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Abstract

We consider the problem of predicting the spatial field of particle-size
curves (PSCs) from a sample observed at a finite set of locations within an
alluvial aquifer near the city of Tübingen, Germany. We interpret particle-
size curves as cumulative distribution functions and their derivatives as
probability density functions. We thus (a) embed the available data into
an infinite-dimensional Hilbert Space of compositional functions endowed
with the Aitchison geometry and (b) develop new geo-statistical meth-
ods for the analysis of spatially dependent functional compositional data.
This approach enables one to provide predictions at unsampled locations
for these types of data, which are commonly available in hydrogeological
applications, together with a quantification of the associated uncertainty.
The proposed functional compositional kriging (FCK) predictor is tested
on a one-dimensional application relying on a set of 60 particle-size curves
collected along a 5-m deep borehole at the test site. The quality of FCK
predictions of PSCs is evaluated through leave-one-out cross-validation
on the available data, smoothed by means of Bernstein Polynomials. A
comparison of estimates of hydraulic conductivity obtained via our FCK
approach against those rendered by classical kriging of effective particle
diameters (i.e., quantiles of the PSCs) is provided. Unlike traditional ap-
proaches, our method fully exploits the functional form of particle-size
curves and enables one to project the complete information content em-
bedded in the PSC to unsampled locations in the system.

Keywords: Geostatistics; compositional data; functional data; particle-
size curves; groundwater; hydrogeology
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1 Introduction

The geostatistical characterization of the spatial distribution of particle-size
curves (PSCs) is a key issue in earth sciences. These types of data are typi-
cally based on standard grain sieve analysis of soil samples, yielding a discrete
representation of the curves by measuring selected particle diameters which, in
turn, correspond to quantiles of the particle-size curve. The information can
then be employed to classify soil types (e.g., Riva et al. (2006) and references
therein), to infer hydraulic parameters such as porosity and hydraulic conduc-
tivity (e.g., amongst others, Lemke and Abriola (2003); Riva et al. (2006, 2008,
2010); Bianchi et al. (2011); Tong et al. (2010); Barahona-Palomo et al. (2011)
and references therein), or, in the presence of inorganic compounds, to provide
estimates of the porous medium sorption capacity (e.g., Hu et al. (2004) and
references therein).

Classification of aquifer geomaterials and the estimation of their spatial
arrangement is relevant to properly reconstruct the internal architecture of
groundwater systems which can play a critical role in controlling contaminant
spreading on different scales. Methodologies which are typically employed for
the estimation of the location of internal boundaries between lithofacies take
advantage of geological and/or hydraulic information and include, amongst
other methods, sequential indicator approaches (Deutsch and Journel (1997);
Guadagnini et al. (2004) and references therein), Nearest-neighbor classification
(e.g., Tartakovsky et al. (2007)), or Support Vector Machines (Wohlberg et al.,
2006).

Several techniques widely employed for the estimation of aquifer hydraulic
parameters are based on particle-size information. They usually rely on spatially
dependent particle-size data, measured from samples collected at a discrete set
of points in a reservoir. In this context, the knowledge of the functional form
of particle-size curves is not fully exploited in typical aquifer reconstruction
practice. As an example of the way this information content is employed, we
mention the work of Riva et al. (2006). These authors perform a geostatistical
facies-based parametrization of the lithofacies occurring within a small scale
alluvial aquifer system. They rely on sampled particle-size curves and apply
a standard multivariate cluster analysis technique to classify these. They then
perform indicator variography of the identified classes and provide estimates
of the spatial distribution of lithotypes in the system. Hydraulic conductivity
values are then assigned to the blocks of a numerical flow and transport model
upon projecting only the 10th and 60th quantiles of the observed particle-size
curves on the computational grid through kriging. A similar approach has been
employed, amongst other authors, by Bianchi et al. (2011). In this sense, the
information content embedded in the particle-size curve is only partially trans-
ferred to unsampled locations in the system, through few selected local features
(in the example above, the 10th and 60th quantiles). Instead, a complete charac-
terization of the spatial distribution of lithotypes in a reservoir attributes would
require embedding the full particle-size curve into the geostatistical analysis.

In addition to this, having at our disposal the spatial arrangement of all
the components of soil particle-size curves would allow improved predictions
of soil hydraulic attributes through pedotransfer functions (e.g., Nemes et al.
(2003); Pachepsky and Rawls (2004), and reference therein) as well as of soil
geochemical parameters which are relevant in sorption/desorption and cation
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exchange processes.
These problems motivate the development of advanced geostatistical tech-

niques which enable one to treat georeferenced particle-size curves. To this end,
we model particle-size curves as cumulative distribution functions and analyze
their derivatives, by coherently considering them as probability density func-
tions. We use two viewpoints to interpret these types of data: (a) a Functional
Data Analysis (FDA, Ramsay and Silverman (2005)) and (b) a Compositional
Data Analysis (CoDa, Aitchison (1982, 1986); Pawlowsky-Glahn and Buccianti
(2011)) approach. The key idea underlying FDA methods is to view each datum
(i.e., each PSC), even though discretely observed, as a unique entity belong-
ing to a suitable functional space. In this way, the curse of dimensionality is
overcome allowing the statistical analysis of high-dimensional (virtually infinite-
dimensional) data. On the other hand, CoDa deals with data which convey only
relative information: a D-parts composition is a D-dimensional vector whose
components are proportions (or percent amounts) of a whole according to a cer-
tain partition of the domain. Thus, a D-parts composition has D non-negative
components, constrained to sum up to a constant (usually set to unity or 100)
and belongs to a (D−1)-dimensional simplex. Probability density functions are
functional and compositional data, i.e., they are infinite-dimensional objects
which are constrained to be non-negative and to integrate to unity. They can
be considered as compositional data obtained by refining the domain partition
until (infinite) infinitesimal parts are obtained (Egozcue et al., 2006). In this
framework, the geostatistical methodology we propose to treat spatially depen-
dent functional compositional data takes advantage of the strengths of both the
FDA and CoDa approaches.

An increasing body of literature on the geostatistical analysis of functional
data is available, either in the stationary (e.g., Goulard and Voltz (1993); Nerini
et al. (2010); Delicado et al. (2010) and references therein) or non-stationary
setting (Menafoglio et al., 2012; Caballero et al., 2013). A relatively rich litera-
ture is also available in the field of spatially dependent compositional data (e.g.,
Tolosana-Delgado et al. (2011); Tolosana-Delgado et al. (2011); Pawlowsky-
Glahn and Olea (2004); Leininger et al. (2013) and references therein). In this
context, particle-size fractions have been treated as discrete compositional data
(e.g., Odeh et al. (2003); Buchanan et al. (2012)) and compositional techniques
have been employed to predict the soil composition at unsampled location. Al-
beit these techniques take properly into account the compositional constraints
in PSCs, they are only suited for low-dimensional compositions and their appli-
cation can be problematic if the dimensionality increases (i.e., curse of dimen-
sionality). The data dimensionality is closely related to the resolution of the
measurement technique which is employed: modern sieve-analysis techniques en-
able one to obtain high-resolution PSC, i.e., high-dimensional data, which need
to be treated with advanced techniques. However, to the best of our knowledge,
none of the available literature works addresses the problem of the geostatistical
analysis of high-dimensional and functional compositional data.

Here, we focus specifically on the formulation of new geostatistical models
and methods for functional compositional data. To do so, we move from the
geostatistical methodology proposed in (Menafoglio et al., 2012) and the mathe-
matical construction developed by Egozcue et al. (2006) and further investigated
in (van den Boogaart et al., 2010). Our approach shares with FDA and CoDa
the foundational role of geometry. Hilbert space theory allows FDA methods
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to cope with the infinite-dimensionality of the data (e.g., Ramsay and Dalzell
(1991); Ferraty and Vieu (2006); Horváth and Kokoszka (2012) and references
therein), while the log-ratio approach grounds the Aitchison geometry, which
properly accounts for the compositional nature of the data (e.g., Pawlowsky-
Glahn and Egozcue (2001, 2002)). Here, we employ Aitchison geometry within
a Hilbert Space method to accommodate both the functional and compositional
nature of the data.

Even though the developments illustrated in this work are motivated by the
analysis of the particle-size data presented in Section 2, our methodology is
indeed general and allows performing the geostatistical analysis of any kind of
compactly supported functional compositional data, provided that these can be
embedded in the Hilbert Space endowed with the Aitchison geometry described
in Section 3. We thus introduce the model and illustrate the methodology
within a stationary setting, in view of the considered application. For complete-
ness, the theoretical developments associated with a non-stationary approach
are reported in Appendix A.

Among the practical issues which need to be tackled when dealing with
functional data, we consider the problem of their preprocessing when only dis-
crete observations are available, as in our application: we propose the use of
a smooth estimator based on Bernstein Polynomials and prove its consistency
in Section 4. Section 5 illustrates applications of our functional compositional
kriging technique to the target dataset.

2 Field data

The data we consider are part of the dataset collected at an experimental site
located near the city of Tübingen, Germany. The aquifer is made up by alluvial
material overlain by stiff silty clay and underlain by hard silty clay. The site
characterization has been based on stratigraphic information collected at a set of
monitoring and pumping wells (Martac and Ptak (2003) and references therein).
The saturated thickness of the aquifer is about 5 m and all boreholes reach the
bedrock which forms the impermeable aquifer base.

The extensive investigations performed at the site comprise field- and labora-
tory-scale data collection and analysis. Available data include particle-size
curves, pumping and tracer tests as well as down-hole impeller flowmeter mea-
surements. A complete description of the analyses performed at the site has
been presented by Riva et al. (2006, 2008), to which we refer for additional de-
tails. The available data have been partially employed by Neuman et al. (2007,
2008) in the context of (a) the application of a stochastic interpretation of the
results of a series of cross-hole pumping tests and (b) a geostatistically-based
characterization of multiscale distribution of hydraulic conductivity at the site.
Barahona-Palomo et al. (2011) compared hydraulic conductivity estimates ob-
tained through particle-size curves and impeller flowmeter measurements. Riva
et al. (2006, 2008, 2010) performed numerical Monte Carlo analyses of a tracer
test and well-related capture zones at the site upon relying on the information
provided by the available particle-size curves. The latter were measured on core
samples associated with characteristic length ranging from 5 to 26.5 cm and in-
dicating the occurrence of heterogeneous and highly conducive alluvial deposits.
A total of 411 particle-size curves collected along 12 vertical boreholes are avail-
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able within the site. Particle-size curves are reconstructed through grain sieve
analysis performed with a set of 12 discrete sieve diameters. These data have
been subject to cluster analysis to classify the spatial distribution of hydrofacies
in the system through indicator-based variogaphy and Monte Carlo numerical
simulations (Riva et al., 2006). Characteristic particle diameters estimated from
the particle-size curves have been employed to provide estimates of porosity and
hydraulic conductivity which have then formed the basis for three-dimensional
simulations of the heterogeneous structure of the aquifer hydraulic attributes.

Here, we focus on the 60 particle-size curves which were collected at well B5
at the site. Figure 1 depicts the set of particle-size curves available at the well
together with the vertical location of the sampling points. For ease of reference,
each curve has been attributed to a vertical coordinate which coincides with
the center of the sampling interval from which particle-size data have been
extracted. The data are grouped within three main regions along the borehole
and are mainly associated with (a) moderately sorted gravel with about 14%
sand and very few fines, and (b) poorly sorted gravel with about 24% sand
and few fines (Riva et al., 2006). This constitutes a rather unique data-set
that enables us to explore extensively the key features and potential of the
methodology we present which is conducive to the estimation of the complete
particle-size distribution at unsampled locations.

3 A Kriging Approach for Particle-Size Distribu-

tions Characterization

3.1 A Stochastic Model for Particle-Size Distributions

Let (Ω,F, P ) be a probability space and consider the random process {χs, s ∈
D}, D ⊂ R

d, whose elements are particle-size curves. Each element χs, s ∈ D,
is a [0, 1] valued random function defined on T = [tm, tM ], i.e., χs is measurable
and, for ω ∈ Ω, χs(ω, ·) : T → [0, 1]. Given a particle size t ∈ T , χs(·, t)
indicates the random fraction of grains with diameter smaller than or equal to
t. Hence, each function χs(ω, ·) is a cumulative distribution function (CDF).

The usual vectorial structure for functional spaces, based on point-wise no-
tions of sum and product by a real constant, is not appropriate when dealing
with CDFs because the space of CDF is not closed with respect to such oper-
ations (for instance, the point-wise sum of two CDFs is not a CDF). Instead,
a geometric approach based on Aitchison geometry (Aitchison, 1982, 1986) is
more appropriate to treat distribution functions because it accounts for their
compositional nature. In particular, Aitchison geometry is well suited for proba-
bility density functions (PDFs), which are (discrete or continuous) compositions,
in the sense that they provide only relative information and are constrained to
sum (or integrate) to a constant.

We thus consider the derivative process {Ys, s ∈ D}, defined on the proba-
bility space introduced above and such that, for s ∈ D:

Ys(ω, ·) : T → [0,+∞), s.t.

ˆ

T

Ys(ω, t)dt = 1, ω ∈ Ω.

We assume that, for ω ∈ Ω, Ys(ω, ·) = dχs(ω, ·)/dt is the density function of
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Figure 1: Available particle-size data. Data are represented on the vertical
coordinate according to their sampled location and supported on the compact
domain (dmin = 0.001mm; dmax = 200mm); dmin and dmax are the smallest
and largest measured particle-size diameters, respectively; elevation is given in
meters above sea level (m a.s.l.).
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the random probability measure µ defined, for all a ≤ b, by:

µs(ω, (a, b]) = χs(ω, b)− χs(ω, a).

We call Ys the particle-size density function in s ∈ D.
Let us denote with A2(T ) the space of (equivalence classes of) non-negative

real functions on T with square-integrable logarithm, i.e. (Egozcue et al., 2006):

A2 = {f : T → R, such that f ≥ 0 a.e. and ln(f) ∈ L2(T )}.

In this work we assume that Ys(ω, ·) ∈ A2(T ) for all s ∈ D, ω ∈ Ω. In
Subsection 3.3 we show that an isometric isomorphism exists between A2(T )
and L2(T ). Moreover, if we consider an orthonormal basis {ϕk}k≥0 of L2(T ),
such that ϕ0 = 1/

√
η (η = tM − tm), and define the operator T : A2(T ) → ℓ2

as Tf = {αk}k≥1, where αk (k ≥ 1) appears in the decomposition log(f) =∑
k≥0 αkϕk, then the following result holds.

Proposition 1 (Egozcue et al. (2006)). A2(T ) endowed with the Aitchison
inner product

〈f, g〉A2 = 〈Tf, Tg〉ℓ2 , f, g ∈ A2(T ), (1)

and the induced norm is a separable Hilbert space.

Some of the basic definitions and properties of this functional space are
recalled in the following Subsections. Additional properties and generalizations
are reported in (Egozcue et al., 2006; van den Boogaart et al., 2010).

3.2 A Kriging predictor for Particle-Size Densities

We indicate with C[f ] the closure of f ∈ L1(T ), i.e.,

C[f ] = f
´

T
f(t)dt

,

and denote with ⊕,⊙ the perturbation and powering operators in A2(T ), re-
spectively, acting as:

f ⊕ g = C[fg], f, g ∈ A2(T )

α⊙ f = C[fα], α ∈ R, f ∈ A2(T ),

Note that the neutral elements of perturbation and powering are e(t) = 1/η and
1, respectively, while in (Egozcue et al., 2006) it is proven that (A2(T ),⊕,⊙) is
a vector space. We denote with f ⊖ g the difference in the Aitchison geometry
between f and g, namely the perturbation of f with the reciprocal of g, i.e.,
f ⊖ g = f ⊕ C[1/g], f, g ∈ A2(T ).

For s ∈ D, we indicate with ms the Fréchet mean of Ys with respect to the
Aitchison geometry on A2(T ), namely:

ms = EA2 [Ys] = arginf
Y∈A2(T )

E[‖Ys⊖Y‖2A2 ] = arginf
Y∈A2(T )

ˆ

Ω

‖Ys(ω, ·)⊖Y(·)‖2A2P (dω).
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Following (Menafoglio et al., 2012), for any given s ∈ D, we represent the
element Ys as a perturbation of the mean function ms with a neutral-mean
stochastic residual δs

Ys = ms ⊕ δs, (2)

EA2 [δs] = 0⊕ = 1/η.

We assume that the process Ys can be represented by a global second-order
stationary model. Hence, the process is characterized by a spatially constant
mean function (ms = m, for all s ∈ D), a trace-covariogram C : Rd → R and a
trace-variogram γ : Rd → R, which are respectively defined as:

C(si − sj) = CovA2(Ysi
,Ysj

) = E[〈Ysi
−m,Ysj

−m〉A2 ], si, sj ∈ D;(3)

2γ(si − sj) = VarA2(Ysi
⊖ Ysj

) = E[‖Ysi
⊖ Ysj

‖2A2 ], si, sj ∈ D. (4)

Given a sample Ys1
, ...,Ysn

of {Ys, s ∈ D}, the Ordinary Kriging predictor
of Ys0

, at an unsampled location s0 ∈ D, is the best linear unbiased predictor
(BLUP) in the Aitchison geometry:

Y∗
s0

=

n⊕

i=1

λ∗
i ⊙ Ysi

. (5)

Here, the weights λ∗
1, ..., λ

∗
n ∈ R minimize the Aitchison variance of the predic-

tion error under the unbiasedness constraint:

(λ∗
1, ..., λ

∗
n) = argmin

λ1,...,λn∈R :
Yλ
s0

=
⊕n

i=1
λi⊙Ysi

VarA2(Yλ

s0
⊖ Ys0

) s.t. EA2 [Yλ

s0
] = m. (6)

The problem of kriging of functional data has been tackled in (Menafoglio
et al., 2012) within the general framework of (possibly non-stationary) functional
processes valued in any separable Hilbert Space. Hence, problem (6) can be
solved by exploiting this general approach which we recall here for a stationary
setting.

Proposition 2 (Menafoglio et al. (2012)). Assume that Σ = (C(hi,j)) ∈ R
n×n,

hi,j = si − sj, i, j = 1, ..., n, is a positive definite matrix. Then problem (6)
admits a unique solution (λ∗

1, ..., λ
∗
n) ∈ R

n, which is obtained by solving:

(
C(hi,j) 1

1 0

)(
λi

ζ

)
=

(
C(h0,i)

1

)
, (7)

ζ being the Lagrange multiplier associated with the unbiasedness constraint. The
ordinary kriging variance of predictor (5) is then

σ2
∗(s0) = VarA2(Y∗

s0
) = C(0)−

n∑

i=1

λ∗
iC(hi,0)− ζ∗. (8)

In the light of expression (8), the following Čebyšëv inequality can be pro-
vided for the prediction errors:

P (‖Ys0
⊖ Y∗

s0
‖A2 > κ · σ∗(s0)) <

1

κ2
. (9)

8



Note that this inequality can be used to elicit confidence bands on the norm of
the prediction errors.

As in classical geostatistics, under stationarity conditions the only quantity
which is required to be estimated is the trace-semivariogram γ, as C(h) =
C(0)− γ(h), h ∈ R

d being a lag, or separation distance vector. To this end, a
method of moments (MoM) estimator γ̂ can be employed:

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖Ysi
⊖ Ysj

‖2A2 , (10)

where N(h) denotes the set of location pairs separated by h and |N(h)| its
cardinality. A discretized version of γ̂ is considered in typical applications and
a valid variogram model is fitted to observations.

The approach we present can also be employed in a non-stationary setting.
For completeness, we report the details of this case in Appendix A.

3.3 Log-ratio transform

Here, we illustrate a representation of the process through a log-ratio trans-
form. In addition to its theoretical value, this representation enables one to
considerably simplify the computation of the quantities of interest (e.g., the
trace-variogram). Our developments rely on the properties of the space A2(T )
derived in (Egozcue et al., 2006).

Whenever {Ys, s ∈ D} is a random field valued in A2 which follows the
dichotomy (2) and has finite variance, i.e., E[‖δs‖2A2 ] < +∞ for all s ∈ D,
there exist a (deterministic) sequence {µk(s)}k≥1, a zero-mean random sequence
{ξk(·, s)}k≥1, both valued in ℓ2, and an orthonormal basis {Ψk}k≥1 of A2, such
that:

Ys(ω, ·) =
∞⊕

k=1

(µk(s) + ξk(ω, s))⊙Ψk(·), ω ∈ Ω.

Here, µk(s) = 〈ms,Ψk〉A2 , ξk(s) = 〈δs,Ψk〉A2 , k ≥ 1, s ∈ D. The sequences
{µk(·, s)}k≥1 and {ξk(·, s)}k≥1 satisfy the decomposition:

log(Ys(ω, ·)) =
∞∑

k=0

(µk(s) + ξk(ω, s))ϕk(·), ω ∈ Ω

provided that {ϕk}k≥0 is an orthonormal basis of L2(T ) such that ϕ0 = 1/
√
η

(η = tM − tm and Ψk = C[exp{ϕk}].
The process {Zs, s ∈ D} defined on (Ω,F,P) as

Zs(ω, t) = log(Ys(ω, t))−
1

η

ˆ

T

log(Ys(ω, z))dz, ω ∈ Ω, t ∈ T , s ∈ D, (11)

satisfies

Zs(ω, ·) =
∞∑

k=1

(µk(s) + ξk(ω, s))ϕk(·), (12)

9



since (see Egozcue et al. (2006))

log(Ys(ω, ·)) =
+∞∑

k=0

(µk(s) + ξk(ω, s))ϕk =

=

+∞∑

k=1

(µk(s) + ξk(ω, s))ϕk +
1

η

ˆ

T

log(Ys(ω, t))dt.

Each element Zs of the process {Zs, s ∈ D} is a centered log-ratio (clr)
transform of the corresponding element Ys, in analogy with the finite- dimen-
sional case (Pawlowsky-Glahn and Egozcue, 2001). Note that the A2 inner
product between two elements f, g ∈ A2(T ) can be computed as an L2 inner
product between the clr transforms clr(f), clr(g) ∈ L2(T ):

〈f, g〉A2 =

ˆ

T

log(f(t)) log(g(t))dt− 1

η

ˆ

T

log(f(t))dt

ˆ

T

log(g(t))dt =

=

ˆ

T

(
log(f(t))− 1

η

ˆ

T

log(f(z))dz

)
·

(
log(g(t))− 1

η

ˆ

T

log(g(z))dz

)
dt =

= 〈clr(f), clr(g)〉L2

the first equality above being proven by Egozcue et al. (2006).
The correspondence between the distributional features of the processes

{Ys, s ∈ D} in A2(T ) and {Zs, s ∈ D} in L2(T ) is apparent from identity
(12), as the clr transform defines an isometric isomorphism between A2(T ) and
L2(T ). In particular, the Fréchet mean of process {Ys} with respect to the
Aitchison geometry on A2(T ) coincides with the Fréchet mean of {Zs} with
respect to L2(T ). Moreover, stationarity and isotropy assumption for {Ys} in
A2(T ) can be stated in terms of the corresponding properties of {Zs} in L2(T ).
Notice that the definition (11) of process {Zs, s ∈ D} allows writing:

CovA2(Ysi
,Ysj

) = CovL2

(
Zsi

,Zsj

)
;

VarA2(Ysi
⊖ Ysj

) = VarL2

(
Zsi

−Zsj

)
.

Therefore, the trace-variogram and the trace-covariogram of {Ys} in the Aitchi-
son geometry coincide with the corresponding quantities associated with {Zs}
with respect to the L2 geometry.

The kriging prediction in A2(T ) can then be performed by treating the
transformed sample Zs1

, ..., Zsn
in the L2(T ) geometry, as:

Y∗
s0

=

n⊕

i=1

λ∗
i ⊙ Ysi

= C
[

n∏

i=1

Yλ∗
i

si

]
= C

[
exp

{
n∑

i=1

λ∗
i log(Ysi

)

}]
=

= C
[
exp

{
n∑

i=1

λ∗
iZsi

}]
= clr−1(Z∗

s0
).

The above isomorphism enables one to perform the required calculation by
exploiting efficient routines which are designed for unconstrained data belonging
to L2, eventually back-transforming to A2 the results. We adopt this strategy
in our application, which is illustrated in Section 5.
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4 Smoothing discrete particle-size data with Bern-

stein Polynomials

A key assumption underlying the spatial prediction methodology proposed here
is that data are curves which can be evaluated at any point t ∈ T . If particle-
size curves were already observed in their functional form, the methodology
illustrated in Section 3 could be directly applied, without any particular data
preprocessing. A very close analogue to this kind of information could be ob-
tained by employing modern sieve-analysis techniques which enable one to ob-
tain the full PSC from a soil sample without being limited to a small number of
discretely spaced sieve diameters. As detailed in Section 2, in the present case
study an estimate of the PSC at a given spatial location s along the borehole
is available only for a set of N = 12 sieve diameters, t1, ..., tN . In such a case,
which is typically associated with several practical field situations, a prepro-
cessing of the raw data is required to obtain smooth estimates of the PSCs and
associated densities. Amongst different types of techniques, we propose (Sub-
section 4.1) and apply (Subsection 4.2) a smoothing procedure for particle-size
distributions which is based on Bernstein Polynomials, following the approach
of (Babu et al., 2002). For simplicity, we adopt here a general and immediate
notation and omit the subscript s indicating spatial location, since we consider
each particle-size curve separately.

4.1 A smooth estimator for cumulative distribution func-

tions

Consider the problem of estimating a continuous and compactly supported CDF
through a smooth estimator. We denote with F the (true) underlying CDF and
assume it is supported on [0, 1] (we invoke this assumption only for convenience
of notation since this can be easily relaxed to consider a generic support T =
[tm, tM ] provided x = (t−tm)/(tM −tm) ∈ [0, 1] if t ∈ T ). If a sample X1, ..., Xν

from F is available, the empirical cumulative distribution function (ECDF) Fν ,
defined as:

Fν(x) =
1

ν

ν∑

i=1

I[0,x](Xi),

I being the indicator function, is a (discontinuous) non-parametric estimator
of F , which is strongly consistent because of the Glivenko-Cantelli Theorem.
In our setting, the sample X1, ..., Xν would represent the set of (transformed)
particle diameters measured within a soil sample extracted at a given location
in the aquifer, ν being the number of diameters constituting the sample. When
such a sample is available, the problem of smoothly estimating the particle-
size curve, i.e., the underlying CDF, at a given location, could be solved by
smoothing the ECDF by Bernstein Polynomials.

The use of Bernstein Polynomials to approximate a bounded continuous
function, such as F , is supported by the following result.

Theorem 3 (Feller (1965), Theorem 1, Section VII.2). If u(x) is a bounded
and continuous function on the interval [0, 1], then

u∗
m(x) =

m∑

k=0

u(k/m)bk(m,x) → u(x)

11



as m → ∞, uniformly for x ∈ [0, 1]. Here,

bk(m,x) =

(
m

k

)
xk(1− x)m−k, k = 0, ...,m.

On these premisses, Babu et al. (2002) propose and explore the asymptotic
properties of the smooth estimator F̃ν,m : [0, 1] → [0, 1] defined as:

F̃ν,m(x) =

m∑

k=0

Fν(k/m)bk(m,x), x ∈ [0, 1], (13)

whose density can be explicitly computed as:

f̃ν,m(x) = m

m−1∑

k=0

(Fν((k + 1)/m)− Fν(k/m))bk(m− 1, x), x ∈ [0, 1]. (14)

As opposed to kernel smoothing estimators (Rosenblatt, 1956; Parzen, 1962;
Silverman, 1986), the estimator (14) is well suited for distributions with compact
support, of the kind associated with the particle-size curves we analyze. In
the cases of the kind we consider, where available particle-size data consist
of a discrete set of observations of the ECDF, {Fν(x1), ..., Fν(xN )}, taken at
prescribed (transformed) diameters {x1, ..., xN}, it is not possible to directly
employ estimator (13), since the ECDF is not known for x ∈ [0, 1]\{x1, ..., xN}.
Therefore, we propose to consider a modified smooth estimator FN

ν,m : [0, 1] →
[0, 1] based on a linear interpolant of the ECDF samples Fν(x1), ..., Fν(xN ) and
defined as:

FN
ν,m(x) =

m∑

k=0

F (1)
ν (k/m)bk(m, t), x ∈ [0, 1], (15)

F
(1)
ν being the linear interpolant of Fν(x1), ..., Fν(xn), i.e.:

F (1)
ν (x) =

N+1∑

i=1

(Fν(xi−1)+
Fν(xi)− Fν(xi−1)

xi − xi−1
(x−xi−1))I(xi−1,xi](t), x ∈ [0, 1]

with x0 = 0, xN+1 = 1 and Fν(x0) = 0, Fν(xN+1) = 1. Adopting (15) enables
one to estimate the CDF F through an approximation F

(1)
ν of the ECDF Fν

combined with Bernstein Polynomials. Note that, while other approximations
for Fν could be employed, the linear approximation we consider (a) provides a
balance between the precision of the approximation and the complexity of the
function (and thus the computational cost), and (b) allows deriving an explicit
expression of the corresponding PDF, say fN

ν,m, according to:

f̃N
ν,m(x) = m

m−1∑

k=0

(F (1)
ν ((k + 1)/m)− F (1)

ν (k/m))bk(m− 1, x), x ∈ [0, 1]. (16)

Moreover, denoting with ‖ · ‖C0 the uniform norm on the space of continuous
functions, the following result holds (the proof is reported in Appendix B).

Theorem 4. Let F be a continuous CDF on [0, 1] and assume F to be dif-
ferentiable in (0, 1) with associated PDF, f . Suppose there exists α∗ > 0 such

12



that lim(N,x)→(+∞,x0) f(x)/N
α∗

= 0 for x0 ∈ {0, 1} and there exists N⋆ ≥ 1,

0 ≤ η < ∞ such that maxi∈{1,...,N+1}(xi − xi−1) < η/Nα∗

for any N ≥ N⋆.
Then

lim
m,ν,N→+∞

‖F̃N
ν,m − F‖C0 = 0, a.s. (17)

Theorem 4 states that FN
ν,m is a strongly consistent estimator for F , provided

that the sampling design is compatible with the growth rate of the PDF f when
approaching the boundary of the support.

Note that α⋆ is allowed to attain any (positive) constant value as long as
f is continuous on [0, 1] (and thus bounded by virtue of Weierstrass theorem)
and the condition on the sampling design becomes very weak. On the contrary,
the condition on the sampling design becomes stronger when f is discontinuous
in x = 0 or x = 1. This is due to the observation that the requirement for
information content increases with the growth rate of the PDF. For example,
let us consider a Beta distribution with density

f(x) =
1

B(α, β)
xα−1(1− x)β−1I(0,1)(x)

where α, β are positive parameters, I denotes the indicator function and B is
the beta function. If α or β are lower than one, then one can note that f is still
in A2(0, 1), but is unbounded near the boundary of the support. In this case,
the estimator (15) is strongly consistent provided that α∗ > max{1−α, 1− β},
i.e., the number of samples which are needed to describe the curves is required
to increase with a rate which is at least equal to Nα⋆

. However, it is remarked
that the occurrence of an unbounded particle-size density is virtually impossible
in practical hydrogeological applications, thus rendering boundedness a viable
assumption.

Additionally, one can note that Theorem 4 implies the weak convergence
of µ̃N

ν,m to µ, as ν,m,N → ∞, µ̃N
ν,m and µ being the probability measures

associated with F̃N
ν,m and F , respectively.

Finally, we remark that Theorem 4 yields useful indications about the design
of an experiment, in the sense that it is conducive to the identification of the
most appropriate curve sampling strategy yielding an optimal smoothing. This
is a feature which is not fully exploited in this work but constitutes a critical
application-oriented element of our methodology, especially considering the high
level of precision associated with modern techniques employed to record particle-
size data.

4.2 Smoothing of particle-size data

The estimator (15) has been applied to each raw particle-size curve depicted in
Figure 1. Particle diameters are log-transformed, as they are approximately uni-
formly distributed between log(0.063) and log(100) [log(mm)], when considered
on a log-scale. The support of the particle-size curves has been assumed to be
compact, upon setting the data support as T = [log(0.001), log(200)], consistent
with the type of lithology at the site.

The number of Bernstein Polynomials employed for the smoothing procedure
has been selected according to the median sum of squared error (SSE) between
raw data and smoothed particle-size curves evaluated at the 12 observed particle

13
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(b)

Figure 2: Smoothing procedure by Bernstein Polynomials. (a) boxplots of the
SSE for 10 ≤ m ≤ 150 (the threshold value of 0.01 is indicated by a dotted
line); (b) raw particle-size curves (symbols) and particle-size curves smoothed
by Bernstein Polynomials with m = 140 (solid lines); (c) vertical distribution of
smoothed densities.

diameters. Figure 2a depicts boxplot of the SSE against the number of basis
functions employed. No evident elbow in the median SSE appears in the figure.
Therefore, the number of basis functions has been selected by setting a tolerance
threshold of 0.01 (corresponding to m = 140) on the median SSE.

Figure 2b depicts the resulting smoothed curves (solid lines) juxtaposed to
the available data (symbols). These results suggest that the overall features of
the available dataset are well represented by the smoothing procedure. It can be
noticed that the left tail of the distributions are associated with a quite uniform
behavior, since the particle-size curves appear to display a linear dependence on
the logarithm of the diameter. Note that direct observations are virtually absent
at the left tails, as the smallest particle diameter recorded is equal to 0.063 mm.
Hence, the observed uniform behavior of the smoothed curves can be considered
as an artifact chiefly due to lack of a priori information on the left tail, leading to
data censoring. This problem could eventually be circumvented upon adopting
an improved experimental design, possibly based on the indications of Theorem
4.

Finally, Figure 2c depicts the vertical distribution of the particle-size den-
sities computed according to (16) from the smoothed data reported in Figure
2b.
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Figure 3: Estimated trace-semivariogram of the particle-size densities shown in
Figure 2c: empirical trace-semivariogram (symbols), fitted model (solid line)
and sample variance (dotted line). The number of pairs associated with each
lag is reported

5 Results

5.1 Geostatistical analysis of the field data

Here, the notation introduced in Section 3 is employed as follows: quantities
χs1

, ..., χsn
denote the smoothed version of particle-size curves observed at lo-

cations s1, ..., sn (solid lines in Figure 2b); Ys1
, ...,Ysn

indicate the smoothed
particle-size densities depicted in Figure 2c and obtained as in (16). The func-
tional dataset Ys1

, ...,Ysn
has been embedded into the space A2 endowed with

the Aitchison geometry and the methodology described in Section 3 has been
coherently applied.

The stationarity assumption along the vertical direction is supported by
prior knowledge of the field site (Riva et al., 2006, 2008, 2010); therefore, non-
stationarity has not been considered in the present study. The structure of
spatial dependence among the particle-size densities has been explored through
the trace-semivariogram. The latter has been estimated from the data accord-
ing to the discretized version of (10). Figure 3 depicts the empirical trace-
semivariogram together with the selected fitted model. The empirical estimate
displays a rapid growth up to a separation distance (lag) of about 0.6 m, where
it stabilizes around a value of 2.4. The behavior displayed for the largest lags
might be due to the decreasing number of data pairs available. On a cross-
validation basis, an exponential structure (with calibrated partial sill of 2.09,
practical range of 0.62 m, and nugget of 0.34) appeared to provide the most
accurate results in terms of cross-validation SSE among different parametric
semivariogram structures tested (spherical, hole and nested combinations).

Figure 4 depicts the results of the leave-one-out cross-validation procedure.
Figure 4a shows the boxplot of the cross-validation SSE. The SSE for each
sample i = 1, ..., n has been computed as ‖Ysi

⊖ Y∗(CV )
si

‖2A2 , Y∗(CV )
si

being the
kriging prediction at si obtained upon removing the i-th datum (i.e., PSC) from
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Figure 4: Cross-validation results. (a) boxplot of the SSE, reporting the abso-
lute and relative quartile values; (b) cross-validation residual particle-size curves;
(c) cross-validation prediction of particle-size densities as a function of eleva-
tion (the size of the symbols is proportional to the associated cross-validation
SSE/kriging variance)

the dataset. The overall cross-validation error is very small when compared to
the average squared norm of the data. One can note that both the median and
the mean SSE are lower than 0.2% of the average squared norm of the data
(median SSE: 0.986; mean SSE: 0.998). The spatial distribution of the SSE
does not appear to be associated with a particular pattern, as evidenced by the
seemingly random vertical distribution of the cross-validation SSE. Only one
datum, corresponding to the vertical elevation z = 307.53 m and indicated with
a dotted curve in Figure 4c is associated with a cross-validation SSE which is
significantly larger than that of the remaining curves. This is due to a kriging
prediction which is associated with a flattened peak of the particle-size density.
With this exception, the key features of the data appear to be well reproduced
by cross-validation predictions, with only a moderate smoothing effect.

All data but the PSC mentioned above are associated with a global pre-
diction error which is lower than twice the kriging standard deviation. This
result suggests that the 75% confidence bands constructed through the Čebyšëv
inequality (9) tend to be quite conservative, being associated with an empirical
level of 98.3%. The prediction provided by our proposed methodology appears
to be overall unbiased, as shown by the cross-validation residual particle-size
curves depicted in Figure 4b, which are fairly spread across a uniform cumula-
tive distribution function (i.e., a straight line).

Prediction of the PSCs over a fine vertical grid with spacing of 1 mm has
then been performed. Figure 5 depicts selected predicted particle-size curves
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Figure 5: Vertical distribution of prediction results: (a) a sample of 100 of
the 7190 predicted/kriged (solid curves) and observed (smoothed data; dotted
curves) particle-size curves; (b) a sample of 100 of the 7190 predicted/kriged
(solid curves) and observed (smoothed data; dotted curves) particle-size densi-
ties; (c) kriging variance. Kriging variance ranges between 0 (darkest color) and
2.53 (lightest color)

(Figure 5a), particle-size densities(Figure 5b) and the associated kriging variance
(Figure 5c). The spatial prediction represents a smooth interpolation of the
available data. Predictions follow the behavior of neighboring data for lags
which are smaller than the calibrated trace-variogram range. Kriged curves tend
to coincide with the estimated spatial mean (which is assumed to be constant)
for greater lags. Hence kriged curves at unsampled locations which are far away
from sampling points tend to be representative of a soil type which is associated
with the mean particle-size curve.

5.2 Quantile assessment and hydraulic conductivity esti-

mates

Knowing the estimates of the PSCs spatial distribution provides an exhaustive
characterization of soil features which can be inferred from these curves. Our
results enable one to provide estimates of desired particle-size quantiles to be em-
ployed, e.g., for facies identification, hydraulic conductivity assessment and/or
geochemical parameters, at locations of interest. With reference to hydraulic
conductivity estimates which can be inferred from particle-based formulations,
here we compare the results which can be obtained through our functional com-
positional kriging approach against those associated with a classical kriging
technique applied directly to quantiles of a PSC. These quantiles can be either
directly measured or, as in (Riva et al., 2010), estimated through interpolation
on the available measured particle sizes.

To this end, we remark that the proposed functional compositional kriging
technique allows treating the complete set of information embedded in the avail-
able particle-size data within a framework based on global definitions of spatial
dependence. On the other hand, classical approaches tend to characterize the
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spatial dependence of selected quantiles of the particle-size curve. In this sense,
classical and functional approaches are markedly different from a methodolog-
ical and application-oriented point of view. The functional approach allows
modeling a global variogram for the functional process and the solution of the
ensuing kriging system of equations is performed only once yielding the predic-
tion (and associated prediction variance) of the complete particle-size curve at
unsampled locations. On the other hand, typical geostatistical analyses (e.g.,
Riva et al. (2006, 2008, 2010); Bianchi et al. (2011) and references therein) treat
each quantile separately (possibly introducing estimated cross-correlations in
terms of cross-variograms) and project their predictions through kriging on a
computational grid.

For the purpose of our application, we consider the log-transformed 10th

and 60th quantiles of the particle-size distribution in s, respectively indicated
as D10(s) and D60(s), i.e.

D10(s) = χ−1
s

(0.10); D60(s) = χ−1
s

(0.60); s ∈ D (18)

or, equivalently,

ˆ D10(s)

tm

Ys(t)dt = 0.10;

ˆ D60(s)

tm

Ys(t)dt = 0.60; s ∈ D.

We remark that, for consistency, both classical and functional compositional
geostatistical analyses are here performed on the quantities D10(s1), ..., D10(sn)
and D60(s1), ..., D60(sn), i.e., the values associated with the n = 60 smoothed
particle-size curves χs1

, ..., χsn
obtained according to (18) (empty symbols in

Figure 6a).
A classical study of the structure of spatial dependence of these log-quantiles

is performed upon modeling the variograms of D10 and D60. The cross-vari-
ogram has not been modeled because of the lack of cross-correlation between
10th and 60th log-quantiles at the site (Riva et al., 2010). Figure 6a and b
depict the estimated empirical semivariograms (full symbols) together with the
fitted valid models (solid curves). An exponential structure with nugget has
been selected for both quantities. Variogram calibration results highlight that
D10 shows a much higher variability than D60 (estimated sill is 0.58 and 0.04,
with estimated nugget of 0.13 and 0.015, respectively for D10 and D60). On the
other hand, the range of the variogram of D10 appears to be about twice the one
associated with D60 (estimated practical range is 0.62 and 0.28, respectively for
D10 and D60). These results are consistent with those obtained by Riva et al.
(2010) who performed a geospatial analysis of D10 and D60 by considering all
boreholes at the site, having clustered the data into two main soil types.

The fitted variogram structures reported in Figure 6a and b have been val-
idated by means of a leave-one-out cross-validation analysis. Cross-validation
predictions are reported in Figure 6e (crosses) together with the log-quantiles
predictions obtained by the cross-validation predicted particle-size curves, com-
puted according to (18) (solid circles). Kriging predictions obtained with the
classical and functional compositional approaches appear to be very similar,
displaying a moderate smoothing effect in both cases.

Table 1 lists the cross-validation SSEs associated with classical one-dimen-
sional (1D K) and functional compositional kriging (FCK). For completeness
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Figure 6: Comparison of cross-validation results of classical one-dimensional
kriging (1D K) and functional compositional kriging (FCK): empirical variogram
(symbols) and fitted models (solid curves) for (a) D10 and (b) D60; boxplots of
cross-validation SSEs for (c) D10 and (d) D60; (e) D10 and D60 data (empty
circles) together with cross-validation predictions with 1D K (crosses) and FCK
(solid circles)

and ease of reference, these are also depicted in Figures 6c and d. Cross-
validation results, as expressed by SSEs, appear to be comparable for the two
approaches, as one can also notice by visual inspection of Figure 6e. The log-
quantile D10 proves to be much more difficult to be predicted than D60, due to
its higher spatial variability. In this case, FCK yields slightly improved results
in terms of SSEs. This might be due to the global nature of the approach em-
bedded in FCK, which grounds its strength on the reliance on the entire curve
for the prediction of local behaviors.

Finally, (log)hydraulic conductivities have been computed from cross- vali-
dation predictions. We recall that methods based on particle-size information
to provide estimates of hydraulic conductivity, K, rely on formulations of the
kind:

K =
g

v
C f(φ) d2e (19)

where g is gravity, v is the fluid kinematic viscosity, f(φ) is a function of porosity,
φ, de is an effective particle diameter, and C is defined as a sorting coefficient.
The particular values of C and de, and the form of f(φ) depend on the formula-
tion one employs. Empirical formulations which are usually adopted to obtain
hydraulic conductivity from quantiles of particle-size curves of soil samples are
collected by e.g., Vukovic and Soro (1992); Fetter (2001); Carrier (2003); Odong
(2007).

Here, we consider two widely used formulations, corresponding to the Kozeny-
Carman and Hazen equations. According to the Kozeny-Carman equation:

C = 8.3 · 10−3; f(φ) =

[
φ3

(1− φ)2

]
; de = d10. (20)
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Method Median SSE [%] Mean SSE [%]

D10 FCK 0.13 [9.5%] 0.28 [20.99%]
1D K 0.17 [12.40%] 0.30 [22.15%]

D60 FCK 1.62 · 10−2 [0.24%] 3.76 · 10−2 [0.56%]
1D K 1.38 · 10−2 [0.21%] 3.67 · 10−2 [0.55%]

ln(K [KC]) FCK 0.50 [16.36%] 1.10 [35.98%]
1D K 0.63 [20.76%] 1.16 [37.95%]

ln(K [H]) FCK 0.50 [13.59%] 1.11 [30.02%]
1D K 0.65 [17.61%] 1.18 [32.70%]

Table 1: Comparison between cross-validation results related to quantile (D10

and D60) and log-hydraulic conductivity assessment when considering Kozeny-
Carman (ln(K [KC])) or Hazen (ln(K [H])) equations

Here, d10 is the particle diameter (in mm) associated with the 10% quantile of
the particle-size curve and K is given in m/day. Estimates of φ can be obtained
by (e.g., Vukovic and Soro (1992))

φ = 0.255(1 + 0.83U ); U =

(
d60
d10

)
(21)

d60 being the 60% quantile of the particle-size curve. The Hazen equation is:

C = 6 · 10−4; f(φ) = 1 + 10(φ− 0.26). (22)

Note that log-hydraulic conductivity values at s ∈ D can be computed in both
cases by a linear combination of the log-quantiles D10(s) and D60(s). Therefore,
the BLU prediction of the log-hydraulic conductivities can be obtained from the
BLU prediction of D10 and D60, i.e., from the kriged log-quantiles.

The last rows of Table 1 reports the cross-validation median and mean
SSE related to log-hydraulic conductivities computed by the Kozeny-Carman
(ln(K [KC])) and Hazen (ln(K [H])) formulations. Functional compositional krig-
ing provides improved results with respect to classical one-dimensional kriging
in both cases. This might be due to the structure of the formulations considered
and implies that the improvement in the D10 SSE is conducive to a correspond-
ing improvement in log-hydraulic conductivities SSE, even though D60 appears
to be slightly better predicted by classical kriging.

Finally, Figure 7 shows the predictions of the log-quantiles D10 and D60

(panel a) and the log-hydraulic conductivities ln(K [KC]) and ln(K [H]) (panels
b and c, respectively), computed by traditional one-dimensional (dotted curves)
and functional compositional (solid lines) kriging approaches. Predictions ap-
pear to be almost indistinguishable for quantiles and log-hydraulic conductiv-
ities. These results indicate that our proposed methodology (a) leads to the
complete characterization of the soil textural properties and (b) proves to be
fairly precise in predicting the local features of particle-size distributions, by
means of a relatively simple procedure.
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Figure 7: Comparison between kriging predictions obtained by 1D K (dotted
curves) and FK (solid curves): (a) D10 and D60; log-hydraulic conductivity
based on (b) Kozeny-Carman [KC] and (c) Hazen [H] formulations. Data are
indicated with symbols

6 Conclusions and further research

The main contributions of our work are both theoretical and application-oriented
and our research leads to the following key conclusions.

1. Particle-size curves (PSCs), which constitute a typical information con-
tent employed in hydrogeology, soil science and geochemical applications,
have been interpreted as functional compositional data. An original and
general geostatistical methodology which enables one to treat spatially de-
pendent functional compositional data has been proposed. Our approach
rests on a kriging technique which is developed for variables belonging
to general Hilbert spaces and that we have embedded in the space A2

endowed with the Aitchison geometry. We investigate the relationship be-
tween the spaces A2 and L2 in view of bringing the theory to practical
applications.

2. As PSCs are typically sampled at a discrete set of particle diameters, a
smoothing method based on Bernstein Polynomials has been proposed
(Section 4) and its consistency has been proven. In practical applications,
different choices might be employed for data preprocessing or, in some in-
stances, this preliminary data treatment might not be required. When the
full PSC is available or is sampled through a fine resolution, the method-
ology we developed (Section 3) can be directly applied to the available
data, without resorting to the procedure presented in Section 4.

3. Our methodology is demonstrated through an application relying on 60
PSCs sampled along a borehole within an alluvial aquifer near the city
of Tübingen, Germany. On a cross-validation basis, the results obtained
through our functional compositional kriging procedure proved to be con-
ducive to satisfactory predictions (and associated uncertainty quantifica-
tion) of PSCs at unsampled spatial locations.
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4. Our approach enables one to provide estimates of desired quantiles of PSCs
to be employed for hydraulic conductivity assessment at locations of inter-
est. We compared the results which can be obtained with our functional
compositional kriging approach against those associated with a classical
kriging technique applied directly to quantiles which are either observed
directly or, as in the current application, obtained through interpolation
of the available particle-size data. We found the two methods to lead to
consistent results, with a slightly improved performance of the functional
compositional kriging on the basis of cross-validation results.

5. A key advantage of our functional approach to compositional data lies in
the possibility of obtaining predictions of the entire particle-size curve at
unsampled locations, as opposed to classical or compositional kriging tech-
niques which allow capturing only selected local features of the curve. The
information content provided by the full PSC is critical to proper mod-
eling several physical and chemical processes occurring in heterogeneous
earth systems and which are affected by the local composition of the host
soil/rock matrix. In the light of the theoretical developments and results
presented, further advancements include three-dimensional extensions to
provide kriging predictions and stochastic simulation of PSCs associated
with different soil types. In these scenarios, anisotropic and (possibly)
non-stationary approaches are likely to be required to precisely character-
ize the heterogeneous (stochastic) nature of the particle-size curves within
a given aquifer system.

Appendix A: the non-stationary case

In Subsection 3.1, second-order stationarity has been assumed in view of the
particular application studied. However, the non-stationary case could be dealt
with as well, by exploiting the estimators and the algorithms proposed in (Menafoglio
et al., 2012).

In such a case, a linear model for the drift has to be formulated:

ms =

L⊕

l=0

fl(s)⊙ al, s ∈ D

and trace-covariogram and trace-variogram are to be defined in terms of the
residual process {δs, s ∈ D}, which is second-order stationary. The Universal
Kriging predictor can be derived by solving the minimization problem:

(λ∗
1, ..., λ

∗
n) = argmin

λ1,...,λn∈R :
Yλ
s0

=
⊕n

i=1
λi⊙Ysi

VarA2(Yλ

s0
⊖ Ys0

) s.t. EA2 [Yλ

s0
] = ms0

,

which reduces to the linear system:
(

C(hi,j) fl(si)
fl(sj) 0

)(
λi

ζl

)
=

(
C(h0,i)
fl(s0)

)
, (23)

where ζ0, ..., ζL are L+1 Lagrange multipliers associated with the unbiasedness
constraint. System (23) admits a unique solution provided Σ = (C(hij)) is
positive definite and F = (fl(si)) ∈ R

n×(L+1) is of full-rank.
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The trace-semivariogram is required to be known or properly estimated to
solve the Universal Kriging system. To this end, estimator (4) should not be
used, because it can be severely biased if the mean function ms is not spatially
constant. Instead, a natural estimator for the trace-semivariogram is the (pos-
sibly discretized) MoM estimator from the residuals, i.e., following the notation
introduced in Section 3,

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi
⊖ δsj

‖2A2 .

Nevertheless, one is required to estimate the residuals δs1
, ..., δsn

. In the general
context of data belonging to any Hilbert Space, Menafoglio et al. (2012) propose
to estimate the residuals as a difference between observations and the generalized
least squares (GLS) estimates of the drift at the sampled locations, i.e., in
our setting, δ̂si

= Ysi
⊖ m̂GLS

si
, i = 1, ..., n. Furthermore, Menafoglio et al.

(2012) derive the explicit expression of the GLS drift estimator and analyze
its properties (in particular, it is proved that the GLS drift estimator is also
the BLU estimator for the mean). Embedding the results of Menafoglio et al.
(2012) within our framework yields to the following expression of the GLS drift
estimator:

m̂
GLS
s

= F(FTΣ−1
F)−1

F
TΣ−1 ⊙Ys. (24)

having adopted the vectorial notation: (A⊙ f)i =
⊕n

j=1 Ai,j ⊙ fj , A = (Aij) ∈
R

n,n, f = (fi), fi ∈ A2, i = 1, 2, ..., n. Note that the optimality of estimator (24)
relies on a properly accounting for the structure of spatial dependence Σ, which
is unknown. In order to cope with this problem, an iterative algorithm starting
from an ordinary least squares estimate of the drift (m̂OLS

s
= F(FT

F)−1
F
T⊙Ys)

can be employed (Menafoglio et al. (2012), Section 4-5).
Therefore, even though our application relies on a stationary setting, the

methodology we present could also be used to treat non-stationary settings
upon applying the more general procedure which has been briefly illustrated in
this Appendix.

Appendix B: proof of Theorem 4

Proof. First, write

‖F̃N
ν,m − F‖C0 ≤ ‖F̃N

ν,m − F̃ν,m‖C0 + ‖F̃ν,m − F‖C0 . (25)

The last term of (25) vanishes as ν,m → +∞ (Babu et al. (2002), Theorem
2.1). Let us consider the second term and write its argument as:

F̃N
ν,m(x)− F̃ν,m(x) =

m∑

k=0

(F (1)
ν (k/m)− Fν(k/m))bk(m,x), x ∈ [0, 1].

It is straightforward to see that, for x ∈ [0, 1]

F (1)
ν (x)− Fν(x) =

1

2

N∑

i=1

[(Fν(xi)− Fν(x))− (Fν(x)− Fν(xi−1))]I(xi−1,xi](x).
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Fix ε > 0, consider ν such that ‖F − Fν‖ < ε/3 and N > N⋆ such that
f(x)/Nα < ε

3η for any x ∈ [0, 1]. Then:

‖F̃N
ν,m − F̃ν,m‖C0 = max

0≤k≤m

∣∣∣F (1)
ν (k/m)− Fν(k/m)

∣∣∣ ≤

≤ max
0≤k≤m

{
1

2

N+1∑

i=1

|(Fν(xi)− Fν(k/m))− (Fν(k/m)− Fν(xi−1))| I(xi−1,xi](k/m)

}
≤

≤ max
0≤k≤m

{
1

2

N+1∑

i=1

|4ε+ (F (xi)− F (k/m))− (F (k/m)− F (xi−1))| I(xi−1,xi](k/m)

}
≤

≤ max
0≤k≤m

{
1

2

∣∣∣4ε+ (F (k/m+ η/Nα∗

)− F (k/m))− (F (k/m)− F (k/m− η/Nα∗

))
∣∣∣
}

=

= 2ε+ max
0≤k≤m

∣∣∣ η

2Nα∗ f(x̃
(k)
1 )− η

2Nα∗ f(x̃
(k)
2 )

∣∣∣ < ε

for some x̃
(k)
1 ∈ [k/m, k/m + η/Nα∗

], x̃(k)
2 ∈ [k/m − η/Nα∗

, k/m]. The thesis
then follows from the arbitrariness of ε.
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