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F. Regazzoni1, L. Dedè1, and A. Quarteroni1,2

1MOX - Dipartimento di Matematica, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy
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Abstract

High fidelity (HF) mathematical models describing the generation of active force in the car-
diac muscle tissue typically feature a large number of state variables to capture the intrinsi-
cally complex underlying subcellular mechanisms. With the aim of drastically reducing the
computational burden associated with the numerical solution of these models, we propose a
machine learning method that builds a reduced order model (ROM); this is obtained as the
best-approximation of the HF model within a class of candidate differential equations based
on Artificial Neural Networks (ANNs). Within a semiphysical (gray-box) approach, an ANN
learns the dynamics of the HF model from input-output pairs generated by the HF model it-
self (i.e. non-intrusively), being additionally informed with some a priori knowledge about the
HF model. The ANN-based ROM, with just two internal variables, can accurately reproduce
the results of the HF model, that instead features more than 2000 variables, under several
physiological and pathological working regimes of the cell. We then propose a multiscale 3D
cardiac electromechanical model, wherein active force generation is described by means of the
previously trained ANN. We achieve a very favorable balance between accuracy of the result
(order of 10−3 for the main cardiac biomarkers) and computational efficiency (with a speedup
of about one order of magnitude), still relying on a biophysically detailed description of the
microscopic force generation phenomenon.

Keywords Data-driven modeling, Machine Learning, Model Order Reduction, Cardiac simula-
tions, Sarcomere modeling, Artificial Neural Networks

1 Introduction

Numerical simulations of the cardiac function require coupling different mathematical models rep-
resenting processes taking place at different spatial scales [79, 30, 72, 38, 16]. Cardiac tissue
mechanical activation, which is responsible for the generation of active force and for the contrac-
tion of the myocardium, is driven by a subcellular mechanism with characteristic spatial scales of
micrometers or less. Hence, when the target is a three-dimensional Finite Element simulation of
the heart integrated function [80, 17, 95, 22], like for cardiac electromechanics, the mathematical
model describing the activation of the cardiac contractile cells should be solved virtually in any
point of the computational domain and practically at each nodal point or at every quadrature node
of the computational mesh. Since capturing the complexity of realistic heart models requires as
many as 105–106 mesh elements, multiscale numerical simulations based on biophysically detailed
active contraction models represent a computational challenge, both because of computing time
and memory storage. Indeed, due to the intrinsic complexity of the subcellular processes leading
to the mechanical activation, it is difficult to build activation models that are at the same time
low-dimensional and biophysically accurate [92, 89, 102]. This harms the accomplishment of a well
balanced trade-off between model computational complexity and model reliability.
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Figure 1: The cardiac force generation process is split into two parts: first, the regulatory units
located on the thin filament (troponin-tropomyosin protein complexes) are activated as a conse-
quence of an increase of intracellular calcium concentration [Ca2+]i and regulated by the sarcomere
elongation SL; then, when tropomyosin switches to the permissive configuration, actin and myosin
undergo the so-called Lymn-Taylor cycle and generate active force [54].

In this paper, we propose a multiscale approach to cardiac electromechanics (EM) wherein
active force generation at the subcellular level is modeled by a ROM built by means of Artificial
Neural Networks (ANNs). We aim at reducing the computational burden associated to the numer-
ical approximation of cardiac EM, wherein complex sarcomere models should be used for accurate
simulations. We show, both qualitatively and quantitatively, that our approach and our reduced
model realize a very good trade-off between computational efficiency and accuracy.

We build the ANN-based reduced model by further extending the method that we proposed
in [87], to which we refer as a black-box machine learning algorithm. The latter, indeed, does not
require any knowledge of the high-fidelity (HF) model but only a collection of input-output pairs
generated by the HF model. In this work, we move instead towards a gray-box approach (or semi-
physical approach), by feeding the ANN learning process with some a priori knowledge on the HF
model. We employ this method to reduce the dimensionality and the computational complexity of
the cardiac activation model proposed in [85] and we compare the results of simulations performed
with the HF and the reduced model.

The paper is organized as follows. In Sec. 2 we briefly review the mechanism of cardiac force
generation and the associated mathematical models, highlighting the difficulties in finding a low
dimensional model for this process. Then, we review the available literature on the reduction of
computational complexity of activation models. In Sec. 3 we recall the activation model proposed
in [85], which we consider here as the HF model to be reduced and, in Sec. 4, we present the
reduction strategy. In Sec. 5 we provide the technical details on the ANN training, we show the
results obtained, and we validate the ANN-based ROM by means of single cell simulations, under
both physiological and pathological conditions. In Sec. 6 we consider multiscale three-dimensional
cardiac EM simulations and we compare the results obtained with the HF activation model and
our reduced model. We critically discuss the results obtained in Sec. 7 and we draw our conclusions
in Sec. 8.

2 Cardiac activation models and Model Order Reduction

The fundamental contractile unit of cardiac muscle tissues is the sarcomere, a cylindrical structure
nearly 2 µm long, made of two families of filaments – known as thin and thick filaments – arranged
in a highly organized structure [54, 11, 100, 52, 15, 86]. Myosin, the principal constituent of thick
filaments, is a molecular motor able to bind to actin, which is part of the thin filaments, and to
generate force by pulling thin filaments towards the M-line, located at the centre of the sarcomere.
When the tissue is at rest, however, the regulatory units (i.e. troponin-tropomyosin complexes
located on thin filaments) are in a non-permissive configuration that blocks actin binding sites,
preventing myosin from generating force [100, 52].
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Cells contraction is triggered by an increase of the intracellular concentration of calcium ions
(that we denote by the variable [Ca2+]i), which bind to troponin thus making the permissive con-
figuration energetically favourable for the associated regulatory unit. When a regulatory unit is
in the permissive configuration, myosin is free to bind to the actin binding sites regulated by that
unit, forming the so-called crossbridges and generating active force (see Fig. 1). A regulatory unit
acts indeed as a microscopical on-off switch for the generation of force. When calcium concentra-
tion returns to its presystolic level, calcium ions detach from troponin and the regulatory units
move back to the non-permissive configuration; this sterically hinders the formation of further
crossbridges..

Besides calcium concentration, the activation mechanism is regulated by the local stretch of
the tissue, which affects the sarcomere length (here denoted by SL). The main consequences of an
increment of SL (in the physiological range) are an increase of maximal force at saturating calcium
concentrations and an enhanced sensitivity to calcium. This is linked to the Frank-Starling law,
for which an increased presystolic volume (at the microscopical level, larger SL) translates into a
higher generated force (linked to higher tissue activation at the microscale) [54, 11].

Mechanical activation models aim at linking the time evolution of [Ca2+]i(t) and of SL(t)
(regarded as the two inputs of the model) to the level of activation. The latter is measured by
the so-called permissivity – denoted by y(t) ∈ [0, 1] – that is the fraction of regulatory units in
permissive state. When a regulatory unit is in permissive state, steric hindrance is absent, and
force-generating actin-myosin interactions take place. The total active force generated by the
muscle tissue is then assumed to be proportional to permissivity [85].

2.1 Modeling cardiac mechanical activation

Mathematical models of cardiac muscle cells activation are typically represented by Continuous-
Time Markov Chains describing the transitions of the regulatory units proteins [61, 83, 90, 93].
In such stochastic models, a single representative regulatory unit is considered, thus adopting a
mean-field approach, to contain computational complexity.

As shown in the seminal contribution of [89], mean-field models are however unable to reproduce
the steep nonlinear response of tissue activation to an increase of calcium concentration, which
features a Hill coefficient (i.e. a measure of ultrasensitivity of a protein to a ligand, see e.g.
[54]) significantly larger than one [56, 26, 97, 98]. Indeed, the large Hill coefficient reveals an
apparent cooperative behaviour between the different units and this cannot be captured by a
mean-field model, which considers instead only a single unit. On the contrary, the experimentally
observed force-calcium dependence can be recovered by explicitly considering a spatial distribution
of regulatory units, which allows to model nearest-neighbouring interactions [92].

The drawback of spatially explicit models is their overwhelming computational complexity
since the number of degrees of freedom grows exponentially with the number of regulatory units,
reaching the order of 1021 and even larger [85]. This issue is typically tackled by sampling the
solution of spatially-explicit models by the Monte Carlo method, which is however time-consuming
and exhibits a slow convergence towards accurate results [89, 49, 103, 104]. With the Monte
Carlo method, a set of possible trajectories of the system, whose state is represented by just a few
tens of variables, is simulated and the results are averaged. However, in order to reach statistical
convergence, as much as 104 trajectories may be required (see e.g. [102, 85, 104]), raising again
the issue of memory storage in three-dimensional realistic cardiac simulations.

Due to their large computational cost, physics-based models of cardiac activation are typically
replaced, in large-scale cardiac simulations, by phenomenological models; the latter are empirical
relationships obtained by fitting experimental data without being derived from first-principles [48,
70, 91, 60, 59]. The reduced computational cost of phenomenological models comes at the price of
less mechanistic insight into the multiscale phenomena, the lack of a clear physical interpretation
of some of their parameters and a hampered predictive power; the latter drawback mainly comes
from the intrinsic difficulties in gathering accurate data on the microscopic phenomena under the
working condition of a beating heart. Moreover, unlike for phenomenological models, biophysically
detailed models allows to investigate the impact of the macroscopic properties of the contractile
apparatus on the macroscopic observable quantities.
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2.2 Reducing computational burden of cardiac cells activation models

Due to the abovementioned advantages of physics-based models with respect to phenomenologi-
cal ones, several attempts have been made to reduce the computational complexity of spatially-
explicit models while preserving their reliability, in particular for reproducing the physiological
force-calcium relationship [89]. In [92] an exact solution for a spatially-explicit model was pro-
posed, which is however limited to the steady-state. In [13] the large complexity of the proposed
reduced model limits its applicability to a small number of regulatory units. In [102] the authors
propose an integro-differential system derived from the Forward Kolmogorov Equation associated
with the Markov Chain describing the transition of the regulatory units. This system comprises a
set of parameters which have to be estimated by a least-squares fitting over a collection of simula-
tions obtained by means of the Monte Carlo method. However, this reduction approach introduces
a non-negligible error and the training is performed for specific inputs, without guaranteeing the
reliability of the model under different conditions. In [58], aiming at reducing the complexity of a
spatially-explicit model, the authors grouped the states of the model by the number of units being
in a given state, regardless of their position. Then, the position of units is again taken into account
when the transition probabilities are computed by averaging, with Monte Carlo random sampling,
over all configurations of the considered group. However, in this model the spatially-explicit de-
scription is lost and length dependent effects cannot be captured.

In [85], we introduced a physically motivated assumption of conditionally independence on
specific sets of events, which allowed to derive a system of ordinary differential equations (ODEs)
for the time evolution of the probability of the states of triplets of consecutive neighboring reg-
ulatory units. This model allows to accurately reproduce the results of the original model (with
a relative error of order of 10−2) more efficiently than with a Monte Carlo approximation (to get
the same error, the latter requires more than 10000 times of computational time). Moreover, a
thorough validation of the model in [85] shows a good qualitative and quantitative agreement with
experimental measurements under various settings. In particular, the force-calcium relationship is
accurately reproduced, a significantly important achievement for cardiac electromechanics. This
model accomplishes a significant reduction of the computational burden, both in terms of model
size and of computational time, compared to spatially-explicit models. However, it still features
2176 internal variables, that describe all the possible combinations of triplets of adjacent regula-
tory units. In a full-organ three-dimensional simulation with a space discretization featuring 106

degrees of freedom, the total number of variables associated to the muscle cells activation would
be of the order of 109. A further significant reduction of the dimensionality of this model is thus
desirable, if not necessary. This is precisely our goal in this paper.

2.3 Model Order Reduction techniques

We consider therefore general purpose Model Order Reduction (MOR) reduction techniques to
derive a computationally tractable, lower dimensional counterpart of a HF model, yet accurately
reproducing its results [3, 9, 77]. MOR techniques can be classified as model-based or data-driven.
With the former strategy, the reduced formulation is derived from the HF model, by projecting it
onto a smaller space [3, 9, 8, 1]. In this framework, the space of the full-order state is approximated
by a lower dimensional subspace, which can be obtained through different techniques, including
Moment-Matching [5, 6, 33], Balanced-Truncation [1, 68] and Proper Orthogonal Decomposition
(POD, see [47, 1, 29, 74, 76]), as in the case of the Reduced Basis (RB) method [77, 69]. Projection-
based methods are tailored on linear models; if applied to nonlinear models they need to be suitably
adapted [77, 69, 65, 19, 28].

On the other hand, data-driven MOR approaches build the reduced model from a collection
of input-output pairs, from which they attempt to infer the dynamics of the HF model. The
Loewner framework [64, 66, 63] and the orthonormal vector fitting (OVF) method [24, 25] are
data-driven MOR techniques for linear systems based on an approximation of the transfer function
of the HF model in the frequency domain. Data-driven MOR techniques for nonlinear models are,
e.g.: dynamic mapping kriging (DMK) [46], which approximates the right-hand side of a nonlinear
system by Gaussian Process (GP) regression [82, 67]; Sparse Identification of Nonlinear Dynamics
(SINDy) [12], which seeks an approximation of the system right-hand side as a combination of a
predetermined collection of linear and nonlinear terms; a generalization of the Loewner framework
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to analytic nonlinear models with affine input dependence [2, 39, 40]; Multistep Neural Networks,
trained to minimize the residuals of a given multi-step time-stepping scheme on a collection of
available snapshots of the full-order state [81]. However, the latter mentioned techniques are
aimed to reduce the computational effort of the evaluation of the right-hand side of the HF model
and not to reduce its dimensionality. In [41], the authors proposed a MOR technique based on
a combination of projection-based methods with GP regression. In [32], an ANN-based MOR
method for time-dependent PDEs is proposed. However, the last two methods are restricted to
parametric differential equations and cannot be easily extended to models with a time-dependent
input.

In [87] we proposed a data-driven MOR technique, based on ANNs, which is suitable for nonlin-
ear models with time-dependent inputs and can provide a significant reduction of dimensionality
of the HF model. This approach consists in reformulating the model reduction problem as a
maximum-likelihood problem, where one looks for the model which best approximates, inside a
class of candidate models, a collection of input-output pairs. Specifically, the set of candidate mod-
els consists in systems of ODEs whose right-hand side is represented by an ANN that is trained
to learn from the collection of input-output pairs – generated by the HF model – the underlying
physics of the HF model itself. We will recall our data-driven MOR technique in Sec. 4.1 and we
will extend it in Sec. 4.2 by the introduction of suitable penalization terms that enforce some a
priori knowledge on the HF model into the learning process.

3 The high fidelity model for cardiac activation

In this work our HF model is the activation model for cardiac muscle cells proposed in [85],
describing the time evolution of the probabilities associated to the possible states of triplets of
adjacent regulatory units on a myofilament. We have nRU = 36 units, each having 4 possible states
given by the combination of the two conditions of being bound to calcium or not and of being in
permissive state or not. The transition rates between the states are either directly measured or
calibrated from experiments that allow to decouple their effects [88, 92]. The cooperative end-to-
end iterations among regulatory units are included in the model by thermodynamically consistent
nearest-neighboring interactions, as proposed in [92]. Finally, length dependent effects are captured
thanks to the spatially-explicit representation of regulatory proteins, that allows to accurately track
the filaments overlap.

Since each triplet can be in 43 possible states and we have (nRU − 2) different triplets of
adjacent units, the size of the internal state of the model is N = (nRU− 2) · 43 = 2176. We denote
by Z(t) ∈ RN the internal state of the HF model, that is the vector collecting all such variables.

The HF model for cardiac activation can be written in the following form:
Ż(t) = F(Z(t),u(t)), t ∈ (0, T ]

Z(0) = Z0

y(t) = G(Z(t)), t ∈ (0, T ],

(1)

where the input is given by u(t) = ([Ca2+]i(t), SL(t))T and the output is the permissivity y(t).
The right-hand side F and the output function G are nonlinear and linear functions, respectively;
we refer the interested reader to [85] for the definition of these terms.

Following [92], we assume that each cycling crossbridge can exert a fixed amount of force and
that calcium-driven activation represents the rate-limiting step of the force generation dynamics.
As the fraction of cycling crossbridges corresponds to the permissivity, the total active tension (Ta)
is proportional to y:

Ta = Ty, (2)

where T is the force generated for y = 1. We here neglect shortening velocity-related effects [54,
55], which require an explicit representation of crossbridges to be modeled [18, 14, 57] and which
we will include in a future work.

We remark that whereas in this paper we focus on a specific HF model of active force generation
(the one proposed in [85]), the MOR strategy here proposed can be applied to virtually any other
HF model of force generation. As a matter of fact in [88] successful examples of application to
different active tension models are presented.
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4 The model reduction strategy

Within a data-driven framework, we carry out Ns experiments (i.e. numerical simulations) with
the HF model and we collect a set of Ns outputs y(t), each one obtained with a different input u(t).
As our goal is to obtain a reduced model to be exploited in multiscale cardiac simulations, our
inputs will span the range of values possibly covered during the cardiac activity. In particular, since
calcium concentration during each heartbeat varies between 0.1 µM (micromolar) and 1.2 µM and
the working range of sarcomeres spans a length from 1.7 µm to 2.3 µm [11, 54], our input takes values
in U = [[Ca2+]i,min, [Ca2+]i,max] × [SLmin, SLmax], where we prudentially set [Ca2+]i,min = 0 µM,
[Ca2+]i,max = 1.5 µM, SLmin = 1.6 µM, SLmax = 2.4 µM. Since the output of the model represents
the fraction of units in permissive state, we define the space of output values as Y = [0, 1].

We employ the following notation to denote the input-output pairs of the training dataset. For
j = 1, . . . , Ns, we consider a time interval [0, Tj ] and an input function ûj : [0, Tj ] → U and we
define ŷj : [0, Tj ] → Y as the solution of the HF model (1) associated to the input ûj . The j-th
training experiment (where j = 1, . . . , Ns) consists of the pair (ûj , ŷj).

The solution of the HF model (1) also depends on the initial condition Z0. Because of the
non-intrusive nature of our approach, a unique initial condition must be used in each experiment,
otherwise the input-output map that we aim to learn would not be well-defined (see [87] for more
details). Specifically, we set as initial condition for each training experiment the steady-state of
the cell in pre-systolic conditions, which is when calcium concentration is [Ca2+]i,0 = 0.1 µM and
the sarcomere length is SL0 = 2.2 µm. The corresponding state can be numerically computed by
solving the HF model with input u(t) ≡ u0 := ([Ca2+]i,0, SL0)T , until a steady-state is reached.

4.1 Black-box model reduction

Our ROM will approximate the HF model in the following form:
ż(t) = f(z(t),u(t)), t ∈ (0, Tj ]

z(0) = z0

y(t) = z(t) · e1, t ∈ (0, Tj ],

(3)

where the reduced state z(t) belongs to a lower dimensional space Rn such that n� N . By setting
y(t) = z(t) · e1, where e1 = (1, 0, . . . , 0)T ∈ Rn, we are forcing the first entry of the reduced state
to coincide with the output itself. It follows that the first entry of the initial reduced state z0

(here denoted by (z0)1) must coincide with the output associated with the initial full-order state
Z0. Hence, (z0)1 represents the presystolic permissivity and is given by y0 := G(Z0) ' 1.5 · 10−3.
As discussed in [87], we can set, without loss of generality, (z0)i = 0 for i = 2, . . . , n as this choice
does not reduce the set of candidate reduced models (each model not satisfying the condition
(z0)i = 0 for i = 2, . . . , n can be rewritten, after a change of variables, as a model in the form of
Eq. (3) satisfying the aforementioned condition.). To sum up, we set the initial reduced state as
z0 = (y0, 0, . . . , 0)T .

By comparing Eq. (1) with Eq. (3), we notice that the full-order state Z(t) is replaced by a
new variable z(t). Conversely, both the input u(t) and the output y(t), having the same physical
meaning, are denoted with the same symbol.

The right-hand side f : Rn×U → Rn is the unique element in (3) still to be defined. This term
is, in fact, what the machine learning algorithm will learn from the training input-output pairs.
Our strategy is that of fixing the dimension n of the ROM, selecting a candidate class of functions
F̂ , and interpreting the model reduction problem as a best-approximation problem. In the latter,
we look for the function f ∈ F̂ such that the input-output map represented by the model (3) best
fits the input-output pairs belonging to the training set. Basically, within all the possible models
with n state variables, we are looking for the one which best approximates the HF model. More
precisely, we consider the following optimization problem, in which we minimize the distance, in
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the least-squares sense, between the HF output and the output obtained by the ROM:
min
f∈F̂

1
2

∑Ns
j=1

´ Tj
0
|ŷj(t)− yj(t)|2dt

s.t. żj(t) = f(zj(t), ûj(t)), t ∈ (0, Tj ], j = 1, . . . , Ns

zj(0) = z0, j = 1, . . . , Ns

yj(t) = zj(t) · e1, t ∈ (0, Tj ], j = 1, . . . , Ns.

(4)

The former problem can be interpreted as a maximum-likelihood problem, where the unknown is
f ∈ F̂ , subject to the constraint given by the model itself. Clearly, we need to suitably select the
set of candidate functions F̂ . Because of their universal approximation properties [23] and their
well assessed ability of learning manifolds from data [94, 45], we set as candidate functions space

F̂ the space of functions represented by ANNs with a prescribed architecture. ANNs are functions
from Rp to Rq (in our case, p = n+ 2 and q = n), parametrized by a finite number of parameters
(representing the weights and biases), which are collected in a real valued vector µ ∈ Rk, for
k ≥ 1 (see e.g. [107]). To stress the dependence of f on the parameters µ, we will use henceforth
the notation f(z,u;µ). We remark that the use of ANNs as space of candidate functions has a
solid theoretical basis since, as we proved in [87], any time-dependent differential equation can be
approximated with arbitrary accuracy by an ANN-based model.

In this manner, problem (4) can be written as an optimization problem in Rk and standard
optimization techniques can be employed for its solution. In particular, we use the Levenberg-
Marquardt algorithm [71], an approximated Newton method, specifically designed for least-squares
problems, that exploits first-order derivative information to approximate the second-order deriva-
tives. For the computation of the gradients of the least-squares terms with respect to the design
variables µ, an adjoint backward equation is solved at each iteration of the optimization algorithm.
We refer the interested reader to [87] for the technical details.

4.2 Feeding the learning process with a priori knowledge

The approach presented so far is fully black-box, that is it does not require any knowledge about the
HF model except for a collection of input-output pairs generated by the HF model itself. However,
as for the application considered in this paper, we may actually have some insight into the HF
model that we aim to reduce. Such a priori knowledge can be exploited in the learning process by
adding to the cost functional of problem (4) suitable penalization terms, that we introduce in this
section.

4.2.1 The cycle condition

As explained in [87], with the proposed approach it is not possible to give a physical meaning to
all the entries of the reduced state z(t), apart from (z(t))1, which coincides with the permissivity
y. This is intimately linked with the black-box nature of data-driven approaches. Nonetheless, the
reduced state z is a compact representation of the full-order state Z: we may suppose that there
exists a map between the full-order and the reduced state. Hence, the initial state Z0 is mapped,
by construction, into the reduced initial state z0.

This implies that, whenever the HF model returns to the initial state at the final time Tj , i.e.,
Z(Tj) = Z0, the ROM should correspondingly satisfy z(Tj) = z0. To enforce this condition, which
we call cycle condition, we insert in the training set some experiments, labelled by the indexes
j ∈ Jr, such that at final time Tj the full-order state coincides with the initial state Z0. Then, we
add to the cost functional of problem (4) the following term:

E2
c = a−1

c

∑
j∈Jr

n∑
i=2

(zj(Tj) · ei)2

1
Tj

´ Tj
0

(zj(t) · ei)2
dt
, (5)

where ac = |Jr|(n−1) is a normalization factor, whose role will be discussed later. We remark that
Ec does not involve (z)1 since it is already accounted for in the cost functional of problem (4). We
also notice that in (5) we normalize with respect to the L2 norm of the history of z(t), otherwise
the introduction of the penalization term (5) would be useless. Indeed, by performing a change
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of variable the internal state by multiplying its entries, but for the first one, by a small constant
α� 1, the quantity

∑
j∈Jr

∑n
i=2 (zj(Tj) · ei)2

can be made arbitrary small, without changing the
input-output map represented by the model.

4.2.2 The equilibrium condition

In Sec. 4 we have defined the initial full-order state Z0 as the steady-state associated to the input
u0. Therefore, such state is by definition an equilibrium solution (i.e. F(Z0,u0) = 0), a condition
that should be satisfied also by the ROM (i.e. f(z0,u0) = 0). To enforce this condition (which
we call equilibrium condition), we envisage two alternative strategies. The first one, which we call
weak imposition, consists in adding to the cost functional the following further penalization term:

E2
e = a−1

e |f(z0,u0)|2, (6)

where the normalization factor is defined as ae = n. The second one consists in manipulating the
ANN architecture in such a way that the equilibrium condition is exactly satisfied. Specifically, we
redefine f as f(z,u) = f̄(z,u) − f̄(z0,u0), where f̄ stands as the ANN to be trained (from which
we remove the last layer of biases since it is canceled by the subtraction). We call this second
approach strong imposition of the equilibrium condition as the latter is satisfied by construction.
In other words, we train the ANN weights and biases, excluding the biases of the output layer,
which are defined in such a way that the equilibrium condition is satisfied. The reduction of the
number of the unknowns is a consequence of the reduction of the space of candidate solutions (we
have excluded the functions not satisfying the equilibrium condition).

4.3 Gray-box model reduction

The introduction of the cycle condition and of the equilibrium condition, made in Sec. 4.2, would
not be possible in a strict black-box framework since the internal state would not be observable. We
have thus moved towards a gray-box approach since we have mixed a black-box technique with some
insight on the HF model. Before stating the formulation of the gray-box model reduction problem,
we introduce the following notation to denote the cost-functional of the black-box formulation (4),
which penalizes the error between the HF model and the ROM

E2
b = a−1

b

Ns∑
j=1

ˆ Tj

0

|ŷj(t)− yj(t)|2dt, (7)

where ab =
∑Ns
j=1

´ Tj
0
|ŷj(t)|2dt. Then, the gray-box MOR problem reads:

min
µ∈Rk

1
2w

2
bE

2
b + 1

2w
2
cE

2
c + 1

2w
2
eE

2
e

s.t. żj(t) = f(zj(t), ûj(t);µ), t ∈ (0, Tj ], j = 1, . . . , Ns

zj(0) = z0, j = 1, . . . , Ns

yj(t) = zj(t) · e1, t ∈ (0, Tj ], j = 1, . . . , Ns.

(8)

The weight factors wb, wc, we ∈ R+ allow to tune the contribution of the different terms. The
normalization factors ab, ac and ae allow to keep the relative weight of the different terms unaffected
by changes in the number of training samples, in Jr or in n. When the strong imposition of the
equilibrium condition is employed, we set we = 0 and we modify the architecture of f accordingly.

4.4 Discrete version of the MOR problem

We discretize in the problem (8) both for the state equation and the objective functional. As
in [87], we consider uniform subdivisions of the time intervals [0, Tj ] with step-size ∆t; then, we
discretize the state equation by a Forward Euler scheme and the objective functional in (8) by the
composite trapezoidal rule [78].

We notice that all the terms of the objective functional of problem (8) can be written as sum of
squares. The optimization problem retains a least-squares structure and the Levenberg-Marquardt
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algorithm can thus be applied. The unique change with respect to the solution of the fully black-
box problem (4) is that it requires the calculation of the gradient of the terms Ec and Ee with
respect to the design variables µ. Such gradients can be obtained by means of the Lagrange
Multiplier method (as in [87]) and by differentiation with respect to µ, respectively.

5 The reduced cardiac activation model

In this section, we provide details on the ANN training and we present our strategy to select
the hyperparameters (i.e. the ANN architecture, the weights of the physics-based penalization
terms and the strategy used to impose the equilibrium condition). Then, we show the results
obtained with the selected ROM, by validating it against experimental data, under physiological
and pathological conditions.

5.1 Training the ANN

To train the ANN we generate a training set by means of the HF model, i.e. a collection of
input-output pairs (ûj , ŷj), for j = 1, . . . , Ns. In such training set we insert three kinds of input
functions:

• 50 step responses of duration T = 3 s, in the form of u(t) = u0 + (ū − u0)1[t1,t2)(t), where
t1 = 0.2 s, t2 = 2 s and where ū is randomly selected, being 1A the indicator function of the
set A. Specifically, we put into the train set 40 inputs where the values ū are selected by
Latin Hypercube Sampling (LHS) of the input set U and 10 additional inputs obtained by
LHS of the subset [0.3, 0.6]µM× [2.15, 2.25]µm ⊂ U . In the latter region, indeed, the steady-
state force-length relationship has a non regular shape and thus requires a better resolution
to be appreciated. The samples belonging to this set are such that the final full state Z(T )
virtually coincides (with a relative error lower that 10−4) with Z0. Therefore, we set the
corresponding indexes into the set Jr.

• 45 oscillating inputs of duration T = 1 s, in the form of u(t) = ([Ca2+]i,min +A sin( 2π
T1
t)2, B+

C sin( 2π
T2
t))T , where the periods T1 and T2 are randomly selected in the range 0.1− 0.8 s and

the constants A, B and C are randomly selected, with the constrain that the function values
belong to the set U .

• 60 randomly generated inputs of duration T = 1 s.

For selecting the hyperparameters, we proceed by a trial-and-error approach. Aiming at a
drastic reduction of dimensionality of the HF model, we set n = 2 internal variables for the ROM.
For this choice we found that two hidden layers of 6 neurons each yield accurate results without a
significant overfitting, as we will show later (Table 1). Concerning the weights of the loss function,
we set, without loss of generality, wb = 1; indeed the learning process is only affected by the ratio of
the weights. For all the results of this paper, we set wc = 10−1 and (in the case of weak imposition
of the equilibrium condition) we = 10−1. This choice is driven by a compromise between the
satisfaction of the physics-based constraints and the minimization of the data-driven loss function.
However, our experience indicates that the learning outcome is not sensibly affected by the choice
of wc and we, unless much larger or smaller values are employed.

To evaluate the accuracy of the ROM, we build a testing set with a collection of step inputs,
randomly generated inputs and the physiological and pathological inputs described in Sec. 5.2.
Moreover, in order to evaluate the reliability of the ROM over time intervals longer than the one
used for the training, we also test the ROM with random inputs of duration T = 10 s.

Therefore, the ANN is trained based on the input-output pairs generated by the HF model
under fundamental regimes (step responses, frequency responses) and random inputs. Then, the
learned model is tested on different test cases, including physiological samples. If the ANN model,
which has been exposed during the training stage only to fundamental inputs, is able to reproduce
the results of the HF model also for physiological inputs, we can conclude that the ANN has
really learned the dynamics of the system, and it is not simply interpolating between a database
of precomputed solutions.
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Equilibrium condition Cycle condition Train error Test error

- - 1.62× 10−2 2.66× 10−2

weak (we = 10−1) - 1.52× 10−2 2.10× 10−2

strong - 1.70× 10−2 3.10× 10−2

weak (we = 10−1) wc = 10−1 1.48× 10−2 2.35× 10−2

strong wc = 10−1 1.44× 10−2 1.97× 10−2

Table 1: Training and testing relative errors obtained by training the ANN model with or with-
out imposition of the equilibrium condition (in either weak or strong form) and with or without
imposition of the cycle condition.

In Table 1 we compare the training and testing errors obtained with and without imposition
of the equilibrium condition (in weak or strong form) and with or without imposition of the cycle
condition. We conclude that the best strategy consists in introducing in the learning process both
the cycle condition and the equilibrium condition (the latter with strong imposition). All the
results shown in the rest of this paper have been obtained with the ANN model built by means of
the aforementioned strategy. For simplicity, we will refer to this model as the ANN model. The
trained ANN is publicly available online (see App. A).

5.2 Validation of the reduced model

We perform with the HF and the ANN models some of test cases typically employed to validate
microscopic cardiac force generation models and we check that the ANN model did not lose the
capability of the HF model to reproduce the experimentally observed features of cardiac force
generation. The results, reported in Fig. 2 and briefly commented in the next sections, show a
remarkably good match.

5.2.1 Steady-state force-calcium-length relationships

An important characterization of muscle tissue models is the dependence of the steady-state force
on the two inputs, [Ca2+]i and SL (see Fig. 2a and Fig. 2b respectively). The force-calcium
relationship reveals the characteristic sigmoidal shape, with a steep slope in proximity of half
activation. An increase in SL leads to an increase of plateau force and to an increase of calcium
sensitivity, which translates in a leftward shift of the curve. Conversely, the force-length relationship
features increasing curves for SL < 2.2 µm, with a change of convexity as [Ca2+]i increases (from
convex to concave), and a plateau for SL > 2.2 µm (see e.g. [26, 97, 98]).

5.2.2 Isometric twitches

Then, we consider isometric twitches, i.e. force transients in response to the calcium wave occurring
at each heartbeat, at constant SL. We impose the following calcium transient (from [102]):

[Ca2+]i(t) = [Ca2+]i,0 +
[Ca2+]i,peak − [Ca2+]i,0

β

[
e−

t−t0
τ1 − e−

t−t0
τ2

]
1t≥t0 , (9)

where

β =

(
τ1
τ2

)−( τ1τ2−1
)−1

−
(
τ1
τ2

)−(1− τ2τ1
)−1

and [Ca2+]i,0 = 0.1 µM, t0 = 0.1 s, τ1 = 0.02 s, τ2 = 0.11 s. In Fig. 2c, we set [Ca2+]i,peak = 1.2 µM
and we consider different values of SL. Conversely, in Fig. 2d, we set SL = 2 µm and we let
[Ca2+]i,peak vary. In both cases, by increasing either [Ca2+]i,peak or SL, three effects can be
observed: (1) the peak force increases; (2) the activation time is not significantly affected; (3) the
relaxation time increases (see e.g. [50, 27]).
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5.2.3 Sudden development of tension

Experiments show that the rate of tension development following a sudden rise of [Ca2+]i, starting
from its presystolic value of near 0.1 µM, increases with the calcium level ([31, 99, 4, 106]). To
replicate this phenomenon, we apply a step change in calcium at different levels, with SL = 2.2 µm.
The results are shown in Fig. 2e.

5.2.4 Isometric versus shortening twitches

The systolic contraction of the myocardium leads to a shortening of the muscle fibers and, as a
consequence, to a decrease of SL. Therefore, in the normal cardiac activity, shortening twitches,
rather than isometric twitches, are observed. To investigate the difference between the two settings,
we consider the experimentally measured [Ca2+]i and SL transients reported in [51]. The results
of the simulation, shown in Fig. 2f, show that the decrease of SL leads to a decrease of force peak
and to a slight decrease of duration of activation (see e.g. [54, 11]).

5.2.5 Long-term twitches

The normal cardiac activity features a nearly periodic behavior. To test the capability of our model
to sustain a periodic input after several cycles, we perform 10 s long simulations by applying the
calcium transient (9), with [Ca2+]i,peak = 1.1 µM and SL = 2 µm, with different periods, ranging
from 0.3 to 1.5 s (see Fig. 2g). We notice that for the highest frequency the wave summation
phenomenon occurs, by which the effect of consecutive twitches sums up in a sustained contraction
state (see e.g. [54, 11]).

6 Three dimensional cardiac electromechanics

We present our approach to reduce the computational burden associated to the numerical ap-
proximation of multiscale cardiac EM, where we describe force generation at the microscopic level
by means of the reduced ANN model developed in Sec. 5. First, we introduce the EM problem
(Sec. 6.1) and its numerical discretization (Sec. 6.2). Then, we illustrate our multiscale strategy
(Sec. 6.3) and we assess the results, both in terms of efficiency and accuracy with three test cases
(Secs. 6.4 and 6.5).

6.1 The EM problem

We consider a reference computational domain Ω0, representing the left ventricle (LV) muscle
tissue, and a final time T = 0.8 s (the characteristic duration of a heartbeat). We define the
following functions, defined over the space-time domain Ω0×[0, T ] (in the following the dependence
on (x, T ) will be implicit): the transmembrane potential v, the ionic variables w, the activation
variables Z and the displacement d. By using a standard notation, we denote by F = I +∇d the
deformation gradient in the reference configuration and by J = det F its Jacobian. To account for
the anisotropic properties of the cardiac tissue, we define a local frame of reference by means of
the mutually orthogonal vector fields f0, s0 and n0, denoting respectively the fibers direction, the
sheets directions and a direction normal to the previous ones [35].

6.1.1 Electrophysiology

To model the propagation of the action potential, we consider the monodomain equation, which
reads (see e.g. [20, 21]):

χm

(
Cm

∂v

∂t
+ I ion(v,w)

)
= ∇ ·

(
J F−1DmF−T∇v

)
+ Iapp in Ω0 × (0, T ]

∂w

∂t
= h(v,w) in Ω0 × (0, T ](

J F−1DmF−T∇v
)
·N = 0 on ∂Ω0 × (0, T ]

v = v0, w = w0 in Ω0 × {0},

(10)
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Figure 2: Comparison between the results of the HF model (colored solid lines) and the ANN-based
reduced model (black dashed lines) for different test cases, discussed in Sec. 5.2.
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where N denotes the outer normal versor at the surface. The functions I ion and h are specified
according to the ionic model. In this work we consider the ten Tusscher-Panfilov model with 18
variables in the M cells setting [96]. To reduce the number of parameters, we divide the first
equation by the membrane surface to volume ratio χm and by the membrane capacitance Cm,
obtaining:

∂v

∂t
+ Ĩ ion(v,w) = ∇ ·

(
J F−1D̃mF−T∇v

)
+ Ĩapp

where Ĩ ion = C−1
m I ion, Ĩapp = C−1

m χ−1
m Iapp and D̃m = C−1

m χ−1
m Dm. To account for the anisotropic

properties of the tissue, we write the diffusion tensor as D̃m = σiso(I − f0 ⊗ f0) + σf f0 ⊗ f0. The

electrical signal is triggered by the applied current Ĩapp. In this work, we do not explicitly model
the Purkinje network and consider instead a collection of points x1, . . . ,xNp where the electrical
stimulus is applied, yielding

Ĩapp(x, t) = Imax

Np∑
j=1

exp

(
|x− xj |2

δ2

)
1[0,tapp](t).

6.1.2 Cardiac tissue activation

Among the ionic variables of the ten Tusscher-Panfilov model, there is the intracellular calcium
concentration. To recover the other input variable of the cardiac activation model proposed in [85],
namely the local sarcomere length SL, we assume that the sarcomere deformation is proportional
to the local deformation in the fiber direction, i.e. SL = SL0

√
I4,f , where I4,f = Ff0 · Ff0. To

regularize the I4,f field, which may be irregular, especially on coarse FEM computational meshes,
we define SL as solution of the following differential problem:{(

SL− SL0

√
I4,f

)
− δ2

SL∆SL = 0 in Ω0 × (0, T ]

δ2
SL∇SL ·N = 0 on ∂Ω0 × (0, T ]

(11)

where δSL is the regularization parameter. Then, the activation equation, by employing the model
proposed in [85], reads: 

∂Z

∂t
= F(Z, ([Ca2+]i, SL)T ) in Ω0 × (0, T ]

Z(0) = Z0 in Ω0 × {0}.
(12)

The active tension field is then computed as Ta = T G(Z)

6.1.3 Mechanics

The balance of momentum written in the reference domain reads as follows (see e.g. [73]):

ρ
∂2d

∂t2
−∇ ·P(d) = 0 in Ω0 × (0, T ]

P(d)N + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kepi
‖ d + Cepi

‖
∂d

∂t

)
= 0 on Γepi

0 × (0, T ]

P(d)N =
‖JF−TN‖´

Γbase
0
‖JF−TN‖dΓ0

ˆ
Γendo
0

pJF−TNdΓ0 on Γbase
0 × (0, T ]

P(d)N = −pJF−TN on Γendo
0 × (0, T ]

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0},

(13)

where the total Piola-Kirchhoff stress tensor P is split, by adopting an active stress approach [37],
into a passive and an active contribution as P = Ppass + Pact. The passive term is defined as the
differential of the hyperelastic energy W with respect to the deformation gradient (Ppass = ∂W

∂F ).
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We consider a quasi-incompressible exponential material model [101] with the hyperelastic energy
defined by

W =
C

2

(
eQ − 1

)
+
B

2
(J − 1) log J

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn

+ bfs
(
E2
fs + E2

sf

)
+ bfn

(
E2
fn + E2

nf

)
+ bsn

(
E2
sn + E2

ns

)
,

(14)

where Eab = E a0 · b0, for a, b ∈ {f, s, n}, are the entries of the Green-Lagrange strain tensor
E = 1

2 (C− I) in the (f0, s0,n0) frame of reference and B is the bulk modulus. On the other hand,
the active stress tensor is defined as:

Pact = Ta
Ff0 ⊗ f0√
I4,f

.

To model the effect of pericardium on the cardiac wall, we set generalized Robin boundary
conditions at the epicardium Γepi

0 (see [75, 35]). The boundary condition at the base, accounting
for the effect of the neglected part of the domain on the artificial boundary Γbase

0 , is derived in
Appendix C. Finally, the action of the fluid at the endocardium (Γendo

0 ) is modeled by the pressure
p(t) (see below).

6.1.4 Blood external circulation

To close the problem, the LV activity must be coupled with the external circulation. With this aim,
we consider a lumped description, as done in [35], consisting of four phases, where we conventionally
start with systole:

1. In the isovolumetric contraction phase, the pressure p(t) starts from its end-diastolic value
(p̄ED) and then raises in such a way that the ventricular volume V is kept constant.

2. When p(t) reaches the aortic valve opening pressure value p̄AVO (we define such time instant
as t = TAVO), the ejection phase starts. In this phase, the evolution of p(t) is modeled by a
two-elements Windkessel model [105] as:Ccirc

dp

dt
= − p

Rcirc
− dV

dt
t ∈ (TAVO, TAVC]

p(TAVO) = p̄AVO

(15)

where TAVC (aortic valve closing time) is the first time, after TAVO, when the negative flux
dV
dt changes sign.

3. At this stage, another isovolumetric phase begins. This phase ends when p(t) reaches p̄MVO,
the value of the mitral valve opening pressure.

4. In the filling phase, we linearly increase p(t) so that it reaches p̄ED at final time T .

To compute the ventricular volume V we employ the following formula, that is derived in
Appendix B:

V (t) =
1

3

ˆ
Γendo
0

J(t) (X + d(t)− b(t)) · F−T (t)N dΓ0,

where

b(t) =
1∣∣Γbase
0

∣∣ ˆ
Γbase
0

(X + d(t))dΓ0.
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6.1.5 The coupled EM problem

We report here for completeness the coupled EM problem:

χm

(
Cm

∂v

∂t
+ I ion(v,w)

)
= ∇ ·

(
J F−1DmF−T∇v

)
+ Iapp in Ω0 × (0, T ]

∂w

∂t
= h(v,w) in Ω0 × (0, T ](

J F−1DmF−T∇v
)
·N = 0 on ∂Ω0 × (0, T ]

v = v0, w = w0 in Ω0 × {0}(
SL− SL0

√
I4,f

)
− δ2

SL∆SL = 0 in Ω0 × (0, T ]

δ2
SL∇SL ·N = 0 on ∂Ω0 × (0, T ]
∂Z

∂t
= F(Z, ([Ca2+]i, SL)T ) in Ω0 × (0, T ]

Z(0) = Z0 in Ω0 × {0}

ρ
∂2d

∂t2
−∇ ·

(
Ppass(d) + T G(Z)

Ff0 ⊗ f0√
I4,f

)
= 0 in Ω0 × (0, T ]

P(d)N + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kepi
‖ d + Cepi

‖
∂d

∂t

)
= 0 on Γepi

0 × (0, T ]

P(d)N =
‖JF−TN‖´

Γbase
0
‖JF−TN‖dΓ0

ˆ
Γendo
0

pJF−TNdΓ0 on Γbase
0 × (0, T ]

P(d)N = −pJF−TN on Γendo
0 × (0, T ]

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0},

(16)

where the endocardial pressure p has to be determined, depending on the cardiac cycle phase,
either as Lagrange multiplier for the isovolumetric phases, or as solution of the circulation model
(15). In Tab. 2 we report the full list of parameters used in the EM model.

6.2 Numerical discretization

For the spatial discretization of the first equation of Eq. (10), for Eqs. (11)-(13) and for the
generation of fibers fields, we employ P1 linear Finite Elements on a tetrahedral mesh. Moreover,
we discretize the ionic variables w and the activation variables Z by means of P1 linear Finite
Elements, and we solve the associated ODE models (i.e. the equation for w of Eq. (10) and
Eq. (12)) at each nodal point of the computational mesh. As for the time discretization, we
consider a uniform subdivision 0 = t0 < t1 < · · · < tM = T of the time interval [0, T ] with
step ∆t = 2× 10−4 s. To denote the unknown at the k-th time step, we use a superscript (e.g.
v(k) ≈ v(tk)). For the discretization of time derivatives, we use first order finite difference schemes
[78].

To couple the different models, we employ the segregated strategy presented in [36]. Specifically,
at each time step tk, we orderly perform the following steps:

I. We update the ionic variables of the ten Tusscher-Panfilov model [96], with an IMEX scheme,
to deal with the stiff nature of the equations.

II. We update the potential field v(k) by solving the monodomain equation (Eq. (10)), with
implicit treatment of the potential and by employing an extrapolation of the displacement d
consistent with the order of the time derivative discretization.

III. We recover the local sarcomere length by solving Eq. (11) and we update the activation
variables by solving Eq. (12), with explicit treatment of the unknown Z. Since the solution
of the activation model requires a smaller time step (2.5× 10−5 s), at this step we perform
an inner iteration.
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Variable Value Unit Description

Electrophysiology
σf 1.204× 103 mm2 s−1 Normalized electrical diffusivity in fiber direction
σiso 0.1761× 103 mm2 s−1 Normalized electrical diffusivity in transverse direction
Imax 100 V s−1 Applied current value
δ 14 mm Applied current radius
tapp 2× 10−3 s Applied current duration

Activation
T 700 kPa Active tension per unit area if y = 1
SL0 2.0 µm Reference sarcomere length
δSL 5 mm SL regularization radius

Mechanics
ρ 1× 103 kg m−3 Tissue density
B 50 kPa Bulk modulus
C 2 kPa Material stiffness
bff 8 - Hyperelastic parameter
bss 6 - Hyperelastic parameter
bnn 3 - Hyperelastic parameter
bfs 12 - Hyperelastic parameter
bfn 3 - Hyperelastic parameter
bsn 3 - Hyperelastic parameter

Kepi
⊥ 2× 10−1 kPa mm−1 Robin boundary condition

Cepi
⊥ 2× 10−2 kPa s mm−1 Robin boundary condition

Kepi
‖ 2× 10−2 kPa mm−1 Robin boundary condition

Cepi
‖ 2× 10−3 kPa s mm−1 Robin boundary condition

Circulation
Rcirc 3.5× 10−2 Pa s mm−3 Windkessel model parameters
Ccirc 4.5 mm3 Pa−1 Windkessel model parameters
p̄ED 1.333 kPa End-diastolic pressure
p̄AVO 9.333 kPa Aortic valve opening pressure
p̄MVO 0.667 kPa Mitral valve opening pressure

Table 2: Parameters of the EM problem.
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t = 0.3 s t = 0.5 s t = 0.8 s

Figure 3: Test Case 1: comparison of the displacement field (at different time steps) between
the simulations performed by the HF activation model and by the ANN model. For visualization
purposes, the domain is split into two identical subregions: in the left subregion, the solution
obtained with the HF activation model is shown; in the right subregion, the solution obtained with
the ANN-based activation model.

IV. We update the displacement by Eq. (13), with implicit treatment of the unknown d(k).
To deal with the nonlocal nature of the boundary condition on Γbase

0 , we adopt a quasi-
Newton strategy, by computing the Jacobian matrix only with respect to the local terms.
In the isovolumetric phases of the heartbeat, we solve Eq. (13) together with the equation
V (k) = V (k−1). This is a saddle-point problem in the unknowns d(k) and p(k) and we solve
it by Schur complement reduction [10]. On the other hand, during the ejection phase, the
pressure is updated before solving the mechanical problem with an implicit treatment of p.
In Test Case 3, to lower the computational burden due to the fine mesh, for the solution of
the mechanical problem we employ a 5 times larger time step (see [36, 34]).

6.3 ANN-based efficient EM simulations

The computational cost associated with the numerical approximation of the EM problem is strongly
affected by the solution of the 2176-variables activation model (12), both in terms of memory
storage and computational time (we provide quantitative indications in Secs. 6.4–6.5). To lower
such computational burden, we replace the HF activation model (12) with its surrogate given by
the 2-variables ANN model (3). This can be easily done thanks to the fact that the two models
share the same inputs and outputs. In the following, we compare the results of EM simulations
obtained by employing the HF activation model and by employing the ANN model, which we will
respectively denote by HF-EM and ANN-EM.

6.4 Test Case 1: cardiac slab

We consider a slab of cardiac tissue, defined by the computational domain Ω0 = (0, 40 mm) ×
(0, 20 mm) × (0, 8 mm). We consider a fiber field f0 = e1 aligned as the x-axis and a sheet field
s0 = e3 aligned as the z-axis. We consider a unique stimulus location x1 = (0, 0, 0)T (point A
of Fig. 4). Due to the simple domain employed, in this test case the three boundaries (Γbase

0 ,

Γepi
0 and Γendo

0 ) are not defined. Thus, we change the boundary conditions of the mechanical
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(c) Point C

Figure 4: Test Case 1: comparison of the time course of quantities of interest in three points
(indicated in the top image) obtained with the simulations performed with HF-EM (solid colored
lines) and with ANN-EM (black dashed lines).
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(a) Test case 2 (b) Test case 3

Figure 5: LV computational meshes of Test Case 2 and 3.

(a) Field f0 (b) Field s0 (c) Field n0

Figure 6: Test Case 3: representation of fibers, sheets and normal fields. Three sections in the
apico-basal direction allow to appreciate the transmural variation of fibers orientation.

problem (13), by imposing d ·N = 0 and a no-stress condition in tangential direction on the three
faces passing through the origin (i.e. {x : x · ej = 0}, for j = 1, 2, 3). In the remaining subset
of the boundary, we impose a generalized boundary condition with K⊥ = 5× 10−1 kPa mm−1,
C⊥ = 1× 10−1 kPa s mm−1 and K‖ = C‖ = 0.

We consider a structured computational mesh with a uniform subdivision in 16, 8 and 3 elements
along the cartesian directions x,y, and z, respectively, for a total of 2304 tetrahedra and 612 dofs. In
Figs. 3–4 we show a comparison between the HF-EM and the ANN-EM results. The computational
costs are compared in Tab. 4.

6.5 Test Cases 2 and 3: idealized and patient-specific left ventricle

We consider an idealized LV (Test Case 2) and a realistic LV derived from the Zygote CAD [108]
(Test case 3). The idealized computational mesh consists of 6500 tetrahedra and 1827 degrees of
freedom (see Fig. 5a), whereas the patient-specific one accounts for 354 ·103 tetrahedra and 65 ·103

degrees of freedom (see Fig. 5b). The electrical stimulus Iapp is applied at three points, located on
the endocardial surface close to the apex. We generate the fibers and sheets distribution according
to the rule-based algorithm proposed in [7], by setting αendo = −60◦, αepi = +60◦. The fibers,
sheets and normal fields are displayed (just for the patient-specific geometry) in Fig. 6. In Test
Case 2 we set the parameter T to 480 kPa, to obtain realistic pressure values.

The stress-strain relationship defined by (14) is referred to the natural configuration. However,
in practical applications, the natural stress-free configuration is unknown since an internal pressure
p is always present in each phase of the heartbeat. In Test Case 2, we assume that the computational
domain is referred to the end dyastolic phase. Therefore, we recover the natural configuration as
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t = 1 ms t = 2 ms t = 6 ms t = 15 ms t = 35 ms

Figure 7: Test Case 3: transmembrane potential at different times.

t = 10 ms t = 15 ms t = 20 ms t = 25 ms t = 40 ms

Figure 8: Test Case 3: intracellular calcium concentration at different times.

the domain such that by applying the pressure p = p̄ED, one recovers the given computational
domain as steady-state solution. Then, we employ such deformation as initial condition for the
mechanical problem (13). On the other hand, as the computational domain of Test Case 3 is
associated to a phase of the heart cycle such that the diastolic filling is not fully completed (more
precisely, the beginning of the atrial kick), we recover the natural configuration by assuming that
the computational domain is at equilibrium with an intermediate pressure between p̄ED and the
pressure at the end of the second isovolumetric phase (specifically we take p = 5.6 mmHg). Then,
we passively inflate the ventricle until we reach the pressure p̄ED, and we employ the obtained
displacement as initial condition for the mechanics problem (13).

In Fig. 7 and Fig. 8 we show the propagation of the v and the c fields, respectively, for Test
Case 3. The active tension field Ta is visualized, at different time steps, in Fig. 9, where three
sections at different quotes along the apex-base coordinate allow to appreciate the distribution of
active stress across the transmural coordinate. In Fig. 9 we also report the spatial distribution of
the relative error between the active tension fields obtained with the HF-EM and the ANN-EM
paradigms. The results are commented in Sec. 7. Finally, in Fig. 10 (Test case 2) and in Fig. 11
(Test case 3), we show the displacement field and the contraction of the LV. The top and frontal
sections highlight the torsion that the LV undergoes during the heartbeat and the wall thickening.

Then, in Fig. 12 (Test case 2) and Fig. 13 (Test case 3), we compare the results obtained within
the HF-EM and the ANN-EM paradigms. In the top row, we show the time evolution, of the
average, minimum and maximum value over the domain of [Ca2+]i, SL and Ta. In the bottom row
we show the time evolution of the macroscopic quantities p and V and the LV pressure-volume
loop. All the curves show a good match between the results obtained in the HF-EM and the
ANN-EM paradigms.

The main cardiac biomarkers, some of them clinically meaningful, computed in the HF-EM and
ANN-EM paradigms, are reported in Tab. 3. For all the biomarkers, the error between HF-EM
and ANN-EM is even smaller than the train and of the test error associated with the ANN model.
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HF-EM

t = 0 ms t = 0.10 ms t = 0.20 ms t = 0.30 ms t = 0.40 ms

ANN-EM

t = 0 ms t = 0.10 ms t = 0.20 ms t = 0.30 ms t = 0.40 ms

t = 0 ms t = 0.10 ms t = 0.20 ms t = 0.30 ms t = 0.40 ms

Figure 9: Test Case 3: active tension at different times obtained with HF-EM (first row) and
ANN-EM (second row) and the corresponding relative error (third row).

Indicator HF-EM ANN-EM Relative error

Test Case 2 (idealized LV, 1827 dof)
Stroke volume (mL) 63.33 63.57 3.71× 10−3

Ejection fraction (%) 46.63 46.80 3.71× 10−3

Maximum pressure (mmHg) 112.96 113.91 8.38× 10−3

Work (mJ) 766 773 9.08× 10−3

Test Case 3 (patient-specific LV, 65476 dof)
Stroke volume (mL) 56.64 56.39 4.33× 10−3

Ejection fraction (%) 44.48 44.29 4.33× 10−3

Maximum pressure (mmHg) 108.94 109.10 1.52× 10−3

Work (mJ) 662 659 4.85× 10−3

Table 3: Test Case 2 and 3: main cardiac indicators. Comparison between the HF-EM and the
ANN-EM frameworks and corresponding relative errors.
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t = 0.0 s t = 0.1 s t = 0.2 s t = 0.4 s t = 0.6 s

Figure 10: Test Case 2: deformed geometry and magnitude of displacement at different times. Top
row: full geometry. Middle row: half domain (top view). Bottom row: half domain (frontal view).
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t = 0.0 s t = 0.1 s t = 0.15 s t = 0.4 s t = 0.6 s

Figure 11: Test Case 3: deformed geometry and magnitude of displacement at different times. Top
row: full geometry. Middle row: half domain (top view). Bottom row: half domain (frontal view).
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Figure 12: Test Case 2: comparison of the time evolution of quantities of interest and of the
pressure-volume loop obtained with the simulations performed with HF-EM (solid colored lines)
and with ANN-EM (black dashed lines). In (a)-(b)-(c) the three lines show the time evolution of
the minimum, maximum and mean value of [Ca2+]i, SL and Ta over the computational domain.
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(f) Pressure-volume loop

Figure 13: Test Case 3: comparison of the time evolution of quantities of interest obtained in the
HF-EM and the ANN-EM frameworks (see caption of Fig. 12).
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Simulation type Ionic Potential Activation Mechanics Wall time

Test Case 1 (cardiac slab, 612 dof, 1 core)
HF-EM 6.3% 0.3% 89.0% 4.5% 3h 16’
ANN-EM 53.0% 2.7% 3.3% 41.1% 22’
Test Case 2 (idealized LV, 1827 dof, 1 core)
HF-EM 4.27% 0.29% 91.94% 3.40 % 9h 31’
ANN-EM 53.38% 3.31% 3.74% 39.57% 46’
Test Case 3 (patient-specific LV, 65476 dof, 20 cores)
HF-EM 3.14% 0.47 % 83.07% 13.33% 20h 18’
ANN-EM 41.21% 4.80% 2.54% 51.46% 2h 04’

Table 4: Comparison of the computational times associated to the four physics and the total wall
time between HF-EM and ANN-EM, for both test cases.

We will comment on this in Sec. 7.
Finally, in Tab. 4, we report the computational times associated with the numerical approx-

imation of the EM problem in the HF-EM and in the ANN-EM paradigms. For Test Case 2, a
single core was employed, whereas for Test Case 3 simulations were run in parallel on 20 cores.

7 Discussion

7.1 Computational gain

The ANN-EM paradigm accomplishes a significant reduction of the computational cost of the HF-
EM paradigm. The solution of the activation model, which accounts for most of the computational
time of the whole simulation, highlights a gain nearly of a factor 300 in all test cases, reducing
the overall computational times by one order of magnitude. The computational speedup is slightly
smaller for finer grids, for which the relative weight of the mechanical subproblem is more pro-
nounced. However, whereas the approximation of the electrophysiology subproblem (10) requires
a finer grid for the convergence of the solution [80], the computational mesh used in Test Case 3
features a large enough number of elements to get accurate results for the mechanics subproblem
(13) and to capture the complexity of patient-specific domains [80, 58]. Therefore, since when
different meshes are employed for the different physics the activation subproblem (12) is typically
solved on the mesh used for the mechanics [80], we expect that the speedup obtained in Test Case
3 is representative for the computational gain one can obtain for HF simulations of patient-specific
EM.

With the ANN-EM approach, the number of variables for each degree of freedom of the domain
is 24 (18 ionic variables, the transmembrane potential, 2 activation variables, 3 components of
the displacement), significantly lower than the number of variables with the HF-EM approach
(18+1+2176+3 = 2198).

Finally, we remark that in this work we considered a staggered approach [36, 34], where the
four different physics are solved in sequence. The results could vary with other numerical coupling
approaches. In particular, with a monolithic approach (where the 4 physics are solved simultane-
ously in a strongly coupled manner [35]), the computational gain is expected to be even greater
since the size of the Jacobian matrix scales as the square of the number of variables.

7.2 Approximation accuracy

The zero-dimensional simulations obtained with the reduced ANN model (see Sec. 5.2) are accurate
with respect to the ones obtained with the HF model (relative error of order 10−2). Nevertheless,
when the activation model is embedded in the EM coupled system, the model output (i.e. active
force) has a feedback on its inputs (mostly on SL, as it causes the tissue contraction, but also
on [Ca2+]i, due to the mechano-electrical feedback). Therefore, one should check whether such
feedback has the effect of amplifying the error introduced by the ANN reduced model, or not.
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Numerical results show that the errors are kept under control when the ANN model is embedded
in a EM setting. The largest error between the active tension obtained with the ANN-EM and
the HF-EM paradigms is attained at the time of maximum activation (i.e. t = 0.1 s), as shown in
Fig. 9. A deeper analysis reveals that the discrepancy between the two results is related to a small
anticipation (nearly 5× 10−3 s) in the activation dynamics obtained in the ANN-EM paradigm with
respect to that obtained with the HF-EM one. We believe that this is due to the time-discretization
error associated to the training phase, during which a larger time-step (∆t = 1× 10−2 sec) than the
one used for the EM simulation (∆t = 2× 10−4 sec) is employed. We plan to investigate this aspect
in future works. Nonetheless, the small anticipation of the active stress peak does not compromise
the quality of the results. As a matter of fact, the errors associated to the main cardiac biomarkers
(order of 10−3) are dampen by one order of magnitude with respect to the errors obtained with
zero-dimensional simulations of the activation model alone. Indeed, the feedback of mechanics on
activation has a favourable effect: a positive deviation of active tension leads to a larger shortening
of the tissue (i.e. lower SL), which, in turn, makes the active tension decrease, compensating the
initial error in Ta. This is a consequence of the fact that the heart works on the ascending limb
of the force-length relationship (on the descending limb, which occurs when the tissue is over-
stretched, we would have the opposite effect). It is indeed recognized [11, 54] that the advantage
of this fact lies in an enhanced stability in the contraction of the heart. In Appendix D we prove,
in a simplified one-dimensional setting, that the error in the ANN-EM setting (with respect to
HF-EM) is lower than the error of the ANN model alone (with respect to the HF model).

7.3 Comparison with phenomenological models

The ANN model is built from data generated by the HF model. This is somehow similar to the way
the so-called phenomenological models, i.e. models built by fitting the experimental observations
with a few number of variables (see e.g. [48, 70, 91, 59]), are built. A natural question is how
those models compare with the ANN model.

Building a model consists in the solution of an inverse problem: starting from experimental
observations, one looks for a law, written in mathematical terms, and a set of parameters describing
the phenomenon that generated the observations themselves. However, experimental data are
typically noisy and defective. This is particularly evident in the case considered in this work, due
to the microscopic scale at which force is generated and to the intrinsic difficulties in performing
experimental measurements of the internal properties of myofilaments without damaging them [56,
26, 98]. In the context of inverse problems and statistical learning, the action of compensating
for noise and deficiency of data is known as regularization (see e.g. [44, 62]). Regularization is
typically performed either by suitable penalization of the unknown variables, or by restricting the
set of candidate solutions [53].

Phenomenological models are derived by finding the best fit of experimental data with a simple
law chosen a priori. Such a priori assumptions allow for a lumped description of the phenomenon
with a small number of parameters to be tuned from experimental data. This is crucial, due to
the noisy and defective nature of data. In fact, such a priori assumptions are a way of performing
regularization. For instance, to reproduce the nonlinear response of activation to calcium concen-
tration – consequence of the nearest-neighborhood interaction within units – without explicitly
representing the units themselves, a power law dependence on [Ca2+]i is typically assumed, and
the exponent is estimated by fitting experimental data. However, this law has a phenomenological
basis and it is not derived by first principles [91].

With our approach, instead, regularization is performed during the construction of the HF
model thanks to the introduction of physics first principles and to a detailed description of the
microscopic arrangement of the contractile system. In such a way, indeed, the set of possible
relationships among the variables is restricted to those satisfying some physical principles. How-
ever, a detailed physics-based description leads to complex models (in the previous example, a
biophysically-detailed description of nearest-neighborhood interactions within units is not possible
without a spatially-explicit description of the filament). On the other hand, establishing a model
on physics principles clearly enhances its predictive power. Then, in a second stage, the ROM is
learned from the HF model, which does not suffer from the problems affecting experimental data:
training data can be generated from the HF model without noise and without constraints on the

26



quantity. This allows to fit data within a much wider class of candidate solutions (specifically, we
fit training data with ANN-based models, which are able to virtually represent all ODE models, if
a sufficient number of neurons is used, as proved in [87]).

To summarize, whereas phenomenological models are directly derived from experimental ob-
servations, with our approach the process is split into two stages. First, we build an HF model,
by compensating for the deficiency and bad quality of experimental data thanks to physics. Then,
in a second stage, we build a ROM, by fitting data (no more noisy nor defective) generated by
HF model. Thus, the ROM should be seen merely as a way of efficiently solving the physics-based
model itself.

A further advantage of building a model on the ground of a microscopical description is this
allows to investigate the effects of microscopical properties on the macro-level tissue features (e.g.
study the effect of drugs affecting the binding rate of myofilament proteins), whereas the parameters
of phenomenological models may not have a clear physical interpretation.

8 Conclusions

We proposed a novel strategy to reduce the computational burden of cardiac multiscale EM simu-
lations, wherein the intrinsically complex subcellular mechanisms leading to the activation of the
muscular tissue make it difficult to trade off the detail of description of activation models (and
thus their reliability) with computational efficiency. Specifically, we built an ANN-based ROM of
a complex and detailed model of cardiac activation, featuring more that 2000 variables. This op-
eration, thanks to the scale separation between the organ and the myofilaments, can be performed
offline, without any dependence on the three-dimensional setting where we later embed the ROM.
The ANN learns, within a gray-box approach, the dynamics of the HF model from a collection
of input-output pairs, generated by the HF model itself, combined with some a priori knowledge,
enforced during the learning process. In such a way we have derived a 2-variables ROM, capable
of reproducing the results of the HF model with a relative error of about 10−2. Moreover, we have
validated the results of the ANN-based model, by checking that it is still able to reproduce the
experimental characterizations that the HF model can reproduce.

By employing the ANN-based ROM in the context of multiscale EM, the computational time
associated to the solution of the activation subproblem is reduced by nearly 300 times, leading – in
the case of the computational grids employed in this work – to a one order of magnitude decrease
of the overall computational time required to approximate the EM problem. Moreover, the number
of variables for each degree of freedom reduces from 2198 to just 24, a significant gain, especially
when large-scale simulations are addressed. Remarkably, thanks to the stabilizing effect of the SL
feedback on the activation dynamics, the relative error in the main cardiac biomarkers introduced
by employing the ANN-based ROM in the context of EM is just of about 10−3. We conclude
that, in virtue of the offline ANN learning of the complex activation subproblem, a very favorable
balance between reliability and computational efficiency is achieved, without any compromise on
the detail of description of the microscopic phenomena pertaining to the generation of force.
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Appendix A The ANN-based model

The ANN-based model considered in this paper can be written in the form of (3), where the right
hand side is given by the following ANN:

f(z,u) = W2 tanh(W1 tanh(W0(zT ,uT )T − ϑ0)− ϑ1)− ϑ2. (17)

The application of the operator tanh has to be intended componentwise. The value of the weight
matrices Wj and of the bias vectors ϑj (where j = 0, 1, 2) are made available in the following
online repository, together with Matlab and Python codes to perform numerical simulations
with the ANN model:

https://github.com/FrancescoRegazzoni/cardiac-activation-ann

The training of the ANNs has been carried out with the Matlab library model-learning, which
is also available online [84]:

https://github.com/FrancescoRegazzoni/model-learning

Appendix B Ventricular volume computation

In order to compute the ventricular volume V (i.e. the volume of the ventricular cavity), we
proceed as follows. First, we identify the center point of the base as:

b(t) =
1∣∣Γbase
0

∣∣ ˆ
Γbase
0

(X + d(t))dΓ0,

where X denotes the material coordinate. Then, we close the ventricular cavity by the surface
Γcap
t , defined as the surface connecting the point b(t) with the orifice ring. The ventricular volume

is thus defined as the measure of the volume Ωfluid
t , delimited by Γendo

t and Γcap
t . By exploiting the

identity ∇ · (x− b(t)) = 3, where x denotes the spatial coordinate, we have:

3V (t) =

ˆ
Ωfluid
t

3 dx =

ˆ
Ωfluid
t

∇ · (x− b(t)) dx

=

ˆ
Γendo
t

(x− b(t)) · n(t) dΓ +

ˆ
Γcap
t

(x− b(t)) · n(t) dΓ,

where n(t) and N denote the outer normal at the surface in the actual and reference domains
respectively. Since, by construction, (x− b(t)) ⊥ n(t) on Γcap

t , the second term vanishes, leading
to the formula:

V (t) =
1

3

ˆ
Γendo
0

J(t) (X + d(t)− b(t)) · F−T (t)N dΓ0,

Appendix C Boundary conditions for the mechanics prob-
lem

The base Γbase
0 is an artificial boundary and, as such, it must be provided with boundary conditions

which account for the effect of the neglected part of the domain on the considered part. We
respectively denote by Ω̃t and Ω̃fluid

t the solid and fluid domains located above the base, and

by Γ̃endo
t , Γ̃epi

t the endocardial end epicardial surfaces located above the base. By considering a
quasistatic approximation and by denoting the Cauchy stress tensor by T = Tpass + Tact, the
momentum equation in the current configuration entails:

0 =

ˆ
Ω̃t

∇ ·T dx =

ˆ
∂Ω̃t

Tn dΓt =

ˆ
Γ̃epi
t

Tn dΓt +

ˆ
Γ̃endo
t

Tn dΓt +

ˆ
Γ̃base
t

Tn dΓt.
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We assume that the epicardial surface located above the base is unloaded [75], that is Tn = 0 on

Γ̃epi
t . On Γ̃endo

t , which is in contact with the fluid, we have Tn = −pn. Moreover, we have the
following identity:

0 =

ˆ
Ωfluid
t ∪Ω̃fluid

t

∇p dx =

ˆ
Γendo
t

pn dΓt +

ˆ
Γ̃endo
t

pn dΓt,

which entails: ˆ
Γbase
t

Tn dΓt = −
ˆ

Γ̃base
t

Tn dΓt =

ˆ
Γendo
t

pn dΓt =

ˆ
Γendo
0

p JF−Tn dΓ0. (18)

Equation (18) allows to derive the total stress applied on the boundary Γbase
t , but not its pointwise

distribution. This is the price to pay as we do not explicitly include the domain Ω̃t into the EM
model. Nonetheless, if we assume that the stress is uniformly distributed, we get:

Tn = |Γbase
t |−1

ˆ
Γendo
0

p JF−Tn dΓ0 on Γbase
t , (19)

which reads, in the reference configuration:

PN =
‖JF−TN‖´

Γbase
0
‖JF−TN‖dΓ0

ˆ
Γendo
0

pJF−TNdΓ0 on Γbase
0 . (20)

We notice that thanks to Eq. (20) the net force exerted by the fluid on the solid is null since
the stress on Γbase

0 perfectly balances the stress exerted on Γendo
0 . This is coherent with the

hydrostatic nature of the pressure force, which contributes to the energy of the system, but not to
its momentum.

To further validate the consistency of the newly introduced boundary condition (20), we con-
sider the energetic balance of the LV. With this purpose, we multiply the first equation of Eq. (13)
by ∂d

∂t and we integrate over Ω0, getting:

ˆ
Ω0

ρ
∂2d

∂t2
· ∂d

∂t
dX +

ˆ
Ω0

P(d) : ∇∂d

∂t
dX−

ˆ
∂Ω0

P(d)N · ∂d

∂t
dΓ0 = 0. (21)

The first term of Eq. (21) provides the time derivative of the kinetic energy, defined as K(t) =´
Ω0
ρ
∣∣∂d
∂t

∣∣2 dX. By recalling the additive splitting of the Piola tensor as P = Ppass + Pact, the

second term of Eq. (21) gives raise to two terms, namely:

•
´

Ω0

∂W
∂F : ∇∂d

∂t dX = d
dt

´
Ω0
W(F) dX, the time derivative of the total hyperelastic energy;

• Πact(t) =
´

Ω0
Pact : ∇∂d

∂t dX, the total power produced by the microscopic active tension in
the considered ventricular tissue.

Finally, in the last term of Eq. (21) we replace, in each part of the boundary ∂Ω0, the term
P(d)N by the associated boundary conditions, according to Eq. (13). In conclusion, we obtain the
following balance:

dK(t)

dt
+
dE(t)

dt
+ Πact(t) + Πpress(t) + Πdiss(t) = 0, ∀ t ∈ (0, T ], (22)

where we have defined the total elastic energy as the sum of the volumetric hyperelastic energy
and the energy stored by the pericardium:

E(t) =

ˆ
Ω0

W(F) dX +
1

2

ˆ
Γepi
0

[
Kepi
⊥ ‖d ·N‖

2
+Kepi

‖ ‖(I−N⊗N) d‖2
]
dΓ0.

Conversely, the following nonnegative term corresponds to the power dissipated by viscous inter-
action with the pericardium:

Πdiss(t) =

ˆ
Γendo
0

[
Cepi
⊥

∥∥∥∥∂d

∂t
·N
∥∥∥∥2

+ Cepi
‖

∥∥∥∥(I−N⊗N)
∂d

∂t

∥∥∥∥2
]
dΓ0 ≥ 0.
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Finally, the following term represents the power exerted by the blood in the ventricular cavity
through the pressure p(t):

Πpress(t)

= p(t)

[ˆ
Γendo
0

JF−TN · ∂d

∂t
dΓ0 −

´
Γbase
0
‖JF−TN‖∂d∂t dΓ0´

Γbase
0
‖JF−TN‖dΓ0

·
ˆ

Γendo
0

JF−TNdΓ0

]
.

(23)

We now check that the value of Πpress(t) of Eq. (23), derived from the boundary condition (20), is

consistent with the formula Πpress(t) = p(t)dV (t)
dt , corresponding the power exerted by the pressure

p(t) inside a cavity with volume V (t) [43]. With this aim, we compute the time derivative of the
volume enclosed by the considered domain, given by:

dV (t)

dt
=

d

dt

ˆ
Ωfluid
t

1 dx =

ˆ
Γendo
t

∂d

∂t
·N dx +

ˆ
Γcap
t

∂d

∂t
·N dx, (24)

where we have used the Reynolds transport theorem [42]. With Γcap
t we denote the surface enclosed

by the orifice ring. Since its motion is not directly tracked by the variables of problem (16), we
estimate it by the motion of the ventricular base. Specifically, we assume that the velocity on Γcap

t

is equal to the integral mean velocity on Γbase
t :

∂d

∂t

∣∣∣∣
Γcap
t

' |Γbase
t |−1

ˆ
Γbase
t

∂d

∂t
dΓt =

´
Γbase
0
‖JF−TN‖∂d∂t dΓ0´

Γbase
0
‖JF−TN‖dΓ0

. (25)

Moreover, by the divergence theorem [43], we have:

ˆ
Γcap
t

N dx = −
ˆ

Γendo
t

N dx = −
ˆ

Γendo
0

JF−TNdΓ0. (26)

Finally, by combining Eqs. (23), (24), (25) and (26), we get Πpress(t) = p(t)dV (t)
dt . This further

confirms the validity of the boundary condition of Eq. (20). Moreover, we notice that in case of
motion given by a rigid translation (i.e. ∂d

∂t constant in space), the two terms in Eq. (23) cancel,
giving Πpress(t) = 0. This property, which is not satisfied if e.g. homogeneous Neumann boundary
conditions are applied on Γbase

0 , provides a further verification of Eq. (20). For these reasons, we
call Eq. (20) energy-consistent boundary condition.

Appendix D Error estimation of ANN-EM vs HF-EM in
1D

To gain some insight on the effect of the feedback of mechanics on activation, we consider a one-
dimensional steady-state version of equation (13), which can be regarded as a simple model for the
tissue deformation along the direction of the active force (i.e. the fibers direction). By denoting
by d the one-dimensional displacement and by e = d

dxd the one-dimensional strain, we consider an
elastic energyW(e) and we define the passive stress as P pass(e) :=W ′(e), while we denote by P act

the active stress. The mechanical equilibrium equation in the domain (0, L) reads as follows:
− d

dx

(
P pass

(
d

dx
d(x)

)
+ P act(x)

)
= 0 for x ∈ (0, L)

d(0) = 0

P ( d
dxd(L)) + P act(L) = p,

(27)

where we set a symmetry boundary condition at one side and a load p at the other side. Coherently
with model (1), the active stress is a function of calcium concentration and sarcomere length:
P act(x) = Ta([Ca2+]i(x), SL(x)) = Ta([Ca2+]i(x), SL0(1+e(x))). The solution of Eq. (27) satisfies:

P pass(e(x)) + Ta([Ca2+]i(x), SL0(1 + e(x))) = p ∀x ∈ (0, L)
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Consider now a perturbed version of Eq. (27), where the function Ta is replaced by a surrogate T̃a =
Ta+η, affected by the error η (in our case, η can be regarded as the approximation error associated
with the reduced ANN model). By asymptotic analysis, the perturbed solution d̃ satisfies:

d

dx
d̃− d

dx
d ∼ η

(
∂Ta
∂SL

SL0 +W ′′(e)
)−1

.

Hence, the active stress in the perturbed problem is linked with the HF one by:

T̃a([Ca2+]i, SL0(1 + ẽ(x)))− Ta([Ca2+]i, SL0(1 + e(x))) ∼ η

(
1 +

∂Ta
∂SLSL0

W ′′(e)

)−1

.

Being the elastic energy convex, the term W ′′(e) is positive. Thus, on the ascending limb of the
force-length relationship ( ∂Ta∂SL > 0), the error η is attenuated; conversely, on the descending limb

( ∂Ta∂SL < 0) it is amplified.
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