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Abstract

A finite difference discretization of the three-dimensional, incompress-
ible Navier-Stokes equations is presented, based on finite difference opera-
tors that satisfy discrete analogs of some basic calculus identities. These
mimetic properties yield a numerical method for which a discrete form of
the vorticity equation can be derived naturally from the discrete momen-
tum equation, by application of the mimetic rotation operator. As a result,
a discrete approximation of vorticity is exactly preserved, for inviscid flows,
independently of the mesh size. The vorticity preservation property guar-
antees that no spurious vorticity is generated by the nonlinear advective
terms in absence of viscosity. A mimetic discretization of the viscous terms
and an appropriate treatment for rigid wall boundary conditions are also
proposed. The relationship of this approach to other similar techniques is
discussed. The proposed method is validated on several idealized test cases
for laminar incompressible flow, in which it is compared to a widely used
finite difference discretization. The method is then applied to Large Eddy
Simulation of incompressible flow, demonstrating the advantages of the in-
herent conservation properties in a comparison with experimental data and
DNS results especially when strong vorticity production takes place at the
boundaries.
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1 Introduction

The development of numerical methods for fluid flow preserving discrete
analogs of some invariants of the equations of motion (such as e.g. mass, mo-
mentum, energy, enstrophy) attracted great attention in the early phases of
computational fluid dynamics. In particular, finite differencing techniques pos-
sessing such properties were developed in context of numerical models for large
scale atmospheric flows, see e.g. [5], [6], [20], [27], [36], [37]. Also more recent
work has devoted attention to these discrete properties, see e.g. [8], [9], [10],
[18], [26], [28], [29], [33], [35], [39], [40]. The development of numerical meth-
ods with discrete conservation properties can take advantage of the so called
mimetic finite difference schemes, for which discrete analogs of continuous iden-
ties hold, such as ∇×∇φ = 0, integration by parts formulae and the Helmholtz
decomposition theorem. Examples of mimetic finite differences are given e.g. by
[19], [31], in two and three dimensional frameworks, respectively. These proper-
ties have been used e.g. in [32] to prove stability and convergence of the MAC
discretization approach.

Some evidence of the benefits of these conservative approaches is given by the
consistent reproduction of energy and enstrophy spectra in long term decaying
turbulence simulations, as proposed e.g. in [10], [11], [35]. In more conventional
CFD applications, the arguments supporting the use of mimetic schemes are also
related to the desire of reproducing correct turbulence spectra, the discussion in
[33]. Furthermore, it was suggested in [29] that apparently pathological solutions
of the Euler equations may indeed be the result of spurious vorticity production,
which could be avoided if vorticity preserving discretizations were employed.

In this paper, we will investigate numerically a vorticity preserving discretiza-
tion for incompressible flow problems, with the aim of assessing its potential ad-
vantages with respect to more common discretization approaches for large eddy
simulation (LES) applications. In particular, a MAC-type, mass and vorticity
preserving finite difference discretization of the three dimensional Navier-Stokes
equations will be used, based on the concepts first proposed in [36] for the shal-
low water equations and extended more recently in [10] to triangular meshes.
Vorticity preservation means that a discrete vorticity equation can be achieved
by application of a mimetic curl operator to the discrete momentum equation.
As a consequence, the spatial semi-discretization preserves discrete irrotational
initial data in absence of viscosity. Furthermore, both the viscous term and the
rigid wall boundary conditions are discretized consistently in a vorticity pre-
serving manner. These particular features of the discretization are achieved at
the same computational cost of more standard approaches and ensure that no
spurious vorticity is produced by the numerical solution procedure. The result-
ing numerical method is very similar to other techniques based on analogous
mimetic concepts. For example, a three-dimensional extension of the original
Sadourny’s approach was first introduced in [37] for models of nonhydrostatic
atmospheric flows.
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The purpose of this paper is not so much to introduce an entirely novel dis-
cretization approach, as to highlight the advantages of the vorticity preserving
numerical techniques with respect to other methods of the same order of accu-
racy that either do not preserve any discrete invariant or have other discrete
preservation properties. A number of numerical experiments will show that the
proposed discretization concept produces remarkable improvements with respect
to a more conventional numerical method that is of the same order and only dif-
fers from our mimetic scheme for the discretization of the nonlinear momentum
advection term. The accuracy improvement appears to be especially significant
in regimes where highly localized vorticity production is taking place close to
boundaries. Furthermore, results of a high Reynolds number LES computation
are presented and compared to corresponding experimental data and Direct Nu-
merical Simulation results, showing a remarkable improvement in accuracy as
a consequence of the inherent conservation properties of the proposed method.
These findings seem to warrant the conjecture formulated in [29] that vorticity
preservation may indeed be beneficial. Preliminary results obtained with the
present discretization in laminar flow tests were presented in [1], [2].

In section 2, several formulations of the incompressible Navier-Stokes equa-
tion are briefly reviewed and a specific dynamic subgrid scale model is intro-
duced, that will be employed in the LES computations. The basic operators of
the proposed finite difference discretization are introduced in section 3, while
the vorticity preserving spatial discretization and its properties are described
in section 4. The discretization of the boundary conditions is discussed in sec-
tion 5. In section 6, the results of various tests for inviscid or laminar flows
are shown, demonstrating the substantial advantages of the proposed technique
with respect to another widely used finite difference method of comparable ac-
curacy. In sections 7 and 8, the application of the method to LES is presented,
for which also distinctive advantages are displayed with respect to traditional
techniques. Some conclusions from the comparisons carried out so far and on
the perspectives for future developments are presented in section 9.
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2 The Navier-Stokes equations

The Navier-Stokes equations for a constant density, incompressible fluid can
be written as

∂u

∂t
= −u · ∇u−∇p + µ∆u (1)

∇ · u = 0 (2)

for x ∈ Ω, where Ω is a bounded region in R3, u denotes the flow velocity and
p the pressure field. For the purpose of deriving vorticity preserving discretiza-
tions, a reformulation of these equations is considered, based on the identities
(see e.g.[12])

u · ∇u = ω × u + ∇K, (3)

∆u = ∇(∇ · u) −∇× ω, (4)

where ω = ∇×u denotes vorticity and K = ‖u‖2/2 denotes kinetic energy. The
Navier-Stokes equations can be rewritten as

∂u

∂t
= −ω × u−∇(p + K) − µ∇× ω (5)

∇ · u = 0 (6)

Taking the curl of the momentum equation, an evolution equation for vorticity
can also be obtained

∂ω

∂t
= −∇×

[

ω × u
]

+ µ∆ω. (7)

For applications to Large Eddy Simulation (LES) of turbulent flows, the
filtered Navier-Stokes equations will be considered

∂ũ

∂t
= −ω̃ × ũ−∇(p̃ + K̃) − µ∇× ω̃ −∇ · τSGS (8)

∇ · ũ = 0 (9)

where the tilde denotes the implicit filtering operation over the grid and τSGS is
the subgrid scale (SGS) stress tensor. Dynamic models for τSGS have been first
proposed in [15], to which we refer for the complete definition of the notation
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and of the corresponding basic concepts. Here, the mixed anisotropic tensor
model proposed and validated in [3] will be used, that can be described as an
extension of the isotropic dynamic model (see e.g. [25]).

The mixed anisotropic SGS tensor is defined by

τij − (δij/3)
∑

k

τkk = Lij − (δij/3)
∑

k

Lkk (10)

− 2
∑

r,s

Bijrs∆̃
2|S̃|S̃rs +

2

3
δij

∑

k,r,s

Bkkrs∆̃
2|S̃|S̃rs

where Lij is the resolved turbulent stress tensor. The fourth order tensor Bijrs

is assumed to have the following form:

Bijrs =
∑

α,β

Cαβaiαajβarαasβ (11)

and aiα are the components of unit vectors aα(α =1,2,3), to be chosen suit-
ably. The 3 × 3 matrix aiα is unitary; in particular a−1 = aT , where aT is the
transposed matrix. Cαβ = Cβα are the elements of a 3 × 3 symmetric matrix.
Note that the usual sum convention has not been used for obvious reasons. The
coefficients Cαβ vary in space and time. The assumption is that, in the locally
rotated reference frame defined by the transformation matrices aiα, the tensor
Bijrs becomes diagonal with respect to 2 indices. Using the Germano identity,
the coefficients Cαβ are determined explicitly in function of the resolved velocity
field. In this paper, the eigenvectors of the L tensor have been used as unit
vectors ai of the local reference frame.

3 Finite difference discrete operators

A staggered discretization grid with at most Nx × Ny × Nz computational
cells is introduced, along the lines of popular discretization methods such as the
MAC (marker and cell) approach, introduced in [17], or the Arakawa C grid (see
e.g. [5]). Each cell is numbered at its center with indices i, j and k, for the x, y
and z directions, respectively. The length of the cell sides in each directions are
denoted by ∆xi, ∆yj and ∆zk and they are assumed to vary in their respective
direction only. The cell volume is given by Vi,j,k = ∆xi∆yj∆zk and staggered
spacings ∆xi+ 1

2

are defined by arithmetic average.

The discrete u velocity is defined at half integer i and integers j and k, v
is defined at integers i, k and half integer j, while w is defined at integers i, j
and half integers k. Finally, p and all other three-dimensional scalar variables
are defined at integers i, j, k. At points where they are not defined, the discrete
variables are generally computed by simple arithmetical mean of the nearest
defined values. Averaged quantities will usually be denoted by an overbar, so
that e.g.

ūi,j,k =
ui+ 1

2
,j,k + ui− 1

2
,j,k

2
,
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Figure 1: Location of velocity and vorticity point on the staggered Cartesian
mesh.

ūi,j+ 1

2
,k =

ui+ 1

2
,j,k + ui− 1

2
,j,k + ui+ 1

2
,j+1,k + ui− 1

2
,j+1,k

4
.

Difference operators are then introduced as

δxφi+ 1

2
,j,k =

φi+1,j,k − φi,j,k

∆xi+ 1

2

δxφi,j,k =
φi+ 1

2
,j,k − φi− 1

2
,j,k

∆xi

δyφi,j+ 1

2
,k =

φi,j+1,k − φi,j,k

∆yj+ 1

2

δyφi,j,k =
φi,j+ 1

2
,k − φi,j− 1

2
,k

∆yj

δzφi,j,k+ 1

2

=
φi,j,k+1 − φi,j,k

∆zk+ 1

2

δzφi,j,k =
φi,j,k+ 1

2

− φi,j,k− 1

2

∆zk

for staggered and unstaggered locations, respectively.
A discrete divergence operator is also defined at unstaggered locations as

div(u, v,w)i,j,k =
ui+ 1

2
,j,k − ui− 1

2
,j,k

∆xi

+
vi,j+ 1

2
,k − vi,j− 1

2
,k

∆yj
+

wi,j,k+ 1

2

− wi,j,k− 1

2

∆zk
. (12)

With a similar definition, the divergence operator can be also defined at any
staggered location, if the components of a discrete vector field normal to the
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faces of the corresponding control volume are available. The vorticity fluxes
are naturally defined via the Stokes theorem at the faces of staggered control
volumes, so that

ωx
i,j+ 1

2
,k+ 1

2

=
wi,j+1,k+ 1

2

− wi,j,k+ 1

2

∆yj+ 1

2

−
vi,j+ 1

2
,k+1 − vi,j+ 1

2
,k

∆zk+ 1

2

ωy

i+ 1

2
,j,k+ 1

2

=
ui+ 1

2
,j,k+1 − ui+ 1

2
,j,k

∆zk+ 1

2

−
wi+1,j,k+ 1

2

− wi,j,k+ 1

2

∆xi+ 1

2

(13)

ωz
i+ 1

2
,j+ 1

2
,k

=
vi+1,j+ 1

2
,k − vi,j+ 1

2
,k

∆xi+ 1

2

−
ui+ 1

2
,j+1,k − ui+ 1

2
,j,k

∆yj+ 1

2

.

A discrete curl operator can be defined for each cell as

curl(u, v,w)i,j,k = (ωx
i,j+ 1

2
,k+ 1

2

, ωy

i+ 1

2
,j,k+ 1

2

, ωz
i+ 1

2
,j+ 1

2
,k

). (14)

These definitions are similar to those given e.g. in [19] and have similar mimetic
properties. More specifically, we first prove that

curl(δxφ, δyφ, δzφ)i,j,k = 0. (15)

Indeed, applying equations (13) to the discrete vector field components given by
δxφi+ 1

2
,j,k, δyφi,j+ 1

2
,k, δzφi,j,k+ 1

2

one obtains e.g. for the vorticity flux in the x

direction

ωx
i,j+ 1

2
,k+ 1

2

=
δzφi,j+1,k+ 1

2

− δzφi,j,k+ 1

2

∆yj+ 1

2

−
δyφi,j+ 1

2
,k+1 − δyφi,j+ 1

2
,k

∆zk+ 1

2

=
1

∆yj+ 1

2

∆zk+ 1

2

[φi,j+1,k+1 − φi,j+1,k − φi,j,k+1 + φi,j,k

−φi,j+1,k+1 + φi,j,k+1 + φi,j+1,k − φi,j,k] = 0.

Analogous calculations for the other vorticity components yield equation (15).
The second key mimetic property is

div(ωx, ωy, ωz)i+ 1

2
,j+ 1

2
,k+ 1

2

= 0. (16)

This can be proven showing that the expression on the left hand side of equation
(16) can be expanded as

ωx
i+1,j+ 1

2
,k+ 1

2

− ωx
i,j+ 1

2
,k+ 1

2

∆xi+ 1

2

+
ωy

i+ 1

2
,j+1,k+ 1

2

− ωy

i+ 1

2
,j,k+ 1

2

∆yj+ 1

2

+
ωz

i+ 1

2
,j+ 1

2
,k+1

− ωz
i+ 1

2
,j+ 1

2
,k

∆zk+ 1

2

,
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which in turn can be rewritten as

wi+1,j+1,k+ 1

2

− wi+1,j,k+ 1

2

∆yj+ 1

2

∆xi+ 1

2

−
vi+1,j+ 1

2
,k+1 − vi+1,j+ 1

2
,k

∆zk+ 1

2

∆xi+ 1

2

−
wi,j+1,k+ 1

2

− wi,j,k+ 1

2

∆yj+ 1

2

∆xi+ 1

2

+
vi,j+ 1

2
,k+1 − vi,j+ 1

2
,k

∆zk+ 1

2

∆xi+ 1

2

+
ui+ 1

2
,j+1,k+1 − ui+ 1

2
,j+1,k

∆zk+ 1

2

∆yj+ 1

2

−
wi+1,j+1,k+ 1

2

− wi,j+1,k+ 1

2

∆xi+ 1

2

∆yj+ 1

2

−
ui+ 1

2
,j,k+1 − ui+ 1

2
,j,k

∆zk+ 1

2

∆yj+ 1

2

+
wi+1,j,k+ 1

2

− wi,j,k+ 1

2

∆xi+ 1

2

∆yj+ 1

2

+
vi+1,j+ 1

2
,k+1 − vi,j+ 1

2
,k+1

∆xi+ 1

2

∆zk+ 1

2

−
ui+ 1

2
,j+1,k+1 − ui− 1

2
,j,k+1

∆yj+ 1

2

∆zk+ 1

2

−
vi+1,j+ 1

2
,k − vi,j+ 1

2
,k

∆xi+ 1

2

∆zk+ 1

2

+
ui+ 1

2
,j+1,k − ui− 1

2
,j,k

∆yj+ 1

2

∆zk+ 1

2

= 0.

Equation (16) can also be rewritten as e.g.

δxωx
i+ 1

2
,j+ 1

2
,k+ 1

2

= −δyω
y

i+ 1

2
,j+ 1

2
,k+ 1

2

− δzω
z
i+ 1

2
,j+ 1

2
,k+ 1

2

. (17)

It is to be remarked that the above definitions and properties hold for staggered
locations belonging to the interior of an arbitrarily shaped computational do-
main. For nodes at the boundaries, the definition of the vorticity value depends
on the boundary conditions being imposed. The discrete boundary conditions
for the present formulation are described in section 5. However, the definition
given at the boundary is consistent with the definition of operator 14, since it is
derived along the same lines as discrete analog of of Stokes theorem.

4 A mimetic spatial discretization of the Navier-Stokes

equations

The proposed spatial discretization of equations (5)-(6) is obtained by ap-
plication of the mimetic finite difference operators described in the previous
section:
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∂

∂t
ui+ 1

2
,j,k = −ω̄y

i+ 1

2
,j,k

w̄i+ 1

2
,j,k + ω̄z

i+ 1

2
,j,k

v̄i+ 1

2
,j,k

−δx(p + K̄)i+ 1

2
,j,k

+µ
[

δz(ω
y)i+ 1

2
,j,k − δy(ω

z)i+ 1

2
,j,k

]

(18)

∂

∂t
vi,j+ 1

2
,k = −ω̄z

i,j+ 1

2
,k

ūi,j+ 1

2
,k + ω̄x

i,j+ 1

2
,k

w̄i,j+ 1

2
,k

−δy(p + K̄)i,j+ 1

2
,k

+µ
[

δx(ωz)i,j+ 1

2
,k − δz(ω

x)i,j+ 1

2
,k

]

(19)

∂

∂t
wi,j,k+ 1

2

= −ω̄x
i,j,k+ 1

2

v̄i,j,k+ 1

2

+ ω̄y

i,j,k+ 1

2

ūi,j,k+ 1

2

−δz(p + K̄)i,j,k+ 1

2

+µ
[

δy(ω
x)i,j,k+ 1

2

− δx(ωy)i,j,k+ 1

2

]

(20)

div(u, v,w)i,j,k = 0. (21)

The resulting method, that is second order accurate in space in the case of
constant mesh spacing, extends to the three-dimensional, viscous, incompressible
case the techniques proposed in [9], [10] for the discretization of the shallow
water equations on a triangular geodesic grid. These were in turn inspired by
the seminal paper [36] and by the methods presented in [26]. A similar three-
dimensional extension was first introduced in [37] for models of nonhydrostatic
atmospheric flows. In the two-dimensional inviscid case, the discretization (18)-
(21) coincides exactly with that of [36], if constant fluid thickness is assumed in
the shallow water equations considered therein. On the other hand, the choice of
the formulation (5)-(6) leads to a formulation that is similar to that of [33]. The
main difference between the present approach and the discretization proposed
in [33] lies in the location of the velocity and vorticity points. In the present
discretization, the tangential velocity components at the cell edge (for example,
the terms w̄i+ 1

2
,j,k, v̄i+ 1

2
,j,k in equation 18) are averaged separately at the edge

midpoint, while in [33] the whole momentum advection term is computed at the
cell vertex (i.e., at the discrete location where vorticity is defined).

The proposed discretization is mass and vorticity preserving. Indeed, mass
conservation is achieved in the same way as in the standard MAC approach. In
order to prove vorticity preservation we will show that, taking the discrete curl

of equations (18)-(20), a consistent discretization of equation (7) results. More
specifically, one has e.g.
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∂

∂t
ωx

i,j+ 1

2
,k+ 1

2

=
1

∆yj+ 1

2

{

− ω̄x
i,j+1,k+ 1

2

v̄i,j+1,k+ 1

2

+ ω̄y

i,j+1,k+ 1

2

ūi,j+1,k+ 1

2

−δz(p + K̄)i,j+1,k+ 1

2

+ µ
[

δy(ω
x)i,j+1,k+ 1

2

− δx(ωy)i,j+1,k+ 1

2

]

+ω̄x
i,j,k+ 1

2

v̄i,j,k+ 1

2

− ω̄y

i,j,k+ 1

2

ūi,j,k+ 1

2

+δz(p + K̄)i,j,k+ 1

2

− µ
[

δy(ω
x)i,j,k+ 1

2

− δx(ωy)i,j,k+ 1

2

]}

−
1

∆zk+ 1

2

{

− ω̄z
i,j+ 1

2
,k+1

ūi,j+ 1

2
,k+1 + ω̄x

i,j+ 1

2
,k+1

w̄i,j+ 1

2
,k+1

−δy(p + K̄)i,j+ 1

2
,k+1 + µ

[

δx(ωz)i,j+ 1

2
,k+1 − δz(ω

x)i,j+ 1

2
,k+1

]

+ω̄z
i,j+ 1

2
,k

ūi,j+ 1

2
,k − ω̄x

i,j+ 1

2
,k

w̄i,j+ 1

2
,k

+δy(p + K̄)i,j+ 1

2
,k − µ

[

δx(ωz)i,j+ 1

2
,k − δz(ω

x)i,j+ 1

2
,k

]}

Consider now that the pressure gradient terms cancel because of equation (15)
and that one can rewrite the diffusive terms as

1

∆yj+ 1

2

{

µ
[

δy(ω
x)i,j+1,k+ 1

2

− δx(ωy)i,j+1,k+ 1

2

]

−µ
[

δy(ω
x)i,j,k+ 1

2

− δx(ωy)i,j,k+ 1

2

]}

−
1

∆zk+ 1

2

{

µ
[

δx(ωz)i,j+ 1

2
,k+1 − δz(ω

x)i,j+ 1

2
,k+1

]

−µ
[

δx(ωz)i,j+ 1

2
,k − δz(ω

x)i,j+ 1

2
,k

]}

=
µ

∆yj+ 1

2

{

δy(ω
x)i,j+1,k+ 1

2

− δy(ω
x)i,j,k+ 1

2

}

+
µ

∆zk+ 1

2

{

δz(ω
x)i,j+ 1

2
,k+1 − δz(ω

x)i,j+ 1

2
,k

}

+
µ

∆yj+ 1

2

{

− δx(ωy)i,j+1,k+ 1

2

+ δx(ωy)i,j,k+ 1

2

}

−
µ

∆zk+ 1

2

{

δx(ωz)i,j+ 1

2
,k+1 − δx(ωz)i,j+ 1

2
,k

}

.
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Exploiting the fact that

µ

∆yj+ 1

2

{

− δx(ωy)i,j+1,k+ 1

2

+ δx(ωy)i,j,k+ 1

2

}

−
µ

∆zk+ 1

2

{

δx(ωz)i,j+ 1

2
,k+1 − δx(ωz)i,j+ 1

2
,k

}

=
µ

∆xi

{

− δyω
y

i+ 1

2
,j+1,k+ 1

2

+ δyω
y

i− 1

2
,j+1,k+ 1

2

−δzω
z
i+ 1

2
,j+1,k+ 1

2

+ δzω
z
i− 1

2
,j+1,k+ 1

2

}

,

using (17) and repeating the corresponding steps also for equations (19)-(20)
one obtains finally

∂

∂t
ωx

i,j+ 1

2
,k+ 1

2

= −δy[ω̄
xv̄ − ω̄yū]i,j+ 1

2
,k+ 1

2

+ δz[ω̄
zū − ω̄xw̄]i,j+ 1

2
,k+ 1

2

+µ div(δxωx, δyω
x, δzω

x)i,j+ 1

2
,k+ 1

2

(22)

∂

∂t
ωy

i+ 1

2
,j,k+ 1

2

= −δz[ω̄
yw̄ − ω̄z v̄]i+ 1

2
,j,k+ 1

2

+ δx[ω̄xv̄ − ω̄yū]i+ 1

2
,j,k+ 1

2

+µ div(δxωy, δyω
y, δzω

y)i+ 1

2
,j,k+ 1

2

(23)

∂

∂t
ωz

i+ 1

2
,j+ 1

2
,k

= −δx[ω̄zū − ω̄xw̄]i+ 1

2
,j+ 1

2
,k + δy[ω̄

yw̄ − ω̄zv̄]i+ 1

2
,j+ 1

2
,k

+µ div(δxωz, δyω
z, δzω

z)i+ 1

2
,j+ 1

2
,k (24)

Equations (22)-(24) represent a consistent spatial discretization of equation
(7). It should be noticed that similar results are true also for more conventional
schemes. For example, in the two dimensional case, discretizing momentum ad-
vection by upwind finite differences and applying the curl operator, by lengthy
but straightforward algebra one obtains a numerical scheme for the vorticity
advection equation that is equivalent to an upwind discretization of the two
dimensional analog of (7) plus a first order source term. The same derivation
is carried out in Appendix 1 of [38] for a MAC scheme using centered finite
differences for the discretization of momentum advection. In that case, a sec-
ond order source term results. The key difference between vorticity preserving
approaches as the one analyzed here and other discretizations lies in the fact
that no such mesh and flow dependent source terms are present for the vortic-
ity preserving schemes. As a result, in absence of boundaries and assuming an
initial state such that curl(u, v,w)i,j,k = 0, equations (22)-(24) imply that the
discrete vorticity remains zero also at any later time. Thus, no spurious vorticity
is produced by the spatial discretization, independently of the mesh size. It can
be observed that in the two dimensional case, the present scheme reduces to the
(potential) enstrophy preserving scheme of [36], so that the same enstrophy con-
servation proof holds assuming the fluid thickness to be constant in the shallow
water equations considered by [36]. The numerical tests presented in section 6
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Figure 2: Computation of vorticity values at the boundaries.

will show that this vorticity preserving scheme has in practice good enstrophy
preservation properties.

5 Discretization of rigid wall boundary condition

At the boundaries of the computational domain, boundary conditions have
to be imposed and a discretization procedure must be found that is appropriate
to provide discrete boundary values for equations (18)-(21). We consider here
rigid wall, no slip conditions, which are usually applied to the Navier-Stokes
equations (see e.g. [12]). The rigid wall condition is imposed by assuming
that the normal velocity components at the boundary faces are zero. In the
discretization approach described by equations (18)-(21), the only other bound-
ary conditions that need to be assigned are the values of the vorticity fluxes
ωx

i,j+ 1

2
,k+ 1

2

, ωy

i+ 1

2
,j,k+ 1

2

, ωz
i+ 1

2
,j+ 1

2
,k

for cell edges that belong to boundary faces.

These boundary vorticity values are computed by applying Stokes theorem (see
fig. 2) to control volumes adjacent to the boundary and whose boundary faces
are centered at the discrete locations where vorticity fluxes are defined. In par-
ticular, along the boundary faces the tangential velocity component is assumed
to be zero, in agreement with the no slip boundary condition.

6 Validation on idealized cases of laminar flow

A full space-time discretization can be obtained from the spatial discretiza-
tion introduced in section 4, by application of an appropriate time stepping
scheme. For the purpose of the tests discussed in this paper, a third order Runge-
Kutta method was employed for time discretization of the advective terms, along
with a second order Runge-Kutta method for the diffusive terms (see the dis-
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cussion in [38] on the stability of Runge-Kutta schemes for the discretization
of advection equation). As a result, a scheme of overall second order accuracy
in time is obtained. To enforce the incompressibility constraint, a projection
method was employed (see e.g. [4], [16], [22], [34]), with an explicit predictor
step using the above described time discretization and a following pressure cor-
rection step, in which a Poisson equation is solved for pressure to ensure that
the discrete velocity field is divergence free. For all the numerical tests consid-
ered, relatively small values of the timestep and of the Courant number were
used, since the focus here is on the investigation of the properties of the spatial
discretization.

Throughout this section, the results of the vorticity preserving scheme are
compared to those obtained in the same test cases with another finite difference
method for the discretization of the nonlinear momentum equation. More specif-
ically, the centered finite difference method of [24] has been employed, coupled
to the same time discretization described above. The spatial discretization of
[24] is also second order in space, mass conservative and uses the same MAC
type staggered grid and the same discretization of the divergence operator. It
only differs from our approach in the approximation of the momentum equation,
which does not preserve vorticity in the sense described in section 4. The imple-
mentation of the finite difference method of [24] used for these tests had been
validated previously in a number of laminar and turbulent flow simulations (see
e.g. [3]). In the following paragraphs, the reference finite difference method of
[24] will be denoted as scheme 1, while the vorticity preserving method of section
4 will be denoted as scheme 2.

6.1 Lamb dipole

In the first numerical experiment, the two-dimensional Lamb dipole is studied
numerically. The Lamb dipole consists of two symmetric patterns with vorticity
of opposite sign. Using polar coordinates r, θ, inside the circular region with
radius r = a vorticity is given by

ω = −
2U0

J0(ka)
J1(kr) sin θ, (25)

where Jn is the n−th order Bessel function of the first kind and k is chosen so
that ka ≈ 3.8317 is the first zero of J1. Outside the circle r ≤ a, the motion
is irrotational with uniform velocity u = (U0, 0, 0). In the inviscid case, the
dipole moves along the axis with a constant velocity U0 and without changing
shape. Moreover, vorticity, kinetic energy and enstrophy are conserved. This
problem has been solved on a domain of size Lx = Lz = 6 with 256 × 256 grid
points. Periodic boundary conditions in x and free slip conditions in z have
been applied. The values U0 = 2 and a = 1 are chosen for the initial vorticity
field. We observe that kinetic energy (graph not shown) is well conserved by
both numerical schemes. On the other hand, scheme 1 does display spurious
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production of vorticity (see fig.3,4) and enstrophy (see fig.5.), while scheme 2
does indeed preserve well the vorticity minima, maxima and mean values.
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Figure 3: Time evolution of minimum and maximum vorticity for the inviscid
Lamb dipole.
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Figure 4: Time evolution of mean vorticity for the inviscid Lamb dipole.

The vorticity plots in figures 6,7 also show that a great amount of spurious
vorticity is produced close to the symmetry axis by scheme 1, while scheme 2
appears to conserve much better the vorticity structure of the dipole.

As a consequence, the velocity field obtained with the scheme 1 is much
noisier than that of the scheme 2, see figures 8, 9.
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Figure 5: Time evolution of mean enstrophy for the inviscid Lamb dipole.
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Figure 6: Vorticity field obtained with standard finite difference scheme for the
inviscid Lamb dipole.
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Figure 7: Vorticity field obtained with vorticity preserving mimetic scheme for
the inviscid Lamb dipole.
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Figure 8: Vertical velocity field obtained with standard finite difference scheme
for the inviscid Lamb dipole.
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Figure 9: Vertical velocity field obtained with vorticiy preserving mimetic scheme
for the inviscid Lamb dipole.

6.2 ABC flow

The Arnold - Beltrami - Childress (ABC) flow (see e.g. [7], [14]) was then
considered, which provides a nonlinear test for the Navier-Stokes equations in
which an analytic solution is known, at least in the inviscid case. The velocity
field of the ABC flow is given by

u = A sin z + C cos y

v = B sin x + A cos z (26)

w = C sin y + B cos x.

It is a three dimensional, periodic velocity field associated to a vorticity satis-
fying the relation ω = u. Field (26) is an analytic solution of the Euler equa-
tions. Thus, we can use the numerical simulation of the ABC flow to evaluate
the accuracy of the spatial discretization scheme for the convective term in a
strongly three dimensional field. Periodic boundary conditions are applied in all
space directions, so that the results are not affected by the approximation of the
boundary conditions. The computational domain is a cubic box of 2π size with
50 × 50 × 50 grid cells. The flow constants were taken to be A = B = C = 1.
For such a flow, the mean kinetic energy and the mean enstrophy are given by

K̄ =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

1

2

(

u2 + v2 + w2
)

dxdydz =
3

2

η̄ =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

1

2

(

ω2
x + ω2

y + ω2
z

)

dxdydz =
3

2
,
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respectively. ABC flows may very rapidly become unstable, but, if no distur-
bances or dissipation are introduced, the predicted values for mean kinetic energy
and enstrophy should be conserved during the simulation. Thus, any deviation
of the computed values from the predicted ones is a measure of the error of the
numerical scheme. In figures 10, 11, the results for the inviscid Euler case are
shown. The graph for the kinetic energy in figure 10 shows that scheme 1 is in-
deed dissipative, while the solution obtained with scheme 2 shows an increasing
kinetic energy. The enstrophy is initially dumped by scheme 1, (fig.11), with a
rapid increment at a later time. On the other hand, scheme 2 appears to stay
much closer to the correct value on the same time range.
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Figure 10: Time evolution of mean kinetic energy for the solution of inviscid
ABC flow.

If an external driving force f = u/Re is imposed, field (26) is again a solution
of the Navier-Stokes equations. Otherwise (see e.g. [14]), the flow decays as

e(− t
Re

)u. At very low Reynolds number (Re < 13.044) the solution is stable. In
order to test the accuracy of the diffusive term approximation, the simulation of
the ABC flow has been performed also in the viscous case.

In figures 12,13, the mean kinetic energy and enstrophy obtained with the
two schemes, are compared to the theoretical values in the case in which no
external forcing was applied. As in the inviscid case, the two methods have
opposite behaviour concerning energy dissipation, while the vorticity preserving
scheme is clearly more accurate in reproducing the total enstrophy decay.

7 Large eddy simulation of plane channel turbulent

flow

The correct representation of wall turbulence and the accurate prediction of

18



0 0.1 0.2 0.3 0.4 0.5
time

2.7

2.8

2.9

3

3.1

3.2

En
st

ro
ph

y

scheme 1
scheme 2

Figure 11: Time evolution of mean enstrophy for the solution of inviscid ABC
flow.
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Figure 12: Time evolution of mean kinetic energy for the solution of viscous
ABC flow without driving force at Reynolds number Re = 1.
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Figure 13: Time evolution of mean enstrophy for the solution of viscous ABC
flow without driving force at Reynolds number Re = 1.

skin friction are of great importance for various engineering and environmental
applications. For this reason, in order to assess the potential advantages of the
proposed method for numerical simulation of turbulent flows, the classical plane
channel flow has been considered as a benchmark. For such a flow, Large Eddy
Simulation employing the anisotropic mixed model (10) has been performed.
We consider plane-channel flow at Reynolds number Reτ = uτδ

ν
= 180, based

on the half height of the channel δ, and on the friction velocity uτ =
√

τw/ρ,
where τw is the mean shear stress at the wall. The channel flow is simulated in a
computational box with dimensionless size Lx = 2π in the streamwise direction
x and Ly = π in the spanwise direction. No-slip walls are located at z = ±1. The
flow is forced in streamwise direction with a volume forcing such that the mass
flow is constant during the simulation. Periodic boundary conditions are used in
streamwise and spanwise directions. The corresponding Reynolds Re = Umaxδ

ν

number based on the maximum streamwise velocity has an expected value of
Re = 3290. The resolution used is Nx = Ny = 32 and Nz = 27. In the
normal direction, the grid is stretched using a tanh function; there are three
points in the laminar sublayer, and eight points within the buffer region. In the
horizontal direction the grid spacing in wall units is 17.7× 8.8. The simulations
are started from a divergence - free random perturbations field superimposed to
a logaritmic velocity profile. After a sufficiently long transient, a statistically
steady state is reached, after which statistical averaging is performed over about
40 nondimensional time units.

The results obtained with the mimetic scheme (denoted as scheme 2) are
compared to the results obtained with a DNS [30] and to the experimental data
in [42], [23], and to the results obtained by a simulation performed using our
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numerical code with the scheme 1. For the two schemes, we evaluated the skin
friction error defined as

δτ =
τw/U2

b − τref/U2
bref

τref/U2
bref

,

where the DNS results have been used as a reference (Ub is the bulk velocity).
The δτ errors are not so different for the two schemes, yielding δτ = 0.2289 for
scheme 1 and δτ = 0.2225 for scheme 2.
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Figure 14: Mean streamwise velocity profile for channel flow at Reτ = 180.

In fig.14 we show the longitudinal mean velocity profile as a function of the
distance from the walls expressed in wall units,z+, where z+ = zuτ

ν
; the results

for both scheme 1 and scheme 2 are in good agreement with velocity profile
obtained by the DNS. Also the profiles for the root mean square of velocity
fluctuation (figg.15,16,17) are similar for the two schemes, and both are in better
agreement with experimental data than DNS results. As a conclusion, results of
the plane channel test show a an essentially equivalent performance of schemes
1 and 2.

8 Large eddy simulation of three-dimensional turbu-

lent flow over an obstacle

In order to assess the potential advantages of the proposed method for numer-
ical simulation of turbulent flows when strong vorticity production takes place at
the boundaries, the flow in a channel with a square cylinder on the lower wall has
been considered as a benchmark. All the variables are nondimensionalized by
the bulk velocity above the cylinder and the height H of the obstacle. The com-
putational domain is a box of size Lx = 16, Ly = 2π, Lz = 2 with 150× 34× 82
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Figure 15: Root mean square of the streamwise velocity fluctuation profile for
channel flow at Reτ = 180.
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Figure 16: Root mean square of the spanwise velocity fluctuation profile for
channel flow at Reτ = 180.
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Figure 17: Root mean square of the normal to the wall velocity fluctuation
profile for channel flow at Reτ = 180.

mesh points, respectively. The square cylinder is placed at 5 ≤ x ≤ 6. The
minimum grid size close to the obstacle is ∆xmin = 0.009 ∆zmin = 0.002, while
grid size increases away from the cylinder. Periodic boundary conditions are
assumed in the x and y directions, while no slip conditions for the velocity and
Neumann condition for the pressure are imposed at the walls.

The flow has been simulated at Reynolds numbers Re = 3000 and Re = 5000.
In fig.18, a schematic rendering of the separation and reattachment regions
around the cylinder is shown, as defined by the zero contours of the average
streamwise velocity. There are primary and secondary separation and reattach-
ment regions, both upstream and downstream of the obstacle. Moreover, a
tertiary separation zone is present at the downstream corner between the obsta-
cle and the wall. For the given Reynolds numbers, reattachment does not occur
at the top of the obstacle.

Firstly, the results for Re = 3000 are shown. Table 8 gives the values of the
separation and reattachment lengths indicated in figure 18, as computed with
scheme 1, scheme 2 and in the LES and DNS results of [41]. It can be noticed
that the values for the separation and reattachment lengths are, in most cases,
better evaluated by scheme 2. Fig.18 can be qualitatively compared with the two
instantaneous velocity fields obtained with scheme 1 and scheme 2 (fig.19): also
in the instantaneous velocity field is visible that the scheme 1 underestimates
the separation and reattachment lengths.

From fig.20 can be observed that the scheme 1 does not reproduce the tertiary
separation zone in the downstream corner.

Fig.21 shows a noise production in the streamwise vorticity component on
the upstream corner for the scheme 1.

Averaged longitudinal and vertical velocity profiles, at different x coordi-
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Figure 18: Schematic representation of separation and reattachment regions.

XR Xr Yr XF YF

DNS [41] 6.42 1.21 0.35 1.51 0.28

LES [41] 6.80 1.13 0.36 1.51 0.37

Scheme 1 5.97 0.87 0.42 0.9 0.40

Scheme 2 6.40 1.29 0.35 1.31 0.39

Table 1: Separation and reattachment lengths computed in different types of
simulations.

nates, are plotted in figures 22-23. The quantities are averaged in the homoge-
neous direction and in time over 40 characteristic time units. The present results
are compared with direct numerical simulations (DNS) [21], [41], LES [41] and
experimental data [13].

It can be noticed that in the separation region above and behind the obstacle,
scheme 2 yields significantly better results than scheme 1. Above the cylinder,
the streamwise and normal velocity profiles for scheme 1 are more disturbed,
possibly due to the noise in the vorticity production on the upstream corner.

For Re = 5000, the standard finite difference method leads to numerical
instability and entirely erroneous results. Using the vorticity preserving method,
instead, results consistent with those in the Re = 3000 case are obtained and
displayed in figures 24-25.

9 Conclusions and open issues

A vorticity preserving discretization of the three-dimensional, incompress-
ible Navier-Stokes equations has been presented, which includes an appropriate
treatment for viscous terms and rigid wall boundary conditions. Numerical re-
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Figure 19: Instantaneous streamwise velocity field computed with (a) scheme 1
and (b) scheme 2.
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Figure 20: Instantaneous velocity field in the downstream corner computed with
(a) scheme 1 and (b) scheme 2.
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Figure 21: Instantaneous transversal vorticity field on the upstream corner com-
puted with (a) scheme 1 and (b) scheme 2.
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Figure 22: Averaged streamwise velocity profile at locations (a) x = 3.8, (b)
x = 5.08 ,(c) x = 5.5 and (d) x = 7. •: DNS [21]; �: DNS [41]; +: LES [41]; ×:
experimental data [13]; : scheme 1; −−: scheme2.
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Figure 23: Averaged vertical velocity profile at locations (a) x = 3.8, (b) x = 5.08
,(c) x = 5.5 and (d) x = 7. •: DNS [21]; �: DNS [41]; +: LES [41]; ×:
experimental data [13]; : scheme 1; −−: scheme2.
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Figure 24: Instantaneous streamwise velocity field around the cube at Re =
5000, vorticity preserving method.
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Figure 25: Instantaneous transversal vorticity component around the cube at
Re = 5000, vorticity preserving method.
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sults obtained in a number of test cases show that the method has considerable
advantages with respect to another finite difference scheme of the same order
of accuracy, especially in regimes where highly localized vorticity production is
taking place close to boundaries and the resolution is relatively coarse. In partic-
ular, remarkable accuracy was achieved in a LES simulation of a high Reynolds
number benchmark, for which the results of the proposed method were compared
successfully to those of DNS simulations and to experimental data.

These results seem to support the heuristic considerations in [29] and moti-
vate further research and analysis. In particular, we would like to carry out a
more systematic assessment of the relative merits of the present approach with
respect to energy preserving methods such as those proposed in [18], [33] and
with respect to other finite volume and finite element discretizations. Extension
to unstructured three dimensional meshes along the lines of the two dimensional
methods proposed in [10], [33] are also feasible and will be investigated.
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