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Abstract

We present an a posteriori error estimate of hierarchical type for the mimetic discretization
of elliptic problems. Under a saturation assumption, the global reliability and efficiency of
the proposed a posteriori estimator has been proved. Several numerical experiments assess
the actual performance of the local error indicators in driving adaptive mesh refinement
algorithms based on different marking strategies. Finally, we test an heuristic variant of
the proposed error estimator which drastically reduces the overall computational cost of
the adaptive procedures.

1 Introduction

A posteriori error indicators are key ingredients to design efficient adaptive algorithms for
the numerical solution of partial differential equations. In recent years, the a posteriori error
analysis of finite element and finite volume methods has been the object of an intensive re-
search activity (see e.g. [30, 1, 3] and the references therein), while recently, the convergence
and optimality properties of adaptive finite element (AFEM) methods have been addressed in
several works (see e.g. [28] and references therein). More recently, thanks to the flexibility of
the mesh and the possibility to mimic the intrinsic properties of the differential problem under
study, the mimetic finite difference (MFD) method has been successfully applied to a large
class of differential problems, a very partial list including [15, 16, 9, 7, 2, 17, 18, 11, 22, 24, 25]
and [23, 26, 29, 31, 27] for some example of other non-standard related methods. The flexi-
bility of MFD methods makes them very well suited for the application of adaptive strategies
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for error control. Although the a priori analysis of this family of methods has been inten-
sively addressed for second order elliptic problems [15, 14, 8], nevertheless the corresponding
a posteriori analysis has not reached a comparable level of maturity (see e.g. [6, 10] for MFD
method in its mixed formulation). In this paper, we develop and analyze new a posteriori
error estimator (of hierachical type) for MFD methods in primal formulation applied to linear
elliptic problems. To our knowledge this represents the first result along this direction.

The paper is organized as follows. In Section 2 we present the problem, while in Section 3
we address its mimetic discretization. In Section 4 we present our a posteriori error estimator
and we prove global reliability and efficiency, under a saturation assumption. We also propose
an alternative heuristic error estimator, which drastically reduces the overall computational
cost of the adaptive algorithm. Finally, in Section 5 several numerical results assess the
effectiveness of our a posteriori error estimator and of its heuristic variant when employed in
driving adaptive algorithms.

2 The continuous problem

Throughout the paper we will use standard notations for Sobolev spaces, norms and semi-
norms. Let Ω be an open, bounded domain of R2, with polygonal boundary Γ := ∂Ω. Let us
introduce the bilinear form a(u, v) : H1(Ω)×H1(Ω) −→ R defined by

a(u, v) :=

∫

Ω
∇u · ∇v dx,

and the linear functional f(v) : L2(Ω) −→ R with

f(v) :=

∫

Ω
f v dx,

where we assume f ∈ L2(Ω).
Then, assuming homogeneous Dirichlet boundary conditions, the diffusion problem in

variational form reads: {
Find u ∈ H1

0 (Ω) such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω).

(1)

It is well known [13] that the above problem admits a unique solution.

3 A mimetic discretization

We now briefly review the mimetic discretization method for problem (1) presented in [14]
and extended to arbitrary polynomial order in [8].

3.1 Mesh notation and assumptions

Let Ωh ⊂ Ω be a polygonal approximation of Ω, in such a way that all vertexes of Ωh which are
on the boundary of Ωh are also on the boundary of Ω. The polygonal domain Ωh represents
the computational domain for the method.
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With a little abuse of notation, we also indicate with Ωh a partition of the above introduced
computational domain into polygons E. We assume that this partition is conformal, i.e.,
intersection of two different elements E1 and E2 is either a few mesh points, or a few mesh
edges (two adjacent elements may share more than one edge) or empty. We allow Ωh to contain
non-convex elements. Note moreover that, differently from conforming finite elements meshes,
T-junctions are now allowed in the mesh; indeed, these are included in the above conditions
simply by splitting single edges into two new (aligned) edges. For each polygon E, |E| denotes
its area, hE denotes its diameter and

h := max
E∈Ωh

hE .

We denote the set of mesh vertexes and edges by Nh and Eh, the set of internal vertexes
and edges by N i

h and E i
h, the set of boundary vertexes and edges by N ∂

h and E∂
h . We denote a

generic mesh vertex by v, a generic edge by e and its length both by he and |e|. The vertexes
and edges of a particular element E are always considered as elements of ∂E, the notation
made clear by the adopted symbol; for instance, {v}v∈∂E indicates the set of vertexes of E,
while {e}e∈∂E indicates the set of edges.

A fixed orientation is also set for the mesh Ωh, which is reflected by a unit normal vector
ne, e ∈ Eh, fixed once for all. For every polygon E and edge e ∈ EE

h , we define a unit normal
vector ne

E that points outside of E.
The mesh is assumed to satisfy the following shape regularity properties, which have

already been used in [14].

There exist

− an integer number Ns independent of h;

− a real positive number ρ independent of h;

− a compatible sub-decomposition Th of every Ωh into shape-regular triangles,

such that

(H1) any polygon E ∈ Ωh admits a decomposition Th|E formed by less than Ns triangles;

(H2) any triangle T ∈ Th is shape-regular in the sense that the ratio between the radius r of
the inscribed ball and the diameter hT of T is bounded from below by ρ:

0 < ρ ≤
r

hT
.

From (H1), (H2) there can be easily derived the following useful properties we list below.

(M1) The number of vertexes and edges of every polygon E of Ωh are uniformly bounded
from above by two integer numbers Nv and Ne, which only depend on Ns.

(M2) There exists a real positive number σs, which only depends on Ns and ρ, such that

he ≥ σshE and |E| ≥ σsh
2
E ,

for every polygon E of every decomposition Ωh, for every edge e of E.
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(M3) There exists a constant Ca, only dependent on ρ and Ns, such that for every polygon
E, for every edge e of E and for every function ψ ∈ H1(E), the following trace inequality
holds:

‖ψ‖2L2(e) ≤ Ca

(
h−1
E ‖ψ‖2L2(E) + hE |ψ|2H1(E)

)
. (2)

(M4) There exists a constant Capp, which is independent of h, such that the following holds.
For every E and for every function ψ ∈ Hm(E), m ∈ N, there exists a polynomial ψk of
degree k living on E such that

|ψ − ψk|Hl(E) ≤ Capph
m−l
E |ψ|Hm(E)

for all integers 0 ≤ l ≤ m ≤ k + 1.

Note that (M4) follows, for instance, from the extended Bramble-Hilbert lemma on non star-
shaped domains of [21, 13]; an explicit proof can be found in [2].

3.2 Degrees of freedom and interpolation operators

To describe the discretization of problem (1), we start introducing the discrete approximation
space Vh which is defined as follows: a vector vh ∈ Vh consists of a collection of degrees of
freedom

vh := {vh(v)}v∈Nh
,

one per mesh vertex, e.g. to every vertex v ∈ N i
h, we associate a real number vh(v). The

scalar vh(v) represents the nodal value of the underlying discrete scalar field of displacement.
Moreover, for all nodes of the mesh which lay on the boundary we will assume

vh(v) = 0 ∀vh ∈ Vh, ∀v ∈ N ∂
h .

Therefore, the number of unknowns of Vh is equal to the number of internal vertexes of the
mesh.

We now introduce an interpolation operator I into the discrete space Vh: for every function
v ∈ C0(Ω̄) ∩H1(Ω), we define vI ∈ Vh by

vI(v) := v(v) ∀v ∈ Nh.

Moreover, we analogously define the local interpolation operator from C0(Ē)∩H1(E) into
Vh|E given by

vI(v) := v(v) ∀v ∈ ∂E. (3)

3.3 Discrete norms and bilinear forms

For each polygon E ∈ Ωh we introduce the seminorm:

‖vh‖
2
1,h,E :=

(
|E|

∑

e∈∂E

[
1

|e|
(vh(v2)− vh(v1))

]2)
≃
∑

e∈∂E

(
vh(v2)− vh(v1)

)2
, (4)

where v1 and v2 denote the two vertexes of e, and the symbol ≃ indicates equivalence up to
a uniform constant (c.f. assumption (M2)).
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We endow the space Vh with the following discrete norm

‖vh‖
2
1,h :=

∑

E∈Ωh

‖vh‖
2
1,h,E ≃

∑

E∈Ωh

∑

e∈∂E

(
vh(v2)− vh(v1)

)2
. (5)

Due to the homogeneous Dirichlet boundary conditions, the quantity ‖ · ‖1,h is a norm on Vh.
We remark that ‖ · ‖1,h is a sort of discrete H1(Ω) norm. Indeed, the differences 1

|e|(vh(v2)−

vh(v1)) represent (tangential) gradients on edges and the scalings with respect to hE and he
are the correct ones to mimic an H1(E) local seminorm.

We denote by ah(·, ·) : Vh × Vh → R the discretization of the bilinear form a(·, ·), defined
as follows:

ah(vh, wh) :=
∑

E∈Ωh

aEh (vh, wh) ∀vh, wh ∈ Vh, (6)

where aEh (·, ·) is a symmetric bilinear form on each element E. The local forms mimic

aEh (vh, wh) ∼

∫

E
∇ṽh · ∇w̃h dx,

where, roughly speaking, ṽh, w̃h denote regular functions living on E which “extend the data”
vh, wh inside the element.

We introduce two fundamental assumptions for the local bilinear form aEh (·, ·). The first
one represents the coercivity with respect to the local seminorm as well as and the correct
scaling with respect to the element size.

(S1) there exist two positive constants c1 and c2 independent of h such that, for every
uh, vh ∈ Vh and each E ∈ Ωh, we have

c1‖vh‖
2
1,h,E ≤ aEh (vh, vh) ≤ c2‖vh‖

2
1,h,E . (7)

In order to introduce the second assumption, we observe beforehand that, using an integration
by parts,

∫

E
∇v · ∇q dx = −

∫

E
(∆q)v dx+

∑

e∈∂E

∫

e
(∇q · ne

E)v ds =
∑

e∈∂E

∇q · ne
E

∫

e
v ds (8)

for all E ∈ Ωh, for all v ∈ [H1(E)]2 and for all linear functions q. By substituting the integral
in the last term of (8) with a trapezium integration rule gives our second condition

(S2) For every element E, every linear vector function q on E, and every vh ∈ Vh, it holds

aEh (vh, q) =
∑

e∈∂E

(∇q · ne
E)

|e|

2

(
vh(v1) + vh(v2)

)
, (9)

where v1 and v2 are the two vertexes of e ∈ ne
E .

The meaning of the above consistency condition (S2) is therefore that the discrete bilinear
form satisfies integration by parts when tested with linear functions.

Remark 3.1 The scalar product and the bilinear form shown in this section can be easily
built element by element in a simple algebraic way. See for instance [14, 2].
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3.4 The discrete method

Finally, we are able to define the proposed mimetic discrete method for the diffusion problem
(1). Let the loading term

(f, vh)h :=
∑

E∈Ωh

f̄ |E

kE∑

i=1

vh(vi) ω
i
E , (10)

where v1, . . . , vkE are the vertexes of E, f̄ |E := 1
|E|

∫
E f dx, and ω1

E , . . . , ω
kE
E are positive

weights such that
∑kE

i=1 ω
i
E = |E|. The loading term (10) is clearly an integral approximation

(f, vh)h ∼

∫

Ω
fṽh dx,

which is exact for constant functions.
Then, the mimetic discretization of problem (1) reads:

{
Find uh ∈ Vh such that

ah(uh, vh) = (f, vh)h ∀vh ∈ Vh.
(11)

Due to property (S1) it is straightforward to check that the bilinear form ah(·, ·) is coercive
on Vh. As a consequence, existence and uniqueness of the solution to the discrete problem
(11) trivially follows.

4 A posteriori error estimate

In this section we perform a posteriori error analysis of the mimetic finite difference method
described in Section 3. The a posteriori error indicators that we propose and analyze belong
to the class of non-residual type, in particular of hierarchical type (see e.g. [4, 1] and the
references therein for the finite element framework).

In the following, we state some preliminary key results concerning mesh refinement.

4.1 Mesh refinement and related results

Given a mesh Ωh we can build a uniformly refined mesh Ω̂h as follows. We start assuming
that

(H3) all polygons E ∈ Ωh are convex.

Then, we introduce the point xE ∈ E

xE :=
1

N

∑

v∈∂E

x(v) , (12)

where N is the number of vertexes in ∂E and x(v) is the position vector of node v ∈ N .
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Remark 4.1 We remark that assumption (H3) is made essentially for the sake of exposition
simplicity. What follows can be adapted to cover more general cases such as, for instance,
elements which are star shaped with respect to a ball. In particular, (12) has to be modified
to define an interior point, and (15) has to be changed, for v = xE, in such a way that the
operator preserves the linear functions.

The uniformly refined mesh Ω̂h is built by subdividing each element E of Ωh in the
following way: each midpoint m = m(e) of each edge e ∈ ∂E is connected with the point
xE . This determines a subdivision of E into sub-elements which are collected for all E ∈ Ωh

to form the new mesh Ω̂h (see Figure 1). In the following, we will indicate all geometrical
objects of the finer grid Ω̂h with a hat symbol, the meaning being the same as in the original
mesh. For instance, we will indicate with Ê a generic element of Ω̂h, and with N̂ the set of
all its vertexes. Note that

N̂ = N ∪ {m(e)}e∈E ∪ {xE}E∈Ωh
,

i.e. the edge midpoints m(e) and the points xE become additional vertexes in the new mesh
Ω̂h. In addition, ĥ will denote the mesh-size of the finer mesh Ω̂h. Following the construction

Figure 1: Refinement strategy: coarse element E and sub-elements Ê. Circles denote the
coarse vertexes, while diamonds refer to additional vertexes in the finer mesh.

given in section 3, we can introduce a finer discrete space V̂h associated to the mesh Ω̂h, a
bilinear form âh(·, ·) : V̂h × V̂h → R and a suitable loading term, so that the finer version of
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the coarse discrete problem (11) reads as follows

{
Find ûh ∈ V̂h such that

âh(ûh, vh) = (f, vh)ĥ ∀vh ∈ V̂h.
(13)

We now introduce two operators that maps the finer space into the coarser one and
viceversa. Let Π : V̂h → Vh be defined by

(
Π(vh)

)
(v) = vh(v) ∀v ∈ N , ∀vh ∈ V̂h. (14)

Given any midpoint m = m(e), e ∈ Eh, we indicate with vm and with v′
m

the two vertexes
which are endpoints to the edge e. We then define Π† : Vh → V̂h by

(
Π†(vh)

)
(v) =





vh(v) ∀v ∈ N

1

2

(
vh(vm) + vh(v

′
m
)
)

if v = m(e), e ∈ E

1

N

∑

v∈∂E

vh(v) if v = xE , E ∈ Ωh,

(15)

for all vh ∈ Vh. The operator Π† embeds the coarse space Vh into the finer space V̂h by
averaging the coarse vertex values. We denote by V̂ c

h the subspace of V̂h given by the image of
Π† and we refer to it as to the embedded coarse space. Finally, we introduce the fluctuation
space

V̂ f
h = {vh ∈ V̂h | vh(v) = 0 ∀v ∈ N}.

It is immediate to check that
V̂h = V̂ c

h ⊕ V̂ f
h .

Let ‖ · ‖
1,ĥ

and ‖ · ‖
1,ĥ,Ê

, Ê ∈ V̂h, denote the global and local norms of the finer space V̂h
(cfr. (5)). Accordingly, we indicate with ‖ · ‖

1,ĥ,E
the norm of the fine space restricted to the

coarse element E ∈ Ωh

‖vh‖
2
1,ĥ,E

=
∑

Ê∈E

‖vh‖
2
1,ĥ,Ê

∀vh ∈ V̂h.

The following result states a minimum angle condition among the two spaces V̂ c
h and V̂ f

h .

Lemma 4.1 There exists a positive constant Cm independent of h such that for all E ∈ Ωh

‖vch‖1,ĥ,E + ‖vfh‖1,ĥ,E ≤ Cm ‖vch + vfh‖1,ĥ,E (16)

for all vch ∈ V̂ c
h and vfh ∈ V̂ f

h .

Proof. To prove (16) it is sufficient to show

‖vch‖1,ĥ,E ≤ C ‖vch + vfh‖1,ĥ,E (17)

for all vch ∈ V̂ c
h and vfh ∈ V̂ f

h , since the other bound:

‖vfh‖1,ĥ,E ≤ C ‖vch + vfh‖1,ĥ,E
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immediately follows from (17) using the triangle inequality. Furthermore, since Π†(Π(vch +

vfh)) = vch for all vch ∈ V̂ c
h and vfh ∈ V̂ f

h , bound (17) will hold true if we show the following
estimate:

‖Π†(Π(vh))‖1,ĥ,E ≤ C ‖vh‖1,ĥ,E ∀vh ∈ V̂h. (18)

To shorten the notation, we set wh = Π†(Π(vh)). Using the definition of the norm, we get

‖wh‖
2
1,ĥ,E

=
∑

m∈∂E

(
wh(vm)− wh(m)

)2
+
∑

m∈∂E

(
wh(v

′
m
)− wh(m)

)2

+
∑

m∈∂E

(
wh(m)− wh(xE)

)2
,

(19)

where we recall that m and m′ denote the endpoints of the edge whose mid-point is m, and
xE is defined by (12). Since the first and second term on the right-hand side of (19) can be
treated in a similar way, we work out the details only of the first one. Using definitions (14)
and (15) gives

∑

m∈∂E

(
wh(vm)− wh(m)

)2
=
∑

m∈∂E

1

4

(
wh(vm)− wh(v

′
m
)
)2

=
∑

m∈∂E

1

4

[(
Π(vh)

)
(vm)−

(
Π(vh)

)
(v′

m
)
]2

≤ C ‖Π(vh)‖
2
1,h,E .

(20)

From definition (15) and the triangle inequality we get

|wh(m)− wh(xE)| ≤
1

2

(
|wh(vm)− wh(xE)|+ |wh(v

′
m
)− wh(xE)|

)
,

and thus ∑

m∈∂E

(
wh(m)− wh(xE)

)2
≤ C

∑

v∈∂E

(
wh(v)− wh(xE)

)2
.

Using again definitions (14) and (15), writing wh(v) =
1
N

∑
v
′∈∂E wh(v

′) and employing some
simple algebra there follows

∑

v∈∂E

(
wh(v)− wh(xE)

)2
≤ C

∑

v∈∂E

∑

v
′∈∂E

N−2
(
wh(v)− wh(v

′)
)2

= C
∑

v∈∂E

∑

v
′∈∂E

N−2
[(
Π(vh)

)
(v)−

(
Π(vh)

)
(v′)
]2

≤ C ‖Π(vh)‖
2
1,h,E .

(21)

Combining (19) with the above bounds yields

‖Π†(Π(vh))‖
2
1,ĥ,E

≤ C ‖Π(vh)‖
2
1,h,E ∀vh ∈ V̂h. (22)

Since the triangle inequality applied edge by edge easily give

‖Π(vh)‖
2
1,h,E ≤ C ‖vh‖

2
1,ĥ,E

, (23)
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bound (22) leads to (18), and thus the lemma is proved.

Note that, as a byproduct of the above proof, we obtained also the stronger bound (22),
which gives the following simple lemma.

Lemma 4.2 There exist positive constants C,C ′ such that for all E ∈ Ωh

C‖vh‖1,h,E ≤ ‖Π†(vh)‖1,ĥ,E ≤ C ′‖vh‖1,h,E ∀vh ∈ Vh. (24)

Proof. The first bound above follows immediately from the definition of the involved norms
and a triangle inequality edge by edge. For the second bound we observe that Π(Π†(vh)) = vh
for all vh ∈ Vh. Therefore, applying (22) we get

‖Π†(vh)‖1,ĥ,E = ‖Π†(Π(Π†(vh)))‖1,ĥ,E ≤ C ′‖Π(Π†(vh))‖1,h,E = C ′‖vh‖1,h,E .

4.2 A fully consistent coarse problem

In this section we present a convenient choice for the coarse bilinear form ah which allows
some simplifications in the following a posteriori error analysis (see Corollary 4.1). However,
the generality of our analysis will not be affected by such a particular choice.

As mentioned before, let âh(·, ·) be any discrete bilinear form built on the space V̂h following
the construction of Section 3.3. In other words, we assume that the bilinear form âh(·, ·) is

the sum of local forms âÊh (·, ·), Ê ∈ Ω̂h, that satisfy (Ŝ1) and (Ŝ2) (the identic counterparts
of (S1) and (S2) for the fine space and mesh).

Then, for all E ∈ Ωh, we can define a bilinear form aEh (·, ·) on the coarse space Vh as
follows

aEh (vh, wh) :=
∑

Ê∈E

âÊh (Π
†(vh),Π

†(wh)) ∀vh, wh ∈ Vh . (25)

To guarantee the well-posedeness of the coarse problem (11), we need to show that (25)
satisfies both (S1) and (S2); this will be addressed in the following.

Lemma 4.3 The bilinear form (25) satisfies (S1) and (S2).

Proof. The proof of (S1) is immediate. First recalling definition (25), then using (Ŝ1) and
finally applying Lemma 4.2, yields for all E ∈ Ωh

aEh (vh, vh) =
∑

Ê∈E

âEh (Π
†(vh),Π

†(vh)) ≃
∑

Ê∈E

‖Π†(vh)‖
2
1,ĥ,Ê

= ‖Π†(vh)‖
2
1,ĥ,E

≃ ‖vh‖
2
1,h,E .

We now observe that, for all linear functions q in Ω and for every E ∈ Ωh it holds

q(m) =
1

2

(
q(vm) + q(v′

m
)
)

∀m = m(e), e ∈ ∂E

q(xE) =
1

N

∑

v∈∂E

q(v).
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Therefore, it is immediate to check that the interpolant qI into the coarse space satisfies

Π†(qI) = q
Î
, (26)

where the symbol Î denotes the interpolation operator into the fine space V̂h, analogous to
(3). Therefore, using (25), (26) and (Ŝ2) we get

aEh (vh, q
I) =

∑

Ê∈E

âÊh (Π
†(vh),Π

†(qI)) =
∑

Ê∈E

âÊh (Π
†(vh), qÎ)

=
∑

Ê∈E

∑

ê∈∂Ê

(∇q · nê
Ê
)
|ê|

2

[(
Π†(vh)

)
(v̂1) +

(
Π†(vh))(v̂2)

] (27)

where v̂1, v̂2 indicate the two vertexes of the fine edge ê ∈ ∂Ê. The proof of (S2) follows from
using (27) and definition (15), and observing that the contribution of the fine edges that are
internal to E vanishes since all considered functions are single valued on such edges.

Similarly, we can also define a loading term

(f, vh)h =
∑

E∈Ωh

∑

Ê∈E

(f,Π†(vh))ĥ,Ê

where (f, ·)
ĥ,Ê

represents a local loading operator on the fine mesh following a construction

analogous to (10).
Building the global bilinear form ah(·, ·) that follows by summation of the local forms (25),

and considering the load term above, we can define a discrete mimetic problem (11) on the
coarse space. Such coarse problem has the advantage of being fully consistent with the fine
problem. The usefulness of this construction will be clear in the next section.

4.3 A posteriori error analysis

We introduce the following fluctuation discrete problem:

{
Find êfh ∈ V̂ f

h such that

âh(ê
f
h, v

f
h) = (f, vfh)ĥ − âh(Π

†uh, v
f
h) ∀vfh ∈ V̂ f

h .
(28)

Note that the right-hand side in (28) is the residual of the approximate solution uh when

tested with the fluctuation space V̂ f
h .

In the sequel, we will work under the following saturation assumption:

(H4) There exists β < 1 such that

‖u
Î
− ûh‖1,ĥ ≤ β ‖u

Î
−Π†uh‖1,ĥ . (29)

Assumption (H4) simply means that the enriched discrete solution ûh converges more rapidly
than uh to the interpolant of the exact solution u

Î
. The validity of the saturation assumption

is widely accepted in a posteriori error analysis of finite element methods [1, 5, 12], while its
connection with small data oscillation has been explored in [20].
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Theorem 4.1 (upper bound) Assume (H1)-(H4). Let u solve (1), let uh solve (11) and

let êfh solve (28). Let c∗ = 1
Cm(1−β)ĉ1

, with Cm as in (16). Then it holds:

‖u
Î
−Π†uh‖1,ĥ ≤ c∗

(
ĉ2‖ê

f
h‖1,ĥ + sup

vh∈Vh

(f,Π†vh)ĥ − âh(Π
†uh,Π

†vh)

‖Π†vh‖1,ĥ

)
. (30)

Proof. The triangle inequality and the saturation assumption (29) imply

(1− β)‖u
Î
−Π†uh‖1,ĥ ≤ ‖ûh −Π†uh‖1,ĥ ≤ (1 + β)‖u

Î
−Π†uh‖1,ĥ (31)

Let us prove (30). By using (Ŝ1), (13), (28) and (16) we obtain

ĉ1‖ûh −Π†uh‖1,ĥ ≤ sup
Π†vh+vf

h
∈V̂h

âh(ûh −Π†uh,Π
†vh + vfh)

‖Π†vh + vfh‖1,ĥ

= sup
Π†vh+vf

h
∈V̂h

âh(ûh,Π
†vh + vfh)− âh(Π

†uh,Π
†vh + vfh)

‖Π†vh + vfh‖1,ĥ

= sup
Π†vh+vf

h
∈V̂h

(f,Π†vh + vfh)ĥ − âh(Π
†uh,Π

†vh)− (f, vfh)ĥ + (f, vfh)ĥ − âh(Π
†uh, v

f
h)

‖Π†vh + vfh‖1,ĥ

= sup
Π†vh+vf

h
∈V̂h

(f,Π†vh)ĥ + (f, vfh)ĥ − âh(Π
†uh,Π

†vh)− (f, vfh)ĥ + âh(e
f
h, v

f
h)

‖Π†vh + vfh‖1,ĥ

= sup
Π†vh+vf

h
∈V̂h

âh(e
f
h, v

f
h) + (f,Π†vh)ĥ − âh(Π

†uh,Π
†vh)

‖Π†vh + vfh‖1,ĥ

≤
1

Cm

(
ĉ2‖e

f
h‖1,ĥ + sup

vh∈Vh

(f,Π†vh)ĥ − âh(Π
†uh,Π

†vh)

‖Π†vh‖1,ĥ

)
.

Finally estimate (30) results from (31).
The above result is general with respect to the choice of the bilinear forms ah and âh.

Nevertheless, the following particular case is relevant.

Corollary 4.1 (upper bound) Assume (H1)-(H4) and that the coarse biliner form ah(·, ·)

is chosen according to (25). Let u solve (1), let uh solve (11) and let êfh solve (28). Let
c∗ = 1

Cm(1−β)ĉ1
, with Cm as in (16). Then, it holds:

‖u
Î
−Π†uh‖1,ĥ ≤ c∗ĉ2‖ê

f
h‖1,ĥ . (32)

Proof. The proof immediately follows observing that

âh(Π
†uh,Π

†vh) = (f,Π†vh)ĥ ∀vh ∈ Vh ,

and thus the upper bound (30) reduces to the one shown above.
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Remark 4.2 We remark that it holds:

Π(u
Î
−Π†uh) = uI − uh.

Therefore, using (23), the left-hand sides of the upper bounds (30) and (32) may be replaced
by the slightly more natural error quantity

‖uI − uh‖1,h.

Theorem 4.2 (lower bound) Assume (H1)-(H4). Let u solve (1), let uh solve (11) and let

êfh solve (28). If c∗ =
ĉ2(1+β)

ĉf
1

, then

‖efh‖1,ĥ ≤ c∗‖uÎ −Π†uh‖1,ĥ . (33)

Proof. Let us prove (33). We start noting that, from the stability condition (Ŝ1), it follows

ĉf1‖v
f
h‖

2
1,ĥ

≤ âh(v
f
h , v

f
h) ∀vfh ∈ V̂ f

h , (34)

with ĉf1 a positive constant independent of h.

Thus, by using the above bound, the assumption (Ŝ1), equations (28) and (13) we obtain

ĉf1‖e
f
h‖1,ĥ ≤ sup

vf
h
∈V f

h

âh(e
f
h, v

f
h)

‖vfh‖1,ĥ

= sup
vf
h
∈V f

h

(f, vfh)ĥ − âh(Π
†uh, v

f
h)

‖vfh‖1,ĥ

= sup
vf
h
∈V f

h

âh(ûh, v
f
h)− âh(ûh, v

f
h) + (f, vfh)ĥ − âh(Π

†uh, v
f
h)

‖vfh‖1,ĥ

= sup
vf
h
∈V f

h

(f, vfh)ĥ − âh(ûh, v
f
h) + âh(ûh −Π†uh, v

f
h)

‖vfh‖1,ĥ

≤ ĉ2‖ûh −Π†uh‖1,ĥ + sup
vf
h
∈V f

h

(f, vfh)ĥ − âh(ûh, v
f
h)

‖vfh‖1,ĥ

= ĉ2‖ûh −Π†uh‖1,ĥ . (35)

Estimate (33) then results from (31).

Remark 4.3 If (28) is replaced by a more general fluctuation problem

b̂h(ê
f
h, v

f
h) = ((f, vfh))ĥ − âh(Π

†uh, v
f
h) ∀vfh ∈ V̂ f

h , (36)

with suitable b̂h(·, ·) satisfying (Ŝ1)-(Ŝ2) and ((·, ·))
ĥ
, then the upper bound (30) and the lower

bound (33) still hold (with different constants), provided the following new consistency term
is added on the corresponding right-hand sides

sup
vf
h
∈V̂ f

h

(f, vfh)ĥ − ((f, vfh))ĥ

‖vfh‖1,ĥ
. (37)
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Remark 4.4 (local error indicators) The upper bound (32) can be rewritten in the fol-
lowing way

‖u
Î
−Π†uh‖

2
1,ĥ

≤
(
c∗ĉ2

)2 ∑

E∈Ωh

η2E

with η2E :=
∑

Ê∈E ‖efh‖
2
1,ĥ,Ê

. The quantities ηE will be employed as local error indicators in

the marking step of the adaptive algorithm implemented in Section 5.

Remark 4.5 (inexpensive heuristic error indicators) The computation of the error in-
dicator ηE is quite demanding as it requires the solution of the discrete problem (28), whose
cost is comparable to that of solving the original problem. With the aim of reducing the com-
putational burden, we follow the ideas of [4] and we introduce inexpensive heuristic error
indicators. This is obtained following the same steps as in the derivation of ηE, but substi-
tuting the stiffness matrix in system (28) with its diagonal part. This procedure turns out to
be computationally advantageous as it is equivalent to solving uncoupled local problems with
(edge and element) bubble type functions. The ensuing local heuristic error indicator is la-

beled as ηDE :=
∑

Ê∈E ‖efh‖
2
1,ĥ,Ê

being efh the solution of problem (28) where only the diagonal

part of the stiffness matrix is employed. Note that all the previous theoretical results are lost;
nevertheless, the numerical tests in Section 5 will show the efficacy of the new heuristic error
indicators in driving adaptive algorithms.

5 Numerical experiments

In this section we present a series of numerical examples to illustrate the performance of
the proposed a posteriori error indicators combined with an automatic adaptive refinement
procedure.

5.1 The estimator η

This subsection concerns with the estimator η defined by η2 :=
∑

E∈Ωh
η2E , where ηE are given

in Remark 4.4. We test its numerical performance on a couple of significant examples.
We also recall that, in order to measure the quality of the computed bounds, we define the

a posteriori effectivity index as the ratio of the a posteriori error estimator η and the energy
norm of the error ‖u−Π†uh‖1,ĥ, when the analytical solution is available.

5.1.1 Example 1

We let Ω = (0, 1)2 and select f so that the analytical solution to (1) is given by

u(x, y) =
1− exp (−100x)

1− exp(−100)
sin(πy)(1− x).

As shown in Figure 2, the analytical solution exhibits a strong boundary layer along the
line x = 0.

We first investigate the performance of the proposed error estimator η using the set of
initial uniform meshes depicted in Figure 3 (top), and considering n = 1, 2, 3, 4 successive
uniform refinements of the initial grids. To refine elements we employed the strategy described

14



Figure 2: Example 2. Analytical solution.

Figure 3: Top: initial quadrilateral (Test A), triangular (Test B), and hexagonal (Test C)
grids. Bottom: first level of uniformly refined grids.
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in Section 4.1 (cf. Figure 3 (bottom) for the first level of uniformly refined grids). In Figure 4
(loglog-scale) we present a comparison of the actual and estimated discrete energy norm of the
error versus the number of degrees of freedom, on the sequence of uniformly refined meshes.
For the sake of comparison, Figure 4 also show the discrete energy error computed on the
current mesh, namely ‖u− uh‖1,h.
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(b) Test B
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(c) Test C

101 102 103 104
10−2

10−1

100

101

102

N

N−1/2

 

 

η

‖uI − Π†uh‖
1 ,ĥ
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Figure 4: Example 1. Actual and estimated errors versus the number of degrees of freedom
(uniformly refined grids). Loglog-scale.

As predicted by our theoretical results, the actual error ‖u−Π†uh‖1,ĥ and the a posteriori
error estimator η go to zero as h goes to zero at the same rate. We also observe that the
discrete energy error computed on the current mesh ‖u − uh‖1,h goes to zero with a moder-
ately better rate than expected; such a behavior has been already observed in previous papers.

Next we investigate the performance of the proposed error estimator combined with an
h-adaptive refinement procedure of the form:

SOLVE → ESTIMATE → MARK → REFINE.

Here SOLVE computes the discrete solution. The module ESTIMATE makes use of the upper
bound (30) (see also Remark 4.4) to calculate the error indicators, while the procedure MARK
employs the fixed fraction strategy, with refinement fraction set to 30%, to make a selection
of the elements to be refined. Finally, the module REFINE uses the strategy described in
Section 4.1 to subdivide elements marked for refinement.

We test the performance of the proposed a posteriori error estimator on a set of different
initial uniform grids as the ones reported in Figure 3 (top).
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Figure 5 shows, for all the considered initial grids, the computational meshes obtained after
two (top), four (middle), and six (bottom) adaptive refinement steps, respectively.

Figure 5: Example 1. Computational meshes after two (top), four (middle), and six (bottom)
adaptive refinements.

Figure 6 (left) reports the computed effectivity indexes for all the grid configurations
considered. As expected, on all the mesh configurations considered, the effectivity index is
roughly constant on the sequence of non-uniform meshes generated by the adaptive refinement
algorithm.

Furthermore, we compare the accuracy of the approximation of the computed solutions on
the sequence of adaptively and uniformly refined grids. Figure 6 (right) shows for all the mesh
configurations considered a comparison between the actual errors ‖u−Π†uh‖1,ĥ computed on
the sequence of meshes generated by the uniform and the adaptive refinement strategy. We
clearly observe that, as expected, adaptive strategy overperform the non-adaptive one.
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Figure 6: Example 1. Left: effectivity indexes on the sequence of non-uniform meshes. Right:
comparison between the actual errors ‖u− Π†uh‖1,ĥ computed on the sequence of uniformly

refined and adapted grids (loglog-scale).

Finally, Figure 7 shows a plot of the fluctuation error êfh on the initial mesh configuration
of Test C and on the corresponding mesh generated after two steps of the adaptive refinement
strategy.
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Figure 7: Example 1. Fluctuation error êfh on the initial mesh configuration of Test C (left)
and on the adaptive mesh constructed after two steps of refinement by employing the fixed
fraction marking strategy (right).

5.1.2 Example 2

We consider the model problem on a L-shaped domain Ω, obtained carving out the lower right
quarter from the square domain (−1, 1)2. We select f = 0 and, writing (ρ, θ) to denote the
system of polar coordinates, we impose an appropriate inhomogeneous boundary condition
for the exact solution u so that

u(ρ, θ) = ρ2/3 sin(2θ/3).
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We emphasize that u is analytic in Ω \ {0}, but ∇u is singular at the origin; indeed, here
u /∈ H2(Ω)

(a) Test A

(b) Test B

Figure 8: Example 2. Initial mesh configurations of Test A (top) and Test B (bottom), and
the first three levels of computational meshes generated by the adaptive refinement strategy
employing the fixed fraction marking strategy.

In Figure 8 we report the initial mesh configurations considered together with the first three
levels of meshes generated by the adaptive algorithm employing the fixed fraction marking
strategy. We clearly observe that the mesh is refined near the singularity. In Figure 9 the error
estimator computed on the sequence of the adaptively generated meshes together with the
actual error in the discrete energy norm are plotted as a function of the number of degrees
of freedom (loglog-scale). Figure 10 shows a plot of the fluctuation error êfh on the initial
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(b) Test B
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‖uI − uh‖1 ,h

Figure 9: Example 2. Actual and estimated errors versus the number of degrees of freedom
(loglog-scale). The adaptive meshes are constructed by employing the fixed fraction marking
strategy.
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mesh configuration of Test B and on the corresponding mesh generated after three steps of
the adaptive refinement strategy. We can observe, as expected, that the error is concentrated
near the origin where the gradient of the exact solution exhibits a singularity.
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Figure 10: Example 2. Fluctuation error êfh on the initial mesh configuration of Test B (left)
and on the adaptive meshes constructed after three steps of refinement by employing the fixed
fraction marking strategy (right).

Next, we address the performance of our a-posteriori error estimator combined with a
different marking strategy. To this aim, we consider the Dörfler marking strategy [19], which
we briefly recall in the following. Sort the local error indicators {ηE}E∈Ωh

such that ηEk−1
≥

ηEk
for k = 2, . . . ,#Ωh. The set of elements marked for refinement is given by {ηEk

}k=1,...,s,
where s is the smallest integer such that

s∑

k=1

ηEk
≥ θ

#Ωh∑

k=1

ηEk
, θ ∈ [0, 1).

We have run the same set of numerical experiments as before starting again from the
initial mesh configurations shown in Figure 8 (left): the first three levels of meshes generated
by the adaptive algorithm are shown in Figure 11. Figure 12 (loglog-scale) shows the error
estimator computed on the corresponding sequence of adaptively generated grids together
with the actual error in the discrete energy norm as a function of the number of degrees
of freedom. We clearly observe that by employing the Dörfler marking strategy the mesh
refinement is much more concentrated near the region where the exact solution exhibits a
singularity, at least in the first refinement levels. To compare the performance of the marking
strategies, Figure 13 shows the the estimated errors computed on the sequence of adaptively
refined meshes according to the different marking strategies. We can observe the marking
strategies are asymptotically equivalent.

Finally, in Figure 14 we report the effectivity indexes computed on the sequence of meshes
adaptively generated by the two marking strategies. As expected, the effectivity index is
roughly constant on both the sequence of non-uniform meshes generated by the adaptive
refinement algorithm.
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(a) Test A

(b) Test B

Figure 11: Example 2. First three levels of computational meshes generated by the adaptive
refinement strategy for two different initial mesh configurations. The adaptive meshes are
constructed by employing the Dörfler marking strategy.
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(b) Test B
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Figure 12: Example 2. Actual and estimated errors versus the number of degrees of free-
dom (loglog-scale). The adaptive meshes are constructed by employing the Dörfler marking
strategy.
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Figure 13: Example 2. Estimated errors versus the number of degrees of freedom for adaptively
refined meshes (loglog-scale) according to different marking strategies.

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Refinement level

E
ffe

ct
iv

ity
 in

de
x

 

 

Test A
Test B

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Refinement level

E
ffe

ct
iv

ity
 in

de
x

 

 

Test A
Test B

Figure 14: Example 2. Effectivity indeces on the sequence of the adaptive meshes constructed
by employing the fixed fraction strategy (left) and the Dörfler strategy (right).
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5.2 The heuristic estimator η
D

In this last subsection we show the results obtained with the inexpensive heuristic error
indicators proposed in Remark 4.5. We denote by ηD the counterpart of η when the local
error indicators ηDE are employed. In the following we consider the same test problems as in
Sections 5.1.1 and 5.1.2 where in all cases the fixed fraction strategy is adopted.

Figure 15: Example 1. Heuristic estimator ηD. Computational meshes after two (top), four
(middle), and six (bottom) adaptive refinements (fixed-fraction strategy).

We first show the results for Example 1 (see Section 5.1.1). In Figure 15 we depict some
computational meshes obtained with the adaptive strategy driven by the error indicators ηDE .
Such meshes are correctly refined towards the left hand side boundary. In Figure 16 we show
a comparison between the discrete norm errors and the total error estimator ηD.
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(a) Test A

101 102 103 104
10−2

10−1

100

101

102

N

N−1/2

 

 

ηD

‖uI − Π†uh‖
1,ĥ
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(b) Test B
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(c) Test C
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Figure 16: Example 1. Heuristic estimator ηD. Actual and estimated errors versus the number
of degrees of freedom (adaptively refined grids, fixed-fraction startegy). Loglog-scale.

The analogous results for Example 2 (see Section 5.1.2) are shown in Figures 17-18. In
particular, note that the meshes are correctly refined towards the re-entrant corner.

In Figure 19, the effectivity index behavior is plotted for both Example 1 and Example 2 :
we can clearly observe that in both cases the effectivity index gets quite close to the optimal
value of one.

We finally remark that all the outcomes for ηD, which are also to be compared with the
corresponding ones for η in Sections 5.1.1 and 5.1.2, suggest that the former estimator has
a general satisfactory behaviour. Therefore, due its very convenient computational cost, the
estimator ηD may be preferable to η in many cases of practical interest.
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(a) Test A

(b) Test B

Figure 17: Example 2. Heuristic estimator ηD. First three levels of computational meshes
generated by the adaptive refinement strategy for two different initial mesh configurations.
The adaptive meshes are constructed by employing the fixed-fraction strategy.
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(b) Test B
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Figure 18: Example 2. Heuristic estimator ηD. Actual and estimated errors versus the number
of degrees of freedom (adaptively refined grids, fixed-fraction startegy). Loglog-scale.
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(b) Example 2
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Figure 19: Heuristic estimator ηD. Effectivity indexes on the sequence of adaptively refined
meshes. The sequence of adaptive meshes is constructed by employing the fixed fraction
strategy.
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