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Abstract

Understanding the spatial distribution of air pollutants, such as nitrogen dioxide
(NO2), is crucial for assessing environmental and health impacts, particularly
in densely populated and industrialized regions. This paper introduces a novel
method for estimating multiple spatial quantiles, ensuring the monotonicity of
the resulting estimates. The proposed model builds upon recent advancements
in quantile regression, and incorporates physical information of the phenomenon
under analysis, to address the challenges posed by anisotropy, non-stationarity
and skewness, typically observed in environmental data. For instance, in the
study of air pollutants concentration, the model permits the inclusion of infor-
mation concerning air-circulation, and in particular the physics of wind streams,
which strongly influences the pollutant concentration. Moreover, the monotone
estimation of the quantile maps yields a fully nonparametric reconstruction
of the pollutant probability density function, at any spatial location. This in
turn enables the construction of probability maps, that quantify the likelihood
of exceeding regulatory thresholds set by policymakers, offering valuable infor-
mation for environmental monitoring policies, aimed at mitigating the adverse
effects of air pollution.
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1 Introduction

Investigating quantiles of phenomena with complex spatial characteristics is highly
relevant across numerous disciplines, especially in environmental applications. In
particular, examining a sequence of multiple quantiles is fundamental to flexibly char-
acterizing the distribution of the variable at hand. Moreover, this is essential when
investigating the tail of the distribution, that is crucial whenever studying high-impact,
low-probability events, such as high concentrations of air pollutants, or particularly
high temperatures, where the emphasis is on tail characteristics, rather than the cen-
tral tendency of the phenomenon. An example is provided in Figure 1, which illustrates
the daily maximum concentrations of nitrogen dioxide (NO2) in Lombardy region,
on the 11th January 2019. Data are collected from the 84 monitoring stations, man-
aged by Agenzia Regionale per la Protezione dell’Ambiente (ARPA Lombardia, 2024),
and located on the territory on the basis of population density. As typically happens
in environmental phenomena, these data are characterized by strong heteroscedastic-
ity, skewness, and kurtosis. In the case of NO2, the distribution of its concentration
deviates significantly from the Gaussian, making spatial linear regression methods
unsuitable for analysis. Certain areas within the domain, in particular, display anoma-
lously high NO2 values. Those spikes can be captured by estimating quantiles of the
right tail of the distribution, which is of particular concern to scientists monitoring
health conditions of the local population. Indeed, as reported, e.g., by the European
Environmental Agency, inhaling NO2 is linked to numerous health issues, ranging from
eye and throat irritation to acute respiratory conditions, impaired lung function, and
an elevated risk of premature death. Beyond its detrimental effects on human health,
NO2 is also toxic to vegetation, contributing to forest damage and decreased crop
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Fig. 1: Left: daily maximum of NO2 concentration measurements, collected at the 84
control units managed by Agenzia Regionale per la Protezione dell’Ambiente (ARPA),
on 11th January 2019. Right: maximum wind speed measurements in Lombardy, col-
lected over 119 ARPA meteorological stations, on 11th January 2019; the direction and
the length of the arrows indicate the local direction and intensity of the wind stream.
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productivity; see, e.g., the report published by the European Environment Agency
(2018).

Additionally, challenges arising from the environmental context are often marked
by strong anisotropy or non-stationarity, that complicate the spatial pattern observed
in the data. For instance, the dispersion of air pollutants, such as NO2, is heavily influ-
enced by wind streams, that play a crucial role in disseminating the pollutants, thereby
shaping their spatial pattern. The right panel of Figure 1 shows the wind stream field,
on the same day of the NO2 measurements in the left-hand panel, highlighting the
strong non-stationarity of such stream effect. The embedding of the physics of wind
streams in the statistical modeling of air pollutant’s concentration is highly desirable,
as it is crucial to appropriately account for these complexities, and this can in turn
advance the accuracy of estimation methods, and lead to meaningful insights on the
complex phenomena under study.

In this work, we propose a new spatial multiple quantile estimation method, that
enjoys some fundamental and advantageous modeling features. One key feature is the
guarantee of monotonicity of the estimated quantiles, that in turn enables the study
of tail behaviors; this is achieved by imposing appropriate non-crossing constraints
between consecutive quantiles. An additional strength is the ability to include the
available physical information on the underlying phenomenon, such as the presence
of the wind streams in the study of air pollutants. This is achieved through a flexi-
ble penalized regression approach, where the penalty involves a Partial Differential
Equation, that encodes the available problem-specific information, thus enabling the
modeling of a wide range of physical phenomena, ultimately enhancing the accuracy of
the model. Additionally, the proposed method can handle data observed over spatial
regions with complex shapes, such as land regions or water bodies with irregular
coastlines, or curved surfaces, which is fundamental when the phenomenon under study
is influenced by the conformation of the domain.

The remainder of this introduction is organized as follows. In Section 1.1 we briefly
review spatial data analysis approaches that permit to include some problem-specific
physical information. In Section 1.2 we discuss the crossing problem, that arises in the
estimation of multiple quantiles, and may prevent the coherent study of tail behaviors.
Finally, in Section 1.3 we briefly outline some key aspects of our proposal.

1.1 Physics-informed spatial statistics approaches

In recent years, there has been an increasing interest in the statistical literature for
physics-informed modeling of spatial and spatio-temporal data. A powerful way to
include physical information in statistical models is through differential equations,
and in particular through Partial Differential Equations (PDE), when the quantities
of interest have spatial or spatio-temporal dependence. A well-developed literature
in the spatio-temporal framework is the one of hierarchical models, in which a time-
depending PDE is used to inform the spatio-temporal variation; see, e.g., Wikle (2003),
Wikle and Hooten (2010), Cressie and Wikle (2011), Kuhnert (2014), Richardson
(2017) and Hefley et al. (2017). Additionally, since the seminal work of Lindgren et al.
(2011), the powerful stochastic PDE (sPDE) approach has been extended in various
directions (see, e.g., the review in Lindgren et al., 2022), including the ability to work
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over irregularly shaped domains (see, e.g., Bakka et al., 2019) and the integration
of physics information (see, e.g., Carrizo-Vergara et al., 2022; Clarotto et al., 2024).
In particular, Clarotto et al. (2024) proposes a spatio-temporal sPDE model for the
estimation of the solar radiation, that considers an advection-diffusion PDE to account
for the effect of wind stream.

Another class of physics-informed spatial data analysis methods is the PDE-
regularized approach reviewed in Sangalli (2021). We refer the reader to, e.g.,
Azzimonti et al. (2015) and Arnone et al. (2019), for applications to problems in the
life sciences, and to, e.g., Tomasetto et al. (2024) for application to environmental
problems. For instance, Tomasetto et al. (2024) shows an application to rainfall data,
considering the presence of wind, and a second application to the study of oceano-
graphic measurements, where the underlying physics is that of ocean currents. This
PDE-regularized approach offers greater flexibility compared to traditional geosta-
tistical methods. Firstly, rather than explicitly imposing a specific structure on the
spatial correlation of the observations, the spatial correlation is implicitly induced by
the PDE regularization term, enabling the modeling of strong forms of anisotropy and
non-stationarity. Moreover, the regularizing PDE permits the integration of physical
knowledge into the modeling process, which can be crucial in real data applications,
especially when the observed data are scarse or clustered in space. Additionally,
as highlighted in various studies (see, e.g., Sangalli, 2021; Tomasetto et al., 2024)
this method permits the accurate modeling of data scattered over spatial regions
with complicated geometries, including domains with irregular boundaries and curved
regions.

However, the aforementioned studies target mean estimation, rather than quantile
estimation. A first approach to model spatial quantiles, including physical informa-
tion, is the PDE-regularized spatial quantile regression method recently proposed by
Castiglione et al. (2025). This approach is though limited to the estimation of spatial
quantiles only for a single-quantile level at a time.

1.2 Estimation of non-crossing quantiles

As previously anticipated, investigating tail behaviors requires the computation of
several, closely spaced, quantiles. This prevents the use of single-quantile estima-
tion procedures, since they do not guarantee the monotonicity of the quantiles. Such
issue, commonly referred to as the quantile crossing problem (see, e.g., Bassett and
Koenker, 1982; He, 1997), has attracted a lot of interest in the literature, in more clas-
sical univariate regression settings (without any spatial dependence). In particular, He
(1997) introduced non-crossing constraints by restricting Koenker and Bassett (1978)’s
model, but this results in a location-scale model often too restrictive for real-world
applications (Neocleous and Portnoy, 2008). Methods like Mammen (1991) employ iso-
tonization to project estimates onto monotone functions. Other techniques parametrize
the space of monotone quantile planes (see, e.g., Yang and Tokdar, 2015), or embed
non-crossing constraints in estimation, such as the kernel methods of Takeuchi et al.
(2006), or parametric and nonparametric models by Bondell et al. (2010). Other works,
like Liu and Wu (2009) and Liu and Wu (2011), introduced constrained schemes, with
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Fig. 2: Frequency of quantile crossing. The results are obtained using the single-
quantile estimation procedure in Castiglione et al. (2025), on a grid of 27 quantiles,
from 1% to 99%. The violation of the monotonicity constraints, highlighted in reddish
tones, is more pronounced in the North-East region, where data scarcity is more severe.

the latter imposing regression coefficient constraints. This extensive literature has so
far almost exclusively focused on univariate data analysis settings.

In the context of spatially dependent data, the quantile crossing problem becomes
even more severe. Indeed, quantile crossing is particularly pronounced in the spa-
tial regression, where quantiles are likely to intersect in regions of the domain where
observations are sparse. Figure 2 provides an example where the scarcity of monitor-
ing stations in the northeastern part of the region is particularly notable, causing the
quantile crossing. A first attempt to tackle the problem of estimating space-varying
quantiles is offered by Reich et al. (2011). However, as noted in Das and Ghosal (2017)
and in Deb et al. (2024), the estimation is conducted independently at each spatial
location, failing to account for the correlation between nearby points, making this
model unsuitable for data that exhibit complex spatial patterns.

A possible approach for estimating monotone space-varying quantiles involves post-
processing strategies applied on single-quantile spatial estimates. For instance Fasiolo
et al. (2021a) present single-quantile spatial models, based on thin plate spline (TPS;
see Wood, 2003) and on the soap film smoothing (SOAP; see Wood et al., 2008),
that can be subsequently refined, to ensure monotonicity of the quantiles, using the
approach detailed in Chernozhukov et al. (2010), which rearranges the estimates
permuting the consecutive crossing quantiles. Among the spatial quantile regression
models, for which it is possible to apply the rearrangement procedure of Chernozhukov
et al. (2010) to guarantee the non-crossing, we also mention the neural network
model proposed by Cannon (2018), and the parametric extreme value regression model
proposed in Youngman (2019).

Alternatively, some non-crossing quantile regression models, not originally designed
to account for spatially correlated data, can incorporate spatial information by employ-
ing a spatial smoother. The SOAP smoother can for instance be used as regressor in
the Quantile Regression Coefficient Modeling (QRCM), developed in Frumento et al.
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(2021) and in Sottile and Frumento (2023). The latter is a linear quantile regres-
sion model where the non-crossing is imposed in the optimization algorithm, through
appropriate constraints on the parametric regression coefficients.

1.3 Our proposal

In this paper, we introduce an innovative method for addressing the lack of mono-
tonicity in conditional quantiles of spatially distributed data. The proposed method
generalizes the nonparametric approach introduced in Castiglione et al. (2025), and
permits to integrate prior information about the underlying phenomenon to simul-
taneously estimate multiple quantiles, guaranteeing monotonicity of the estimates.
Instead of considering non-crossing constraints, we show that the estimation problem
can equivalently be expressed as a more convenient unconstrained problem, where the
non-crossing constraints have been replaced by appropriate penalization terms.

Moreover, with respect to Castiglione et al. (2025), we enrich the model by
also including space-varying covariates, through an appropriate parametric term
in a semiparametric framework. In the application to NO2 concentration analysis,
this parametric term enables us to investigate the impact of key factors, such as
anthropogenic influences and the geomorphology of the territory, on pollutant levels.

The considered estimation problem is non-quadratic, and it does not enjoy a
closed-form solution. For this reason, we develop an appropriate iterative estimation
procedure for its solution, that leverages the theory of Maximization-Minimization
algorithms (see, e.g., Lange, 2016). The estimation procedure is implemented with
a specific attention to computational efficiency, and exploits a spatial discretization
based on the Finite Element Method: see, e.g., Quarteroni (2017) and Brezzi and
Fortin (1991). The proposed method is implemented in the fdaPDE library (Palummo
et al., 2025).

The article is organized as follows. In Section 2, we introduce the proposed method
of Multiple Quantile Spatial Regression with Partial Differential Equation regular-
ization (MQSR-PDE). In Section 3, we present the estimation procedure based on a
Maximization-Minimization strategy and a Finite Element discretization. In Section 4
we report some simulation studies, that compare the accuracy of the proposed model
with existing methods, showing the comparative advantages of the proposed approach.
In Section 5, we demonstrate the application of the proposed model to the study of
the dispersion of NO2 in the Lombardy region. Finally, in Section 6, we summarize the
paper’s contributions and we discuss potential future research directions. The mathe-
matical proofs of the theoretical results presented throughout the article are deferred
to the Appendix.

2 Physics-Informed multiple quantile regression

Consider a set of spatial locations {pi}ni=1 within a bounded domain D ⊂ R2. At these
locations, we observe realizations {yi}ni=1 of a real-valued random variable Y , with
absolutely continuous distribution. Moreover, at the same spatial locations, we also
observe a set of q covariates {xi}ni=1. Our goal is to estimate the conditional quantile
maps, for a grid of r probability levels {αj}rj=1 ⊂ (0, 1), ensuring their monotonicity.

6



For simplicity of exposition, in Section 2.1 we start by introducing the estimation func-
tional relative to the single αj-conditional quantile. In Section 2.2, we then consider
multiple quantiles. In this section, we first introduce a multiple quantile estimation
problem with non-crossing constraints, that ensure monotonicity of the quantiles; then
we propose an equivalent, but computationally more convenient, penalized multiple
quantile estimation problem, that avoids non-crossing constraints, while preserving
monotonicity.

2.1 Semiparametric Physics-Informed αj-th quantile
estimation

We model the space-varying αj-th conditional quantile of Yi, for j = 1, . . . , r, as

QYi|pi,xi
(αj) = x⊤

i βj + fj(pi), j = 1, . . . , r,

where βj ∈ Rq quantifies the linear effect of the covariates on the response at the
αj-th quantile, and fj : D → R is a nonparametric term that captures the spatial
pattern of the αj-th quantile. We here assume that the covariate matrix X has full
rank and does not include the constant term, which is instead incorporated into the
nonparametric component f . We search the nonparametric terms {fj}rj=1 in the space

H2(D), where Hd(D) = {f ∈ L2(D) : Dkf ∈ L2(D), ∀|k| ≤ d} denotes the Sobolev
space of order d, where Dkf is the k-th weak derivative of f .

Extending to a semiparametric setting the purely nonparametric problem explored
by Castiglione et al. (2025), we consider the following penalized estimation functional
for the αj-th conditional quantile:

Jαj (βj , fj) =
1

n

n∑
i=1

ραj (yi − x⊤
i βj − fj(pi)) + λjP (fj), (1)

where ρα(t) := 0.5|t| + (α − 0.5)t denotes the pinball loss function, introduced by
Koenker and Bassett (1978) for classical univariate quantile regression settings, while
P (fj) is an appropriate penalty term. In particular, we here consider the Physics-
Informed penalty

P (fj) =

∫
D
(Lfj(p)− uj(p))

2 dp,

where Lfj − uj is a Partial Differential Equation (PDE), defined over the spatial
domain D, that encapsulates the available problem-specific information about the
underlying phenomenon. Specifically, we here consider linear second order elliptic
differential operators L of the form

Lf = −∇ · (K∇f) + b · ∇f + cf, (2)

where ∇ = ( ∂
∂p1

, ∂
∂p2

)⊤, K ∈ R2×2 is a symmetric positive definite matrix, that

controls the anisotropy of the underlying phenomenon, b ∈ R2 models unidirectional
effects, while c ∈ R controls the shrinkage of the field f towards the zero function.
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Finally, the space varying forcing term uj : D → R modulates possible exogenous
sources in the phenomenon under study. In this work, for simplicity of exposition, we
consider homogeneous forcing terms, i.e., null functions uj , referring the reader to,
e.g., Azzimonti et al. (2014) for the case of nonhomogeneous forcing terms.

The three terms in the differential operator L in (2), that are called respectively
diffusion, transport and reaction terms, permit to encode the available problem-specific
information of the phenomenon under study. The coefficients K, b, c can be function
of the space, permitting the modeling of different non-stationary effects. For example,
in the application to NO2 data considered in Section 5, we include the wind stream
information via a non-stationary transport term b(p), shown in the right panel of
Figure 1, where the vector field b(p) encodes the local direction and speed of the wind.
Encoding this information in the statistical model is fundamental to achieve physical
meaningful estimates, especially in areas where no NO2 measurements are available,
like for example in the northern part of Lombardy. Other examples of the use of
physics-informed penalties in the statistical analysis of environmental and ecological
data are offered by, e.g., Castiglione et al. (2025) and Tomasetto et al. (2024), with
application to rainfall data and to oceanographic measurements.

Moreover the PDE parameters K, b and c may depend on unknown hyperparam-
eters that need to be estimated from the data. To this end, we adopt the profiling
estimation technique considered by Bernardi et al. (2018) and Tomasetto et al. (2024),
based on the parameter cascading algorithm (see, e.g., Ramsay et al., 2007; Xun et al.,
2013). For example, in the application to the NO2 estimation considered in Section 5,
we employ the parameter cascading approach to estimate the relative strength of the
natural diffusion of the pollutant in the air, encoded in an isotropic and stationary
second-order term −∇ · (I∇f), with respect to the unidirectional spreading driven by
the wind, enclosed in a non-stationary first-order term b · ∇f , where b is the vector
field in Figure 1.

It should be pointed out that f does not need to solve the regularizing PDE
Lf−u, as the PDE enters in the statistical model through a regularization term, whose
relative weight with respect to the data loss ραj is controlled by the positive smoothing
parameter λj . The smoothing parameters {λj}rj=1 are selected on the basis of data-
driven criteria, as detailed in Section 4, and they vary according to the quantile order
αj . This approach allows for different regularizations tailored to the distinct quantile
fields based on the observed data.

Finally, the PDE is coupled with boundary conditions. For the sake of simplicity,
we here consider homogeneous Neumann boundary conditions, i.e., K∇f · ν = 0 on
∂D. Various other forms of boundary conditions can also be specified, as detailed, e.g.,
in Arnone et al. (2019) for linear regression problems.

2.2 Semiparametric Physics-Informed multiple quantile
estimation

Set β = (β1, . . . ,βr)
⊤ and denote by f the collection of the spatial fields f1, . . . , fr,

corresponding to the r quantile levels {αj}rj=1 ⊂ (0, 1).
A direct approach to estimate the set of quantiles {QYi|pi,xi

(αj)}rj=1, while ensur-
ing monotonicity of the estimated quantiles, would consist in minimizing the sum of
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the loss functionals in (1), over the r quantile levels {αj}rj=1, subject to non-crossing
constraints. Namely, we could consider the following constrained estimation problem min
(β1,f1),...,(βr,fr)∈Rq×F0

{
1
n

∑n,r
i,j=1 ραj (yi − x⊤

i βj − fj(pi)) +
∑r

j=1 λjP (fj)
}

x⊤
i (βj+1 − βj) + (fj+1(pi)− fj(pi)) ≥ ε, ∀i, j,

(3)

where F0 = {f ∈ H2(D) : K∇f · ν = 0 on ∂D} is the space of functions in H2(D)
satisfying the considered boundary conditions, and ε > 0 is a tolerance parameter
that guarantees the well-posedness of the inequality constraints. On the other hand,
incorporating monotonicity constraints into the minimization problem significantly
increases the computational complexity of the estimation procedure (see, e.g., Nocedal
and Wright, 2006).

For this reason, we here propose to replace the constrained estimation problem
(3) by an unconstrained estimation problem, using appropriate penalty functions. We
do so by uplifting to the infinite-dimensional optimization problem here considered
an approach classically followed for simpler optimization problems over scalar vari-
ables (see, e.g., Nocedal and Wright, 2006). Specifically, we propose to minimize the
penalized loss functional

JP (β,f) =
1

n

n,r∑
i,j=1

ραj (yi − x⊤
i βj − fj(pi)) +

r∑
j=1

λjP (fj) + γ

n,r−1∑
i,j=1

Ci,j , (4)

where the penalty Ci,j = max{0, ε − x⊤
i (βj+1 − βj) − (fj+1(pi) − fj(pi))} controls

the crossing between the two consecutive quantiles of levels (αj , αj+1), at location pi,
and the positive parameter γ controls the strength of such penalty. Notice that no
contribution is added in the estimation functional JP for those locations pi and pair
of quantile levels (αj , αj+1) for which the constraint is already fulfilled, as in this case
the penalty does not become effective. Moreover, as shown in Nocedal and Wright
(2006) for optimization problems over scalar variables, it can be shown that, in the
limit for γ → ∞, the solution to (4) converges to that of the constrained estimation
problem (3).

3 Model estimation

The minimum of functional (4) is not available in closed analytical form, due to the

non-quadratic terms ρα and
∑n,r−1

i,j=1 Ci,j , as well as the complexity introduced by the
PDE penalty. For this reason, in Section 3.1, we propose an iterative algorithm, that
permits to derive an approximate solution to (4), by appropriate leveraging an exten-
sive theoretical framework available for constrained optimization problems (see, e.g.,
Lange, 2016). Additionally, to deal with the PDE penalty and the possibly complex
conformation of the spatial domain D, we need to introduce an appropriate numer-
ical discretization. In particular, in Section 3.2 we briefly outline a Finite Element
approach that offers an efficient numerical discretization of the considered problem.
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3.1 Maximization-Minimization algorithm

We here describe an iterative procedure, that approximates the minimum of the esti-
mation functional (4), by solving a sequence of simpler optimization problems, each one
enjoying a convenient characterization of its solution. Unfortunately, the Expectation-
Maximization (EM) procedure described in Castiglione et al. (2025) for single-quantile
estimation cannot be directly extended to this case, as it cannot accommodate the
inclusion of the novel crossing penalty term. For this reason, here we develop an
appropriate Maximization-Minimization (MM) strategy. Indeed, MM algorithms are
particularly convenient when dealing with convex optimization problems character-
ized by multiple non-quadratic penalty terms and inequality constraints. We refer the
reader to, e.g., Wu and Lange (2010), Sun et al. (2017) and Lange and Zhou (2022), for
an overview of the MM approach and its relationship with the EM algorithm, and to
Hunter and Lange (2000) for a first use of MM optimization in the context of quantile
regression of univariate variables.

In brief, the general idea of MM algorithms is to replace the original optimization
problem by an iterative minimization of a surrogate functional G, which approximates
JP and it is easier to optimize. Denote by η = (β,f) the completed vector of regres-
sion parameters. Then, the surrogate functional G should satisfy the two following
conditions: {

G(η̂(k−1)) = JP (η̂
(k−1)), tangency condition,

G(η) ≥ JP (η), ∀η, dominance condition,
(5)

where η̂(k−1) is the estimate of η at the generic (k− 1)-th step of the algorithm. The
conditions in (5) ensure that, for η̂(k) such that

G(η̂(k)) ≤ G(η̂(k−1)),

we have that

JP (η̂
(k)) ≤ JP (η̂

(k−1)). (6)

This condition, known as the descendent property, guarantees that, for a convex objec-
tive functional JP and k large enough, the estimate η̂(k) converges to the global
minimum of the objective functional JP (see, e.g., Lange, 2016).

Appendices A.1 and A.2 define in details all the quantities involved in the proposed
MM strategy for the minimization of (4). We here outline the general strategy of
the MM algorithm, deriving some theoretical results. We introduce the weight matrix
W ∈ Rr(q+n)×r(q+n) and the vector ξ ∈ Rr(q+n), that contain the absolute residuals of
the model. Then, we define the matrix T ∈ Rr(q+n)×r(q+n) and the vector v ∈ Rr(q+n),
that depend on the crossing quantile values. For the generic k-th step of the algorithm,
we define the functional G as:

G(η̂(k)) =
1

2
η̂(k−1)⊤W η̂(k−1) − η̂(k−1)⊤(ξ + γv)

+
γ

2

(
η̂(k−1)⊤T η̂(k−1)

)
+

r∑
j=1

λjP (f̂
(k−1)
j ).

(7)
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The following proposition states that G in (7) is a surrogate for the functional JP in
equation (4).

Proposition 1. The functional G in (7) satisfies the conditions (5) with respect to
the functional JP in equation (4). The functional G in (7) can thus be taken as a
surrogate for JP within an MM procedure.

All proofs are deferred to the Appendix A.2. Owing to the descendent property
stated in (6), at each iteration of the algorithm, we aim to solve

η̂(k) = argmin
η : η1,..,ηr∈Rq×F0

G(η), (8)

which now reduces to a quadratic optimization problem. To characterize problem (8),
we first define g as the collection {g1, ..., gr}, where gj = Lfj − uj ∈ L2(D), for
j = 1, . . . , r, is the field representing the misfit of the solution fj to the PDE. Moreover,
we define the bilinear forms R0(·, ·) and R1(·, ·) as

R0(ϕ, ψ) =

∫
D
ϕψ, R1(ϕ, ψ) =

∫
D
[(K∇ϕ) · ∇ψ + (b · ∇ϕ)ψ + cϕψ], (9)

with ϕ, ψ ∈ H1(D). Denote by e(r) the unit vector of length r, and by ⊗ the

Kronecker product. Set ψrn = e(r) ⊗ (ψ(p1), . . . , ψ(pn)), and denote by f̂
(k)
n

the collection of the r nonparametric estimates at the spatial locations, i.e.,

(f̂
(k)
1 (p1), . . . , f̂

(k)
1 (pn), . . . , f̂

(k)
r (pn)). Additionally, denote by Wβ , Wf and by Tβ ,

Tf the blocks of the weight matrix W and the quantile crossing matrix T associated
with the parametric and nonparametric terms of the model; similarly, denote by ξβ ,
ξf and by vβ , vf , the blocks of the vectors ξ and v associated with the parametric

and nonparametric terms of the model. Finally, let η̂(k), with η̂
(k)
j ∈ Rq × F0, for

all j = 1, . . . , r, denote the solution of (8), i.e., the minimum of G(η), and g the
corresponding PDE misfit. The following proposition characterizes the solution to
problem (8) as a system of first order equations.

Proposition 2. The couple (η̂(k), ĝ(k)) is the solution of the following system of first
order equations
Wββ̂

(k) − ξβ + γ(Tββ̂
(k) − vβ) + C⊤f̂

(k)
n = 0

ψ⊤
rnWf f̂

(k)
n −ψ⊤

rnξf + γ(ψ⊤
rnTf f̂

(k)
n −ψ⊤

rnvf ) +ψ
⊤
rnCβ̂

(k) +
∑r

j=1 λjR1(ψ, ĝ
(k)
j ) = 0

R1(ϕ, f̂
(k)
j )−R0(ϕ, ĝ

(k)
j ) = 0 ∀j = 1, . . . , r.

The system of equations in Proposition 2 comprises coupled elliptic PDEs in
variational form. This infinite-dimensional estimation problem lacks a closed-form ana-
lytical solution, necessitating a discretization into a suitable finite-dimensional space,
as detailed in the following section.
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3.2 Discretization and computational aspects

To discretize the infinite-dimensional estimation problem in Proposition 2 and the
corresponding estimator η̂(k) = (β̂(k), f̂ (k)), we employ the Finite Element Method,
following the blueprint of Ramsay (2002), Sangalli et al. (2013) and Azzimonti et al.
(2014), in the context of simpler smoothing and linear regression problems. This
technique guarantees a sparse representation of the discretization matrices, ensuring
high computational efficiency. Moreover, it enables us to accurately deal with spatial
domains D having nontrivial geometries, as shown, e.g., in Sangalli et al. (2013).

Let Dh be a triangulation of the spatial domain D, and Ps the space of polynomials
of order s, where s ∈ N0. All the functions in the problem are expressed using a set of
finite element basis {ψ ∈ C0(D̄h) : ψ|T ∈ Ps,∀T ∈ Dh}, consisting of globally contin-
uous functions over the triangulated domain Dh, that are polynomials of order s once
restricted to any element of the triangulation. We here consider linear basis functions
and, in this case, the number of basis functions coincides with N , the number of ver-
tices of Dh. Moreover, let βh, fh, and gh represent the finite element approximations
over Dh of β̂(k), f̂ (k) and ĝ(k), respectively. We define Ψ := {ψj(pi)}n,Ni,j=1 as the matrix
of basis function evaluations at the spatial locations {pi}ni=1, ψ = (ψ1, . . . , ψN ), and
R0 :=

∫
D ψψ

⊤ and R1 :=
∫
D[∇ψ

⊤Kψ+∇ψ⊤bψ⊤+cψψ⊤], as the mass and stiffness
matrices, that are the discretizations of the bilinear forms in (9); see, e.g., Quarteroni
et al. (2014). Moreover, we set

Λ =

λ1 . . .

λr

 , R̃0 = Λ⊗R0, R̃1 = Λ⊗R1, Ψ̃ = Ir ⊗Ψ, X̃ = Ir ⊗X,

where Ir is the identity matrix of dimension r, and X is the design matrix of the model
whose i-th row is xi. With these definitions, the discrete counterpart of the system in
Proposition 2 can be written asWβ + γTβ C⊤Ψ̃ 0

Ψ̃⊤C Ψ̃⊤(Wf + γTf )Ψ̃ R̃⊤
1

0 R̃1 −R̃0

βh

fh
gh

 =

 ξβ + γvβ
Ψ̃⊤(ξf + γvf )

0

 . (10)

By appropriately manipulating the matrix system in (10), we can leverage the
Sherman-Morrison-Woodbury decomposition (see Woodbury, 1950) to ensure an effi-
cient solution to Equation (10). As detailed in Arnone et al. (2023), which explored
such approach for a simpler spatial linear regression problem, this technique is par-
ticularly advantageous in the semiparametric setting, allowing fast computations. For
full details on these computational aspects, we refer to Appendix A.3.

4 Simulation study

We now present three simulation studies that compare the performance of the proposed
Multiple Quantile Spatial Regression with Partial Differential Equation regularization
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(MQSR-PDE), implemented in the fdaPDE library (Palummo et al., 2025), to alterna-
tive methods, in various simulation settings. Specifically, in Section 4.1, we examine
data generated from a heteroscedastic Gaussian model; in Section 4.2, we consider
data generated from a heteroscedastic Skew-T process; finally, in Section 4.3, we con-
sider the same data generation setting of Section 4.2 but we also include a spatially
varying covariate.

The goal of the simulation studies is to conduct an in-depth analysis of the data
distribution, by fitting a dense sequence of quantiles, with particular focus on the right
tail. For this reason, we choose a fine grid of quantile levels between the 90% and 99%.
Specifically, we explore the following sequence of quantile levels:

α = (1%, 2%, 3%, 5%, 10%, 25%, 50%, 75%, 90%, 91%, 92%, . . . , 97%, , 98%, 99%).

Denoting by Qj the true αj-th quantile field and by Q̂j the corresponding estimate,
the competing methods are compared in terms of Root Mean Squared Error (RMSE),

RMSE(Q̂j) =

√√√√ 1

N

N∑
k=1

(Qj(pk)− Q̂j(pk))2, ∀j = 1, . . . , r.

calculated over the 50 different replica of the experiment, on a regular lattice of N =
2500 points.

4.1 Simulation 1: heteroscedastic Gaussian process

We generate data according to the following heteroscedastic Gaussian model

Yi ∼ N (µ(pi), σ
2(pi)), i = 1, . . . , n, (11)

where µ(p) and σ2(p) are Gaussian random fields, generated using the grf function
of the R package geoR. In particular, for both µ and σ, we specify the anisotropic
covariance function, through a Matérn model, setting the anisotropy intensity to 5
and the angle to π/4. We consider n = 169 spatial locations, p1, . . . ,pn, randomly
scattered in the unit square domain [0, 1] × [0, 1]. Figure 3 shows the sampled data,
alongside with the mean and standard deviation fields.

4.1.1 Comparison among PDE-regularized quantile models

In this subsection, we compare various PDE-regularized quantile regression meth-
ods, all implemented in the fdaPDE library (Palummo et al., 2025). Specifically, we
evaluate the performance of the proposed MQSR-PDE model for simultaneous quan-
tile estimation, as detailed in Section 3, against the single-quantile model presented
by Castiglione et al. (2025), denoted by QSR-PDE. Additionally, we also consider
the rearranged version of the single-quantile estimates, where rearrangement is per-
formed using the post-processing procedure discussed by Chernozhukov et al. (2010),
in order to ensure non-crossing; the latter method is denoted by QSR-PDE-R. For all
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Fig. 3: Simulation 1 (Section 4.1): heteroscedastic Gaussian process. Example of the
sampled data (left panel), mean (central panel), and standard deviation (right panel)
of the Gaussian process used for the data generation.

three models, we incorporate a purely diffusive differential regularization term, with
unknown hyperparameters, to account for the strong anisotropy present in the data.
These unknown hyperparameters, that characterize the intensity and direction of the
anisotropy, are estimated using the Parameter Cascading algorithm, as discussed in
Section 2.1. Finally, to highlight the advantages of incorporating anisotropic diffu-
sion over a simpler isotropic estimate, we also include a comparison with the multiple
quantile model that employs in the regularizing term an isotropic diffusion; the lat-
ter model is denoted by MQSR-ISO. All models are based on a regular triangulation
of the square domain, having 625 discretization nodes; the smoothing parameter λ is
chosen via Generalized Cross-Validation (GCV; see, e.g., Nychka et al., 1995; Yuan,
2006; Li et al., 2007).

Figure 4 shows the RMSE of the compared methods, for a subset of the explored
quantiles. Focusing first on the comparison between the anistropic and isotropic mul-
tiple quantile regression estimators, MQSR-PDE and MQSR-ISO, we observe that
MQSR-PDE achieves significantly lower error than MQSR-ISO, both over the central
quantiles and in the tails of the distribution. This result underscores the beneficial
effect of incorporating a diffusive differential regularization term with unknown hyper-
parameters, to capture the anisotropy in the data and obtain more accurate estimates,
across the entire range of quantiles. Turning to the comparison among the anisotropic
estimators, multiple (MQSR-PDE), rearranged (QSR-PDE-R) and single (QSR-PDE),
the top panel of the figure demonstrates that, for quantiles ranging from the 5-th to
75-th percentile, there are no significant differences. This is expected: indeed, since
the quantile levels up to the 75-th percentile are spaced further apart, the crossing
penalties do not become effective. As commented in Section 2.2, this lack of significant
differences of the estimates across quantiles levels that are further apart is a positive
feature of the proposed model: indeed, whenever crossing does not naturally occur,
the inclusion of non-crossing penalties does not significantly influence the estimation
problem, and the obtained estimates have the same accuracy of the single-quantile
estimates, which, as shown by Castiglione et al. (2025), possess desirable asymp-
totic properties and perform well in finite samples. Focusing on the bottom panel of
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Figure 4, we observe that the advantage of the non-crossing techniques, MQSR-PDE
and QSR-PDE-R, becomes significant in the right tail of the distribution, where the
quantile maps are estimated across a dense grid of quantile levels, and consequently
quantile crossing is more likely to occur. Specifically, we can see as the proposed
MQSR-PDE model outperforms both the single-quantile estimates, QSR-PDE, as well
as its rearranged version, QSR-PDE-R, attaining significant lower values of RMSE.

Overall, the MQSR-PDE methodology, which integrates anisotropy information
with the simultaneous estimation of multiple quantile levels, yields the most accu-
rate estimates. This finding is further supported by the results of univariate pairwise
Wilcoxon tests, conducted for each quantile in the right tail of the distribution, which
are presented in the bottom panel of Figure 4.

15



RMSE across a symmetric sequence of quantile orders
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RMSE across the right tail of the distribution

Fig. 4: Simulation 1 (Section 4.1): heteroscedastic Gaussian process. Boxplots
of RMSE obtained by different PDE-regularized quantile regression methods: the
proposed multiple quantile regression model with anisotropic regularizing term
(MQSR-PDE); the multiple quantile regression model with isotropic regularizing
term (MQSR-ISO); the single-quantile regression model with anisotropic regulariz-
ing term by Castiglione et al. (2025) (QSR-PDE); the latter model combined with
the post-processing procedure discussed by Chernozhukov et al. (2010) to ensure non-
crossing of the quantiles (QSR-PDE-R). Top panel: RMSE for a symmetric sequence
of quantile levels. Bottom panel: RMSE for quantile levels from 91% to 99%. The
bottom panel also reports, for each quantile level of the right tail of the distribu-
tion, the results of pairwise Wilcoxon tests verifying that MQSR-PDE estimates have
significant lower RMSE than MQSR-ISO estimates, QSR-PDE-R estimates, and of
QSR-PDE estimates. Legend: . : 0.05 < p-value < 0.1; * : 0.01 < p-value < 0.05; ** :
0.001 < p-value < 0.01; *** : p-value < 0.001.

Alongside the accuracy comparison, we also measured the computational times
took by MQSR-PDE, MQSR-ISO, QSR-PDE-R and QSR-PDE models. All meth-
ods are executed on an Intel(R) Core(TM) Ultra 9 185H processor. We obtain an
average time of 267.62 seconds (with a standard deviation 7.06 seconds) for the
QSR-PDE method, while the MQSR-PDE method has a mean overhead to ensure
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non-crossing estimates of 11.83%, and the rearrangement method introduces almost
no additional computational cost. Finally, when comparing the two multiple method-
ologies MQSR-PDE and MQSR-ISO, we note that the estimation of the anisotropy
tensor in MQSR-PDE results in a mean overhead of 11.71% compared to the isotropic
model. In conclusion, these results highlight the advantage of using the proposed
MQSR-PDE model for simultaneous quantile estimation in terms of accuracy, at a
modest increment of the computational cost.

4.1.2 Comparison with state-of-the-art non-crossing quantile
methods

In this subsection, we compare the proposed MQSR-PDEmodel with alternative meth-
ods from the literature. Specifically, we compare with the quantile models based on
thin-plate-spline and on SOAP film smoothing, proposed by Fasiolo et al. (2021a),
and rearranged following the strategy outlined in Chernozhukov et al. (2010); these
methods, denoted by the acronyms TPS-R and SOAP-R, are implemented in the R

package qgam (see Fasiolo et al., 2021b). Additionally, we consider the Quantile Regres-
sion Coefficients Modeling (QRCM) model proposed by Frumento et al. (2021), which
employs non-crossing constraints; this technique is implemented in the R package qrcm
(see Frumento and Bottai, 2016; Sottile and Frumento, 2023). We also considered the
Monotone Composite Quantile Regression Neural Network model proposed in Can-
non (2018). However, this method proved to be unstable, in all the simulation settings
explored, probably due to the scarcity of the sampled data. Consequently, we decided
to exclude this methodology from further comparisons. We could not compare with
the other multiple quantile regression methodologies mentioned in Section 1 due to
lack publicly available code.

The proposed MQSR-PDE is run as detailed in Section 4.1.1. For TPS-R we use
150 basis functions, while for SOAP-R we use 75 basis, as this is the upper limit for
which the model runs without halting the execution. Likewise for MQSR-PDE, also the
smoothing parameters of TPS-R and SOAP-R are selected using Generalized Cross-
Validation.Lastly, QRCM utilizes 5 basis functions, since employing a larger number
of basis functions results in unstable solutions.

Figure 5 shows true quantile fields for α = 50%, 95% and 99%, and the mean
estimated quantile fields, provided by the competing methods. Qualitatively, the pro-
posed MQSR-PDE model appears to provide the best estimates, with an advantage
over the competing methods that is particularly appreciable at the 99% level, where
the other methods struggle to capture the pattern of the true quantile. Figure 6 shows
the RMSE values obtained by the competing methods, on a subset of the estimated
quantiles. We observe that the methods yield more similar results in the central por-
tion of the distribution, while more pronounced differences emerge at extreme quantile
levels. Specifically, when examining central quantiles, such as the median, we find that
QRCM, that enforces non-crossing constraints, provides less accurate estimates com-
pared to the other methods. The performances of this method improve instead when
moving towards tail quantiles. On the contrary, methods based on rearrangement,
such as SOAP-R and TPS-R, which do not directly enforce non-crossing constraints,
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Fig. 5: Simulation 1 (Section 4.1): heteroscedastic Gaussian process. Estimated quan-
tile maps for some of the considered quantile levels. The first column presents the
true quantile field, and the subsequent columns display the mean estimates for each
of the competing methods: the proposed multiple quantile spatial regression model
(MQSR-PDE); the quantile regression based on a thin-plate-spline with rearrangement
(TPS-R); the quantile regression based on a Soap film smoothing with rearrangement
(SOAP-R); the Quantile Regression Coefficient Modeling (QRCM).

struggle to provide accurate estimation of tail quantiles, leading to higher RMSE val-
ues for lower and upper quantiles. This is likely due to the fact that crossing becomes
more pronounced in the tails of the distribution, where a simple rearrangement is
insufficient. In contrast, the proposed MQSR-PDE provides accurate estimates both
at central quantiles and at tail quantiles, achieving significantly lower RMSE values
across all the considered quantile levels.

Together with the accuracy results, we also evaluate the computational time of
the different methods, with the same computer specifications detailed in Section 4.1.1.
The results are presented in the table of Figure 6. In particular, MQSR-PDE, TPS-R,
and SOAP-R exhibit comparable computational times, as they all rely on smoothing
techniques. In contrast, QRCM stands out as significantly faster, but this comes at
the cost of substantially lower accuracy across all quantile levels.

4.2 Simulation 2: heteroscedastic Skew-T process

In this simulation, we generate data using a heteroscedastic Skew-T process, to assess
the performance of our proposed model under conditions characterized by skewness
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Computational times

Method Mean (sec) Std dev (sec)
MQSR-PDE 299.25 6.91
TPS-R 137.54 19.20
SOAP-R 258.60 11.02
QRCM 12.59 17.08

Fig. 6: Simulation 1 (Section 4.1): heteroscedastic Gaussian process. Top: boxplots
of the RMSE of the estimates provided by competing methods, that are the same as
in Figure 5. Bottom: mean and standard deviation of the computing times for the
different methods on a Intel(R) Core(TM) Ultra 9 185H processor.

and heavy tails. The data are produced according to the following model

Yi ∼ St(ξ(pi),Ω
2(pi), δ, ν), i = 1, . . . , n, (12)

where the location parameter ξ(p) and the scale parameter Ω2(p) are Gaussian random
fields, both employing the same anisotropic covariance function used in the Gaussian
simulation setting described in Section 4.1. The shape parameter δ and the degrees
of freedom ν are set to δ = 4 and ν = 10, respectively, to produce asymmetric data
exhibiting a heavy right tail. We consider n = 153 spatial locations, p1, . . . ,pn, in
the unit square domain [0, 1]× [0, 1], sampled using a cluster Matérn process in order
to ensure a sparse sampling design. An example of the sampled data is displayed in
Figure 7, alongside with the location and scale fields of the Skew-T process.
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Fig. 7: Simulation 2 (Section 4.2): heteroscedastic Skew-T process. Example of the
sampled data (left panel), location field (central panel), and scale field (right panel)
of the Skew-T process used for the data generation.

We run the competing methods as in Section 4.1, with the sole difference that
SOAP-R now use 50 basis functions, as this is the upper limit for which the model runs
without halting the execution. Figure 8 displays the RMSE values obtained from the
competing methods across a symmetric grid of estimated quantiles. Notably, at the
extreme low quantile level α = 1%, all methods utilizing the rearrangement technique
fail to accurately capture the true quantile field, as indicated by the high RMSE values.
In contrast, the MQSR-PDE model consistently achieves the most accurate estimates,
with the lowest RMSE values observed across all quantile levels. We refer to Appendix
A.4 for a visualization of the quantile estimates and an additional comparison of the
proposed MQSR-PDE methodology with its single counterpart (QSR-PDE) and its
rearranged version (QSR-PDE-R).

4.3 Simulation 3: heteroscedastic Skew-T process with
covariate

In this simulation study, we consider the same data generation process described in
Section 4.2, but add a spatially varying covariate. Specifically, data are generated as
follows:

Yi ∼ x(pi)β + St(ξ(pi),Ω
2(pi), δ, ν), i = 1, . . . , n, (13)

where β = 1 and the covariate x(pi) is generated using a Gaussian Random Field with
exponential covariance model, using the R package grf. An example of the resulting
sampled data, together with the covariate field, is reported in Figure 9.

Figure 10 presents the RMSE of the semiparametric field estimates for some
of the computed quantiles, demonstrating that the proposed method consistently
outperforms the alternatives across all examined quantile levels.

It should be pointed out that, as mentioned in the Introduction, rearrangement
procedure makes it impossible to disentangle the contributions of the parametric and
nonparametric terms. Instead, the proposed MQSR-PDE offers interpretable estimates
of the parametric and nonparametric estimates, while respecting the non-crossing of
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Fig. 8: Simulation 2 (Section 4.2): heteroscedastic Skew-T process. Boxplots of the
RMSE for the estimates provided by the competing methods, including the proposed
MQSR-PDE, the rearranged version of quantile thin-plate-spline smoothing (TPS-R),
the rearranged version of quantile SOAP film smoothing (SOAP-R), and the Quantile
Regression Coefficients Modeling (QRCM).

the quantiles. To assess the quality of the estimates of the parametric and nonpara-
metric terms provided by the proposed MQSR-PDE, in Figure 11 we compare the
estimates of these two terms, with those that can be obtained by the single quantile
models, namely TPS and SOAP (thus not controlling the quantile crossing), and those
obtained by QRCM. The boxplots of the estimated β coefficients, in the top panel of
Figure 11, shows that the proposed MQSR-PDE model returns estimates of the para-
metric term comparable with those that can be obtained by single quantile models.
An increased variability is observed for the highest quantile levels for all methods. The
boxplots of the RMSE for the nonparametric component, shown in the bottom panel
of the same figure, highlight instead that proposed MQSR-PDE model provides esti-
mates of the nonparametric term that outperform those obtained by single quantile
models.
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Fig. 9: Simulation 3 (Section 4.3): heteroscedastic Skew-T process with covariate.
Example of the sampled data (left panel) and covariate field (right panel).
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Fig. 10: Simulation 3 (Section 4.3): heteroscedastic Skew-T process with covariate.
Boxplots of the RMSE for the semiparametric term provided by the proposed MQSR-
PDE, the rearranged version of quantile thin-plate-spline smoothing (TPS-R), the
rearranged version of quantile SOAP film smoothing (SOAP-R), and the Quantile
Regression Coefficients Modeling (QRCM).

5 NO2 spatial concentration in Lombardy region

We now apply the proposed MQSR-PDE methodology to the analysis of the NO2

concentration in the Lombardy region, in northern Italy, exploiting the semiparametric
structure of the proposed model, in order to also explore the role of some leading
geographical and anthropogenic factors. Data refer to 11th January 2019, and are
publicly available from Regione Lombardia (Open Data, 2024).

As commented in the Introduction, it is known that exposure to high concentrations
of NO2 has harmful effects on the population, leading to the development of severe
diseases and, ultimately, to premature death. The purpose of this study is to estimate
the quantiles of the spatial distribution of NO2, targeting high probability levels, with
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Fig. 11: Simulation 3 (Section 4.3): heteroscedastic Skew-T process with covariate.
Boxplots of the estimated regression coefficient (top panel), and RMSE for the non-
parametric term (bottom panel), provided by the proposed MQSR-PDE, the quantile
thin-plate-spline smoothing (TPS), the quantile SOAP film smoothing (SOAP-R), and
the Quantile Regression Coefficients Modeling (QRCM).

the goal of accurately reconstructing the right tail of the distribution. The proposed
model is well-suited for this task, enabling the simultaneous estimation of a sequence
of closely spaced quantiles, while ensuring monotonicity.

The Lombardy region, situated in the Po Valley, is one of the most critical areas for
air quality in Europe, due to both geographical and anthropogenic factors. The region’s
morphology is particularly unfavorable: the Po Valley is landlocked, since enclosed
by the Alps to the North and West, and the Apennines to the South, with a unique
opening to the Adriatic Sea on the East. This creates limited atmospheric circulation,
which worsens air quality. During winter, this issue is intensified by thermal inversion,
a phenomenon that occurs in areas with low air circulation, when the ground is cold.
This results in a stable separation of cooler air near the ground and warmer air above,
trapping pollutants and allowing them to accumulate.
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Since air circulation is a key factor affecting NO2 concentration, we leverage the
ability of the proposed model to incorporate knowledge on the physics of the phe-
nomenon, by including air circulation in the physics-informed penalty detailed in
Section 2.1. Wind data are gathered from the 119 ARPA meteorological stations,
scattered throughout the whole territory. The correspondent wind field, registered on
the same day as the NO2 records, is depicted in Figure 1. In particular, we consider
a physics-informed penalty with a transport term, having as transport vector b the
wind stream in Figure 1; we combine this transport term with an isotropic diffusion
term, which instead models the natural isotropic diffusion of the pollutant. We thus
consider the following penalties

P (fj) =

∫
D

(
−∇ · (I∇fj) + ζ b · ∇fj

)2 ∀j = 1, . . . , r;

where the unknown hyperparameter ζ controls the relative intensities of the diffusion
and transport terms, and is estimated using the parameter cascading technique, as
commented in Section 2.

Additionally, to incorporate the morphology of the territory, we include, as a covari-
ate in the model, the logarithm of the altitude at each spatial location. Altitude data,
sourced from the Digital Terrein Model (Regione Lombardia, 2024), are illustrated in
Figure 12. Anthropogenic activities play a leading role on NO2 concentration. In this
respect, it is worth mentioning that Lombardy serves as Italy’s primary industrial and
production hub, hosting numerous factories that contribute significantly to emissions,
thereby increasing pollutant concentrations in the air. Additionally, the region is char-
acterized by large urban centers, such as the metropolitan city of Milano, where high
levels of heating and traffic are significant contributors to atmospheric pollution. To
account for these influences, we thus incorporate, as second covariate in the model,
the population density, using data from the Istituto Nazionale di Statistica (ISTAT),
sourced from Regione Lombardia (2024). Population density is available for all 1506
municipalities in Lombardy, and is included in the model after a linear smoothing of
the square root of the data, performed with the fdaPDE library, to enable a smooth
reconstruction of the field. The spatial pattern of this covariate, displayed in Figure 12,
highlights the very high population densities in the cities of Milano, Monza, Bergamo
and Brescia.

We then estimate a dense sequence of 27 quantiles, across the whole NO2 support,
concentrating most of them in the right tail of the distribution. This enables us to
accurately reconstruct the spatial patterns associated with the highest levels of NO2,
offering valuable insights into the risks faced by residents. The estimated values of
the regression coefficients are negative for altitude, and positive for population den-
sity, at all quantile levels. This confirms that, across the entire distribution of NO2

values, altitude has a beneficial effect on air quality, contributing to reduced NO2

levels, whilst, higher population density is associated with higher NO2 levels. Figure
13 shows the estimated semiparametric fields for some of the considered quantiles,
namely α = 0.50, 0.90, 0.99. We can observe that the peak of the NO2 concentration
occurs in the metropolitan area of Milan across all quantile levels. This is expected,
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Fig. 12: Maps of altitude (left) and population density (right) over the Lombardy
region.

being Milano the largest urban center in the region, with the highest population den-
sity and correspondingly highly concentrations of human activities. Analyzing more
in detail the extreme quantiles, we note that the 90% and 99% estimated quantiles
display more strongly localized features compared with the median, the 50% quantile,
showing local outliers in correspondence to the biggest cities of the region, and to the
industrial areas in the Po Valley.

Furthermore, to emphasize the importance of incorporating wind stream informa-
tion as a transport term in the PDE, we compare the purely isotropic diffusion model
with the proposed model, which accounts for wind dynamics. We conduct a pair-
wise Wilcoxon test to evaluate differences in terms of mean cross-validation errors.
The test confirms that the proposed model, which includes wind dynamics, achieves
a significantly lower CV error (p-value < 0.05). This confirms that the inclusion of
prior physical information, given in this application by the wind stream, is particu-
larly beneficial, especially in scenarios with limited sample size, as also shown, e.g.,
by Tomasetto et al. (2024) and Castiglione et al. (2025).

Starting from the monotone quantile estimates, we can obtain a fully nonparamet-
ric reconstruction of the NO2 probability density function, at any spatial location.
The algorithm used to obtain the probability density function, starting from the esti-
mated quantiles, is detailed in Appendix A.5. This reconstruction of the probability
density enables us, for example, to compare the distribution function of NO2 in differ-
ent cities, exploring how different morphological and urban characteristics may affect
the distribution of this pollutant. The left panel of Figure 14, for instance, shows
the probability density functions for the cities of Milano, Cremona and Sondrio, on
the 11th January 2019. It can be noticed that the density supports and modes shift
towards higher values, moving from less polluted areas, as the mountain town of Son-
drio, to more populated ones, like the metropolitan city of Milano. Specifically, the
density in Milano is marked by a heavy right tail, highlighting the harmful situation
faced by the citizens.
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Fig. 13: Estimated quantile maps of the NO2 concentration over Lombardy region,
at quantile levels α = 0.50, 0.90, 0.99.

Besides analyzing NO2 concentrations on 11th January 2019, we also examined data
from 27th December 2018, to assess how the pollutant’s probability distribution varies
between a regular working day and the Christmas holiday period. The right panel of
Figure 14, shows the probability density functions for the cities of Milano, Cremona
and Sondrio during this bank holiday. The figure highlights a reversed situation with
respect that observed in the working day of 11th January. In particular, in the cities of
Milano and Cremona, the distribution of the NO2 levels in the 27th December (right
panel) is shifted towards significantly lower values than those of the 11th January
(left panel). On the contrary, the mountain town of Sondrio experiences a much worse
condition during the Christmas holiday (right panel) than on a standard working
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Estimated NO2 probability densities
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Fig. 14: Estimated NO2 distributions in Milano (light gray), Cremona (green), and
Sondrio (blue), obtained from the monotone quantile fields, on a workday (left panel)
and on holiday (right panel).

date (left panel); this deterioration is likely due to the influx of the population to
mountain areas during the Christmas period, significantly increasing the mode of NO2

distribution in this town.
Using monotone quantile estimates, we can produce maps indicating the proba-

bility of exceeding certain critical values of the pollutant concentration. In fact, to
mitigate the impact of NO2 on public health, several institutions have established
maximum thresholds that should not be exceeded. For instance, ARPA has adopted
the European Union (EU) directive limits, setting 200µg/m3 as the hourly limit. The
World Health Organization (WHO) has recommended more stringent guidelines, to
prioritize long-term exposure over short-term spikes, proposing 25µg/m3 for the daily
average concentration. Exceedance probability maps provide a clear and probabilistic
interpretation of risk, allowing for the identification of areas that are likely to exceed
a specified threshold based on statistical distribution characteristics.

The proposed method could also offer valuable data-driven support to evidence-
based decision-making at the local level, for policymakers and environmental regula-
tors. In this respect, it may be useful to aggregate measures at administrative levels,
such as municipalities or provinces. For instance, Figure 15 shows the aggregated risk
of exceeding the threshold of 100µg/m3 at the provincial level, for the two considered
days. The risk map on the workday of 11th January 2019 (left panel) highlights the
provinces of Milano, Monza, Cremona and Lodi, as those facing the worst situation.
Consistent with the previous observations on probability density functions, the holi-
day period results in a significant reduction in NO2 levels in the largest cities. This
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Aggregated exceedance probability of 100µg/m3 of NO2

workday: 11th January 2019
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Fig. 15: Aggregated risk of exceeding the probability threshold of 100µg/m3 NO2,
across the provinces of Lombardy. Left: 11th January 2019 (workday). Right: 27th

December 2018 (holiday).

is evidenced by the map on the right of Figure 15, which shows an almost zero prob-
ability of exceeding the threshold of 100µg/m3 across all provinces of Lombardy. In
summary, our proposal provides additional analytical tools that can enhance policy-
making, offering insights that may support the formulation of targeted interventions,
for effective air quality management, grounded in robust, data-driven foundations.

6 Discussion and future work

In this work, we have developed a physics-informed spatial quantile regression model,
proposing an innovative method for the joint estimation of several spatial quantiles,
that guarantees their monotonicity. The proposed approach enables the direct esti-
mation of multiple monotone quantiles, avoiding any form of post-processing, and
encompassing the entire estimation procedure, into a unique and coherent mathe-
matical framework. As shown by the simulation studies in Section 4, MQSR-PDE
outperforms the methods currently available in the literature for quantile regression
without crossing. Moreover, the methodology proves to be particularly effective in sce-
narios showing complex spatial dependencies, characterized by strong anisotropies and
non-stationary effects, or when physical knowledge is available, such as the presence of
winds in the study of air pollutants. In these settings, the ability of the proposed model
to include this problem-specific information leads to more accurate estimates, at all the
quantile levels. Furthermore, it should be pointed out that the proposed model inherits
the ability of the PDE-regularized methods to handle data distributed over domains
having complex shapes, including non-convex two-dimensional and three-dimensional
domains, as well as curved surfaces; see, e.g., Sangalli (2021); Tomasetto et al. (2024);
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Castiglione et al. (2025). The proposed method could thus be used to compute quan-
tiles of variables of interest observed over regions with complicated conformation, such
as water bodies with irregular shorelines, or data observed over the globe.

An important direction for future research is the development of appropriate uncer-
tainty quantification tools. In this respect we could relay on asymptotic results, as
demonstrated in a Bayesian framework in Fasiolo et al. (2021a). Alternative nonpara-
metric methods, explored by Ferraccioli et al. (2023) and Cavazzutti et al. (2024) in
the context of linear regression with PDE penalization, con be extended to the consid-
ered quantile regression framework. Another promising direction for future research
involves inclusion of the temporal dimension, estimating multiple spatio-temporal
quantile maps. Such extension would significantly expand the applicability of the pro-
posed methodology to a wide range of environmental and ecological challenges. For
instance, it would enable the creation of multiple quantile spatio-temporal maps that
could serve as robust alerting tools. The extension to space-time data could be achieved
by appropriately building upon the theory developed by Bernardi et al. (2017) and
Arnone et al. (2023) for the linear regression case.
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Appendix A Appendix A

A.1 Matrix definitions

In this section, we provide the exact analytical definitions of the matrices appearing
in Proposition 1. Let us denote by β̂(k−1) and f̂ (k−1) the estimates for β and f , at
the (k − 1)-th step of the MM algorithm. Also, we introduce the difference matrices

D
(m)
j = (Om . . . Om −Im︸︷︷︸

j

Im︸︷︷︸
j+1

Om . . . Om) ∈ Rm×rm, ∀j = 1, .., r − 1, ∀m ∈ N,

and

D(m) =


D

(m)
1
...

D
(m)
r−1

 .
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Here, Om is the zero square matrix of dimension m. Then, we define the following
quantities

wij = |yi − x⊤
i β̂

(k−1)
j − f̂

(k−1)
j (pi)|, ∀i = 1, . . . , n, ∀j = 1, . . . , r

δij = |ε− x⊤
i D

(q)
j β̂(k−1) − (D

(n)
j f̂ (k−1)

n )i|, ∀i = 1, . . . , n, ∀j = 1, . . . , r − 1,

The former represents the quantile residuals, the latter represents the constraint
violation residuals. Given those definitions, we can construct the correspondent
diagonal and block-diagonal matrices as

Wj =


1

2nw1j

. . .
1

2nwnj

 ∀j = 1, . . . , r, Wf =

W1

. . .

Wr

 , Wβ = X̃⊤Wf X̃,

∆j =


1

2δ1j

. . .
1

2δnj

 ∀j = 1, . . . , r − 1, ∆f =

∆1

. . .

∆r−1

 , ∆β = X̃⊤∆f X̃,

where X̃ = Ir ⊗ X. Denoting by zj = y − (12 − αj)W
−1
j e(n) ∈ Rn the vector of

pseudo-observations for the j-th quantile level, we define

ξβ = (z⊤1 W1X, · · · , z⊤r WrX)⊤ ∈ Rrq, ξf = (z⊤1 W1, · · · , z⊤r Wr)
⊤ ∈ Rrn.

Finally, we set

Tf = D(n)⊤∆D(n)

Tβ = D(q)⊤(Ir−1 ⊗X⊤)∆(Ir−1 ⊗X)D(q)

C =Wf X̃ + γD(n)∆X̃D(q)

vf = εD(n)⊤∆e((r−1)n) +
1

2
lrn

vβ = X̃vf ,

where lrn = (−e(n)⊤, 0, · · · , 0, e(n)⊤)⊤ ∈ Rrn.
Notice that the completed matrices W and T and the vectors ξ and v can be

decomposed as

W =

[
Wβ C⊤

C Wf

]
, T =

[
Tβ 0
0 Tf

]
, ξ = (ξβ , ξf ), v = (vβ ,vf ),

where we emphasize the individual contributions of the parametric and nonparametric
terms of the model, and the corresponding interaction term, encoded by the matrix C.
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A.2 Model estimation

Proof of Proposition 1.

With the same notation of Section A.1, we indicate as β̂(k−1) and f̂ (k−1) the
estimates for β and f , at the (k − 1)-th step of the MM algorithm. Moreover, with
the notation (·)i we refer to the i-th component of a vector. Finally, let us refer to the
data misfit and the crossing penalty terms appearing in (4) as follows:

1

n

n,r∑
i,j=1

ραj (yi − x⊤
i βj − fj(pi)) = (⋆)

n,r−1∑
i,j=1

max{0, ε− (x⊤
i βj+1 + fj+1(pi) + x⊤

i βj + fj(pi))} = (⋆⋆).

To find a functional majorizer for the k-th step of the iterative algorithm, it is conve-
nient to represent ραj (·) and max(·) as ραj (t) =

1
2 |t|−(12−αj)t and max(t) = 1

2 (|t|+t).
On the other hand, we can write |t| =

√
t2, and use the first-order Taylor expansion for√

· to find a quadratic upper bound of | · |. Therefore, applying this idea to the terms

in (4), with the center of the Taylor expansion in (β̂
(k−1)
j , f̂

(k−1)
j (pi)), we have that

(⋆) ≤ 1

n

n,r∑
i,j=1

(
(yi − x⊤

i βj − fj(pi))
2

4wij
+
wij

4
−
(1
2
− αj

)
(yi − x⊤

i βj+1 − fj(pi))

)

(⋆⋆) ≤
n,r−1∑
i,j=1

(
(ε− x⊤

i D
(q)
j β − (D

(n)
j fn)i)

2

4δij
+
δij
4

+
1

2
(ε− x⊤

i D
(q)
j β − (D

(n)
j fn)i)

)
.

First, let us consider inequality (⋆). Putting all the terms which do not depend on
(β,f) in a unique constant c, we have that

(⋆) ≤
r∑

j=1

(
1

2
f⊤
n,jWjfn,j +

1

2
β⊤
j X

⊤WjXβj − f⊤
n,jWjy

+ (12 − αj)f
⊤
n,je

(n) − β⊤
j X

⊤Wjy + (12 − αj)β
⊤
j X

⊤e(n) + c

)
=

1

2
(f⊤

n Wffn + β⊤Wββ)− f⊤
n ξf − β⊤ξβ + f⊤

n Wf X̃β.
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Let us now consider (⋆⋆). Following the same idea,

(⋆⋆) ≤ 1

2

r−1∑
j=1

(f⊤
n D

(n)
j

⊤
∆jD

(n)
j fn + β⊤D

(q)
j

⊤
X⊤∆jXD

(q)
j β

− 2(f⊤
n D

(n)
j

⊤
+ β⊤D

(q)
j

⊤
X⊤)(∆jεn +

1

2
e(n))) + 2f⊤

n D
(n)
j

⊤
∆jXD

(q)
j β + c

=
1

2
(f⊤

n Tffn + β⊤Tββ − 2f⊤
n vf − 2β⊤vβ) + f

⊤D(n)⊤∆X̃D(q)β + c.

Combining the two terms, we have

(⋆) + γ(⋆⋆) + P (f) ≤ 1

2
(f⊤

n Wffn + β⊤Wββ)− f⊤
n ξf − β⊤ξβ + f⊤

n Wf X̃β+

+
γ

2
(f⊤

n Tffn + β⊤Tββ − 2f⊤
n vf − 2β⊤vβ)+

+ γf⊤D(n)⊤∆X̃D(q)β + P (f) + c.

Finally, setting C =Wf X̃ + γD(n)∆X̃D(q) and using the definitions of η,W, T, ξ and
v stated in Section 3.1, we have established that there exists a functional G such that

JP (η) ≤
1

2
η⊤Wη − η⊤(ξ + γv) +

γ

2
(η⊤Tη) +

r∑
j=1

λjP (fj) + c =: G(η) + c ∀η,

that is the dominance condition stated in (5). Finally, thanks to the employment of the
local quadratic approximation of | · |, we are guaranteed that the tangency condition
is satisfied, meaning that G is a surrogate functional for JP .

□

Proof of Proposition 2.

Let (β̂(k), f̂ (k)) be the minimum of G(β,f), at the generic k-th step of the algo-
rithm. Let fn be the evaluation of f at the spatial locations p1, . . . ,pn, as detailed in
Section 3.1. Then, for all ψ ∈ F0, the minimizer (β̂(k), f̂ (k)) must satisfy

∂

∂β
G(β̂(k), f̂ (k)) = 0,

∂

∂t
G(β̂(k), f̂ (k) + tϕ)

∣∣∣∣
t=0

= 0.

Working on the first equation, we have

∂

∂β
G(β̂(k), f̂ (k)) = 0 =⇒ Wββ̂

(k) − ξβ + γ(Tββ̂
(k) − vβ) + C⊤f̂ (k)

n = 0.
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Following the discussion in Azzimonti et al. (2014), the second equation takes the form

∂G(β̂(k), f̂ (k) + tψ)

∂t

∣∣∣∣
t=0

= 0 =⇒
(
ψ⊤

rn(Wf + γTf )(f̂
(k)
n + tψrn)−ψ⊤

rn(ξf + γvf )

+ψrnCβ +

r∑
j=1

λj

∫
D
(Lψ(p))Lf̂

(k)
j (p)dp

)∣∣∣∣
t=0

= 0

=⇒ ψ⊤
rn(Wf + γTf )f̂

(k)
n −ψ⊤

rn(ξf + γvf )

+ψrnCβ +

r∑
j=1

λj

∫
D
(Lψ(p))Lf̂

(k)
j (p)dp = 0.

Combining the two results, we obtain
Wββ̂

(k) − ξβ + γ(Tββ̂
(k) − vβ) + C⊤f̂

(k)
n = 0,

ψ⊤
rnWf f̂

(k)
n −ψ⊤

rnξf + γ(ψ⊤
rnTf f̂

(k)
n −ψ⊤

rnvf ) +ψ
⊤
rnCβ̂

(k) +
∑r

j=1 λj
∫
D(Lψ(p))ĝ

(k)
j (p)dp = 0,∫

D(Lf̂
(k)
j )ϕ−

∫
D ĝ

(k)
j ϕ = 0 ∀ϕ ∈ F0, ∀j = 1, . . . , r.

Finally, exploiting the definitions of the bilinear forms given in (9), we have
Wββ̂

(k) − ξβ + γ(Tββ̂
(k) − vβ) + C⊤f̂

(k)
n = 0,

ψ⊤
rnWf f̂

(k)
n −ψ⊤

rnξf + γ(ψ⊤
rnTf f̂

(k)
n −ψ⊤

rnvf ) +ψ
⊤
rnCβ̂

(k) +
∑r

j=1 λjR1(ψ, ĝ
(k)
j ) = 0,

R1(ϕ, f̂
(k)
j )−R0(ϕ, ĝ

(k)
j ) = 0 ∀ϕ ∈ F0, ∀j = 1, . . . , r.

This concludes the proof.
□

A.3 Discretized linear system

In this section, we provide further reasoning on the linear system (10).
Figure A1 illustrates the block structure of the matrix in the left hand side of the

system. This matrix consists of nine main blocks. The top row and the first column
refers to the parametric term. Specifically, the two rectangular blocks, colored in yel-
low, account for the interaction between the parametric and the nonparametric part
of the model. The central block of the system matrix, instead, refers to the nonpara-
metric term fh and, together with the previously mentioned blocks, contains crossing
penalty terms between consecutive quantiles. The enforcement of the crossing penal-
ties gives to those matrices a tridiagonal block structure, with the off-diagonal terms
representing the monotonicity constraints. Finally, in the south-west part of the main
matrix, we have R̃0 and R̃1, correspondent to the mass and stiffness discretizations of
the bilinear forms (9). The blank spaces in the figure indicate zero entries, highlight-
ing the sparsity structure of the matrix. This sparsity property ensures computational
efficiency in the resolution of the linear system (10), at each iteration of the MM
algorithm.
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Fig. A1: Block structure of the matrix system (10). The color legend illustrates the
role of each block in the estimation problem, with empty spaces representing zero
entries. Here, q is the number of covariates, and N denotes the dimension of the basis
used for the spatial discretization. The first 2× 2 block of the system matrix exhibits
a tridiagonal block structure, within each sub-block, resulting from the non-crossing
penalties imposed between consecutive quantiles.

Starting from the linear system (10), we can manipulate its blocks to write the
system in the same form as presented in Sangalli (2021). This allows us to benefit from
the computational properties stated in Arnone et al. (2023) for the semiparametric
regression case, relying on the Sherman-Morrison-Woodbury decomposition. With this
purpose, we set

W̃ :=Wf + γTf =Wf + γD(n)⊤∆fD
(n).

Then, by noticing that D(q)⊤(Ir−1 ⊗X⊤)∆(Ir−1 ⊗X)D(q) = X̃⊤D(n)⊤∆D(n)X̃, we
get

Wβ + γTβ = X̃⊤Wf X̃ + γD(q)⊤(Ir−1 ⊗X⊤)∆(Ir−1 ⊗X)D(q)

= X̃⊤(Wf + γD(q)⊤∆D(n))X̃ = X̃⊤W̃ X̃.

Moreover, with the same reasoning as above, the interaction matrix C can be written
as

C =Wf X̃ + γD(n)∆X̃D(q) = (Wf + γD(n)∆D(n))X̃ = W̃ X̃.

We can now manipulate the right-hand-side of the matrix system (10). In particular,
setting z = (z1, . . . , zr), and z̃ :=Wfz+ γvf we have

ξβ + γvβ = (z⊤1 W1X, · · · , z⊤r WrX)⊤ + γX̃εD(q)⊤∆e((r−1)n) +
1

2
lrn

= X̃⊤Wfz+ γX̃⊤vf = X̃⊤z̃

ξf + γvf =Wfz+ γvf = z̃.

Therefore, the linear system (10) takes the formX̃⊤W̃ X̃ X̃⊤W̃ Ψ̃ 0

Ψ̃⊤W̃ X̃ Ψ̃⊤W̃ Ψ̃ R̃⊤
1

0 R̃1 −R̃0

βh

fh
gh

 =

X̃⊤z̃

Ψ̃⊤z̃
0

 .
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Using such reformulation permits a significant computational saving, as shown by
Arnone et al. (2023), in a simpler linear regression setting.

A.4 Simulation 2: heteroscedastic Skew-T process

Figure A2 presents the mean estimated quantile fields for all competing methods in
the simulation study discussed in Section 4.2, at quantile levels α = 50%, 95%, 99%.
Among the approaches evaluated, MQSR-PDE provides the most accurate reconstruc-
tion of the true quantile field at all levels, with particularly pronounced improvements
at the 99% level. Furthermore, TPS-R and SOAP-R exhibit difficulties in accurately
reconstructing the field, especially in the northwest region of the domain, where they
systematically underestimate the values.

True MQSR-PDE TPS-R SOAP-R QRCM

α
=

5
0%

α
=

95
%

α
=

99
%

Fig. A2: Simulation 2 (Section 4.2): heteroscedastic Skew-T process. Estimated quan-
tile maps for some of the considered quantile levels. The first column presents the
true quantile field and the subsequent columns display the mean estimates for each
of the competing methods: the proposed multiple quantile spatial regression model
(MQSR-PDE); the quantile regression based on a thin-plate-spline with rearrangement
(TPS-R); the quantile regression based on a Soap film smoothing with rearrangement
(SOAP-R); the Quantile Regression Coefficient Modeling (QRCM).

Figure A3 shows a comparison, in terms of RMSE, between the proposed multi-
ple estimation method, MQSR-PDE, its single-quantile counterpart, QSR-PDE, and
its rearranged version, QSR-PDE-R. As expected, in the central region of the dis-
tribution, all three methods yield comparable results since the estimated quantiles
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are sufficiently spaced apart and thus less susceptible to the crossing problem. How-
ever, in the right tail of the distribution, MQSR-PDE consistently outperforms both
QSR-PDE and QSR-PDE-R, with particularly notable improvements at higher quan-
tile levels. Moreover, the difference in errors between MQSR-PDE and QSR-PDE-R
underscores the advantages of simultaneous estimation over a simple post hoc rear-
rangement. This conclusion is further supported by the results of univariate pairwise
Wilcoxon tests, conducted for each quantile in the right tail, as shown in Figure A3.

RMSE across a symmetric sequence of quantile orders

0.4

0.8

1.2

1% 5% 10% 25% 50% 75% 90% 95% 99%

MQSR−PDE QSR−PDE−R QSR−PDE

RMSE across the right tail of the distribution

Fig. A3: Simulation 2 (Section 4.2): heteroscedastic Skew-T process. Boxplots of
RMSE obtained by different PDE-regularized quantile regression methods: the pro-
posed model for simultaneous quantile estimation (MQSR-PDE); the single-quantile
model presented by Castiglione et al. (2025) (QSR-PDE); the latter model com-
bined with the post-processing procedure discussed by Chernozhukov et al. (2010) to
ensure non-crossing of the quantiles (QSR-PDE-R). Top panel: RMSE for a symmetric
sequence of quantile levels. Bottom panel: RMSE for quantile levels from 91% to 99%.
The bottom panel also reports, for each quantile level of the right tail of the distribu-
tion, the results of pairwise Wilcoxon tests verifying that MQSR-PDE estimates have
significant lower RMSE than QSR-PDE-R estimates, and of QSR-PDE estimates. Leg-
end: . : 0.05 < p-value < 0.1; * : 0.01 < p-value < 0.05; ** : 0.001 < p-value < 0.01;
*** : p-value < 0.001.
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A.5 Probability density reconstruction

In this section, we describe the algorithm used to reconstruct the probability density
functions at fixed spatial locations, as shown in Figure 14. Starting from the fitted
quantiles at the spatial location of interest, we invert them to obtain the corresponding
Cumulative Distribution Functions (CDF). We then solve a constrained optimization
problem to ensure that the parameters define a valid density function. Finally, we
differentiate these curves to obtain the desired density. We note that, in principle,
any interpolation method could be used for the quantile inversion, but we specifically
rely on Gaussian CDF. This choice is particularly convenient due to their monotonic
behavior and the availability of an analytically known derivative.
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