar fields ξj(s) = 〈χs − m, ej〉, j = 1, 2, ..., determine the stationarity
of the functional process. In fact, process (1) is strong stationary if and only if
the scalar fields ξj(s) are strictly stationary for all j ≥ 1; moreover the random
element χs, s ∈ D, belongs to L2(Ω;H) if and only if the sequence {ξj(s)}j≥1

belongs to `2(Ω;R) (i.e.
∑

j≥1 E[ξj(s)] < ∞), [Hörmann and Kokoszka, 2011].
Furthermore, second-order stationarity of each scalar field ξj(s), j = 1, 2, ...,
ensures that the cross-covariance operator Cs,s+h depends only on the increment
vector h ∈ D, for every s ∈ D, which is in fact a sufficient condition for the
functional process to be global second-order stationary. This condition can be
weakened in order to obtain the following necessary and sufficient condition for
global second-order stationarity:∑

j≥1

E[ξj(s), ξj(s+ h)] = C(h), (10)

for each s,h ∈ D for some real-valued function C. As a consequence, a necessary
condition for global second-order stationarity is the independence of the `2-norm
of the sequence {ξj(s)}j≥1 from the location s ∈ D.

As in finite-dimensional theory, intrinsic stationarity is a weaker condition
than second-order stationarity. Indeed, a d-dimensional isotropic Brownian mo-
tion {Ws, s ∈ D ⊆ Rd} can be seen as a functional random field on H =
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L2([0, 1]), such that each element Ws : [0, 1]→ R, s ∈ D, is a functional random
variable whose realization Ws(ω, ·), ω ∈ Ω, is constant over the domain [0, 1]:
Ws(ω, t) = Ws(ω), for all t ∈ [0, 1]. Obviously, each Ws belongs to L2(Ω, H)
and:

Var(Wsi −Wsj ) = E[(Wsi −Wsj )] = ‖si − sj‖,

while
Cov(Wsi ,Wsj ) = E[WsiWsj ] = (‖si‖+ ‖sj‖ − ‖si − sj‖),

which is not a function of (si − sj).

Finally, the condition of isotropy can be established as follow.

Definition 6. A second-order stationary random process is said to be isotropic
if:

Cov(χsi ,χsj ) = C(‖h‖), ∀ si, sj ∈ D ⊆ Rd, h = si − sj ,

where ‖ · ‖ is a norm on D.

2.2 Universal Kriging predictor

Consider a non-stationary random process {χs, s ∈ D}, whose elements are
representable as:

χs = ms + δs, (11)

where ms, the drift, describes the non-constant spatial mean variation, while
the residual term δs is supposed to be a zero-mean, second-order stationary and
isotropic random field, i.e.:

E[χs] = ms, s ∈ D ⊆ Rd;
E[δs] = 0, s ∈ D ⊆ Rd;
Cov(δsi , δsj ) = E[〈δsi , δsj 〉] = C(‖h‖), ∀ si, sj ∈ D ⊆ Rd, h = si − sj .

As in classical geostatistics [Cressie, 1993], assume the following linear model
for the drift ms:

ms(t) =
L∑
l=0

al(t)fl(s), s ∈ D, t ∈ T , (12)

where f0(s) = 1 for all s ∈ D, fl(·), l = 1, ..., L, are known functions of the spatial
variable s ∈ D and al(·) ∈ H, l = 0, ..., L, are functional coefficients independent
from the spatial location. Hence it is supposed that the dependence of the mean
ms on the spatial variable s ∈ D is explained by the family {fl(·)}l=1,...,L, that
is scalar with respect to the variable t ∈ T ; in the meantime, the functional
nature of the drift ms is preserved thanks to the introduction of the functional
coefficients al(·), l = 0, ..., L.
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For most applications, these assumptions are not too restrictive: in fact this
model is able to describe precisely the drift term whenever it is a separable
function or in the presence of a scalar external drift.

Given n observations χs1 , ..., χsn sampled from a realization of {χs, s ∈ D},
our next goal is the formulation of the Universal Kriging predictor of the variable
χs0 located in s0 ∈ D, which is the best linear unbiased predictor (BLUP):

χ∗s0 =

n∑
i=1

λ∗iχsi ,

whose weights λ∗1, ..., λ∗n ∈ R minimize the global variance of the prediction error
under the unbiasedness constraint:

(λ∗1, ..., λ
∗
n) = argmin

λ1,...,λn∈R :
χλs0

=
∑n
i=1

λiχsi

Var(χλs0 − χs0) s.t. E[χλs0 ] = ms0 . (13)

In (13) both the variance to be minimized and the unbiasedness constraint
are well defined since the linear predictor χλs0 (and thus χλs0 − χs0) belongs to
the same space H as the variables χs1 , ...,χsn , because H is closed with respect
to linear combinations of its elements.

From the unbiasedness constraint, the following set of restrictions on the
weights can be easily derived:

n∑
i=1

λifl(si) = fl(s0), ∀ l = 0, ..., L. (14)

By including (14) in the minimization problem through L + 1 Lagrange multi-
pliers, µ0, ..., µL, problem (13) can be solved by minimizing the functional Φ:

Φ = Var(χ∗s0 − χs0) + 2
L∑
l=0

µl

(
n∑
i=1

λifl(si)− fl(s0)

)
,

easily reduced to:

Φ =

n∑
i=1

n∑
j=1

λiλjC(si, sj)+C(0)−2

n∑
i=1

λiC(si, s0)+2

L∑
l=0

µl

(
n∑
i=1

λifl(si)− fl(s0)

)
.

(15)
Under suitable assumptions on the sampling design –namely Σ = (C(hi,j)) ∈

Rn×n definite positive and Fs = (fl(si)) ∈ Rn×(L+1) of full rank–, the functional
(15) admits a unique global minimum that can be found solving the following
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linear system:

C(0) · · · C(h1,n) 1 f1(s1) · · · fL(s1)
...

. . .
...

...
...

...
...

C(hn,1) · · · C(0) 1 f1(sn) · · · fL(sn)
1 · · · 1 0 0 · · · 0

f1(s1) · · · f1(sn) 0 0 · · · 0
...

...
...

...
...

...
...

fL(s1) · · · fL(sn) 0 0 · · · 0





λ1
...
λn
µ0

µ1
...
µL


=



C(h0,1)
...

C(h0,n)
1

f1(s0)
...

fL(s0)


,

(16)
where C(hi,j) denotes the trace-covariogram function of the residual process
{δs, s ∈ D}, evaluated in hi,j = ‖si − sj‖.

Moreover, since:
γ(hi,j) = C(0)− C(hi,j),

–an extension to the functional case of a well-known result in geostatistics for
real-valued processes which can be easily derived combining (2) and (6)– the
linear system (16) can also be expressed in terms of the semivariogram function
γ as:



γ(0) · · · γ(h1,n) 1 f1(s1) · · · fL(s1)
...

. . .
...

...
...

...
...

γ(hn,1) · · · γ(0) 1 f1(sn) · · · fL(sn)
1 · · · 1 0 0 · · · 0

f1(s1) · · · f1(sn) 0 0 · · · 0
...

...
...

...
...

...
...

fL(s1) · · · fL(sn) 0 0 · · · 0





λ1
...
λn
µ0

µ1
...
µL


=



γ(h0,1)
...

γ(h0,n)
1

f1(s0)
...

fL(s0)


.

(17)
In addition, we can associate to the pointwise prediction χ∗s0 in s0 a measure

of its global variability through the universal kriging variance, defined as:

σ2
UK(s0) = C(0)−

n∑
i=1

λiC(hi,0)−
L∑
l=0

µlfl(s0) = (18)

=

n∑
i=1

λiγ(hi,0) +

L∑
l=0

µlfl(s0), s0 ∈ D; f0(s) = 1, ∀s ∈ D.

Observe that both kriging systems (16) and (17), as well as the kriging vari-
ance (18), have exactly the same form of the finite-dimensional corresponding
expressions, indicating the consistency of our extensions with the real-valued
random field case (if H = R, the trace-covariogram reduces to the usual covari-
ogram).
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Moreover, by considering the very specific case treated in Remark 5 the Uni-
versal Kriging system (17) reduces to the Ordinary Kriging system already pre-
sented in [Giraldo et al., 2008a].

Finally, global second-order stationarity of the residual process has been as-
sumed for the construction of the optimal predictor: however, as in classical
theory, the Ordinary Kriging predictor is also well defined under the hypothesis
of intrinsic stationarity. In fact, second-order stationarity for the residuals has
to be required whenever the mean ms is not constant and the residual trace-
variogram is unknown: in such a case, although the trace-covariogram is not
directly involved in the kriging system (17), it is needed for the generalized least
squares estimate of the drift (see Subsection 2.4).

2.3 Variogram Estimation

In order to determine the universal kriging predictor in s0 by solving (16) or
(17), an estimation of the trace-covariogram or, as usually preferred, of the trace-
semivariogram is needed.

As in classical geostatistics, the variogram estimation can be performed in
two steps: determination of an empirical estimator and fitting of a variogram
valid model. The latter step is necessary in order to fulfil the requirements on
the trace-variogram function, e.g. conditional negative definiteness.

Suppose to know the realization δs1 , ..., δsn of the residual process {δs, s ∈
D}, in the n sampling locations s1, ..., sn of the domain D in which we observe
the functional dataset χs1 , ..., χsn . Recall that the residual process is zero-mean
second-order stationary and isotropic, so that:

γ(h) = E[‖δsi − δsj‖2], ∀ si, sj ∈ D ⊆ Rd, h = ‖si − sj‖.

Following the approach adopted in [Giraldo et al., 2008a] and proceeding by
analogy with the finite-dimensional case, a method-of-moments estimator can be
used:

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi − δsj‖2, (19)

where N(h) indicates the set of all couples of sites separated by a distance h and
|N(h)| is its cardinality. In applications, since it is hardly possible to calculate an
estimate γ̂(h) for every value of h, a discretized version γ̂(h) = (γ̂(h1), ..., γ̂(hK))
of γ̂(h) can be used instead, defining K classes of distance and calculating for
each k = 1, ...,K:

γ̂(hk) =
1

2|N(hk)|
∑

(i,j)∈N(hk)

‖δsi − δsj‖2. (20)

For the fitting step, a least squares criterion can be used, minimizing the dis-
tance between the empirical estimate γ̂(h) and a parametric valid model γ(h;ϑ),
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properly chosen among the classical families of valid variogram models [Cressie,
1993]. Indeed, in classical geostatistics there exists a number of parametric fam-
ilies of valid variogram models that can be used in the functional case as well,
since the trace-variogram is a real valued function which has to fulfil the same
set of requirements as its finite-dimensional analogue. As an alternative, ad hoc
constructed valid models can be tested for conditional negative definiteness by
means of spectral methods [Armstrong and Diamond, 1984].

2.4 Drift Estimation

Although the drift coefficients are not directly included in the Universal Krig-
ing systems (16) and (17), their estimation is necessary in order to assess the
trace-variogram of the residual process {δs, s ∈ D}, since, in general, this is
unobserved.

Assuming the dichotomy (11) and the linear model (12), the original process
can be expressed as:

χs =
L∑
l=0

alfl(s) + δs, s ∈ D. (21)

Hence, the compact matrix form for model (21) for the random vector χ~s =
(χs1 , ...,χsn) –whose realization χ~s belongs to the product space Hn = H×H×
· · · ×H– is:

χ~s = F~sa~l + δ~s, (22)

where a~l = (a0, ..., aL) is the vector of coefficients, δ~s = (δs1 , ..., δsn) is the
random vector of spatially-correlated residuals and F~s is the design matrix:

F~s =


1 f1(s1) · · · fL(s1)
1 f1(s2) · · · fL(s2)
...

... · · ·
...

1 f1(sn) · · · fL(sn)

 .

The theory of linear models in functional data analysis (FDA) Ramsay and
Silverman [2005] has been developed under the founding hypothesis of indepen-
dent and identically distributed residuals, so that the ordinary least squares
approach developed in that framework inevitably turns out to be somewhat in-
adequate in the presence of correlated residuals.

In order to properly take into account the structure of spatial dependence
existing among observations, we propose a generalized least squares criterion
(GLS) with weighting matrix Σ−1, the inverse of the n× n covariance matrix Σ
of χ~s.

Indeed, a measure of the statistical distance among functional random vari-
ables X ,Y in Hn can be provided through the following extension of the notion
of Mahalanobis distance [Mahalanobis, 1936]:

dΣ−1(X ,Y) = ‖X − Y‖Σ−1−Hn = ‖Σ−1/2(X − Y)‖Hn ,
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where Σ = Σ1/2ΣT/2 and ‖ · ‖Hn denotes the norm in Hn, defined as ‖X‖2Hn =∑n
i=1 ‖Xi‖2H , for X = (X1, ...,Xn) ∈ Hn.
The GLS estimator âGLS~l

= (âGLS0 , ..., âGLSL )T can be determined solving the
following optimal problem:

min
â~l∈HL+1

ΦGLS(â~l) (23)

where the functional ΦGLS to be minimized corresponds to the functional Ma-
halanobis distance between fitted values m̂~s = F~sâ~l and observed data:

ΦGLS(â~l) = ‖χ~s − F~sâ~l‖
2
Σ−1−Hn = ‖χ~s − m̂~s‖2Σ−1−Hn . (24)

Proposition 7. If rank(F~s) = L + 1 and rank(Σ) = n, there exists a unique
vector âGLS~l

solving the estimation problem (23), which admits the following
explicit representation:

âGLS~l
= (FT~sΣ−1F~s)−1F~sΣ−1χ~s. (25)

Moreover, the (unique) GLS drift estimator m̂~s is:

m̂~s = Fs(FT~sΣ−1F~s)−1F~sΣ−1χ~s. (26)

Since estimators (25) and (26) are linear, their mean and variance-covariance
matrix can be easily derived obtaining:

E[âGLS~l
] = a~l; Cov(âGLS~l

) = (FT~sΣ−1F~s)−1; (27)

E[χ̂~s] = m~s; Cov(m̂~s) = FT~s (FT~sΣ−1F~s)−1F~s. (28)

Besides being unbiased, the following result holds.

Proposition 8. The estimator âGLS~l
is the BLUE (Best Linear Unbiased Es-

timator) for the coefficients a~l, i.e. for any other linear unbiased estimator
â~l = Aχ~s + b of a~l, the matrix:

Cov(â~l)− Cov(âBLUE~l
)

is positive semi-definite. As a consequence, m̂GLS
~s is the BLUE for the mean

vector m~s.

Proposition 8 not only provides an optimality result in terms of drift estima-
tion, but also in terms of bias involved in the estimation of Σ.

Indeed, let ΣGLS be the n × n covariance matrix of the estimator δ̂~s =

χ~s − m̂
GLS
~s , ΣGLS = E[δ̂~sδ̂

T

~s ], then the identity:

Σ = Cov(m̂GLS
~s ) + ΣGLS , (29)

12



can be verified through orthogonality arguments (for details see the Appendix).
Expression (29) provides a decomposition of the covariance matrix Σ in a part
depending on the variability of the drift estimator m̂GLS

~s and a component rep-
resenting the dependence structure of the estimated residual process.

Although the covariance matrix ΣGLS of δ̂~s represents the natural estima-
tor of Σ, it provides a biased estimation of the spatial-dependence structure,
underestimating it for a quantity:

B = Cov(m̂GLS
~s ) = FT~s (FT~sΣ−1F~s)−1F~s. (30)

However, the bias B of the estimator ΣGLS coincides with the minimum bias
obtainable by a least squares estimation procedure, since âGLS~l

and m̂GLS
~s are

BLUE. Indeed, every other choice of the weighting matrix for the generalized least
squares criterion would lead to a linear unbiased estimator m̂′~s, whose resulting
bias matrix B′ would be higher than B (i.e. B′−B would be semi-definite positive).

For these reasons, precision in the least squares estimation procedure of the
drift assumes a double role, determining both the accuracy in the estimate of the
deterministic component and the bias in the assessment of the spatial-dependence
structure relative to the stochastic component, that plays a key role in kriging
prediction.

The magnitude of the bias reduction due to the adoption of a GLS criterion
instead of an OLS one is clearly dependent on the structure of spatial dependence.
Indeed, such a reduction can be explicitly computed as:

∆B = BOLS − B = F~s(FT~s Fs)
−1(FT~sΣ−1F~s)(FT~s F~s)

−1FT~s − FT~s (FT~sΣ−1F~s)−1F~s.

Observe that ∆B annihilates when Σ = σ2I, that is precisely the case of (globally)
uncorrelated residuals for which OLS and GLS criteria coincide.

From the point of view of the residual variogram, the (global) uncorrelated
case corresponds to a pure nugget structure, because the mean squared norm of
the discrepancy among uncorrelated observations is equal to the variance σ2 of
the process, being thus independent from their separating distance. Therefore,
the estimation of the residuals variogram, besides allowing the analysis of the
spatial dependence structure, will be the leading tool in the determination of the
most proper procedures for the statistical treatment of the observations, as will
be clarified in the next sections.

3 Algorithms

Drift Estimation In order to compute the Universal Kriging prediction coher-
ently with the established theoretical results, an iterative algorithm is necessary.
Indeed, both the GLS drift estimator m̂GLS

~s and the system (17) depend sub-
stantially on the residual covariance structure, that can be assessed only once
an estimation of the residual process –obtainable by difference from the estimate
m̂GLS
~s – is available.

13



Therefore we propose to initialize the procedure to the ordinary least squares
(OLS) estimate, computing at each step the residual estimate and the related
trace-variogram structure, as well as the update of the drift estimate on the basis
of the structure of spatial dependence currently available.

Having reached convergence, proved to be within five iterations by simula-
tions, the final estimate of the variogram model can be used to solve the Universal
Kriging system (17), deriving the desired prediction. The described algorithm is
summarized in Algorithm 9.

Algorithm 9. Given a realization χ~s = (χs1 , ..., χsn) of the nonstationary ran-
dom field {χs, s ∈ D}, D ⊂ Rd, representable as in (11):

1. Estimate the drift vector m~s through the OLS method (m̂OLS
~s = F~s(FT~s

F~s)−1FT~s χ~s) and set m̂~s := m̂OLS
~s .

2. Compute the residual estimate δ̂~s = (δ̂s1 , ..., δ̂sn) by difference δ̂~s = χ~s−m̂~s.

3. Estimate the trace-variogram 2γ(·) of the residual process {δs, s ∈ D} from
δ̂~s first with the empirical estimator (20), then fitting a valid variogram
model γ(·; ϑ̂). Derive from γ(·; ϑ̂) the estimate Σ̂ of Σ.

4. Estimate the drift vector m~s with m̂GLS
~s , obtained from χ~s using (26).

5. Repeat 2.-4. until convergence has been reached.

For computational efficiency reasons, the step 4. can be performed through
the auxiliary uncorrelated vector ̂̃χ~s = L−1χ~s, where L appears in the Cholesky
decomposition Σ̂ = LLT . Indeed, ̂̃χ~s is an estimate of χ̃~s = Σ−1/2χ~s since
the inverse Cholesky factor L−1 provides an estimate of Σ−1/2 (see the proof of
Proposition 7 for details).

Drift Model Selection Although knowledge of the functions fl, for l = 1, ..., L
(f0(s) = 1 for all s ∈ D), is one of the underlying assumptions for the procedure
detailed in Algorithm 9, in most applications no ‘a priori’ information is available
about the family {fl}l=0,...,L = {f0, ..., fL} (e.g., no scalar external drift for the
observed phenomenon is known). Therefore a model selection step before the
application of Algorithm 9 is needed. In order to handle the model selection
problem, we propose first to choose a number of candidate regressors families
–e.g. the 25 polynomials of order lower than 2– then to select the optimal set of
regressors with predictive criterion.

Formally, consider Nf collections of functions fk~l = {fk0 , ..., fkL}, correspond-
ing to Nf possible drifts mk

s =
∑L

l=0 alf
k
l (s), s ∈ D, k = 1, ..., Nf . The aim of

the proposed method is the determination of a permutation {(1), ..., (Nf )} of the
set of indexes {1, ..., Nf} according to the mean squared error of prediction:

MSEk = E[‖χs − χ∗ks ‖2], k = 1, ..., Nf .

14



that can be assessed by a cross-validation (leave-on-out) technique combined
with a Universal Kriging prediction, based on a proper drift estimate. For com-
putational efficiency, an OLS drift estimation can be used in Universal Kriging
prediction, which actually corresponds to the very first iteration of the Algorithm
9. The proposed procedure is summed up in the following Algorithm.

Algorithm 10. Given a realization χs1 , ..., χsn of the nonstationary random field
{χs, s ∈ D} and Nf collections of functions fk~l = {fk0 , ..., fkL} (candidate forms
for the drift):

1. Fix a collection fk~l , k = 1, ..., Nf ;

2. Compute the GLS drift estimate m̂GLS,k
~s , the residual estimate δ̂k~s and the

corresponding trace-variogram model γk(·) applying M iterations of Algo-
rithm 9 (M = 1 for OLS estimate);

3. Per each fixed i = 1, ..., n, predict χsi from χ~s−i = (χsj )j 6=i through the
Universal Kriging predictor χ∗ksi solving (17) with γ = γk and f~l = fk~l

;

4. Compute the sample mean squared error: MSEk = 1
n

∑n
i=1 ‖χsi − χ∗ksi ‖

2;

5. Repeat 1.-4. for every collection fk~l , k = 1, ..., Nf ;

6. Sort {MSE1, ...,MSENf } in increasing order, determining the optimal per-
mutation {(1), ..., (Nf )} of {1, ..., Nf}; order the collections {fk~l }k=1,...,Nf

according to {(1), ..., (Nf )}, {f (k)
~l
}(k)=1,...,Nf ;

7. For k = 1, ..., Nf :

a. Check the second-order stationarity of the residual variogram model γ(k)(·)
relative to the (k)-th model;

b. If γ(k)(·) proves to be second-order stationary, select the optimal drift
model as:

mopt
s =

L∑
l=0

alf
(k)
l (s), s ∈ D,

and stop the procedure.

Note that step 7. of Algorithm 10 guarantees the stationarity of the residuals
and thus ensures that the Universal Kriging hypotheses are fulfilled by the se-
lected drift model. The residual second-order stationarity can be checked through
the analysis of the residual empirical variogram with the same criteria used in
finite-dimensional geostatistics (e.g. presence of a sill close to the estimated
variance and sub-quadratic growth for increasing distances).

Moreover the adoption of a predictive criterion contributes to avoid over-
fitting: very complex models are unable to filter the noise in the observed data,
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therefore the selection of a too complex drift structure would also catch part
of their stochastic variability, reducing considerably the predictive power of the
model.

In order to obtained the final Universal Kriging prediction, Algorithms 9
and 10 need to be combined. Two main choices can be made, according to
computational efficiency or estimation accuracy criteria.

The first possibility is to consider for step 2. of Algorithm 10 the OLS esti-
mation method. By making this choice a three-step procedure is finally obtained:
first drift model selection by Algorithm 10, second GLS estimation by Algorithm
9, finally Universal Kriging prediction. This choice aims mainly in controlling
the computational costs, ignoring the possible influences of the drift estimation
method on the prediction (not always negligible).

The second possible choice is the integration of Algorithms 9 and 10, by con-
sidering GLS estimation method during step 2. of Algorithm 10 and then using
the drift estimate of the selected model, available at the end of Algorithm 10,
for Universal Kriging prediction. This choice does not preserve the computa-
tional costs from becoming high in the presence of many candidates families,
but permits to perform a more precise drift model selection, which contributes
to make the kriging prediction more accurate. Moreover, the fairly high speed
of convergence of Algorithms 9 –by 5 iterations in all the simulations– and the
consideration of a moderate number of drift candidates contribute to control the
computational efficiency of the procedure. For these reasons, the choice made in
this work is the latter.

4 Examples and Simulation Study

4.1 Simulation of Non-stationary Functional Processes

The simulation of functional stochastic processes {χs, s ∈ D} of the form (11)
can be performed first by simulating a second-order stationary and isotropic
residual field {δs, s ∈ D} by direct construction as in (9), then by generating the
drift term and finally by summing residuals and drift term.

For this Section, the residual fields have been simulated considering the space
H = L2([0, 1]), endowed with the Fourier orthonormal basis {ej , j ≥ 1}. Expan-
sion (9) has been truncated to the 7th order for the first dataset of Subsection 4.2
and for the 5 collections of datasets analyzed in Subsection 4.3; for the second
dataset of Subsection 4.2 expansion (9) has been truncated to the 25th order, as-
suming all coefficients to be zero except for the last seven. The generation of the 7
non-null scalar fields {ξj(s), s ∈ D}, 1 ≤ j ≤ 7, involved in expansion (9) –which
in fact determine the structure of spatial dependence of the functional random
field– has been performed by means of the geostatistical software ISATISr. In
particular, each scalar field has been independently simulated on a fine grid over
the domain D = [0, 2] × [0, 3] ⊂ R2, according to a gaussian second-order sta-
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Structure (Sill, Range, Nug.)

ξ1 Exp. (16, 0.75, 0)
ξ2 Sph. (16, 0.75, 0)
ξ3 Exp. (16, 1.50, 0)
ξ4 Sph. (16, 1.50, 0)
ξ5 Sph.; Exp. (8, 0.75, 0); (8, 0.75, 0)
ξ6 Sph.; Exp. (8, 0.75, 0); (8, 0.75, 0)
ξ7 Sph.; Exp. (12, 1.50, 0); (4, 0.75, 0)

Table 1: Generating variogram models for the scalar fields {ξj(s)}, j = 1, ..., 7.
Fields ξ5, ξ6, ξ7 are generated by the sum of the indicated variogram structures.

tionary and isotropic distribution; the generating variograms are listed in Table
1. Having obtained the functional residuals over the whole grid by combining
the scalar grid realizations, the residual datasets have been finally obtained by
sampling uniformly n = 100 grid locations.

For Subsection 4.2, only stationary datasets –obtained directly from the resid-
uals realizations – have been considered. For Subsection 4.3, non-stationary
datasets have been built instead. For generating the drift terms, polynomials of
degree lower than two have been considered:

ms(t) = a0(t)+a1(t)x+a2(t)y+a3(t)x2+a4(t)y2+a5(t)xy, t ∈ [0, 1], s = (x, y) ∈ D,
(31)

where al are deterministic functional (possibly null) coefficients belonging to L2.
For the construction of al, l = 0, ..., 5, the same basis with the same truncation
as for the residuals has been fixed:

al(t) =

7∑
j=1

βj,lej(t), t ∈ T , (32)

where βj,l ∈ R, 1 ≤ j ≤ 7, 0 ≤ l ≤ 5, are the deterministic coefficients of
the expansion on the Fourier basis. In Table 2 the coefficients βj,l relative to the
complete model are listed; drift models used in the considered synthetic examples
are obtained as sub-models of the complete model as will be specified later on.

4.2 Trace-variograms in Sobolev Spaces: an example

The purpose of this first example is to show how the choice of the space H to
which data are assumed to belong might heavily influence the way in which the
spatial dependence is modeled (see also Remark 5 in Section 2).

To see this, we now consider two functional random fields, {χ(m)
s , s ∈ D},

m = 1, 2, built by combining the scalar random fields {ξj(s), s ∈ D}, j = 1, ..., 7,
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l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

β1,l 1.247 -5.050 4.011 0.389 1.734 1.572
β2,l 0.979 1.651 -1.531 1.535 0.086 0.710
β3,l 0.558 4.008 3.096 0.289 1.246 0.502
β4,l -0.047 -0.020 0.045 -0.031 0.008 -0.001
β5,l 0.032 0.022 -0.024 -0.005 -0.008 -0.047
β6,l 0.029 0.028 0.033 0.046 0.047 -0.0002
β7,l 0.063 0.042 0.016 0.109 0.057 0.004

Table 2: Coefficients βj,l, 1 ≤ j ≤ 7, 0 ≤ l ≤ 5 of the drift expansion (32) used
for the construction of the complete model and the relative sub-models.

–introduced in Subsection 4.1– as:

χs
(1) =

7∑
k=1

ξ
(1)
k (s)ek =

7∑
k=1

ξk(s)ek (33)

χs
(2) =

25∑
k=1

ξ
(2)
k (s)ek =

25∑
k=19

ξk−18(s)ek. (34)

The corresponding functional datasets χ(m)
s1 , ..., χ

(m)
s100 , m = 1, 2, have been

obtained by combining according to (33) and (34) the set of realizations of the
scalar fields ξj , j = 1, ..., 7, simulated as specified in Subsection 4.1. The func-
tional datasets are represented in the left panels of Figure 1a and 1b. The
different behavior of the curves is evident: the first dataset has a less fluctu-
ating pattern along the coordinate t ∈ [0, 1], since only the first 3 frequencies
are excited; conversely, the second dataset is characterized by a very fluctuating
pattern, due to the higher order basis truncation involving only the 10th to 12th

frequencies. First order derivatives are represented in the right panels of Figure
1a and 1b.

Notice that, by construction, each realization of both processes belongs not
only to L2, but also to H1; moreover, both processes are globally second-order
stationary either in L2 or in H1. Indeed, L2 trace-variograms, as well as H1

trace-variograms, can be explicitly computed.
Assume first H = L2. For si, sj ∈ D, m = 1, 2, (N1 = 7, N2 = 25):

2γ(m)(si, sj)L2 = E[‖χ(m)
si − χ

(m)
sj ‖2L2 ] =

Nm∑
k=1

E
[
|ξ(m)
k (si)− ξ(m)

k (sj)|2
]
.

Therefore, for both functional random fields, the L2 trace-variograms coincide:

2γ
(1)
L2 = 2γ

(2)
L2 =

7∑
k=1

2γξk ,

18



0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
Functional Dataset

t

da
ta

0.0 0.2 0.4 0.6 0.8 1.0

−
20

0
0

10
0

Derivatives

t

de
riv

at
iv

e

(a) 7 basis functions

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10

Functional Dataset

t

da
ta

0.0 0.2 0.4 0.6 0.8 1.0

−
10

00
0

50
0

Derivatives

t

de
riv

at
iv

e
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Figure 1: Functional datasets and corresponding derivatives. On the left: first
dataset, built on a 7 Fourier functions basis. On the right: second dataset, built
on a 25 Fourier functions basis, assuming non-zero only the last 7 coefficients.

where 2γξk indicate the variogram of the field ξk, k = 1, ..., 7. Obviously, also
their empirical estimates coincide (Figure 2a and 2b, left panels). Notice that
the different behavior of the two datasets along the coordinate t is lost when
inspecting L2 trace-variograms: they are able to capture only the structure of
spatial dependence determined by the fields ξj , j = 1, ..., 7, ignoring the possibly
different associated frequencies.

Information regarding curve fluctuation can be modeled through first deriva-
tive: we thus assume H = H1. Trace-variograms in H1 can be computed by:

2γ(m)(si, sj)H1 = 2γ(m)(si, sj)L2 + Var(Dχ
(m)
si −Dχ

(m)
sj )L2 .

However, since:

Var(Dχ
(m)
si −Dχ

(m)
sj )L2 = E[‖Dχ(m)

si −Dχ
(m)
sj ‖2L2 ]− ‖E[Dχ

(m)
si −Dχ

(m)
sj ]‖2L2 =

=

Nm∑
k=1

⌊
k

2

⌋2

π2E
[
|ξk(si)− ξk(sj)|2

]
,

2γ
(1)
H1 does not coincide with 2γ

(2)
H1 . Indeed:

2γ
(1)
H1 = 2γ

(1)
L2 +

7∑
k=2

⌊
k

2

⌋2

π22γξk =
7∑

k=1

(
1 +

⌊
k

2

⌋2

π2

)
2γξk ;

2γ
(2)
H1 = 2γ

(2)
L2 +

25∑
k=19

⌊
k

2

⌋2

π2γξk−18
=

25∑
k=19

(
1 +

⌊
k

2

⌋2

π2

)
2γξk−18

.

Notice that, for k = 1, ..., 7, the weights associated to the variogram γξk depends
on the frequency associated to ξk, a greater weight being assigned to a higher
frequency.

The second panels of Figure 2a and 2b show the empiricalH1 trace-variograms
estimated from the two datasets. Although the shapes of the estimates are simi-
lar, without showing notable differences with respect to L2 estimates, the orders
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Figure 2: Empirical trace-variograms in L2 and H1.

of magnitude of the sills are significantly different. Observing Figure 2c, the
different variances characterizing the two fields appear clearly: the curve corre-
sponding to γ(2)

H1 (in blue) is much higher than the other two, since the energy of
the random field {χ(2)

s , s ∈ D} is much higher than that of the others. In con-
clusion, the example clearly evidences as the choice of the space for the analysis
has to be carefully taken, according to the dataset structure and, above all, to
the purposes of the analysis. Indeed, if the aim of the analysis is purely spatial,
then L2 space is rich enough for exploratory analysis and for kriging prediction.
In other situations, the choice of a Sobolev space might be needed instead. This
is the case of the dynamical system example in Remark 5 of Section 2 or of the
example presented here.

4.3 Simulation study

Model Selection Procedure The first goal of our simulation study is to
evaluate the performance of Algorithm 10 in terms of error of model selection
(referred to as model misclassification), which occurs when the selected model
does not coincide with that generating the data, and type of error (in particular
over-fitting or under-fitting1).

In order to analyze the behavior of the algorithm in different scenarios, point-
ing out possible tendency to over-fit or under-fit the data, 5 collections of 32
datasets each have been considered.

Data generation follows this scheme. First a set of 32 drift models has been
built by considering the complete drift model (31) –constructed as previously
specified and evaluated in the sampled locations s1, ..., s100– and its 31 sub-
models. In particular, for t ∈ [0, 1], s = (x, y), drift model k = 1, ..., 32, has been
represented through five binary variables {ζ(k)

1 ζ
(k)
2 , ..., ζ

(k)
5 }, by representing:

m
(k)
s (t) = a0(t) + ζ

(k)
1 a1(t)x+ ζ

(k)
2 a2(t)y+ ζ

(k)
3 a3(t)x2 + ζ

(k)
4 a4(t)y2 + ζ

(k)
5 a5(t)xy,

(35)
1We say that the algorithm finds an over-fitting solution when it selects a drift model

including all the generating regressors plus at least one; analogously, we say that the algorithm
selects an under-fitting solution when it selects a sub-model of the true model.
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Figure 3: Residuals curves for r = 1, 2, 3, 4, 5 (from left to right). Curves in the
panel r, r = 2, 3, 4, 5, are obtained dividing the first panel residuals by r, which
is the same as considering the same realization of the first residual field but with
a lower sill for the generating variogram, namely a sill divided by r.

and setting ζ(k)
l = 1 if the l-th regressor is included in the sub-model k, ζ(k)

l = 0
otherwise, for l = 1, ..., 5. Hence, the sub-models have been ordered according to
the bijective relation among the binary numbers ζ(k)

5 ζ
(k)
4 ζ

(k)
3 ζ

(k)
2 ζ

(k)
1 , k = 1, ..., 32,

and their decimal representations plus 1 (the constant term is always included):
the complete model is thus model 32 = 1 + 31 (31 ↔ 11111), the spatially
constant model is model 1 (0↔ 00000), while, for example, sub-model 18 = 1+17
is the model with regressors {1, x, xy} (17↔ 10001).

Given the set of drift terms, the first collection of 32 functional datasets,
{χ(k,1)

~s , k = 1, ..., 32}, has been obtained by summing to each drift sub-modelm(k)
~s

the residuals generated as specified in Subsection 4.1 (Figure 3, left panel); the
remaining 4 collections {χ(k,r)

~s , k = 1, ..., 32}, r = 2, 3, 4, 5, have been obtained
with the same construction but dividing the residual realization by r (Figure 3,
four panels on the right):

χ
(k,r)
~s = m

(k)
~s + δ~s/r,

which in fact corresponds to a reduction by a factor r = 2, ..., 5 of the variogram
sills reported in Table 1.

To illustrate how the datasets collections depend on the amplitude of the
stochastic component, consider the drift model 18, which is of the form

m
(18)
s (t) = a0(t) + a1(t)x+ a5(t)xy, (36)

and consider the corresponding non-stationary data χ(18,r)
~s = m

(k)
~s + δ~s/r, r =

1, ..., 5 (Figure 4, upper panels). The increasing importance of the drift term is
made already explicit by graphical inspection, but it is even more stressed by
the empirical estimate of the variogram computed from the data (Figure 4, lower
panels). Indeed, for higher levels of residuals amplitude (r = 1), the variogram
is only slightly affected by the drift, presenting an almost stationary behavior
(e.g., downwards concavity near the origin, presence of a horizontal asymptote
for higher distances); on the contrary, for decreasing amplitude of the residuals
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Figure 4: From left to right: Dataset χ(18,r)
~s (upper panel) and the empirical

variogram computed from the data (lower panel), for r = 1, 2, 3, 4, 5.

(r = 2, 3, 4, 5), the experimental variograms assume a non-stationary aspect (e.g.,
upwards concavity near the origin, super-quadratic growth for higher distances).
This behavior is mainly due to the increasing influence of the drift term on the
data, since the empirical variogram estimator (19) computed from non-stationary
data becomes severely biased when the drift component is predominant with
respect to the residual one.

The generated collection of datasets has been used for testing the proce-
dure as follows. For each collection r, r = 1, ..., 5, the model selection step has
been separately applied to each of the corresponding 32 datasets, considering as
candidate models all the 32 polynomials of degree lower than two, namely the
complete model (31) and all its sub-models, and setting the number of the GLS
iterations equal to M = 5, which seems sufficient for Algorithm 9 to converge.
For each dataset χ(k,r)

~s , k = 1, ..., 32, the selected model and, in case of model
misclassification, the type of error (over-fitting, under-fitting or none of them)
has been recorded. Simulation results are shown in Figure 5. It is clear that the
number of misclassified models sensibly decreases when the residual amplitude
decreased. Indeed, as the r parameter increases, the drift term becomes more
significant in the prediction: we thus expect a better performance of Algorithm
10 in cases high signal-to-noise ratio (r = 3, 4, 5).

Consider now the behavior of the procedure in terms of over-fitting or under-
fitting. Figure 5 shows that in response to a decrease in the residual amplitude
(r = 3, 4, 5) the behavior moves mainly from under-fitting to correct selection,
except for a few cases in which over-fitting occurs (for r = 5, only datasets 5, 7,
13, 17, 25 are slightly over-fitted).

What is even more interesting to notice is that in very critical scenarios
(r = 1, 2), the most common misclassification error is under-fitting (Figure 6,
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Figure 5: Simulation results for the model selection algorithm. From left to
right: results applying Algorithm 10 to the collection of 32 datasets {χ(k,r)

~s , k =
1, ..., 32} for r = 1, 2, 3, 4, 5. The horizontal axis identifies the number of the
generating model, the vertical axis the number of the selected model; grey empty
dots indicate correct selection, red full dots over-fitting, green square dots under-
fitting, blue triangular dots the other cases. The points (18,2) –under-fitting–
and (18,18) –correct selection– correspond to the dataset χ(18,r)

~s , for r = 1, 5.
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Figure 6: From left to right: dataset χ(18,1)
~s and its drift (first and second panels),

dataset χ(2,1)
~s and its drift (third and fourth panels).

first and second panels). As an example, consider the dataset χ(18,1)
~s (Figure 6,

first panel). Comparing the non-stationary data with the drift curves (Figure
6, second panel), it is evident that the residuals heavily affect the shape of the
curves, making them almost indistinguishable from the curves of dataset χ(2,1)

~s
(Figure 6, third panel). Here under-fitting occurs, but, as a matter of fact, drift
models 2 and 18 are equally likely for the dataset χ(18,1)

~s : indeed, the larger
fluctuations for t in [0, 0.2] presented by dataset 18 –due to the xy component in
drift model 18, which is missing in drift model 2– might be due to the residual
fluctuation, and thus the simplest model is selected. Hence, in the presence of
highly correlated residuals, Algorithm 10 proves to be very parsimonious, which
is a very desirable property for a model selection procedure.

Drift Estimation and Universal Kriging Prediction Our next goals are
the analysis of the performance of Algorithm 9 and the evaluation of Universal
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Figure 7: Comparison of true and estimated drift through contour plots, for
t = 0.1, t = 0.7. In each sub-figure, from left to right: generated drift grid, drift
estimated with Algorithm 9 from χ

(18,1)
~s with model 2 –selected with Algorithm

10–, from χ
(18,1)
~s with model 18 and from χ

(18,5)
~s with model 18 –selected with

Algorithm 10–.

Kriging predictions.
Simulations have been performed on the data generated before, focusing on

drift model 18 in the presence of residuals δ~s/r, with r = 1, 5 (Figure 3, first and
fifth upper panels). Dataset χ(18,1)

~s has been used in order to evaluate the effect
of under-fitting both on drift estimates and on Universal Kriging predictions;
in particular, Algorithm 9 and Universal Kriging prediction have been carried
out first having selected the drift model by means of Algorithm 10 and then
assuming that the true drift model is known. Dataset χ(18,5)

~s has been used in
order to study the influence of the residuals amplitude on the results, analyzing
the performance of the procedures on less noisy data.

In all simulations the number of GLS iterations has been fixed to M =
5, which proved to be sufficient for Algorithm 9 to converge. For each of the
three cases sketched before, the drift estimation, as well as the Universal Kriging
prediction, has been performed over the whole generated grid for every t in [0, 1].
Since it is hardly possible to show at once a space-time grid of values –which is 4-
dimensional– we consider two kind of visualizations: the functional visualization,
obtained by plotting t ∈ [0, 1] on the horizontal axis, and the value χs(t) on the
vertical axis for different s ∈ D –thus ignoring the spatial location– and the
space contour representation, obtained by slicing the 4D space-time grid at some
fixed t –thus loosing the functional variation–.

Figure 7 shows the contour plots of the GLS drift estimation, for all the three
considered situations, namely for dataset χ(18,1)

~s with drift model 2 –selected by
Algorithm 10– (second panels of Figure 7a and 7b), with drift model 18 (third
panels of Figure 7a and 7b) and for dataset χ(18,5)

~s with drift model 18 (fourth
panels of Figure 7a and 7b). Recall that both datasets are characterized by the
same generating drift model.

It is clear from Figure 7a that the error in the drift estimate is not negligible
in most critical situations, namely for r = 1, t ∈ [0, 0.2] and when model 2 is
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Figure 8: Residuals variograms: empirical variogram computed from generated
residuals (solid grey lines), empirical variogram of the estimated residuals with
model 18 (dotted blue lines), variogram of the residuals estimated with drift
model 2 (only in left panel, dashed green line).

chosen by Algorithm 10 (Figure 7a second panel; recall Figure 6), and it becomes
even more severe where the non-linear behavior of the drift is more apparent,
as in the bottom-right part of the spatial domain. However, for higher values of
t, the linear model 2 seems appropriate (Figure 7b second panel), although it is
more parsimonious than the generating one.

The choice of the drift model has consequences not only on the drift maps, but
also on the residuals variogram estimate. As a matter of fact, the deterministic
variability not captured by under-fitted drifts, is picked up by the corresponding
residual variogram, leading to its over-estimation (Figure 8a, green line). Such
over-estimation is partially balanced by the downward bias that occurs estimating
the variogram from estimated residuals –due to the variance decomposition (29)–
which seems not to be very severe in the considered cases (compare gray lines
and blue lines in Figure 8a and 8b).

Even though the drift estimate as well as the variogram estimation obtained
by selecting model 2 instead of model 18 might not seem very satisfactory, the
Universal Kriging prediction appears not to be affected by under-fitting, both for
t = 0.1 and for t = 0.7 (Figure 9a and 9b). Indeed, all the patterns presented by
the original grid realization (first panels in Figure 9a and 9b) are well reproduced
by both interpolations, with very similar results for models 2 and 18.

Cross-validation results, shown in Table 3, confirm these graphical obser-
vations. The statistics relative to the n = 100 cross-validation squared errors
‖χsi − χ∗ksi ‖

2, i = 1, ..., 100 and k = 2, 18, are very similar, with slightly better
results for the selected model –which is not surprisingly, since the optimality
criterion in Algorithm 10 is precisely based on cross-validation error–.

Moreover, notice that dataset χ(18,1)
~s is characterized by a high residuals am-

plitude and thus the prediction turns out to be only slightly drift-driven: there-
fore, the Universal Kriging prediction proves to be very robust with respect to
under-fitting of the drift model. On the contrary, in the presence of low resid-
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Selected Model: 2 Correct Model: 18

Median 5.19 5.33
Mean 7.47 7.54
Sum 747.3 753.7

Table 3: Cross-validation squared error for χ(18,1)
~s , considering model 2 –selected

by Algorithm 10– and model 18.
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Figure 9: Comparison of simulated grid and UK prediction for χ(18,1)
~s through

contour plots, for t = 0.1, 0.7. In each sub-figure, from left to right: generated
grid, UK prediction for with drift model 2 –selected with Algorithm 10– and with
drift model 18.

uals amplitude, as for r = 5, the drift term becomes very influential on the
data and on the prediction: in such a case, the performance of the model selec-
tion algorithm is much more satisfactory than before (Figure 5), as well as the
drift estimation (fourth panels of Figure 7a and 7b), and the Universal Kriging
prediction appears to be very accurate (Figure 10).

The increasing precision in estimating the drift for decreasing residuals vari-
ability is even more apparent by comparing the estimated drift coefficients âl,
l = 0, 1, 5, computed from dataset χ(18,1)

~s and χ
(18,5)
~s , adopting in both cases

drift model 18, (Figure 11). Indeed, the coefficients relative to the case r = 1
(Figure 11, upper panels) capture also part of the stochastic variability and are
thus much more fluctuating than the reference ones, while the coefficients com-
puted from χ

(18,5)
~s (Figure 11, lower panels) are much more smooth reproducing

more precisely the reference ones. Notice that the first situation is particularly
critical because both residuals and drift curves are built on the same truncated
basis and thus excite the same set of frequencies. The presence of more uncer-
tainty in the estimates for noisier data is confirmed by the curves âl ± 2

√
Λll,

Λ = Cov(â~l), l = 0, 1, 5, reported in Figure 11, which provide measures of the
estimates variability.

Several other scenarios have been considered in the simulation study, obtain-
ing further evidence of the results shown here: the performance of the proposed
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Figure 10: Comparison of simulated grid and UK prediction for χ(18,5)
~s through

contour plots, for t = 0.1, t = 0.7. In each sub-figure: generated grid (left panel),
UK prediction for with drift model 18 –selected with Algorithm 10– (right panel).
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Figure 11: Comparison of the coefficients estimates âl, l = 0, 1, 5, computed from
dataset χ(18,1)

~s (upper panels) and from dataset χ(18,5)
~s (lower panels): estimated

functional coefficients âl, l = 0, 1, 5 (solid blue lines), generated coefficients al,
l = 0, 1, 5 (solid grey lines). Dashed blue lines correspond to âl ± 2

√
Λll, Λ =

Cov(â~l), l = 0, 1, 5. Vertical dashed grey lines indicate t = 0.1 and t = 0.7.
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methodology on simulated data confirmed to be very satisfactory.
Indeed, the combination of Algorithms 9 and 10 leads to a very robust and

flexible procedure. On one hand, in the presence of highly correlated data, the
adoption of a predictive criterion for selecting the drift model proves to be ap-
propriate to avoid over-fitting in favor of more parsimonious models; at the same
time, in such cases Universal Kriging prediction proves to be very robust to
under-fitting. On the other hand, in the presence of less noisy data, the results
obtained by Algorithm 10 become more reliable, as well as the drift estimations
by Algorithm 9, leading to a very precise prediction.

In any case, the obtained predictions appear very accurate in reproducing all
the main patterns presented by the generated realizations, with only a moderate
smoothing effect. This is a remarkable result especially given the simplicity of
the kriging predictor which involves only global definitions of spatial dependence,
besides being linear in the data through scalar coefficients. Indeed, simulations
show that the proposed methodology is so flexible that not only global features,
but also local structures can be well reproduced by this kind of predictor.

5 A Case Study: Analysis of Canada’s Maritime Provinces
Temperatures

Analysis of Averaged Temperatures Data The proposed methodology will
be now applied to the Canada’s Maritime Provinces Temperatures dataset (avail-
able in R package geofd [Giraldo et al., 2010c]), that collects daily mean tempera-
tures data, observed in 35 meteorological stations located in Canada’s Maritimes
Provinces (Figure 12). This region consists of three provinces, Nova Scotia,
New Brunswick and Prince Edward Island, located in the south-eastern part of
Canada (Figure 12, first panel), whose very distinctive feature is the exposition
toward the sea: indeed, especially because of the Gulf Stream coming from the
Ocean, the Provinces climate is temperate, characterized by mild winters and
cool summers [Stanley, 2002].

For each sampled site (Figure 12, second panel), identified by geographical co-
ordinates (longitude, latitude), the original raw data consist of 365 measurements
(one per day), obtained by averaging, over the years 1960 to 1994, the daily mean
temperatures recorded by the Meteorological Service of Canada. This dataset,
besides being very similar to the Canadian Weather dataset handled in [Ramsay
and Silverman, 2005], has been often analyzed in the literature concerning geo-
statistical theory for stationary and isotropic functional processes (e.g., [Giraldo,
2009], [Delicado et al., 2010], [Giraldo et al., 2010b]).

Coherently with previous analyses, the Hilbert space H has been set to be
L2 and row data (Figure 12, third panel) have been projected on a basis of 65
Fourier function, selected in [Giraldo, 2009] through a non parametric functional
cross-validation procedure (Figure 12, last right panel).

Denote with {χs, s ∈ D ⊂ Rd} the random field of temperature functions
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Figure 12: Canada’s Maritime Provinces Temperatures dataset, averaged over
1960-1994. From left to right: map of Canada highlighting the Maritimes region;
zoom of Maritime Provinces and sampled locations; raw data; fitted data.

and call D the spatial domain, endowed with the non-Euclidean metric induced
by the geodesic distance that, assuming a spherical approximation for the Earth,
can be explicitly computed as:

dg(s1, s2) = 2Rm arcsin

(√
sin2

(
ζ1 − ζ2

2

)
+ cos(ζ1) cos(ζ2) sin2

(
ϕ1 − ϕ2

2

))
,

(37)
where si = (ζi, ϕi), (longitude and latitude) i = 1, 2 e Rm ' 6371 km indicates
the Earth’s mean radius. As noticed in [Banerjee, 2005], when working with
geographical coordinates the above metrics is preferable to the Euclidean one –
adopted in previous works (e.g. [Delicado et al., 2010])–; moreover, although the
validity of usual parametric variogram models is not guaranteed in non-Euclidean
spaces [Curriero, 2006], both the spherical and the exponential models are valid
in the spherical geometry [Huang et al., 2011] and thus can be used in this case.
By a first stationary analysis of the data through the trace-variogram empirical
estimate, represented in the left panel of Figure 13, the non-stationarity of the
field is apparent (super-quadratic growth for increasing distances, no evidence
of a sill close to the sample variance of the data). Therefore, we analyze the
data by means of Algorithms 9 and 10, searching the optimal drift model among
polynomials of degree lower than 2.

The linear model singled out by the Algorithm 10 is model 23:

m(s, t) = a0(t) + a1(t)y+ a2(t)x2 + a3(t)xy, s = (x, y), t ∈ T = [0, 365], (38)

where the coordinates are identified with latitude and longitude, (x, y) = (ζ, ϕ).
Concerning the residuals structure of spatial dependence, the right panel of
Figure 13 shows that the parametric model that best fits the empirical trace-
variogram estimate is a pure-nugget model, meaning that the estimated residu-
als are uncorrelated. Therefore, the spatial variability characterizing the data is
mostly explained by the deterministic drift term, while the residuals do not seem
to contribute to the spatial correlation of the stochastic process.
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Figure 13: Estimated trace-variograms from data (on the left) and from residuals
(on the right).

UKFD OKFD OKFD FKTM
(Pure nugget; Geod. dist.) (Geod. dist.) (Eucl. dist.) (Eucl. dist.)

Median 99.1 (↓ 31%, 32%, 30%) 144.3 144.6 142.6
Mean (MSE) 155.4 (↓ 8%, 13%, 13%) 168.8 179.2 178.6

Table 4: Comparison of cross-validation squared error statistics computed by
Universal Kriging (UKFD), Ordinary Kriging (OKFD, Delicado et al. [2010])
–using geodetic and Euclidean distance – and Functional Kriging Total Model
(FKTM, Delicado et al. [2010]). The reduction of UKFD error with respect to
OKFD and FKTM is reported between brackets.

In such a case, Universal Kriging predictor reduces to the drift estimate –i.e.
the prediction which would have been obtained via FDA linear models–, which
in fact provides the best predictive performance among the functional forms
tested by the Algorithm 10. In particular, it is better performing –in terms of
cross-validation errors– than the Ordinary Kriging predictor (i.e. drift model
1) computed by using geodesic distance (Table 4, second column), as well as
by using Euclidean distance (Table 4, third column). Not even the Functional
Kriging Total Model predictor (FKTM, Delicado et al. [2010]), which is the most
complex stationary kriging predictor available in the literature, achieves results
as satisfactory as those of the UKFD predictor (fourth column). Indeed, cross-
validation statistics obtained with the proposed methodology are improved at
least of 8% with respect to the stationary methods and at least of 13% with
respect to the analyses already presented in the literature2. Notice in particular
that the presented methodology is much simpler and computational efficient than
FKTM.

The fact that the residuals do not show a non-trivial structure of spatial
2The codes for computing the stationary predictors are available in geofd R package. Cross-

validation statistics are here computed with respect to fitted data and are thus different from
statistics reported in previous works (e.g., [Delicado et al., 2010]), that refers to raw data
instead.
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Figure 14: Canada’s Maritime Provinces Temperatures dataset, year 1980. From
left to right: map of Maritime Provinces and sampled locations; raw data; fitted
temperature curves.

dependence might be due to the average over 34 years made on the original
data, which may have masked the small scale variability. For this reason, we will
now apply our methodology to a one-year dataset, collecting the measurements
recorded in the same area, during the year 1980.

Analysis of 1980 Temperatures Data The dataset analyzed in this second
part of the case study collects daily mean temperatures recorded, along the (leap)
year 1980, in 27 meteorological stations located in the same region considered
before (Figure 14, left panel). The raw data (Figure 14, central panel), available
on the Natural Resources of Canada website [2012] website, have been projected
as before on a basis of 65 Fourier functions, obtaining the functional dataset
represented in the right panel of Figure 14. Choices for the functional and spatial
metrics have been taken coherently with the previous analysis: the functional
space is H = L2, while distances between spatial locations have been computed
by geodesic distance (37).

Although the empirical trace-variogram estimated from the data (Figure 15,
left panel) seems not so far from stationarity, we proceed in applying our pro-
cedure, since among polynomials of degree lower than two also the stationary
model is tested by Algorithm 10. The selected model is model 31:

m(s, t) = a0(t)+a1(t)y+a2(t)x2+a3(t)y2+a4(t)xy, s = (x, y), t ∈ T = [0, 366],

which provided the best cross-validation results: thus, from a predictive point
of view, a non-stationary model seems the most appropriate for describing the
data. Moreover, by observing the residuals trace-variogram, a strong correlation
among residuals can be recognized and the exponential structure appears suitable
for fitting the empirical variogram. Therefore, in this case, GLS method is the
most appropriate for estimating the drift, while Universal Kriging is needed to
perform optimal spatial prediction.

Figure 16 shows the contour plots of the GLS drift estimate (upper panels)
and of the Universal Kriging prediction (lower panels), obtained by fixing the
time coordinate t to the Spring Equinox (21st March, first panels), the Summer
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Figure 15: Estimated trace-variograms from data (on the left) and from residuals
(on the right).

Solstice (21st June, second panels), the Autumn Equinox (23rd September, third
panels) and the Winter Solstice (21st December, fourth panels). The first in-
teresting result to be noticed is the climatical interpretation emerging from the
obtained maps. The exposition of the Maritimes region towards the sea plays
a key role indeed, due to the alternation of Atlantic warm-humid currents with
freezing streams coming from the internal Canadian regions. These currents
circulations significantly influences the temperatures and clearly reflects on drift
contour lines (Figure 16, upper panels) with a clear rotation in drift contour lines,
which begins during the springtime and continues until September under the in-
fluence of Gulf Stream from South (third panel): the early spring drift map (first
panel) presents colder temperatures in the internal part of New Brunswick and
warmer temperatures in the South; early summer panel (second panel) presents
the opposite spatial behavior instead, featured by a warmer zone in the continen-
tal region and a cooler area along the sea. Moreover, notice the different rotation
speed during the year –much faster in the transition from spring to summer and
from summer to autumn than during the other months– that reflects the climat-
ical trend in the region, featured by long lasting cold seasons and shorter warm
periods.

Together with the drift rotation speed, the complexity in the spatial behavior
(Figure 16, lower panels) seems to change along the temporal coordinate. Indeed,
Universal Kriging maps relative to colder seasons (first, third and fourth panels)
point out a much stronger influence of the drift component on the prediction
with respect to the summer season (second panel); the latter is featured by very
local structures instead, which seem to be strongly related to the geographical
configuration of the area –notice in particular the low temperature zones marked
off by the Bay of Fundy and by the Atlantic Ocean–. The interpretability of
our results support the assertion made at the end of Section 4: our methodology
applied to real data provides fairly accurate results also locally, although curves
are handled as points of an infinite-dimensional space, under global assumptions.

Besides being climatically interpretable, the obtained results are consistent
with the seasonal reference maps published by Natural Resources Canada, pro-
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Figure 16: Drift estimation and Universal Kriging prediction contour plots for
the Spring Equinox (21st March), to the Summer Solstice (21st June), to the
Autumn Equinox (23rd September) and to the Winter Solstice (21st December).

UKFD OKFD OKFD FKTM
(Geod. dist.) (Geod. dist.) (Eucl. dist.) (Eucl. dist.)

Median 190.2 (↓ 8%, 13%, 13%) 205.9 218.2 218.1
Mean (MSE) 263.5 (↓ 14%, 18%, 19%) 306.8 323.2 323.8

Table 5: Comparison of cross-validation squared error statistics computed by
Universal Kriging (UKFD), Ordinary Kriging (OKFD, Delicado et al. [2010])
–using geodetic and Euclidean distance – and Functional Kriging Total Model
(FKTM, Delicado et al. [2010]). The reduction of UKFD error with respect to
OKFD and FKTM is reported between brackets.

viding a further validation of the model.
Finally, cross-validation analysis has been performed, comparing our results

with those obtained by applying a stationary model. Table 5 reports cross-
validation statistics relative to Universal Kriging and Ordinary Kriging using the
geodesic distance (first and second columns) and Ordinary Kriging and Func-
tional Kriging Total Model based on the Euclidean metric (third and fourth
columns). In the Euclidean setting, OKFD and FKTM show very similar pre-
dictive performances, with just slightly better results obtained in mean (MSE)
with OKFD. By moving from Euclidean to geodesic distance, a first improvement
in cross-validation results is achieved, but the most significant error reduction
is due to the introduction of the drift term: indeed, moving from Ordinary to
Universal Kriging –in the geodesic setting– the error decreases at least of 8% –if
we consider the median value–, presenting a 14% reduction in mean.

Concerning the local errors along the temporal coordinate t, the modeling of
a non-constant spatial mean makes the prediction unbiased and thus prevent the
systematic overestimation or underestimation of the data, which occurs instead
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(a) Cross-validation functional residuals
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Figure 17: Comparison of cross-validation results for Universal Kriging and Or-
dinary Kriging, using in both cases the geodesic distance. In Subfigure (a):
functional residuals for the 27 locations (grey lines) highlighting Bon Accord
(NS) (green line) and Truro (NB) (blue line). In Subfigure (b): squared errors
map; the dimension of the points is proportional to the cross-validation squared
error; Bon Accord (NS) (green points) and Truro (NB) (blue points) are marked
in the western part of the maps.

in OKFD prediction, respectively in Bon Accord and Truro (Figure 17a).
Moreover, by considering the spatial distribution of cross-validation errors

(Figure 17b), it clearly appears that the most significant growth of the predictive
power is obtained in peripheral zones, in particular for Bon Accord (NS) and
Truro (NB) (western part of the maps). This kind of improvement is explained
by the increased flexibility reached through the introduction of a drift term.
This drives the prediction in peripheral areas and allows to reach more extreme
predicted values, above all during the winter season where the drift is more
influent on the prediction. For instance, observe the NW corner of Universal
Kriging maps computed for the 1st January (Figure 18a): with OKFD the most
extreme predicted temperatures are around -9◦C, while UKFD prediction reaches
values below -16◦C.

On the other hand, the additional flexibility obtained by introducing the drift
term contributes to mitigate the smoothing effect of kriging; this reflects on a very
accurate local prediction that reproduces the local structures much better than
the Ordinary Kriging interpolation. For example, look at the local structures
that arise during the summer period between the Bay of Fundy and the Atlantic
Ocean in Figure 18b: they are very well reproduced by UKFD prediction, while
they are severely smoothed in the OKFD interpolation.

Therefore, the non-stationary prediction, obtained by applying our procedure,
proves to be much more satisfactory than the stationary interpolations in terms
both of global prediction error as well as of local behavior: Universal Kriging
prediction is precise and flexible, besides being simple and easier to compute with
respect to the most sophisticated stationary methods existing in the literature.
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Figure 18: Comparison of the results obtained with Universal Kriging and Or-
dinary Kriging, using in both cases the geodesic distance. Upper panels show
contours maps, lower panels represent the associated 3D plots.

6 Conclusions and further research

In this work, a new kriging methodology for non-stationary spatially dependent
functional data has been developed. On one hand, the theoretical effort has
been spent for the formulation of a coherent framework, based on minimal as-
sumptions. On the other hand, the developed algorithms aimed at making our
theoretical results applicable on real data, through reliable and efficient proce-
dures.

The development of inferential tools for spatially dependent functional data
is still one of the most challenging topic to be addressed: the significance of
regressors coefficients should be tested during drift model selection and kriging
confidence bands should be provided together with point-wise prediction. To this
end, a possible immediate perspective is given by the extension to the georefer-
enced functional case of non-parametric resampling methods like the bootstrap
–e.g., [Efron and Tibshirani, 1993] and more recently, in the field of FDA, [Fer-
raty et al., 2010]–, which would allow to avoid distributional assumptions by
means of a computer-intensive technique.

Developing statistical models and inferential procedures for general Hilbert
spaces, instead of working out ad hoc techniques for the L2 space, opens broad
perspectives of research: indeed, it may allow the integration of the kriging
methodology, which is in fact an interpolation technique, with the physical model
underlying the observed phenomenon. In this direction, more complex linear
models (e.g., FDA Total Model [Ramsay and Silverman, 2005]) would be worth
investigating in order to model more precisely the drift term, possibly including
more complex regressors which might influence or drive the physical system.
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7 Appendix: Proofs

Proof. (Proposition 7) Consider the auxiliary optimal problem:

min
â~l∈HL+1

Φ̃OLS(â~l) (39)

where:
Φ̃OLS(â~l) = ‖χ̃~s − F̃~sâ~l‖

2
Hn , (40)

with χ̃~s = Σ−1/2χ~s, whose components are uncorrelated, and F̃~s = Σ−1/2F~s.
It is easily seen the equivalence of the estimation problems (23) and (39), as

ΦGLS(â~l) = Φ̃OLS(â~l).
Assume that Σ is known and denote with Ṽ the closed subspace of Hn gen-

erated by linear combination of F̃~s columns with coefficients in H and let Ṽ ⊥ be
its orthogonal complement:

Ṽ = {ṽ ∈ Hn : ṽ = F̃~sa~l, a~l ∈ H
L}, (41)

Ṽ ⊥ = {w̃ ∈ Hn : 〈w̃, ṽ〉Hn = 0, ∀ṽ ∈ Ṽ }. (42)

The estimator ̂̃m~s = F̃~sâ~l of m̃~s –mean vector of χ̃~s– minimizing Φ̃OLS is the

projection of χ̃~s on Ṽ , while the residual vector ̂̃δ~s = χ̃~s − ̂̃m~s is the projection
of χ̃~s on Ṽ ⊥: ̂̃m~s = P

Ṽ
χ̃~s (43)̂̃

δ~s = P
Ṽ ⊥χ̃~s (44)

If rank(F~s) = L+ 1 and rank(Σ) = n, then rank(F̃~s) = L+ 1, which ensures
the existence and uniqueness of the projections (43) and (44).

Moreover, the projection (43) can be explicitly computed pre-multiplying χ̃~s
for the orthogonal projection matrix H̃ = F̃~s(F̃T~s F̃~s)

−1F̃T~s , deriving directly the
following linear expressions:

âGLS~l
= (F̃T~s F̃~s)

−1F̃T~s χ̃~s;̂̃m~s = H̃χ̃~s = F̃~s(F̃T~s F̃~s)
−1F̃Ts χ̃~s. (45)

Applying the inverse transformation, expressions (25) and (26) can be finally
obtained.

Proof. (Proposition 8) Let â~l be a generic linear estimator of the coefficients a~l:

â~l = Aχ~s + b, (46)

with A ∈ RL+1,n, b ∈ HL+1. The unbiasedness condition translates into the
constraints:

AF~s = In (47)
b = 0, q.o. (48)

36



where In is the identity matrix in Rn, 0 ∈ HL+1 is the vector of L+ 1 identically
zero functions.

By definition of optimality of âBLUE~l
, for every other linear unbiased estima-

tor â~l, the matrix:
Cov(â~l)− Cov(âBLUE~l

),

is positive semi-definite, or equivalently:

xT (Cov(â~l)− Cov(âBLUE~l
))x ≥ 0, ∀x ∈ Rn.

For a generic linear estimator (46), under the unbiasedness constraints (48),
the variance-covariance matrix is:

Cov(â~l) = AΣAT ;

and, by the inequality [Shumway and Dean, 1968]:

αC−1αT ≥ αD(DTCD)−1DTαT ,

that holds for C ∈ Rn,n semidefinite positive, D ∈ Rn,L+1 and α ∈ Rn, a lower
bound for xT Cov(â~l)x can be obtained by setting C = Σ−1, α = xTA and
D = F~s:

xTAΣATx ≥ xTAF~s(FT~sΣ−1F~s)−1FT~sA
Tx, ∀x ∈ Rn.

The lower bound is reached for:

ABLUE = (FT~sΣ−1F~s)−1FT~sΣ−1.

Hence, the optimal linear estimator is:

âBLUE~l
= (FT~sΣ−1F~s)−1FT~sΣ−1χ~s ≡ â

GLS
~l

,

that in particular minimizes the mean square errors MSEl simultaneously for
every l = 0, ..., L:

MSEl = E[‖âl − al‖2] = (AΣAT )ll,

subject to the unbiasedness constraints (47) and (48).
As a consequence, by linearity, m̂~s is the BLUE for the drift.

Proof. (Decomposition of variance (29)) Let ΣGLS be the n×n covariance matrix
of the estimator δ̂~s, ΣGLS = E[δ̂~sδ̂

T

~s ] and consider the following matrix notations:

ggT = (〈gi, gj〉), g = (g1, ..., gn) ∈ Hn

E[A] = (E[Aij ]), A = (Aij) ∈ Rn,
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Then:

Σ := Cov(χ~s) = E[(χ~s −m~s)(χ~s −m~s)
T ] =

= E[Σ1/2(χ̃~s − m̃~s)(χ̃~s − m̃~s)
TΣT/2] =

= E[Σ1/2(χ̃~s ± ̂̃m~s − m̃~s)(χ̃~s ± ̂̃m~s − m̃~s)
TΣT/2] =

= Σ1/2E[(χ̃~s − ̂̃m~s)(χ̃~s − ̂̃m~s)
T + (̂̃m~s − m̃~s)(

̂̃m~s − m̃~s)
T ]ΣT/2 =

= E[Σ1/2(χ̃~s − ̂̃m~s)(χ̃~s − ̂̃m~s)
TΣT/2] + E[Σ1/2(̂̃m~s − m̃~s)(

̂̃m~s − m̃~s)
TΣT/2] =

= E[(χ~s − m̂~s)(χ~s − m̂~s)
T ] + E[(m̂~s −m~s)(m̂~s −m~s)

T ] =

= E[δ̂~sδ̂
T

~s ] + E[(m̂~s −m~s)(m̂~s −m~s)
T ] =

= ΣGLS + Cov(m̂~s).
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