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Abstract

A new estimator, named as S-LASSO, is proposed for the coefficient function
of a functional linear regression model where values of the response function, at a
given domain point, depends on the full trajectory of the covariate function. The
S-LASSO estimator is shown to be able to increase the interpretability of the model,
by better locating regions where the coefficient function is zero, and to smoothly
estimate non-zero values of the coefficient function. The sparsity of the estimator is
ensured by a functional LASSO penalty whereas the smoothness is provided by two
roughness penalties. The resulting estimator is proved to be estimation and pointwise
sign consistent. Via an extensive Monte Carlo simulation study, the estimation and
predictive performance of the S-LASSO estimator are shown to be better than (or
at worst comparable with) competing estimators already presented in the literature
before. Practical advantages of the S-LASSO estimator are illustrated through the
analysis of the well known Canadian weather and Swedish mortality data .
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1 Introduction

Functional linear regression (FLR) is the generalization of the classical multivariate regres-

sion to the context of the functional data analysis (FDA) (e.g. Ramsay and Silverman

(2005); Horváth and Kokoszka (2012); Hsing and Eubank (2015); Kokoszka and Reimherr

(2017)), where either the predictor or the response or both have a functional form. In

particular, we study the Function-on-Function (FoF) linear regression model, where both

the predictor and the response variable are functions and each value of the latter, for any

domain point, depends on the full trajectory of the former. The model is as follows

Yi (t) =

∫
S
Xi (s) β (s, t) ds+ εi (t) t ∈ T , (1)

for i = 1, . . . , n. The pairs (Xi, Yi) are independent realizations of the predictor X and the

response Y , which are assumed to be smooth random process with realizations in L2(S)

and L2(T ), i.e., the Hilbert spaces of square integrable functions defined on the compact

sets S and T , respectively. Without loss of generality, the latter are also assumed with

functional mean equal to zero. The functions εi are zero-mean random errors, independent

of Xi, and have autocovariance function K (t1, t2), t1 and t2 ∈ T . The function β is smooth

in L2(S ×T ), i.e., the Hilbert space of bivariate square integrable functions defined on the

compact set S × T , and is hereinafter referred to as coefficient function. For each t ∈ T ,

the contribution of Xi to the conditional value of Yi (t) is generated by β (·, t), which works

as continuous set of weights of the predictor evaluations.

The interpretability of the model in Equation (1) is of great practical interest and is

based on the knowledge of the parts of the domain S ×T where the predictor X influences

the response Y (non-null region) or not (null region) i.e., β is different from or equal to

zero, respectively.

FLR analysis is a hot topic in the FDA literature, a comprehensive review of the main

results is provided by Morris (2015) as well as Ramsay and Silverman (2005); Horváth and

Kokoszka (2012) and Cuevas (2014) give worthwhile modern perspectives. Although the

research efforts have been focused mainly on the case where either the predictor or the

response have functional form (Cardot et al., 2003; Li et al., 2007; Hall et al., 2007), the

interest in the FoF linear regression has increased in the very last years. Besse and Cardot
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(1996) developed a spline based approach to estimate the coefficient function β, Ramsay

and Silverman (2005) proposed an estimator assumed to be in a finite dimension tensor

space spanned by two basis sets and where regularization is achieved by either truncation

or roughness penalties. Yao et al. (2005b) built up an estimation method based on the

principal component decomposition of the autovariance function of both the predictor and

the response based on the principal analysis by conditional expectation (PACE) method

(Yao et al., 2005a). This estimator was extended by Chiou et al. (2014) to the case of

multivariate functional responses and predictors. A general framework for the estimation

of the coefficient function was proposed by Ivanescu et al. (2015) by means of the mixed

model representation of the penalized regression. An extension of the ridge regression

(Hastie et al., 2009) to the FoF linear regression with an application to the Italian gas

market was presented in Canale and Vantini (2016). To take into account the case when the

errors εi are correlated, in Scheipl et al. (2015) the authors developed a general framework

for additive mixed models by extending the work of Ivanescu et al. (2015).

Few works address the issue of the interpretability in FLR. In the function-on-scalar

setting, James et al. (2009) proposed the FLiRTI (Functional Linear Regression That’s

Interpretable) estimator that is able to recover the sparseness of the coefficient function,

by imposing L1-penalties on the coefficient function itself and its first two derivatives. An

estimator obtained in two stages was proposed by Zhou et al. (2013), where an initial

estimate is obtained by means of a Dantzig selector (Candes et al., 2007) refined via the

group Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001). The most

recent work that addresses the issue of interpretability is that of Lin et al. (2017), who

proposed a Smooth and Locally Sparse (SLoS) estimator of the coefficient function based

on the combination of the smoothing spline method with the functional SCAD penalty.

However, to the best of the author knowledge, no effort has been made in the literature to

obtain an interpretable estimator for the FoF linear regression model.

An interpretable estimator of the coefficient function β, named S-LASSO (Smooth plus

LASSO), is proposed in this work, that is locally sparse (i.e., is zero on the null region) and,

at the same time smooth on the non-null region. The property of sparseness of the S-LASSO

estimator is provided by a functional L1 penalty, which is the functional generalization of
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the classical Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996).

Whereas, two roughness penalties, introduced in the objective function, ensure smoothness

of the estimator on the non-null region. From a computational point of view, the S-LASSO

estimator is obtained as the solution of a single optimization problem, by means of a new

version of the orthant-wise limited-memory quasi-Newton (OWL-QN) algorithm (Andrew

and Gao, 2007), specifically designed to solve optimization problems involving L1 penalties.

The paper is organized as follows. In Section 2, the S-LASSO estimator is presented.

In Section 3, asymptotic properties of the S-LASSO estimator are discussed in terms of

consistency and pointwise sign consistency. In Section 4, by means of a Monte Carlo

simulation study the S-LASSO estimator is compared, in terms of estimation error and

prediction accuracy, with competing estimators already proposed in the literature before.

In Section 5, the potential of the S-LASSO estimator are demonstrated with respect of

two benchmark datasets: the Canadian weather and Swedish mortality data. Proofs and

algorithm description are given in the Supplementary Material.

2 Methodology

In Section 2.1, we briefly describe the smoothing spline estimator. Readers who are already

familiar with this approach may skip to the next subsection. In Section 2.2, we briefly

review the LASSO method, which is among the most famous methods to obtain sparse

coefficient estimator for the multivariate linear regression model. Then, the LASSO penalty

is extended to the FoF linear regression model. In Section 2.3, the S-LASSO estimator is

defined.

2.1 The smoothing spline estimator

The smoothing spline estimator of the FoF linear regression model (Ramsay and Silverman,

2005) is the first key component of the S-LASSO estimator. It is based on the assumption

that the coefficient function β may be well approximated by an element in the tensor

product space generated by two spline function spaces, where a spline is a function defined

piecewise by polynomials. Well-known basis functions for the spline space are the B-
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splines. A B-spline basis is a set of spline functions uniquely defined by an order k and a

non-decreasing sequence of M + 2 knots, that we hereby assume to be equally spaced in a

general domain D. Cubic B-splines are B-splines of order k = 4. Each B-spline function is

a positive polynomial of degree k−1 over each subinterval defined by the knot sequence and

is non-zero over no more than k of these subintervals (i.e., the compact support property).

Note that the tensor products between the elements of the basis of two vector spaces is a

basis for the tensor product space between the two spaces. Therefore, the set of the tensor

products between the elements of two B-splines sets is a basis for the tensor product space

of the corresponding spline function spaces, with properties that readily follow from those

of B-splines defined on one-dimensional domains. In our setting, besides the computational

advantage (Hastie et al., 2009), the compact support property is fundamental because it

allows one to link the values of β over a given region to the B-splines with support in

the same region and to discard all the B-splines that are outside that region. Thorough

descriptions of splines and B-splines are in De Boor et al. (1978) and Schumaker (2007).

The smoothing spline estimator (Ramsay and Silverman, 2005) is defined as

β̂S = argmin
α∈Sk1,k2,M1,M2

{ n∑
i=1

||Yi −
∫
S
Xi (s)α (s, ·) ds||2 + λs||Lms

s α||2 + λt||Lmt
t α||2

}
, (2)

where Sk1,k2,M1,M2 is the tensor product space generated by the sets of B-splines of orders k1

and k2 associated with the non-decreasing sequences of M1 +2 and M2 +2 knots defined on

S and T , respectively. Lms
s and Lmt

t , with ms ≤ k1− 1 and mt ≤ k2− 1, are the ms-th and

mt-th order linear differential operators applied to α with respect to the variables s and

t, respectively. The symbol || · || denotes the L2-norm corresponding to the inner product

< f, g >=
∫
fg. λs and λt are parameters generally referred to as roughness parameters.

The aim of the second and third terms on the right-hand side of Equation (2) is that of

penalizing features along s and t directions. A common practice, when dealing with cubic

splines, is to choose ms = 2 and mt = 2, which results in the penalization of the curvature

of the final estimator. When λs = λt = 0, the wiggliness of the estimator is not penalized

and the resulting estimator is the one that minimizes the sum of squared errors. On the

contrary, as λs → ∞ and λt → ∞, β̂S converges to a bivariate polynomial with degree

equal to |max (ms,mt)− 1|. However, there is no guarantee that β̂S is a sparse estimator,

i.e., it is exactly equal to zero in some part of the domain S × T .
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2.2 LASSO and the Functional LASSO Penalty

Let y1, . . . ,yn be the realizations of q scalar response variables Y s
1 , . . . , Y

s
q , x1, . . . ,xn the

realizations of p scalar covariates Xs
1 , . . . , X

s
p and β1, . . . ,βq, with βi = (βi1, . . . , βip)

T ,

the coefficient vectors. Then, by assuming Y s
1 , . . . , Y

s
q , X

s
1 , . . . , X

s
p having zero mean, the

multivariate linear regression model can be rewritten as follows

yi =

q∑
j=1

xTi βj + εi, (3)

with i = 1, . . . , n, where the errors ε1, . . . , εn are uncorrelated with E (εi) = 0 and

Cov (εi) = Σ, independent of Xs
1 , . . . , X

s
p . Then, the multivariate LASSO estimator of

the coefficient vector β is (Tibshirani, 1996)

β̂L1, . . . , β̂Lq = argmin
α1,...,αq∈Rp

{ n∑
i=1

q∑
j=1

(
yij − xTi αj

)2
}

subject to

q∑
j=1

|αj|T1 ≤ λ∗, (4)

where |αj| = (|αj1|, . . . , |αjp|)T , with | · | denoting the absolute value, 1 the unit vector of

length p and λ∗ a positive constant. Equivalently,

β̂L1, . . . , β̂Lq = argmin
α1,...,αq∈Rp

{ n∑
i=1

q∑
j=1

(
yij − xTi αj

)2
+ λL

q∑
j=1

|αj|T1

}
, (5)

where λL is a positive constant in one-to-one inverse correspondence with λ∗. The constant

λL, usually called regularization parameter, controls the degree of shrinkage towards zero

applied to the resulting estimator. The larger this value, the larger the probability that

some elements of the coefficient estimates are exactly zero. As stated in Section 1, the

LASSO was introduced to improve the prediction accuracy (in terms of expected mean

square error) by making the final estimator biased, as well as its interpretability, by per-

forming automatic variable selection (Tibshirani, 1996). The LASSO penalty constrains

the resulting estimator to belong to a region that is a cross-polytope with corners on the

axis and, thus, it maximizes the probability of obtaining a coefficient vector with zero

elements.

Similar properties can be inherited by the S-LASSO estimator, by observing that the

multivariate linear model matches the FoF linear regression model if
∑q

j=1 x
T
i βj is replaced

by
∫
S Xi (s) β (s, t) ds, and, yi and εi are substituted by Yi (t) and εi (t), with t ∈ T , respec-

tively. Therefore, a straightforward generalization of the LASSO penalty λL
∑q

j=1 |αj|T1 in
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Equation (5) to the FoF linear regression model, referred to as functional LASSO penalty,

is

PL (α) = λL

∫
S

∫
T
|α (s, t) |dsdt, (6)

for α ∈ L2(S × T ).

2.3 The S-LASSO Estimator

In view of the functional LASSO penalty of Equation (6) and the smoothing spline estimator

of Equation (2), the S-LASSO estimator is defined as follows

β̂SL = argmin
α∈Sk1,k2,M1,M2

{ n∑
i=1

||Yi −
∫
S
Xi (s)α (s, ·) ds||2 + λs||Lms

s α||2 + λt||Lmt
t α||2

+PL (α)
}
, (7)

where the last two terms represent the two roughness penalties introduced in Equation (2)

to control the smoothness of the coefficient function estimator. It is worth noting that,

in general, the estimator smoothness may be also controlled by opportunely choosing the

dimension of the space Sk1,k2,M1,M2 , that is, by fixing k1 and k2, and choosing M1 and M2

(Ramsay and Silverman, 2005). However, this strategy is not suitable in this case. To

obtain a sparse estimator, the dimension of the space Sk1,k2,M1,M2 must be in fact as large

as possible. In this way, the value of β in a given region is strictly related to the coefficients

of the B-spline functions defined on the same part of the domain and, thus, they tend to

be zero in the null region. On the contrary, when the dimension of Sk1,k2,M1,M2 is small,

there is a larger probability that some B-spline functions have support both in the null

and non-null regions and, thus the corresponding B-spline coefficients result different from

zero. Therefore, we find suitable the use of the two roughness penalty terms in Equation

(7).

To compute the S-LASSO estimator, let us consider the space Sk1,k2,M1,M2 generated

by the two sets of B-splines ψs =
(
ψs1, . . . , ψ

s
M1+k1

)T
and ψt =

(
ψt1, . . . , ψ

t
M2+k2

)T
, of

order k1 and k2 and non-decreasing knots sequences ∆s = {s0, s1, . . . , sM1 , sM1+1} and

∆t = {t0, t1, . . . , tM2 , tM2+1}, defined on S = [s0, sM1+1] and T = [t0, tM2+1], respectively.

Similarly to the standard smoothing spline estimator, by performing the minimization in
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Equation (7) over α ∈ Sk1,k2,M1,M2 , we implicitly assume that β can be suitably approxi-

mated by an element in Sk1,k2,M1,M2 , that is

β (s, t) ≈ β̃ (s, t)
.
=

M1+k1∑
i=1

M2+k2∑
j=1

bijψ
s
i (s)ψtj (t) = ψs (s)T Bψt (t) s ∈ S, t ∈ T , (8)

with B = {bij} ∈ RM1+k1×M2+k2 and bij are scalar coefficients. So stated, the problem

of estimating β has been reduced to the estimation of the unknown coefficient matrix

B. Let α (s, t) = ψs (s)T Bαψ
t (t), s ∈ S, t ∈ T , in Sk1,k2,M1,M2 , where Bα = {bα,ij} ∈

RM1+k1×M2+k2 . Then, the first term of the right-hand side of Equation (7) may be rewritten

as

n∑
i=1

||Yi−
∫
S
Xi (s)α (s, ·) ds||2 =

n∑
i=1

∫
T
Yi (t)

2 dt−2 Tr
[
XBαY

T
]

+ Tr
[
XTXBαWtB

T
α

]
,

(9)

whereas, the roughness penalties of the left side of Equation (7) become

λs||Lms
s α||2 = λs Tr

[
BT
αRsBαWt

]
λt||Lmt

t α||2 = λt Tr
[
BT
αWsBαRt

]
, (10)

where X = (X1, . . . ,Xn)T , with Xi =
∫
S Xi (s)ψ

s (s) ds, Y = (Y1, . . . ,Yn)T with Yi =∫
T Yi (t)ψ

t (t) dtWs =
∫
S ψ

s (s)ψs (s)T ds,Wt =
∫
T ψ

t (t)ψt (t)T dt,Rs =
∫
S L

ms
s [ψs (s)]Lms

s [ψs (s)]T ds

and Rt =
∫
T L

mt
t [ψt (t)]Lmt

t [ψt (t)]
T
dt. The term Tr [A] denotes the trace of a square ma-

trix A. Note that, if the functional LASSO penalty would be expressed as a function of

|Bα|
.
= {|bα,ij|}, then, standard optimization algorithms for L1-regularized loss would be

easily implemented to solve the problem in Equation (7). Unfortunately, the most simple

form we obtain is as follows

λL

∫
S

∫
T
|α (s, t) |dsdt = λL

∫
S

∫
T
|ψs (s)T Bαψ

t (t) |dsdt. (11)

By the following theorem, we shall provide a practical way to face the issue by finding a

reasonable approximation of the functional LASSO penalty.

Theorem 1. Let Sk1,k2,∆1,e∆2,e = span{Bi1Bi2}
M1+k1,M2+k2
i1=1,i2=1 , with {Bij} the set of B-splines

of orders kj and non-decreasing knots sequences ∆j = {xj,0, xj,1, . . . , xj,Mj
, xj,Mj+1} de-

fined on the compact set Dj =
[
xj,0, xj,Mj+1

]
and ∆j,e the extended partitions correspond-

ing to ∆j defined as ∆j,e = {yj,l}
Mj+2kj
l=1 where yj,1, . . . , yj,kj = xj,0, yj,1+kj , . . . , yj,Mj+kj =
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xj,1, . . . , xj,Mj
and yj,Mj+1+kj , . . . , yj,Mj+2kj = xj,Mj+1, for j = 1, 2. Then, for f (z1, z2) =∑M1+k1

i1=1

∑M2+k2
i2=1 ci1i2Bi1 (z1)Bi2 (z2) ∈ Sk1,k2,∆1,e∆2,e, with z1 ∈ D1 and z2 ∈ D2,

0 ≤ ||f ||`1,∆1,e,∆2,e
− ||f ||L1 = O

(
1

M1

)
+O

(
1

M2

)
, (12)

where

||f ||`1,∆2,e,∆1,e
=

M1+k1∑
i1=1

M2+k2∑
i2=1

|ci1i2|
(y1,i1+k1 − y1,i1) (y2,i2+k2 − y2,i2)

k1k2

, (13)

and

||f ||L1 =

∫
D1

∫
D2

|f (z1, z2) |dz1dz2. (14)

The interpretation of the above theorem is quite simple. It basically says that for large

values of M1 and M2, ||f ||L1 is well approximated from the top by ||f ||`1,∆2,e,∆1,e
and the

approximation error tends to zero as M1,M2 → ∞. By using this result, the functional

LASSO penalty PL (α) can be approximated by

PL (α) ≈ λL

M1+k1∑
i=1

M2+k2∑
j=1

|bα,ij|
(
sei+k1 − s

e
i

) (
tej+k2 − t

e
j

)
k1k2

= λLw
T
s |Bα|wt, (15)

where {sei} and {tei} are the extended partitions associated with ∆s and ∆t, respectively,

ws =

[
(se1+k1

−se1)
k1

, . . . ,
(seM1+2k1

−seM1+k1
)

k1

]T
andwt =

[
(te1+k2

−te1)
k2

, . . . ,
(teM2+2k2

−teM2+k2
)

k2

]T
. There-

fore, upon using the approximation in in Equation (15), Equation (9) and Equation (10),

the optimization problem in Equation (7) becomes

B̂SL ≈ argmin
Bα∈R(M1+k1)×(M2+k2)

{ n∑
i=1

∫
T
Yi (t)

2 dt− 2 Tr
[
XBαY

T
]

+ Tr
[
XTXBαWtB

T
α

]
+ λs Tr

[
BT
αRsBαWt

]
+ λt Tr

[
BT
αWsBαRt

]
+ λLw

T
s |Bα|wt

}
.

(16)

Then, the coefficient β is estimated by β̂SL (s, t) = ψs (s)T B̂SLψ
t (t) for s ∈ S and t ∈ T .

The optimization problem with L1-regularized loss in Equation (19) is (i) convex, being sum

or integral of convex function; and (ii) has a unique solution given some general conditions

on the matrix Wt ⊗XTX (with ⊗ the Kronecker product). Unfortunately, the objective

function is not differentiable at zero, and thus it has not a closed-form solution. In view of

this, general purpose gradient-based optimization algorithms – as for instance the L-BFGS
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quasi-Newton method (Nocedal and Wright, 2006) – and classical optimization algorithms

for solving LASSO problems – such as coordinate descent (Friedman et al., 2010) and least-

angle regression (LARS) (Efron et al., 2004) – are not suitable. In contrast, we found very

promising a modified version of the orthant-wise limited-memory quasi-Newton (OWL-QN)

algorithm proposed by Andrew and Gao (2007).

The OWL-QN algorithm is based on the fact that the L1 norm is differentiable for the

set of points in which each coordinate never changes sign (i.e., orthant), being a linear

function of its argument. In each orthant, the second-order behaviour of an objective

function of the form f (x) = l (x) + C||x||1, to be minimized, is determined by l alone.

The function l : Rr → R is a convex, bounded below, continuously differentiable with

continuously differentiable gradient ∇l, x = (x1, . . . , xr)
T , C is a given positive constant,

and || · ||1 is the usual `1 norm. Therefore, Andrew and Gao (2007) propose to derive a

quadratic approximation of the function l that is valid for some orthant containing the

current point and then to search for the minimum of the approximation, by constraining

the solution in the orthant where the approximation is valid. There may be several orthants

containing or adjacent to a given point. The choice of the orthant to explore is based on

the pseudo-gradiant �f (x) of f at x, whose components are defined as

�if (x) =



∂l(x)
∂xi

+ C sign (xi) if |xi| > 0

∂l(x)
∂xi

+ C if xi = 0, ∂l(x)
∂xi

< −C
∂l(x)
∂xi
− C if xi = 0, ∂l(x)

∂xi
> C

0 otherwise,

(17)

where sign (·) is the sign function.

However, the objective function of the optimization problem in Equation (19) is of the

form f ∗ (x) = l (x) + C||Dx||1, where D = {di} ∈ Rr×r is a diagonal matrix of positive

weights. To take into account the weights, the OWL-QN algorithm must be implemented

with a different pseudo-gradiant �f ∗ (x) of f ∗ at x, whose components are defined as

�if ∗ (x) =



∂l(x)
∂xi

+ diC sign (xi) if |xi| > 0

∂l(x)
∂xi

+ diC if xi = 0, ∂l(x)
∂xi

< −C
∂l(x)
∂xi
− diC if xi = 0, ∂l(x)

∂xi
> C

0 otherwise.

(18)
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A more detailed description of the OWL-QN algorithm for objective functions of the form

l (x)+C||Dx||1 is given found in the Supplementary Material. Note that, the optimization

problem in Equation (19) can be rewritten by vectorization as

b̂SL ≈ b̂app = argmin
bα∈R(M1+k1)(M2+k2)

{
− 2 vec

(
XTY

)T
bα + bTα

(
Wt ⊗XTX

)
bα

+ λsb
T
αLwrbα + λtb

T
αLrwbα + λL||Wstbα||1

}
, (19)

where b̂SL = vec
(
B̂SL

)
, Lrw

.
= (Rt ⊗Ws) and Lwr

.
= (Wt ⊗Rs), and Wst is the diagonal

matrix whose diagonal elements are wT
s ⊗wT

t . Moreover, for generic a matrix A ∈ Rj×k,

vec(A) indicates the vector of length jk obtained by writing the matrix A as a vector

column-wise. Therefore, the OWL-QN with pseudo-gradient as in Equation (18) can be

straightforwardly applied.

In the following, we summarize all the parameters that need to be set to obtain the

S-LASSO estimator. The orders k1 and k2 should be chosen with respect to the degree of

smoothness we want to achieve, and the computational efforts. The larger k1 and k2 the

smoother the resulting estimator. As stated before, M1 and M2 should be as large as possi-

ble to ensure that the null region is correctly captured and the approximation in Equation

(15) is valid, with respect to the maximum computational efforts. A standard choice is

k1 = k2 = 4, i.e., cubic B-splines, with equally spaced knot sequences. In the smoothing

spline estimator, the choice of M1 and M2 is not crucial (Cardot et al., 2003), because the

smoothness of the estimator is controlled by the two smoothing parameters. Finally, at

given k1, k2, M1, and M2, the optimal values of λs, λt and λL can be selected as those that

minimize the the estimated prediction error function CV (λs, λt, λL), i.e., CV (λs, λt, λL),

over a grid of candidate values (Hastie et al., 2009). However, although this choice could

be optimal for the prediction performance, it may affect the interpretability of the model.

Much more interpretable models, with a slight decrease in predictive performance, may in

fact exist. The k-standard error rule, which is a generalization of the one-standard error

rule (Hastie et al., 2009), may be a more reasonable choice. That is, to choose the most

sparse model whose error is no more than k standard errors above the error of the best

model. In practice, as spareness is controlled by the parameter λL, we first find the best

model in terms of estimated prediction error at given λL and then, among the selected
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models, we apply the k-standard error rule. This rule may be particularly useful when

CV (λs, λt, λL) is flat with respect to λL, in this case, it chooses the simplest model among

those achieving similar estimated prediction error.

3 Theoretical Properties of the S-LASSO Estimator

In this section, we provide some theoretical results on the S-LASSO estimator, under some

regularity assumptions, i.e., the estimation consistency (Theorem 2) and the pointwise

sign consistency (Theorem 3) of β̂SL. All proofs are in the Supplementary Material. The

following regularity conditions are assumed.

C 1. ||X||2 is almost surely bounded, i.e., ||X||2 ≤ c <∞.

C 2. β is in the Hölder space Cp′,ν (S × T ) defined as the set of functions f on S×T having

continuous partial and mixed derivatives up to order p′ and such that the partial and mixed

derivatives of order p′ are Hölder continuous, that is, |f (p′) (x1)−f (p′) (x2) | ≤ c||x1−x2||ν,

for some constant c, integer p′ and ν ∈ [0, 1], and for all x1,x2 ∈ S × T , where f (p′) is the

partial and mixed derivatives of order p′. Moreover, let p
.
= p′+ν such that 3/2 < p ≤ k1−1

and 3/2 < p ≤ k2 − 1.

C 3. M1 = o
(
n1/4

)
, M2 = o

(
n1/4

)
, M1 = ω

(
n

1
2p+1

)
, M2 = ω

(
n

1
2p+1

)
, where an = ω (bn)

means an
bn
→∞ for n→∞,

C 4. There exist two positive constants b and B such that

b ≤ Λmin

(
Wt ⊗ n−1XTX

)
≤ Λmax

(
Wt ⊗ n−1XTX

)
≤ B, (20)

where Λmin (M) and Λmax (M ) denote the minimum and maximum eigenvalues of the

matrix M .

C 5. λs = o
(
M−2ms+1

1

)
, λt = o

(
M−2mt+1

2

)
.

C.1 and C.2 are the anoulogus of (H1) and (H2) in Cardot et al. (2003) for a bivariate

regression function. C.2 ensures that β is sufficiently smooth. C.3 provides information on

the growth rate of the number of knots M1 and M2. C.4 is the anolugus of condition (F)
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of Fan et al. (2004) and assumes that the matrix
(
Wt ⊗ n−1XTX

)
has reasonably good

behaviour, whereas, C.5 provides guidance on the choice of the parameters λs and λt.

Theorem 2 shows that with probability tending to one there exists a solution of the

optimization problem in Equation (7) that converges to β̃, chosen such that ||β − β̃||∞ =

O(M−p
1 ) + O(M−p

2 ). To prove Theorem 2, in addition to C.1-C.5, the following condition

is considered.

C 6. λL = o
(
M−1

1 M−1
2

)
.

The first result is about the convergence rate of β̂SL to β in terms of L∞-norm.

Theorem 2. Under assumptions C.1-C.6, there exists a unique solution β̂SL of the opti-

mization problem in Equation (7), such that

||β̂SL − β||∞ = Op

(
M

1/2
1 M

1/2
2 n−1/2

)
. (21)

According to the above theorem, there exists an estimator β̂SL of β that is root-n/M1M2

consistent.

Before stating Theorem 3, let us define with b(1) the vector whose entries are the q non-

zero elements of b that are and with b(2) the vector whose entries are the (M1 + k1)(M2 +

k2) − q elements of b that are equal to zero. In what follows, we assume, without loss of

generality, that b =
[
bT(1) bT(2)

]T
and that a matrix Al ∈ R(M1+k1)(M2+k2)×(M1+k1)(M2+k2)

can be expressed in block-wise form as

Al =

 Al,11 ∈ Rq×q Al,12 ∈ Rq×(M1+k1)(M2+k2)−q

Al,21 ∈ R(M1+k1)(M2+k2)−q×q Al,22 ∈ R(M1+k1)(M2+k2)−q×(M1+k1)(M2+k2)−q

 .
To prove Theorem 3, in addition to C.1-C.5, the following conditions are considered.

C 7. (S-LASSO irrepresentable condition (SL-IC)) There exists λs, λt, λL, and a constant

η > 0 such that, element-wise,∣∣∣W−1
st,21

{ [(
Wt ⊗ n−1XTX

)
21

+ n−1λsLwr,21 + n−1λtLrw,21

]
[(
Wt ⊗ n−1XTX

)
11

+ n−1λsLwr,11 + n−1λtLrw,11

]−1[
Wst,11 sign

(
bα(1)

)
+ 2λ−1

L λsLwr,11b(1) + 2λ−1
L λtLrw,11b(1)

]
−2λ−1

L λsLwr,21b(1) − 2λ−1
L λtLrw,21b(1)

}∣∣∣ ≤ 1− η.
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C 8. The functions εi (t) in Equation (1) are zero mean Gaussian random processes with

autocovariance function K (t1, t2), t1 and t2 ∈ T , independent of Xi.

C 9. Given ρ
.
= min |

[(
Wt ⊗XTX

)
11

+λsLwr,11 + λtLrw,11]−1 [(Wt ⊗XTX
)

11
b(1)

]
| and

Cmin
.
= Λmin

[(
Wt ⊗ n−1XTX

)
11

]
, Λmin (Wt)M2 → cw as n→∞, with 0 < cw <∞, and

the parameters λs, λt and λL are chosen such that

(a)

M2
1M

2
2 log [(M1 + k1) (M2 + k2)− q]

λ2
L

[
nc2 +

λ2
sΛ

2
max (Lwr)

nCmin
+
λ2
tΛ

2
max (Lrw)

nCmin

]
= o (1) ,

(b)

1

ρ

{√M1M2 log (q)

nCmin

+
λL

nM1M2

Λ−1
min

[(
Wt ⊗ n−1XTX

)
11

+ λsn
−1Lwr,11 + λtn

−1Lrw,11

]
|| sign

(
b(1)

)
||2
}

= o (1) .

The SL-IC in C.7 is the straightforward generalization to the problem in Equation (7) of the

elastic irrepresentable condition described in Jia and Yu (2010). It is a consequence of the

standard Karush−Kuhn−Tucker (KKT) conditions applied to the optimization problem

in Equation (19). C.8 gives some conditions on the relationship of λs, λt, and λL with

M1, M2 and n. In the classical setting, an estimator is sign selection consistent if it has

the same sign of the true parameter with probability tending to one. Analogously, we say

that an estimator of the coefficient function β is pointwise sign consistent if, in each point

of the domain, it has the same sign of β with probability tending to one. The following

theorem states that, under opportune assumptions, the S-LASSO estimator is pointwise

sign consistent.

Theorem 3. Under assumptions C.1-C.5 and C.7-C.9, β̂SL is pointwise sign consistent,

that is, for all s ∈ S and t ∈ T ,

Pr
{

sign
[
β̂SL (s, t)

]
= sign [β (s, t)]

}
→ 1, (22)

as n→∞.
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4 Simulation Study

In this section, we conduct a Monte Carlo simulation study to explore the performance of

the S-LASSO estimator. We consider the four following different scenarios

• Scenario I The coefficient function is zero all over the domain, i.e., β (s, t)=0, if (s, t) ∈

[0, 1]× [0, 1].

• Scenario II β is different from zero in the central part of the domain (Figure 1(a)),

i.e.,

β (s, t) =

−
(
s−0.5
0.25

)2 − ( t−0.5
0.25

)2
+ 1 if 0.5− 0.25

√
1− (t− 0.5)

2 ≤ s ≤ 0.5 + 0.25

√
1− (t− 0.5)

2

0 otherwise.

(23)

• Scenario III β is different from zero on the edge of the domain (Figure 1(b)), i.e.,

β (s, t) =


0.5 (1− t) sin

[
10π

(
t− 1.05 +

√
1− (s− 0.5)

2

)]
if t ≤ 1.05−

√
1− (s− 0.5)

2

0.5 sin

(
10π

(
s+ 1.05 +

√
1− (t− 0.5)

2

))
if s ≤ −0.05−

√
1− (t− 0.5)

2

0 otherwise.

(24)

• Scenario IV β is non-null everywhere (Figure 1(c)).

β (s, t) =

(
t− 0.5

0.5

)3

+

(
s− 0.5

0.5

)3

+

(
t− 0.5

0.5

)2

+

(
s− 0.5

0.5

)2

+ 5. (25)

This scenario is not expected to be favourable to the S-LASSO estimator.

The independent observations of the covariates Xi and errors εi are generated as

Xi =
∑32

j=1 xijψ
x
i and εi = k

∑20
j=1 eijψ

ε
i , where the coefficients xij and eij are independent

realizations of standard normal random variable, and ψxi (s) and ψεi (s) are cubic B-splines

with evenly spaced knot sequence (the numbers of basis has been randomly chosen between

10 and 50). In Scenario I, the constant k is chosen equal to 1; whereas, in Scenario II, Sce-

nario III and Scenario IV, it is chosen such that the modified signal-to-noise ratio function

MSN
.
= Var[E (Yi|Xi)] + max Var[E (Yi|Xi)]/Var (εi) is equal to 4.

For each scenario, we generate 100 datasets composed of a training set with sample

size n and a test set T with size N equal to 4000 that are used to estimate the coefficient
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Figure 1: True coefficient function β for Scenario II (a), Scenario III (b) and Scenario IV

(c) in the simulation study.

function and to test its predictive performance. This is repeated for three different sample

sizes n = 150, 500, 1000. As in Lin et al. (2017), we consider the integrated squared error

(ISE) to asses the quality of the estimator β̂ of the coefficient function β. In particular,

the ISE over the null region (ISE0) and the non-null region (ISE1) are defined as

ISE0 =
1

A0

∫ ∫
N(β)

(
β̂ (s, t)− β (s, t)

)2

dsdt, (26)

and

ISE1 =
1

A1

∫ ∫
NN(β)

(
β̂ (s, t)− β (s, t)

)2

dsdt, (27)

where A0 and A1 are the measures of the null (N (β)) and non-null (NN (β)) regions,

respectively. The ISE0 and the ISE1 are indicators of the estimation error of β̂ over both

the null and the non-null regions. Moreover, predictive performance is measured to the

prediction mean squared error (PMSE), defined as

PMSE =
1

N

∑
(X,Y )∈T

∫ 1

0

(
Y (t)−

∫ 1

0

X (s) β̂ (s, t) ds

)2

dt, (28)

where β̂ is based on the observations in the training set. The observations in the test

set centred by means of the sample mean functions estimated through the training set

observations.

The S-LASSO estimator is compared with four different estimators of β that are rep-

resentative of the state of the art of the FoF linear regression model estimation. The first
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two are those proposed by Ramsay and Silverman (2005), where the coefficient function

estimator is assumed to be in a finite dimension tensor space with regularization achieved

either by choosing the dimension of the tensor space or by introducing roughness penalties.

They will be referred to as TRU and SMOOTH estimators, respectively. The third and

fourth ones are those proposed by Yao et al. (2005b), based on the functional principal

components analysis (referred to as PCA), and by Canale and Vantini (2016), based on a

ridge-type penalization (referred to as RIDGE). The TRU, SMOOTH and S-LASSO are

computed by using cubic B-splines with evenly space knot sequences. The dimensions of

the B-spline sets that generate the tensor product space for the SMOOTH and S-LASSO

estimator are both set equal to 60. All the tuning parameters of the five considered estima-

tors are chosen by means of 10-fold cross-validation, viz., the dimension of the tensor basis

space for the TRU, the roughness penalties for the SMOOTH, the numbers of retained

principal components for the PCA, the penalization parameter for the RIDGE and λs, λt

and λL for the S-LASSO. In particular for Scenario I, where the CV is predominating flat,

we use the 10-fold cross-validation with the 0.5-standard deviation rule, whereas for the

other scenarios the selected parameters are those corresponding to the minimum estimated

prediction errors.

The performance of the estimators in terms of ISE0 is displayed in Figure 2. It is

not surprising that the estimation error of β over N (β) of the S-LASSO estimator is

significantly smaller than those of the other estimators, being the capability of recovering

sparseness of β its main feature. In Scenario I, the RIDGE estimator is the only one

that performs comparably to the S-LASSO estimator. This is in accordance with the

multivariate setting where it is well known that, when the response is independent of the

covariates, the ridge estimator is able to shrink all the coefficients towards zero. The TRU,

SMOOTH, and PCA estimators have difficulties to correctly identify N (β) for all sample

sizes. Nevertheless, their performance is very poor at n = 150. In Scenario II, the S-LASSO

estimator is still the best one to estimate β over N (β). However, in this case, the RIDGE

estimator performance is unsatisfactory and is mainly caused by the lack of smoothness

control that makes the estimator over-rough, especially at small n. Among the competitor

estimators, the SMOOTH one has the best performance. In Scenario III, results are similar
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Figure 2: The integrated squared error on the null region (ISE0) along with

±0.5(standard error) for the TRU( ), SMOOTH( ), PCA( ), RIDGE( ), and

S-LASSO ( ) estimators.

to those of Scenario II, even if the TRU estimator appears as the best alternative. Both PCA

and RIDGE estimators are not able to successfully recover sparseness of β for n = 150. For

the former, the cause is the number of observations not sufficient to capture the covariance

structure of the data, whereas for the latter, it is due to the excessive roughness of the

estimator.

Results in terms of ISE1 are summarized in Figure 3. It is worth noting that, in this

case, as expected the performance of the S-LASSO estimator is generally worse than that

of the SMOOTH estimator. In some cases, it is worse than that of the TRU estimator
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Figure 3: The integrated squared error on the non-null region (ISE1) along with

±0.5(standard error) for the TRU( ), SMOOTH( ), PCA( ), RIDGE( ), and

S-LASSO ( ) estimators.

as well. However, in Scenario II performance differences between the S-LASSO estimator

and TRU or SMOOTH estimators become negligible as sample size increases. The PCA

and RIDGE estimators are always less efficient. The results are similar for Scenario III,

where the performance of the S-LASSO estimator is comparable with that of the SMOOTH

estimator. By comparing to the classical LASSO method, the behaviour of the S-LASSO

estimator — in terms of ISE1 — is not surprising. Indeed, it is well known that LASSO

method does nice variable selection, even if it tends to overshrink the estimators of the

non-null coefficients (Fan et al., 2004; James and Radchenko, 2009). By looking at the
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Figure 4: The prediction mean squared error (PMSE) along with ±0.5(standard error) for

the TRU( ), SMOOTH( ), PCA( ), RIDGE( ), and S-LASSO ( ) estimators.

result for Scenario II and III, we surmise that this phenomenon arises in the FoF linear

regression model as well. Finally, in Scenario IV, where β is always different from zero, the

S-LASSO estimator,performs comparably to the SMOOTH (i.e., the S-LASSO estimator

with λL = 0). In this case β is not sparse and, thus, the functional LASSO penalty does

not help.

Figure 4 shows PMSE averages and corresponding standard errors for all the considered

estimators. Since PMSE is strictly related to the ISE0 and the ISE1, results are totally

consistent with those of Figure 2 and Figure 3. In particular, the S-LASSO estimator out-

performs all the competitor ones in favorable scenarios (viz., Scenario I, II, and III), being
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the corresponding PMSE lower than that achieved by the other competing estimators. In

these scenarios, although the performance of the S-LASSO estimator in terms of ISE1 is

not excellent, the clear superiority in terms of ISE0 compensates and gives rise to smaller

PMSE. Otherwise, for Scenario IV, where the coefficient function is not sparse, the perfor-

mance of the S-LASSO estimator is very similar to that of the SMOOTH estimator, which

is the best one in this case. This is encouraging, because, it proves that the performance

of the S-LASSO estimator does not dramatically decline in less favourable scenarios.

In summary, the S-LASSO estimator outperforms the competitors both in terms of

estimation error on the null region and prediction accuracy on a new dataset, as well as

that it is able to estimate competitively the coefficient function on the non-null region.

On the other hand, in order to achieve sparseness, the S-LASSO tends to overshrink the

estimator of the coefficient function on the non-null region. This means that, as in the

classical setting (James and Radchenko, 2009), there is a trade-off between the ability

of recovering sparseness and the estimation accuracy on the non-null region of the final

estimator. Moreover, even when the coefficient function is not sparse (Scenario IV), the

proposed estimator demonstrates to have both good prediction and estimation performance.

This is another key property of the proposed estimator that, encourages practitioners to

use the S-LASSO estimator even when there is not prior knowledge about the shape of

the coefficient function. Finally, it should be noticed that, in scenarios similar to those

analysed, the PCA and RIDGE estimators should not be preferred with respect to the

TRU, SMOOTH and S-LASSO ones.

5 Real-Data Examples

In this section, we analyse two real-data examples. We aim to confirm that the S-LASSO

estimator has advantages in terms of both prediction accuracy and interpretability, over the

SMOOTH estimator, which has been demonstrated in Section 4 to be the best alternative

among the competitors. The datasets used in the examples are the Canadian weather and

Swedish mortality. Both are classical benchmark functional data sets thoroughly studied

in the literature.
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Figure 5: Daily mean temperature and log-daily rainfall profiles at 35 cities in Canada over

the year.

5.1 Canadian Weather Data

The Canadian weather data have been studied by Ramsay and Silverman (2005) and Sun

et al. (2018). The data set contains the daily mean temperature curves, measured in Celsius

degree, and the log-scale of the daily rainfall profiles, measured in millimeter, recorded at

35 cities in Canada. Both temperature and rainfall profiles are obtained by averaging over

the years 1960 trough 1994. Figure 5 shows the profiles. The aim is to predict the log-

daily rainfall based on the daily temperature using the model reported in Equation (1).

Figure 6 shows the S-LASSO and SMOOTH estimates of the coefficient function β. The

SMOOTH estimate is obtained using a Fourier basis—to take into account the periodicity

of the data—and roughness penalties were chosen by using 10-fold cross-validation over an

opportune grid of values. 10-fold cross-validation is used to set the parameters λs, λt and

λL as well.

The S-LASSO estimates is roughly zero over large domain portions. In particular,

except for values from July through August, it is always zero in summer months (i.e.,

late June, July, August and September) and in January and February. This suggests in

those months rainfalls are not significantly influenced by daily temperature throughout

the year. Otherwise, temperature in fall months (i.e., October, November and December)

gives strong positive contribution on the daily rainfalls. In other words, the higher (the

lower) the temperature in October, November and December, the heavier (the lighter) the

precipitations throughout the year. It is interesting that the S-LASSO estimate in spring
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Figure 6: S-LASSO (solid line) and SMOOTH (dashed line) estimates of the coefficient

functions β at different months for the Canadian weather data.

months (i.e., March, April and May) is negative for values of t form January through

April, and from October through December. This suggests that the higher (the lower)

the temperature in the spring the lighter (the heavier) the daily rainfalls from October

through April. Finally, it is evidenced a small influence of the temperature in February on

precipitations in July and August. It is worth noting that the S-LASSO estimate is more

interpretable than the SMOOTH estimates, which does not allow for a straightforward

interpretation. Moreover, the S-LASSO estimate appears to have, even if slightly, better

prediction performance than the SMOOTH one. Indeed, 10-fold cross-validation mean

squared errors are 22.314 and 22.365, respectively.

Finally, we perform two permutation tests to asses the statistical significance of the

S-LASSO estimator. The first test is based on the global functional coefficient of determi-

nation defined as R2
g
.
=
∫
T

Var[E(Y (t)|X)]
Var[Y (t)]

dt (Horváth and Kokoszka, 2012), with T = [0, 365].

In Figure 7(a) the solid black line indicates the observed R2
g that is equal to 0.55. The bold

points represent 500 R2
g values obtained by means of random permutations of the response

variable. Whereas, the grey line correspond to the 95th sample percentile. All 100 values

of R2 as well as the value of the 95th sample percentile is far below 0.55, which gives a
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Figure 7: For the Canadian weather data, (a) R2
g from permuting the response 500 times,

where the black line corresponds to the observed R2
g and the grey line to the 95th sample

percentile; (b) the black line is the observed R2 and the grey line is the pointwise 95th

sample percentile curve.

strong evidence of a significant relationship between rainfalls and temperature, globally.

By a second test, we aim to analyse the statistical significance pointwise, i.e., for each

t ∈ T . It is based on the pointwise functional coefficient of determination defined as

R2 (t)
.
= Var[E(Y (t)|X)]

Var[Y (t)]
for t ∈ T (Horváth and Kokoszka, 2012). Figure 7(b) shows the

observed R2 (solid black line) along with the pointwise 95th sample percentile curve. The

latter has been obtained by means of 500 R2 values obtained by randomly permuting the

response variable. The observed R2 is far above the 95th sample percentile curve, except

for some summer months (viz., July and August). As global conclusion, we can state that

the temperature has a large influence on the rainfalls in autumn, winter and spring.

5.2 Swedish Mortality Data

The Swedish mortality data, available from the Human Mortality Database (http://

mortality.org), are regarded as a very reliable dataset on long-term longitudinal mor-

talities. In particular, we focus on the log-hazard rate functions of the Swedish females

mortality data for year-of-birth cohorts that refer to females born in the years 1751-1894

with ages 0-80. The value of a log-hazard rate function at a given age is the natural loga-

rithm of the ratio of the number of females who died at that age and the number of females

alive with the same age. Note that, those data have been analysed also by Chiou and

24



Müller (2009) and Ramsay et al. (2009). Figure 8 shows the 144 log-hazard functions.
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Figure 8: Log-hazard rates as a function of age for Swedish female cohorts born in the

years 1751-1894.

The aim of the analysis is to explore the relationship of the log-hazard rate function

for a given year with the log-hazard rate curve of the previous year by means of the model

reported in Equation (1). Our interest is to identify what features of the log-hazard rate

functions for a given year influence the log-hazard rate of the following year.

Figure 9 shows the S-LASSO and SMOOTH estimates of coefficient function β. The

unknown parameters to obtain the SMOOTH and S-LASSO estimates are chosen as in the

Canadian weather example, but in this case B-splines are used for both estimators. The

S-LASSO estimate is zero almost over all the domain except for few regions. In particular,

at given t, the S-LASSO estimate is different from zero in an interval located right after

that age. This can likely support the conjecture that if an event influences the mortality

of the Swedish female at a given age, it impacts on the the death rate below that age born

in the following years. Nevertheless, this expected dependence is poorly pointed out by

the SMOOTH estimator, where this behaviour is confounded by less meaningful periodic

components. It is interesting to note that the S-LASSO estimate at high values of t is

slightly different from zero for ages ranging from 40 to 60. This shows that if an event

affecting the death rate occurs in that range, the log-hazard functions of the following

cohorts will be influenced at high ages (i.e., corresponding to high values of t). On the

contrary, the wiggle of the SMOOTH estimate does not allow drawing such conclusions.

Finally, we perform the two permutation test already described in the Canadian weather
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Figure 9: S-LASSO (solid line) and SMOOTH (dashed line) estimates of the coefficient

functions β at different values of t for the Swedish mortality data.

data example. Figure 10 shows the results. Both the observed R2
g and R2 are far above

the 95th sample percentile (Figure 10(a)) and the pointwise 95th sample percentile curve

(Figure 10(b)) respectively. This significantly evidences a relation between two consecutive

log-hazard rate functions for all ages.
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Figure 10: For the Swedish mortality data, (a) R2
g from permuting the response 500 times,

where the black line corresponds to the observed R2
g and the grey line to the 95th sample

percentile; (b) the black line is the observed R2 and the grey line is the pointwise 95th

sample percentile curve.

6 Conclusion

The LASSO is one of the most used and popular method to estimate coefficients in classical

linear regression models as it ensures both prediction accuracy and interpretability of the

phenomenon under study (by simultaneously performing variable selection). The S-LASSO

estimator, proposed in this paper, for the coefficient function of a Function-on-Function

(FoF) linear regression model. Specifically, it is an extension to the functional setting of

the multivariate LASSO estimator. As the latter, the S-LASSO estimator is able both to

increase both the prediction accuracy of the estimated model, via continuous shrinking, and

the interpretability of the model, by identifying the null region of the regression coefficient,

that is the region where the coefficient function is exactly zero.

The S-LASSO estimator is obtained by combining several elements: the functional

LASSO penalization, which has the task of shrinking towards zero the estimator on the

null region; the B-splines, which are essential to ensure sparsity of the estimator because

of the compact support property; and two roughness penalties, which are needed to ensure

smoothness of the estimator, also when the number of B-splines escalates to ensure sparsity.

We proved that the S-LASSO estimator is both estimation and pointwise sign consistent,

i.e., the estimation error in terms of L2-norm goes to zero in probability and the S-LASSO
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estimator has the same sign of the coefficient function with probability one. Moreover,

we have shown via an extensive Monte Carlo simulation study that, with regard to other

methods that have already appeared in the literature before, the S-LASSO estimator is

much more interpretable, on the one hand, and has still good estimation and appealing

predictive performance, on the other. Consistently with the behaviour of the classical

LASSO estimator (Fan et al., 2004), the S-LASSO estimator is shown to over-shrink the

coefficient function over the non-null region.

To the best of the authors knowledge, this is the first work that addresses the issue

of interpretability in the FoF linear regression. However, although the functional LASSO

penalty produces an estimator with good properties, other penalties, e.g. the SCAD (Fan

and Li, 2001) and adaptive LASSO (Zou, 2006), properly adapted to the functional setting,

may guarantee even better performance both in terms of interpretabilty and prediction

accuracy.
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