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Abstract

We address the problem of spatial prediction for Hilbert data, when
their spatial domain of observation is a river network. The reticular nature
of the domain requires to use geostatistical methods based on the concept
of Stream Distance, which captures the spatial connectivity of the points
in the river induced by the network branching. Within the framework of
Object Oriented Spatial Statistics (O2S2), where the data are considered as
points of an appropriate (functional) embedding space, we develop a class
of functional moving average models based on the Stream Distance. Both
the geometry of the data and that of the spatial domain are thus taken
into account. A consistent definition of covariance structure is developed,
and associated estimators are studied. Through the analysis of the summer
water temperature profiles in the Middle Fork River (Idaho, USA), our
methodology proved to be effective, both in terms of covariance structure
characterization and forecasting performance.

Keywords: Geostatistics, Functional Data Analysis, Stream Distance, Kriging

1 Introduction

The need to analyse and extract useful information from extremely complex and
varied data has certainly been a central challenge for the statistical community
in recent years. The statistical methods formulated for scalar data are not usable
in those –increasingly frequent– contexts in which the data are featured by a
high complexity (such as curves, surfaces or images). For this reason, Functional
Data Analysis (FDA, Ramsay and Silverman (2005)) and Object Oriented Data
Analysis (OODA, Marron and Alonso (2014)) have attracted great interest among
researchers and extensive effort has been made in developing functional versions
for a wide range of classical statistical methods. Whenever data are georeferenced,
however, the complexity of the data is compounded by the need to take into
account the dependence between observations induced by their spatial proximity.
A relatively large body of literature has recently focused on developing methods
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of spatial statistics for general types of data objects, including functional data,
distributions and data belonging to Riemannian manifolds. These efforts lie within
the domain of Object Oriented Spatial Statistics (O2S2, Menafoglio and Secchi
(2017)), a recent system of ideas for the analysis of spatial complex data, founded
on a strong geometrical approach to the data analysis. The methods developed
so far allow one to model the dependence among data, perform dimensionality
reduction, as well as perform prediction at unsampled locations within the domain
(Horváth and Kokoszka, 2012; Menafoglio and Secchi, 2017; Mateu and Giraldo,
2021). However, all these methods are focused on Euclidean spatial domains,
or on mildly non-Euclidean spatial regions that, locally, admit a Euclidean
representation (see Menafoglio et al. (2018, 2021)). As a matter of fact, vast areas
of geosciences study random processes which naturally develop over non-Euclidean
settings, where the closeness between data locations is naturally expressed through
the shortest path (i.e., the geodesic) induced by the physics of the phenomenon.
For instance, when studying aquatic variables in a stream network system, the
proximity among sites is better represented by the water distance which separates
the locations, rather than by the Euclidean shortest path, which does not account
for the topology and connectivity of the network.

Although relevant for an increasing number of industrial and environmental
applications (see, e.g., Menafoglio and Secchi (2019)), working with non-Euclidean
spatial domains poses challenges, because the usual parametric families (e.g.,
spherical, Matérn) for the covariance among observations may be no longer positive
semi-definite under a non-Euclidean metric (Curriero, 2006). Nonetheless, in a few
cases, it is possible to derive ad-hoc parametric families, which are well-suited to
the topology of the domain under study. This is the case of the models for stream
networks proposed and extensively studied by Ver Hoef et al. (2006); Peterson
et al. (2007); Ver Hoef and Peterson (2010); Peterson and Ver Hoef (2010); Cressie
et al. (2006). These models are built upon a moving average construction of
Yaglom (1987), and precisely account for the dependence among observations
induced by their water distance (named stream distance). This approach yields
valid covariance models and proper estimation procedures for spatial data, which
can be used whenever their domain of reference can be represented as a binary
tree – the water flowing from its root to its leafs.

Although these innovative models exhibit an incredible potential, their range
of action is still limited to scalar data. As a matter of fact, while sensors typically
record relevant variables continuously along time, previous works need to compress
this rich set of information into scalar summaries (e.g., the monthly average
temperature, the average weekly dissolved oxygen), inevitably leading to a loss of
information. The aim of this work is to overcome these limitations, extending
the theory of Ver Hoef et al. (2006); Cressie et al. (2006) to general object data,
provided that these can be embedded in a (separable) Hilbert space. This setting
includes, e.g., the case of functional data (which are typically embedded in the
space L2 of square-integrable functions) as well as that of distributional data (for
which the embedding in a Bayes Hilbert space can be used, Van Den Boogaart
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et al. (2014)). To the authors’ knowledge, the only existing work enabling the
analysis of functional data over a stream network is that by Haggarty et al. (2014).
Motivated by the clustering analysis of temporal profiles of nitrate concentrations
along the River Tweed (Scotland), these authors propose to model the spatial
covariance among observations through the valid models of Ver Hoef et al. (2006),
by grounding on integral summaries of the functional data. However, even though
the framework of Haggarty et al. (2014) uses typical concepts of FDA, it does not
provide a characterization of the infinite-dimensional random field generating the
data (being the covariance actually based on scalar summaries), and thus only
allows for unsupervised (explorative) analyses. As a key element of innovation
with respect to existing literature, we here provide a direct construction of a
functional moving average process distributed over a stream network, that creates
a solid foundation upon which developing a strategy for variographic analysis and
estimation of the spatial covariance structure, which can ultimately be used for
the scope of spatial prediction.

The remaining part of this work is organized as follows. Section 2 presents
a review of the models of Ver Hoef et al. (2006), which is instrumental to the
extension of the construction to Hilbert data presented in Section 3. Section
4 proposes estimators for the spatial dependence of the field under stationary
and non-stationary assumptions, and presents the associated Kriging predictors.
Section 5 discusses two illustrative simulated examples, while Section 6 reports a
summary of the supporting simulation studies – included in the Supplementary
Material. Finally, Section 7 discusses the application of the proposed methods
to a case study dealing with temperature profiles along the Middle Fork river
(Idaho, USA).

2 Stream network models for scalar observations

In this Section, a brief review of the models proposed by Ver Hoef et al. (2006)
for scalar data distibuited over a stream network is given. The reader is referred
to Ver Hoef et al. (2006), Peterson et al. (2007),Ver Hoef and Peterson (2010),
Peterson and Ver Hoef (2010) for further details. The stream networks considered
in this work are topologically modelled as dendritic networks made up of a finite
number of stream segments indexed by i = 1, 2, . . . . To each segment, which can
be represented as a line, is associated a unique direction, that is the direction of
the water flow. Having assumed the network to be dendritic, there will always
be a single most-downstream point, to which from now on we will refer to as the
outlet. It is therefore possible to define the "upstream distance" for each point
in a network as the length of the path (on the network) that connects the point
with the outlet.
Let the whole set of stream segment indices be denoted as I. The most downstream
location in the i−th segment is denoted as li, whereas the most upstream location
is ui. The index set of stream segments upstream of a point si belonging to i ∈ I,
will be Usi ⊆ I; segment i is excluded from Usi . Analogously, Dsi ⊆ I is the index
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Figure 1. Representation of flow-connected (a,c) and flow-unconnected (b,d) locations,
and moving average functions for tail-up (a,b) and tail-down (c,d) models.
Locations on the stream network are indicated as black circles; stream-
distances between locations are indicated as dashed red lines in (a) and (b).
Modified from Peterson and Ver Hoef (2010).

set of all stream segments downstream of si, including the segment i containing
si. Using these definitions, we can say that two locations, si and sj , on a stream
network are “flow-connected” (FC) if Dsi ∩Dsj = Dsi or Dsi ∩Dsj = Dsj . In
other words, water must flow from one site to another in order for the pair to be
considered flow connected (see Figure 1a and 1c). In the following, we denote
by Bsi,sj the set of stream segments between two locations si, sj , including the
segment for the upstream location but excluding the segment for the downstream
location. The same definition holds if we want to identify the segments between
location si and segment j, for which we will use the notation Bsi,[j].

Given the notation introduced above, it is possible to define the stream
distance as the shortest distance between two locations, with the constrain that
all displacements are taken along the network.

d(si, sj) =

{
|si − sj | if si and sj are flow-connected,
(si − u) + (sj − u) otherwise.

(1)

Here u is the nearest junction downstream which is common to both flow-
unconnected locations. Consider now two flow-unconnected locations. Con-
ventionally, we will use a to indicate the shortest distance to u while b indicates
the largest one. We use h for the distance between two FC locations (see Figure
1b).

We are now able to enter the core of the models proposed by Ver Hoef et al.
(2006). To build the random process {Z(s), s ∈ D} on the stream network domain
D, these authors generalize the moving-average construction of Yaglom (1987),
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originally designed on R1, to the topology of D. Yaglom (1987) defines the
element Z(s) of a random process on R1 as

Z(s) =

∫ +∞

−∞
g(x− s|θ)dW (x) (2)

whereW (x) is a white noise process and g(x|θ) is called the moving-average (MA)
function, which is defined on R1 and assumed to be squared integrable. To account
for the topology of the domain, Ver Hoef et al. (2006) use the same construction,
but compute the integral in (2) piece-wise, summing up the contribution from
each segment of the network associated with non-null values of the MA function
g(x|θ). The key idea is that the overlap between the MA function of one random
variable and that of another give rise to a partial correlation between these two
variables. Notice that the moving average function could go in both directions,
up and down the stream with respect to flow, and this choice will discriminate
whether the final model will be a tail-up or tail-down, respectively.

Moreover, recall that, when W (x) is a Brownian motion, by Ito Isometry it
follows that

E

[(∫ +∞

−∞
g(x− s|θ)dW (x)

)2]
=

∫ +∞

−∞

(
g(x− s|θ)

)2
dx.

Hence, from the moving average construction (2) it is possible to obtain the
autocovariance between two elements of the field Z(s) and Z(s+ h) as

Ct(h|θ) =

{∫ +∞
−∞ (g(x|θ))2dx+ η h = 0∫ +∞
−∞ g(x|θ)g(x− h|θ)dx h > 0,

(3)

where η is the nugget effect. From this construction, when D ⊂ R1, several classes
of models can be obtained (e.g., spherical, exponential, Mariah; see Yaglom
(1987)). Analogously, parametric classes are obtained by Ver Hoef et al. (2006)
by computing the integrals in (3) piece-wise along the stream network. The
expressions of the MA model for Z(s) and the corresponding autocovariance
functions are recalled hereafter for tail-up and tail-down models respectively.

Tail-up Models In the tail-up models, the support of the moving average
functions is not null only moving in the upstream direction (Figure 1a and 1b).
Obviously, if two locations are not flow connected, the corresponding tail up
moving average will never overlap (Figure 1b), hence null covariance is associated
to two flow unconnected random variables. The way that g(x|θ) gets split as
we go upstream plays a crucial role to ensure the stationarity of the spatial
process. Segment weights ωk are used to proportionally split the function between
upstream segments when the MA function reaches a confluence in the network,
eventually obtaining the following expression for the element Z(si)

Z(si) =

∫ ui

si

g(x− si|θ)dW (x) +
∑
j∈Usi

( ∏
k∈Bsi,[j]

√
ωk

)∫ uj

lj

g(x− si|θ)dW (x). (4)
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In (4), for each segment i in the network, the weights associated to the two
segments j and k in which segment i splits are such that 0 ≤ ωj , ωk ≤ 1 and
ωj + ωk = 1. Note that the weights ωk may be chosen as to reflect specific
hydrological characteristics of each segment, such as discharge, watershed area or
flow volume (Ver Hoef et al., 2006).

The covariance between two random elements Z(si), Z(sj) defined by (4) is
then given by

C(si, sj |θ) =


0 if si and sj are not flow connected
Ct(0|θ) if si = sj

πi,jCt(h|θ) otherwise.
(5)

where πi,j =
∏
k∈Bsi,sj

√
ωk, h is the stream distance between the two flow con-

nected locations on the stream network, and the (unweighted) covariance functions
Ct(0|θ) are obtained by using moving average functions in one dimension without
any branching given in (3). Therefore Ct(0|θ) may share the same expression of
the valid covariance models in R1 derived by Yaglom (1987). To conclude, auto-
correlation in the tail-up models depends on flow-connected hydrologic distance,
on the number of confluences found in the path between two sites and finally on
the weights assigned to each segment. Imposing zero autocorrelation when sites
are not flow connected makes these models particularly appropriate when the
variable of interest is dominated by flow (e.g. organisms or materials that move
passively downstream like pollutants, waterborne chemicals and so on).

Tail-down models In contrast to the tail-up models, tail-down (TD) models
arise when the MA function is non-zero only downstream of a location. This
means that the "tail" of the moving average functions points in the flow direction
(Figure 1c and 1d). Therefore, the tail-down random variable has the following
expression:

Z(s) =

∫ s

−∞
g(s− x|θ)dW (x). (6)

As shown in Figure 1c and 1d and by direct computations, autocorrelation in tail-
down models is allowed both for flow-connected and flow-unconnected locations.
Moreover, since the MA functions do not split at the junctions, introducing a
weighting procedure is not needed anymore. As before, more overlap in the
MA function implies more autocorrelation. Some examples of the tail-down
covariance structures are given in Table 1. Due to their characteristic of allowing
correlation for both connected and not connected pairs of sites, tail-down models
are particularly indicated for modeling variables, such as fish or aquatic insects,
that can move both upstream and downstream.
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Table 1. Covariograms and Semivariograms for tail-up and tail-down models. θr, θv ∈
R+ are respectively the range and the sill parameters. Recall that b denotes the
longest of the distances to the common downstream junction, and a denotes
the shortest one; h is the total stream distance (see Figure 1). The notation
FC and FU is used to denote respectively that si and sj are flow-connected
or flow-unconnected.
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3 Functional random fields over stream network domains

Let (Ω,F ,P) be a probability space and H a separable Hilbert space, equipped
with operations (+, ·) and inner product 〈·, ·〉, inducing the norm ‖·‖. Following
Menafoglio et al. (2013), we consider the case of real-valued functional observations
and assume that each element of H is a function X : τ → R, τ being a compact
subset of R. Denote by D the spatial domain, and let

{Xs, s ∈ D ⊆ Rd} (7)

be a functional random field valued in H. The theory of random processes on
Hilbert spaces is well established when D is a subset of Rd (see, e.g., Bosq, 2000);
in the following, we elaborate on the case of D being a stream network domain,
defining the field (7) by direct construction. In this work, we will always assume
the square-integrability of the process, i.e., that each element Xs, s ∈ D, of the
random field is such E[‖Xs‖2] <∞; we denote this as Xs ∈ L2(Ω;H). As in the
usual setting of geostatistics, we consider that a partial observation of the field is
available at given (non-random) spatial locations s1, ..., sn in D, and denote the
functional dataset as Xs1 , ...,Xsn .

Following Bosq (2000), for any s1, s2 in D, we define the cross-covariance
operator between the elements Xs1 and Xs2 of (7) as the operator Cs1,s2 : H → H
acting on the (non-random) element x ∈ H as

Cs1,s2x = E[〈Xs1 −ms1 , x〉(Xs2 −ms2)]

with ms1 (ms2) the mean of the process in s1 (s2). The family of cross-covariance
operators {Cs1,s2 , s1, s2 ∈ D} fully defines the second-order properties of the field
(Bosq (2000), Kokoszka and Horváth (2012)). A (global) measure of dependence
for the process (7) is instead provided by the so-called trace-covariogram (Giraldo,
2009; Menafoglio et al., 2013). This is defined as the (real-valued) function
C : D ×D → R:

C(s1, s2) = E
[
〈Xs1 −ms1 ,Xs2 −ms2〉

]
. (8)

Note that C(s1, s2) defines a scalar product on L2(Ω;H) and it is positive definite.
Moreover, C(s1, s2) coincides with the trace of the cross-covariance operator Cs1,s2
(Menafoglio et al. (2013)).

Recall also that the field (7) is second-order stationary if (i) the mean is
spatially constant (E[Xs] = m for all s ∈ D), and (ii) the family of cross-covariance
operators is stationary, i.e., if there exist a family of operators {Ch, h ∈ Rd}
such that Cs1,s2 = Ch for all s1, s2 satisfying s1 − s2 = h. The assumption of
global second-order stationarity requires, instead of condition (ii), that (ii′) the
trace-covariogram is stationary, i.e., that there exist a function C̃ such that
C̃(h) = C(s1, s2) for all s1, s2 satisfying s1 − s2 = h.
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Hörmann and Kokoszka (2011) show that every functional random process
(7) with constant mean can be expressed through the following basis expansion

Xs = m+
∑
k≥1

ξk(s)ek. (9)

Here {ek, k ≥ 1} is an orthonormal basis of H and the random coefficients
ξk(s) = 〈Xs −m, ek〉 are the projections of the functional random variable Xs on
the orthonormal basis. These coefficients determine both the stationarity and the
covariance structure of the functional process. To ease the notation, we herafter
assume the process to be zero mean.

3.1 Functional moving-average models on the real line

We now use the direct construction (9) to show the existence of a functional
version of the MA random variables defined in (2). We first set D = R1, and
consider N independent, zero mean, second-order stationary and isotropic scalar
random fields, {ξk(s), s ∈ D} for k = 1, .., N . We further assume that each scalar
random field is defined through a MA model

ξk(s) =

∫ +∞

−∞
g(k)(x− s|θ)dWk(x), (10)

In (10), each g(k)(x−s|θ) needs to be square integrable for the stochastic integral
to be well defined, i.e.,

∫ +∞
−∞ |g

(k)(x− s|θ)|2dx < +∞.
Let us now focus on a truncated version of (9), obtained as

X (N)
s =

N∑
k=1

ξk(s)ek, (11)

where {ek, k ≥ 1} is an orthonormal basis of H. In this case, each Xs is valued
in H(N), where H(N) = span{e1, ..., eN} is the finite-dimensional Hilbert space
generated by the N orthonormal vectors e1, ..., eN . Moreover, Xs is square-
integrable (i.e., Xs ∈ L2(Ω;H(N))) as

E
[∥∥∥X (N)

s

∥∥∥2] = E
[ N∑
k=1

(∫ +∞

−∞
g(k)(x− s|θ)dWk(x)

)2]

=
N∑
k=1

∫ +∞

−∞

(
g(k)(x− s|θ)

)2
dx < +∞, (12)

thanks to the Ito isometry and to the fact that each g is deterministic and square
integrable. Hence, the variable X (N)

s has finite second moment, which guarantees
the existence of the family of cross-covariance operators for the process {X (N)

s , s ∈
D}. It is worth highlighting that the boundedness of the last sum in (12) is due
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to the finiteness of the orthonormal basis being considered. Letting N → +∞,
the square-integrability of Xs is only obtained if the sequence {ξk(s)}k≥1 belongs
to l2(Ω;R) (i.e., if

∑
k≥1 E[ξk(s)

2] < ∞). This can be guaranteed including
additional assumptions on each moving average function g(x|θ) (see Appendix A).
In this case, the MA random field (9) has a well-defined family of cross-covariance
operators.

Note that the covariance functions Ck(s1, s2) = E[ξk(s2)ξk(s2)] of the scalar
random fields appearing in (9) completely characterize the family of cross-
covariance operators of the field {Xs, s ∈ D}, thus also its trace-covariogram
(see, e.g., Hörmann and Kokoszka, 2011; Menafoglio et al., 2013). In particu-
lar, the trace-covariogram of the process (9), obtained from the moving average
construction, is

C(si, sj) =
N∑
k=1

E
[
ξk(si)ξk(sj)

]
=

N∑
k=1

C
(k)
t (h|θ).

where C(k)
t (h|θ) is the autocovariance function of the k-th scalar random field

{ξk(s), s ∈ D} (defined as in (3)). Since the family of valid covariograms is a
convex cone and each C(k)

t (h|θ) is a valid covariogram for the k-th random field,
C(si, sj) is clearly a valid covariance function. On the other hand, any of the
valid covariance models available in D can be used to provide a valid covariance
model for the field {Xs, s ∈ D}.

3.2 Functional tail-up and tail-down models

The approach just introduced can be extended to a stream network domain D.
Indeed, the previous arguments still hold true if we assume that each scalar
random field is represented as a tail-up model, i.e., as (see also eq. (4))

ξk(s) =

∫ ui

s
g(k)(x− s|θ)dW (x)+

+
∑
j∈Us

( ∏
n∈Bs,[j]

√
ωn

)∫ uj

lj

g(k)(x− s|θ)dW (x). (13)

In this case, when the functional random process is built by direct construction
as in (9), the covariance function associated with each random field ξk is a
combination of the covariance functions of the scalar field defined in (5). The
trace-covariogram of the functional process is then easily obtained by linearity as

C(si, sj) =


0 if si and sj are not flow connected∑

k≥1C
(k)
t (0|θ) if si = sj

πi,j

(∑
k≥1C

(k)
t (h|θ)

)
otherwise.

(14)
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In (14), we adopt the same weighting structure as the scalar case, because
the weights πi,j are related to the geometry of the stream-network domain rather
than that of the data objects.

Concerning the tail-down models, the procedure is even simpler, since in this
case the weights are not needed. Each scalar random field is obtained as (see (6))

ξk(s) =

∫ s

−∞
g(k)(s− x|θ)dW (x) (15)

where g(k)(s− x|θ) is a unilateral tail-down function with nonzero values only on
the negative (i.e., downstream) side of s as in the tail-down model introduced in
Section 2. Similarly as in the tail-up case, the trace-covariogram function for the
functional tail-down process is straightforwardly obtained as

C(si, sj) =
∑
k≥1

C
(k)
d (si, sj |θ), (16)

where C(k)
d (si, sj |θ) is the covariance function associated to the k-th scalar tail-

down random field, whose expression may be of the kind presented in Table 1.
In the light of expressions (14) and (16), one may wonder whether (and under
which conditions) the families C(k)

t (h|θ) and C(k)
d (si, sj |θ) are closed under conic

combinations, i.e., if (and when) linear combinations, with positive weights, of
valid covariance functions in the same parametric family still belong to the same
family. If this was the case, the trace-covariogram of the functional process
built in (9) would belong to the same family as those of the 1D processes
{ξk(s), s ∈ D}, k = 1, . . . , N . Concerning C(k)

t (h|θ), it is well-known from scalar
geostatistics that finite conic combinations of valid models are closed if and only
if they belong to the same family and share the same range parameter. The same
applies to C(k)

d (si, sj |θ), as can be straightforwardly derived from the expressions
in Table 1. As such, if the scalar fields {ξk(s), s ∈ D}, k = 1, ..., N , share the
same valid model and the same range parameter, the trace-covariogram of the
functional process (9) will belong to the same family and share the same range
as the scalar fields, but will have a sill equal to the sum of the sills of the scalar
fields.

4 Model estimation and spatial prediction

The scope of this Section is to propose and discuss methods to estimate the models
introduced in the previous section, both under stationary and non-stationary
conditions. In the stationary case, model estimation typically reduces to estimat-
ing the covariance structure of the field. In the non-stationary case, a drift term
generally needs to be estimated as well.
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4.1 Estimation of the spatial covariance under stationarity

In this work, we will estimate the parameters of the covariance models proposed
in Section 3 by estimating the trace-semivariogram of the field, which is defined,
under global second-order stationarity as

γ(s1, s2) =
1

2
E[‖Xs1 −Xs2‖2]

and is related with the trace-covariogram through the well-known relation
γ(s1, s2) = C(s1, s1)− C(s1, s2) (see, e.g., Menafoglio et al., 2013).

As in scalar geostatistics, estimation of the trace-semivariogram can be per-
formed by first determining an empirical estimator and then fitting a valid model.
As discussed in Section 3, all the valid models in use in the scalar case can be
adopted in the functional case too; for convenience, the semivariogram models
derived by Ver Hoef et al. (2006) are reported in Table 1. The semivariograms in
Table 1 are defined piecewise, depending on the connectedness of the pair being
considered. From now on, the portion of a semivariogram associated to flow-
connected (flow-unconnected) locations will be denoted as “the flow-connected
(flow-unconnected) portion of the semivariogram”.

4.1.1 Empirical Semivariograms for Stream Networks

From Section 2 and the expressions in Table 1, it should be clear that, for both
tail-up and tail-down models, the covariance structure among observations does
not depend only on the stream distance but also on other characteristics such as
flow connectedness, weights attributed to the stream segments, and/or distances
to a common junction. This dependence – which motivates the use of the notation
γ(si, sj |θ) instead of γ(si − sj |θ) – highlights the inadequacy in this context of
the empirical semivariogram proposed in the Euclidean setting. In the functional
case, the empirical estimator of the trace-semivariogram from data Xs1 , ...,Xsn
observed over a Euclidean domain would read (see, e.g. Giraldo, 2009; Menafoglio
et al., 2013)

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

∥∥Xsi −Xsj‖2 (17)

where N(h) = {(si, sj) : si − sj ≈ h} and |N(h)| is its cardinality.
In the scalar setting, Zimmerman and Ver Hoef (2017) propose and discuss

modifications of the (scalar) empirical estimator to deal with stream networks and
stream distances. They thus derive the flow-unconnected stream-distance (FUSD)
semivariogram and the flow-connected stream-distance (FCSD) semivariogram,
able to deal both with the peculiar topology of a stream network and with the
stream distance. Following the approach of Zimmerman and Ver Hoef (2017), we
here study functional counterparts of these estimators, eventually aiming to fit
the parameters of a valid model to the most appropriate empirical estimator.
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Flow-Unconnected Stream-Distance (FUSD) Trace-Semivariogram The
FUSD empirical trace-semivariogram is computed only from those site-pairs that
are flow-unconnected and, for such pairs, it is a function of the stream distance
only. The FUSD trace-semivariogram is thus defined as

γ̂FUSD(hk) =
1

2|N(Uk)|
∑

(si,sj)∈N(Uk)

∥∥Xsi −Xsj‖2, k = 1, ...,KU , (18)

where N(Uk) = {(si, sj) : d(si, sj) ≈ hk, Usi ∩ Usj = ∅} is the set of flow-
unconnected pairs separated by a stream-distance approximately equal to hk, and
|N(Uk)| is its cardinality. Note that, if {Xs, s ∈ D} follows a pure tail-up model,
the flow-unconnected portion of its semivariogram is constant and corresponds to
the sill, as the variables associated to flow-unconnetted pairs are uncorrelated (see
Table 1). In this case, γ̂FUSD is an unbiased estimator for the flow-unconnected
portion of the trace-semivariogram and an estimate of the sill is obtained as

γ̄FUSD =

∑KU
k=1 |N(Uk)|γ̂FUSD(hk)∑KU

k=1 |N(Uk)|
, (19)

with KU the number of bins in which the set of stream distances is partitioned. An
alternative way of estimating the sill, related with the FCSD trace-semivariogram,
is discussed in the following. On the other hand, if {Xs, s ∈ D} follows a pure
tail-down model, the flow-unconnected portion of its semivariogram in general
does not depend on the total stream distance (i.e., h = a+b, see Fig. 1) but on the
two stream distances from sites within a site-pair to their common junction (i.e.,
a and b, see Fig. 1). Therefore, in this case, the FUSD empirical semivariogram
is not enough to characterize the spatial dependence of flow-unconnected sites.
It is worth noticing that an exception occurs if the tail-down component has
an exponential semivariogram; indeed, in this case the flow-unconnected part of
the semivariogram is a function of the total stream distance only; consequently,
γ̂FUSD(·) remains unbiased for it.

Flow-Connected Stream-Distance (FCSD) Trace-Semivariogram The
FCSD trace-semivariogram differs from the FUSD trace-semivariogram by being
computed from site-pairs that are flow-connected rather than flow-unconnected.
Thus, it is defined as

γ̂FCSD(hk) =
1

2|N(Ck)|
∑

(si,sj)∈N(Ck)

∥∥Xsi −Xsj‖2, k = 1, ...,KC , (20)

where N(Ck) = {(si, sj) : d(si, sj) ≈ hk, Usi ∩ Usj 6= ∅}, is the set of flow-
connected pairs separated by a stream distance approximately hk, and |N(Ck)| is
its cardinality.

Note that now, if {Xs, s ∈ D} follows a pure tail-down model, the flow
connected portion of its semivariogram is a function of the stream distance h
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between locations. In this case, the well-known valid models in use in scalar
geostatistics can be used for parametric modelling (see Table 1). Moreover,
similarly as for the scalar case (Zimmerman and Ver Hoef, 2017), γ̂FCSD(·) is an
unbiased estimator for the flow-connected portion of the trace-semivariogram of
the process.

On the other hand, if {Xs, s ∈ D} is a pure tail-up process, γ̂FCSD(·) is not
fully appropriate to estimate its covariance structure, because in those cases the
flow-connected portion of the trace-semivariogram is a function of the stream
distance and of the spatial weights (see Table 1). In Subsec. 4.1.2 we will further
expand on this point.

4.1.2 Parameters estimation

In this Section we outline the steps to estimate a parametric model for the
trace-semivariogram whenever the underlying process that generated the data
is assumed to follow either a pure tail-up or a pure tail-down model. We will
thus focus on the characterization of the covariance structure only in case of
pure models (tail-up or tail-down). However, note that, in general, mixtures of
tail-up and tail-down models may arise and these are, in principle, more flexible
to describe the spatial dependence. The extension of the proposed procedure to
the case of mixture models will be discussed in Section 8.

The identification of the underlying process – based on empirical trace-
semivariograms – is a rather hard task. For this purpose, we propose a slightly
simplified version of the strategy of Zimmerman and Ver Hoef (2017), made of
two steps. The FUSD trace-semivariogram is examined first. If it appears to be
relatively flat, we adopt a pure tail-up model. Otherwise, a tail-down model is
assumed.

We recall that, in the scalar setting, if a pure tail-up model cannot be
assumed, the strategy of Zimmerman and Ver Hoef (2017) would advocate a
further inspection to discriminate whether the model should be a pure tail-down
or a mixture of tail-up and tail-down. In this framework, Liu (2019) proposed
non-parametric tests for pure tail-down and pure tail-up dependence on stream
networks. The extension of this type of tests to the case of functional data is left
for future research. Nevertheless, the problem of mixed models identification was
not addressed by Liu (2019) either. With this premise in mind, we propose the
following procedure to estimate a valid trace-semivariogram model γ(·, ·|θ), and
the associated trace-covariogram C(·, ·|θ).

(i) Estimate the empirical FCSD trace-semivariogram γ̂FCSD(hk), k = 1, ...,KC .
from the observations xs1 , ..., xsn using (20).

(ii) Estimate the empirical FUSD trace-semivariogram γ̂FUSD(hk), k = 1, ...,KU .
from the observations xs1 , ..., xsn using (18).
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a. If γ̂FUSD(hk), k = 1, ...,KU , is compatible with a pure nugget model,
assume the process to be pure tail-up.

b. If γ̂FUSD(hk), k = 1, ...,KU , is not compatible with a pure nugget
model, assume the process to be pure tail-down.

(iii) Fit a valid model γ(·, ·|θ) to the empirical FCSD trace-semivariogram
γ̂FCSD(hk) and get θ̂.

(iv) Obtain the trace-covariogram as C(·, ·|θ̂) plugging θ̂ in the stream-network
trace-covariograms expressions in Table 1.

Whenever the underlying process can be assumed to follow a pure tail-down
model (see point (ii) above) the outlined procedure can be applied without
hindrance. This follows from the fact that the flow-connected portion of the
tail-down trace-semivariograms in Table 1 has exactly the same expression as the
classical models. In case of a pure tail-up model, instead, the approach presents
limitations, because the FCSD trace-semivariogram does not account for the
spatial weights πi,j in (14) (see also Sect. 4.1.1). Note that step (iii). consists of
fitting a standard valid model, and neglects the weights πi,j within the variograms
of Table 1. These classical geostatistical models are recovered when including
weights πi,j = 1 in the expressions of the theoretical semivariogram in Table
1; in the following the semivariogram associated with weights πi,j = 1 will be
denoted as unweighted flow-connected semivariogram. In fact, the empirical trace-
semivariogram (20) is used in step (iii). precisely as an estimator of the unweighted
flow-connected semivariogram. Nevertheless, the FCSD semivariogram is a biased
estimator for the unweighted flow-connected semivariogram (see Appendix B). As
shown in the simulation study presented in the Supplementary Material (Barbi
et al. (2022)) this bias may adversely affect the analyst’s ability to correctly
determine the range of spatial dependence among flow connected sites (i.e., the
range estimates tend to be negatively biased). A similar problem is discussed by
Zimmerman and Ver Hoef (2017), who eventually proposed an adjusted empirical
estimator (FCWA), which accounts for the weights and is unbiased for the
unweighted flow-connected semivariogram. A modification of the empirical trace-
semivariogram (20) that follows the same line of Zimmerman and Ver Hoef (2017)
(named FCWA2), is developed and studied via simulation in the Supplementary
Material (Barbi et al. (2022)). These developments are not reported in the outlined
procedure because, despite their unbiasedness, the adjusted estimators proved to
be characterized by extremely high variance, hindering their use in practice (see
Sect. 6 for a summary of the simulation results). The same simulations show that
the range underestimation does not heavily affect the Kriging performances, thus
suggesting that the use of FCSD trace-semivariogram should be anyway preferred
to its adjusted (unbiased) version.
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4.2 Estimating the spatial dependence in the non-stationary case

The methods developed so far assume second-order stationarity. If stationarity
does not hold, we propose to use the non-stationary model of Menafoglio et al.
(2013), which decouples the elements of the random field {Xs : s ∈ D} in a
non-stationary mean term ms (the drift) and a zero-mean stationary residual
component δs, i.e.,

Xs = ms + δs. (21)

In the following, we use for the stochastic residual δs the models built in Sec-
tion 3, and denote by C(s1, s2|θ), γ(s1, s2|θ) the trace-covariogram and trace-
semivariogram of δs, respectively. A model for the drift term is needed to allow
for the estimate of C(·, ·|θ), γ(·, ·|θ), as these are assessed from the (estimated)
residuals. We consider a linear model, i.e.,

Xs =

L∑
l=0

alfl(s) + δs s ∈ D, (22)

where f0(s) = 1 for all s ∈ D, fl(·), l = 1, . . . , L, are known functions of the
spatial variable s ∈ D and al(·) ∈ H, l = 0, . . . , L, are functional coefficients
independent of the spatial location.

Estimation of the linear model (22) can follow the very same lines as in
the case of a Euclidean spatial domain, broadly discussed by Menafoglio et al.
(2013). These authors propose a generalized least-squares (GLS) estimator for the
coefficients al, based on the covariance matrix of the residuals δs1 , ..., δsn . The very
same procedure can be used in our setting, provided that the covariance matrix
Σ is interpreted in terms of the stream-network trace-covariogram C(·, ·|θ), i.e.,
Σi,j = C(si, sj |θ). For brevity of exposition, the iterative algorithm for estimating
the model parameters in the non-stationary case is deferred to Appendix C.

4.3 Kriging Prediction

Having estimated the model, spatial prediction at a target site s0 in D can be
performed by using the theory of object-oriented kriging presented in Menafoglio
et al. (2013) (see also Menafoglio and Secchi (2017) for a recent review). In this
setting, the kriging predictor is defined via a linear combination of the data that
have been observed:

X ∗s0 =

n∑
i=1

λ∗iXsi . (23)

Here the weights λ∗1, ...λ∗n ∈ R are found as to minimize the global variance of the
prediction error under the unbiasedness constraint, i.e.,

(λ∗1, . . . λ
∗
n) = argmin

λ1,...λn∈R:
Xλ

s0
=
∑n

i=1 λiXsi

V ar(Xλ
s0 −Xs0) subject to E[Xλ

s0 ] = ms0 . (24)
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Using the general model (22) – which clearly reduces to the stationary case
when L = 0 – the global optimum of problem (24) is obtained by solving the
following linear system

C(s1, s1|θ) . . . C(s1, sn|θ) 1 f1(s1) . . . fl(s1)
...

. . .
...

...
...

...
...

C(sn, s1|θ) . . . C(sn, sn|θ) 1 f1(sn) . . . fl(sn)
1 . . . 1 1 0 . . . 0

f1(s1) . . . f1(sn) 0 0 . . . 0
...

...
...

...
...

...
...

fl(s1) . . . fl(sn) 0 0 . . . 0





λ1
...
λn
µ0

µ1

...
µL


=



C(s0, s1|θ)
...

C(s0, sn|θ)
1

f1(s0)
...

fL(s0)


(25)

where µ0, . . . , µL are Lagrange multipliers. Provided that the covariance matrix
Σ ∈ Rn×n is positive definite and that the design matrix of the linear model (22)
is of full rank, the linear system admits a unique solution. It is worth highlighting
that, even if the drift coefficients are not directly included in the Kriging system,
their estimation is necessary in order to assess the trace-covariogram of the
residual process {δs, s ∈ D}, as discussed in Section 4.2.

5 Two Simulated Examples

The procedure outlined in Section 4.1.2 is here be applied to two simulated
examples, one for the tail-up case and one for the tail-down case. In both
examples, we consider the stream network domain D represented in Figure 2a,
characterized by 250 segments and n = 200 observation points; this was generated
using the SNN package (Ver Hoef et al. (2014)) in R (R Core Team (2020)). Zero
mean functional random processes are simulated by exploiting the construction

Xs =
N∑
k=1

ξk(s)ek, (26)

which is analogous to (9), with m = 0. Here, {ek, k ≥ 1} denotes the Fourier
orthonormal basis of H = L2([0, 1]), and N is set to N = 7. Parameters for the
generation of the scalar fields {ξk(s), s ∈ D}, k = 1, ..., N , are specific of the
examples, and are detailed below. The fields {ξk(s), s ∈ D}, {ξj(s), s ∈ D} are
assumed to be independent for j 6= k; each {ξk(s), s ∈ D} is finally assumed to
be Gaussian.

5.1 Estimating the trace-covariogram in a pure tail-down model

In this example, for each field {ξk(s), s ∈ D} appearing (26), a tail-down expo-
nential model is used with sill θ(k)v , range θ(k)r and nugget η(k) parameters set
to (θ

(k)
v , θ

(k)
r , η(k)) = (5, 6.5, 0), respectively. Therefore the theoretical model for

the functional process (26) is a tail-down exponential model with parameters
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Figure 2. (a) Simulated stream network. Points indicate the locations of observed data.
Blue lines indicate the stream network; their thickness is proportional to
the stream segments orders. (b) Simulated functional data for the tail-down
model. (c) Simulated functional data for the tail-up model.

(θv, θr, η) = (35, 6.5, 0) (see the final remarks in Section 3.2). The functional
dataset in Figure 2b was obtained by combining the realizations of the N = 7
scalar random fields sampled at the n = 200 locations displayed in Figure 2a.

Figure 3a displays the FCSD and FUSD empirical estimators (see eq. (20)
and (18)), which share – as expected – the same non-trivial structure of spatial
dependence. Both trace-semivariograms were obtained considering 15 lags and a
maximum distance equal to half the maximum distance in the stream network.
Clearly, the number of flow-unconnected pairs (represented through the dimensions
of the circles in Fig. 3a) is much larger than the connected ones, as evidenced by
the larger size of the yellow circles compared to the blue ones.

Although, in general, the flow-connected portion of the trace-semivariogram
(blue circles) is the only one that should be considered to retrieve the parameter
estimates (see the strategy outlined in Section 4.1.2), we may here consider
also the FUSD for the purpose. Indeed, recall that, for the special case of an
exponential tail-down model, the FUSD empirical estimator is unbiased for the
flow-unconnected portion of the trace-semivariogram, as, in this case, the latter
depends only on the stream distance h = a + b (see Section 4.1.1 and Table
1). Fitting the trace-semivariogram parameters separately to the FCSD and the
FUSD yields the results reported in Table 2. The slight overestimation of both
the sill and the range obtained by fitting the FUSD semivariogram may be due
to the variability of the FUSD estimator. The FCSD estimates seem to be more
accurate, instead, being very close to the reference values (θv = 35 and θr = 6.5).
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Figure 3. (a) Empirical FCSD trace semivariogram (blue) and FUSD trace semivar-
iogram (yellow). The dot’s sizes are proportional to the number of pairs
for each binned distance class. (b) Empirical and Fitted FCSD trace-semi
variograms. (c) (c) Empirical and Fitted FUSD trace-semi variograms.

Table 2. Estimated parameters of the Tail-Down covariance structure. Generating
parameters were set to θv = 35, and θr = 6.5.

θ̂v θ̂r

FCSD 34.57 6.73
FUSD 38.16 8.26

5.2 Estimating the trace-covariogram in a pure tail-up model

We here consider a functional tail-up model, built as in (26), and assuming
for each field {ξk(s), s ∈ D} a tail-up spherical model with sill θ(k)v , range θ(k)r

and nugget η(k) parameters set to (θ
(k)
v , θ

(k)
r , η(k)) = (10, 8.5, 0), respectively.

Therefore, the resulting functional process (26) is again a tail-up spherical model,
but characterized by the parameters (θv, θr, η) = (70, 8.5, 0). The functional
dataset in Figure 2 (bottom right panel) was obtained by combining the N = 7
independent realizations of the scalar random fields at the n = 200 sampling
locations in D, with the first N = 7 elements of the Fourier basis {ek, k = 1, ..., 7}.

The empirical FUSD trace-semivariogram (18) and the empirical FCSD trace-
semivariogram (20) are displayed in Figure 4a. They were computed considering
15 lags and a maximum distance equal to half the maximum distance in the
network. The FUSD semivariogram appears to be flat, as expected in a pure
tail-up model. On the contrary, the flow connected pairs are featured by a
non-trivial spatial dependence. In particular, the FCSD semivariogram exhibit a
clear downward concavity near the origin, settling towards a sill not far from the
value of the FUSD semivariogram. Indeed, recall that the FUSD semivariogram
the can be used to unbiasedly estimate the variogram sill in a pure tail-up model
using expression (19). Here, as well as in the case study presented in Section 7, to
retrieve estimated parameters, we fit a spherical model to the FCSD, as shown in
Figure 4b. This leads to the following parameters estimates: θ̂v = 67.87, θ̂r = 5.53.
Note that the estimated sill is close to the reference value θv = 70; however the
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Figure 4. (a) Empirical FCSD trace semivariogram (blue) and FUSD trace semivari-
ogram (yellow). The dots sizes are proportional to the number of pairs for
each class of distances. (b) Empirical FCSD and fitted trace-semivariograms.

range is underestimated, the reference value being θr = 8.5. This tendency is
confirmed by the results of the simulation study described in Section 6, and it is
due to the fact that FCSD trace-semivariogram neglects the weights πij appearing
in (14), but the simulation process clearly accounts for them. Finally, the sill
estimated from the average of the FUSD trace-semivariogram (see eq. (19)) is
θ̂v = 68.35, again rather close to the reference value.

6 Summary of the supporting simulation studies

In this Section, we briefly describe the simulation study reported in the Supple-
mentary Material. This material introduces and tests two alternative estimators
to FCSD, that, unlike FCSD, account for the weights πij appearing in (14). The
first estimator is named Flow-Connected Weigth-Adjusted (FCWA) and is fully
analogous to the one proposed by Zimmerman and Ver Hoef (2017) for the scalar
case; the second estimator, named FCWA2, improve on FCWA by trying to reduce
its variability. The simulation study compares the validity of these three estima-
tors when used to estimate the unweigthed flow connected trace-semivariogram
in a pure tail-up model and the corresponding covariance parameters. It also
assesses the impact of the estimators on the kriging performances.

In all the tested scenarios, the spatial domain and sampled locations were fixed
as in Section 5 and the functional random field {Xs, s ∈ D} was built using the
construction (26), with N = 7. Here, the elements {ek, k = 1, 2, ..., 7} represent
again the orthonormal basis of H = L2([0, 1]) generated by the first N = 7 Fourier
basis functions, and {ξk(s), s ∈ D} are second-order stationary Gaussian random
fields, with parameters set analogously as in Section 5. A Monte Carlo analysis
was run by simulating B = 500 independent realizations of the functional fields,
keeping as fixed the parameters of the scalar fields {ξk(s), s ∈ D}.
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Comparison between FCSD, FCWA and FCWA2 For each of the B =
500 simulations, the three empirical trace-semivariograms FCSD, FCWA and
FCWA2 were computed and compared with the corresponding theoretical values
of the unweighted semivariogram γuw(h) at the selected distances. The main
results of this simulation follows.

• The FCSD trace-semivariogram is positively biased, in particular at the
first lags, where it happened to almost double the theoretical value. This
causes underestimations of the range when the FCSD semivariogram is used
to fit a parametric model.

• The FCWA trace-semivariogram is featured by an extremely high variance
and it is highly sensitive to the presence of outliers among the weights.

• The FCWA2 trace-semivariogram shows slightly lower variance and higher
robustness w.r.t. the presence of outliers in the weights. FCWA2 seems to
provide better results than FCWA1 at small distances.

Parameter estimation For the B = 500 simulated datasets, each empirical
estimator (FCSD, FCWA, FCWA2) was used to estimate the sill and the range.
The sill was also estimated via FUSD, applying equation (19).

• The fitting procedure implemented within the R package gstat (Pebesma,
2004) converged 497/500 times for the FCSD fitting, 317/500 for the FCWA
and 356/500 for FCWA2; this evidences an instability in FCWA and FCWA2
due to their high variance.

• The FUSD estimate for the sill outperforms the others in terms of Root
Mean Square error (RMSE).

• A non-negligible underestimation of the range is observed when fitting the
FCSD semivariogram (both with respect to the mean and the median).

• FCWA and FCWA2 are more accurate on average than FCSD (although
slightly overestimating the theoretical range), but they show higher RMSE
due to their extremely high variability.

• Setting the sill to the FUSD estimate during the fitting procedure allows
one to slightly reduce the variance in the range estimate of both FCWA
and FCWA2.

Sensitivity of Kriging to range underestimation For each simulated dataset,
a leave-one-out cross validation analysis was run to evaluate the performance
of the kriging predictor obtained by plugging-in the parameters estimated via
FCSD, FCWA and FCWA2 in the trace-covariogram. For each dataset and for
each method (FCSD, FCWA1 and FCWA2) the prediction error was computed.

• Simulations show a notable presence of rather high outliers in terms of
errors, when the empirical semivariogram is fitted via FCWA and FCWA2.
These high errors are due to the very high variability of the estimators,
which happen to be associated with fitted parameters extremely far from
the theoretical ones. In these extreme cases, the kriging prediction are

21



compromised.
• Using FCSD, the distribution of the errors shows a slightly higher median

than for FCWA and FCWA2, but proves more stable without outliers. The
range underestimation does not affect significantly the Kriging performance.

As a result of the simulation study, we conclude that the extremely high
variability of the weights-adjusted empirical semivariograms FCWA and FCWA2
makes them unusable from a practical point of view. The mere fact that in a large
number of cases the variogram fit does not reach convergence leads us to consider
these estimators too unstable for real applications. Furthermore, their use does
not seem to be encouraged by better predictive performance either. These results
are in full agreement with the conclusions of Zimmerman and Ver Hoef (2017)
for the scalar case. The use of the FCSD is thus recommended, despite its bias.

7 A case study: Analysis of Middle Fork River Water Temper-
atures

Middle Fork River and Dataset The data analysed in this Section consist
of the maximum daily water temperatures recorded between 15 July 2005 and 31
August 2005 at different locations of the Middle Fork river in Idaho, USA. The
data, which can be found and downloaded at https://www.fs.fed.us/rm/boise/
AWAE/projects/SSN_STARS/software_data.html, has been pre-processed and
created as part of an NCEAS Workshop in April 2011 (National Center for
Ecological Analysis and Synthesis). The Middle Fork River is a 104-mile-long
(167 km) river in central Idaho. Its elevation ranges from 919 meters above
sea level (at its mouth) to 2.100 meters. In Figure 5a the Middle Fork river
is depicted together with the N = 157 observation sites. The daily maximum
water temperature (in °C) have been recorded at each of the 157 locations for 47
days in the aforementioned summer period (15 July 2005 - 31 August 2005). We
embedd the data in the Hilbert Space H = L2 of the square integrable functions
endowed with the usual scalar product. The raw data (Figure 5b) were smoothed
via spline smoothing with a roughness penality (Figure 5c). The number of basis
functions (nb = 49) and the smoothing parameter (λ = 5) were chosen through
a non-parametric leave-one-out cross validation approach to avoid overfitting.
The watershed area accumulated downstream (km2), was used to compute the
weights for the tail up models, as a proxy variable for flow volume (see Ver Hoef
and Peterson (2010)). Two covariates, namely the elevation of the upper stream
segment node on which a temperature sensor was located (m) and the upstream
distance between the stream outlet and the site (m), were used to model the drift
term.

Geostatistical analysis The stationarity of the random field is evaluated from
the empirical trace-semivariograms, computed by considering 13 distance classes
with bins of equal size up to a maximum distance of 63.11 km (Figure 6). Visual
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Figure 5. (a)Middle Fork river. Points indicate the locations of observed data. Blue
lines indicate the stream network and their thickness is proportional to the
stream segments orders. (b) Water temperatures at the 157 locations of
the Middle Fork River from 15 July 2005 to 31 August 2005. (c) Smoothed
functional data.

inspection of the trace-semivariograms suggest that a non-stationarity assumption
is appropriate for the random field, since the FCSD trace-semivariogram (blue
dots in Figure 6) seems to increase without bound, beside crossing the flow
unconnected trace semivariogram (yellow dots in Figure 6), indicating a trend
contamination aligned with flow. This behaviour (crossing components and
unbounded growth) is indeed evidence of an unmodeled drift in upstream distance
(Zimmerman and Ver Hoef (2017)). Following the approach devised in Subection
4.2, a drift term is thus included in the model.

We here consider as covariate for the drift term the variables {x, y} ={elevation,
distance upstream}, which are appropriate to describe a drift term aligned with
flow (see Zimmerman and Ver Hoef (2017) for the scalar case). For the selection
of the functional form for the drift, we follow the approach of Menafoglio et al.
(2013), who suggest to consider polynomial forms for the drift term, and select the
optimal one through cross-validation. Here, each candidate model is evaluated in
terms of kriging performances, quantified through the sum of squared errors

SSEi = ‖Xsi −X ∗si‖
2, i = 1, ..., n, (27)

where X ∗si stands for the kriging prediction of Xsi when this is left out of the
sample. At this stage, a simplified version of the Universal Kriging predictor with
a covariance structure of pure nugget is employed, thus providing the prediction
which would have been obtained via FDA linear models (indeed in this case the
UK predictor reduces to the drift estimate). We thus considered as candidate
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Figure 6. Trace-semivariograms for the Middle Fork temperatures. Empirical estimates
of the flow-connected (blue symbols) and flow-unconnected (yellow symbols)
trace-semivariograms; the empirical variance is reported as a dashed red line.

models the 31 polynomials of order lower than 2 (excluding the case of the sole
intercept as drift). For each candidate drift, the empirical trace-semivariograms
of the residuals are computed to verify that the optimal drift model selected
according to the introduced criterion gives rise to a stationary residual. The best
model is the following:

m(s, t) = a0(t) + a1(t)x+ a2(t)y + a3(t)x
2 + a4(t)y

2 + a5(t)xy, t ∈ τ = [1, 47].
(28)

Figure 7a reports the empirical FCSD and FUSD trace-semivariogram of
the residuals of model (28), when these are estimated via OLS. The shape of
the flow connected trace-semivariogram (in blue) is not that of a pure nugget,
suggesting that the residuals are spatially correlated. On the other hand, the
flow unconnected empirical semivariogram (in yellow) is compatible with a pure
nugget model, suggesting the use of a tail-up model for the field (see Section
4.1.2). In the following, we shall thus consider an exponential tail-up model with
sill θv, range θr and nugget η (see Table 1). Analogous results were obtained, in
a scalar case, by Liu (2019), who used non-parametric testing for selecting the
model for the average water temperature over part of the domain of our study.

Having chosen the drift and the covariance models, the model parameters are
estimated by means of the generalized least square criterion outlined in Section
4.2 and Appendix C. Figure 7b displays the FCSD empirical trace-semivariogram
together with the fitted variogram model, characterized by estimated parameters:
(θ̂v, θ̂r, η̂) = (68.83, 25885.44, 93.59). Note that, as broadly discussed in Section
4.1.2, interpretation of θ̂r requires particular care, as it could be affected by a
negative bias. Kriging is eventually performed at a grid of new locations along
the stream network, by plugging-in the estimated parameters θ̂ = (θ̂v, θ̂r, η̂)′ in
the linear system (25). To evaluate the performance of the Kriging predictor,
a leave-one-out cross validation (LOOCV) procedure is applied, considering as
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Figure 7. (a) Empirical trace semivariogram of the residuals obtained with an OLS
estimate of the drift. (b) Empirical and fitted trace-semivariograms of the
residuals obtained with WLS.

measure of discrepancy between the true value and the predicted one the SSE
defined in (27) and the relative SSE performance index, given by

SSE
(rel.)
i =

SSEi
‖Xsi‖2

. (29)

The statistics shown in Table 3 prove the satisfactory forecasting performance of
the method. Figure 8a displays with colors the SSEi for each location on the river;
a part for a few locations associated with a high estimation error (SSE > 700,
red dots), which possibly mark influential/outlying data, the kriging predictor
works properly.

Figure 9 shows the original data (Fig. 9a) together with the UK estimates (Fig.
9b) and the corresponding kriging residuals (Fig. 9c). Note that the significant
reduction of the total SSE, SSE =

∑n
i=1 SSEi, attained with a tail-up covariance

structure (SSE = 20864.89) as opposed to a pure nugget (SSE = 29485.93),
confirms the ability of the former to capture in a greater extent the stochastic
variability of the residual process. Finally, Figure 10 provides a representation
of the observed (Fig. 10a) and predicted (via LOOCV, Fig. 10b) average
temperatures (the average being taken over the summer period) together with
the corresponding marginal distributions (Fig. 10c). Cross-validation results
exhibit a narrower range of values than the data and this is a sign of the Kriging
smoothing effect. Comparison between Fig. 10a and b confirms the validity of
the proposed method, which is able to reproduce the main spatial patterns in the
data.
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Figure 9. Cross-validation analysis. (a) Original data (in grey) and relative sample
mean (in black). (b) Data predicted via Universal Kriging (in grey) and
their mean (black). (c) Difference between original and predicted data (in
grey), their mean m̂r (in black) and the (approximate) point-wise confidence
band mr(z) + 2σ̂r(z)(dashed black), where σ̂r(z) is the (point-wise) standard
deviation estimated from the cross-validation residual.

Figure 10. (a): Observed average temperatures over the summer period for the locations
on the Middle Fork River. (b): Estimated average temperatures via leave-
one-out Universal Kriging for the Middle Fork data. (c): Distributions
of the observed average temperatures together with the cross-validation
average temperatures.

Figure 8. SSE leave-one-out error for
each location on the Middle
Fork River

SSE SSE(rel)

Min 0.574 3.44 · 10−5

Median 43.346 4.19 · 10−3

Mean 132.897 1.6 · 10−2

Sum 20864.89 2.52

Table 3. Summary indices of the distri-
bution of SSE and SSE(rel)
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8 Conclusion

In this work new geostatistical methods for complex data distributed over a
stream network have been proposed. First of all, the theoretical construction
presented in Section 3 allows one to develop a strategy for variographic analysis
and estimation of the spatial covariance structure, which proved to be effective in
terms of prediction performance for both tail-up and tail-down models. When
tested on real data, the methodology achieved a good prediction performance.
However, further research should be carried out for tail-up models, aiming at
a better empirical estimator of the semivariogram that takes into account the
weights characterising the river topology. This could potentially allow one to
achieve better estimates for the range of correlation of the field. In addition,
extension to mixed models should certainly be the object of future works. To
this end, an adaptation of the procedure proposed in this work is envisioned as a
nested structure for the fitting of the FCSD trace-semivariogram. Further research
may also be devoted to relax the hypothesis of homogeneous covariance structure
when dealing with large stream networks. In fact, allowing varying dependence
structures on different sub-networks could lead to interesting developments in the
direction of modeling strong spatial non-stationarities. Concerning the topological
description of the stream network, one should note that the current work, as well
as the literature focused on the scalar case, only enables one to analyse data over
one-dimensional stream segments. However, allowing the representation of stream
segments to be also equipped with information about their depth and thickness,
might notably enrich the geostatistical analysis, especially in cases where the
stream network includes large sub-streams and lakes. Finally, the application of
the developed models to contexts other than those of a river network is possible,
and would be extremely topical in contexts like electricity grids, traffic and
transportation systems, and road networks. Indeed, whenever it is advisable to
define the stream distance with respect to the topology of a network featured by
the presence of a flow rather than based on a Euclidean distance, the proposed
approach should be considered. Here, extensions of the considered class of models
will deserve further research to allow for the analysis of data distributed over
non-binary trees and general networks for which valid covariance models are yet
to be studied.

Appendix

A Infinite Dimensional Functional Process

We here discuss the conditions that allows one to consider an infinite-dimensional
construction for the functional process, i.e., to represent the element Xs as the
limit as N → ∞ of (11) and obtain a well-defined global covariance function.
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Therefore, we formally define the functional random field as

Xs =
∞∑
k=1

ξk(s)ek, (30)

where {ek} is an orthonormal basis of H and {ξk(s), s ∈ D}, k ≥ 1, denote
independent, zero-mean, second-order stationary and isotropic scalar random
fields, defined through the moving average construction described in Section 2.
A minimal assumption for the existence of the cross covariance operators Csi,sj
is that the random variables Xs have finite second moments, i.e., E[‖X 2

s ‖] <∞,
for all s in D. For the functional random process (30) this is equivalent to the
following condition

∞∑
k=1

E[ξk(s)
2] =

∞∑
k=1

∫ +∞

−∞

(
g(k)(x− s|θ)

)2
dx <∞, for all s ∈ D. (31)

In this context, the dependence of g(·|θ) on the parameters θ plays an
important role since one should impose conditions on θ to ensure the finiteness
of the series. It is worth highlighting that the autocovariance function of each
scalar random field {ξk(s), s ∈ D} admits a compact form

E[ξk(s)ξk(s+ h)] = C(k)(h|θ) = θ(k)v ρk(h/θ
(k)
r ), (32)

where ρk(·) is a positive correlation function that depends on the type of moving
average function of the k-th random field. Plugging-in (32) in (31), we get

∞∑
k=1

E[ξk(s)
2] =

∞∑
k=1

∫ +∞

−∞

(
g(k)(x− s|θ)

)2
dx =

∞∑
k=1

C(k)(0|θ) =

∞∑
k=1

θ(k)v

Therefore Xs belongs to L2(Ω;H) provided that we assume the summability of
the series of θ(k)v , i.e.,

∞∑
k=1

θ(k)v <∞. (33)

Under condition (33), one can prove by direct computations that θ(k)v are
the eigenvalues of the covariance operator Cs,s. Moreover, under the square
integrability assumption, the cross-covariance operator Csi,sj exists and it is a
symmetric trace-class Hilbert-Schmidt operator (Bosq, 2000). Finally, its trace
is well defined by

∑∞
k=1〈Csi,sjek, ek〉, as the series converges absolutely for every

orthonormal basis in H and the sum does not depend on the choice of the basis
(Zhu, 2007). The identity

C(si, sj) =

∞∑
k=1

〈Csi,sjek, ek〉

can be proved as in Menafoglio et al. (2013), by exploiting the Parseval identity
and the Lebesgue’s dominated convergence theorem for series. Note that to apply
the latter theorem, the requirement E[‖Xs‖2] <∞ is crucial.
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B Bias of the FCSD empirical estimator

We here discuss on the bias of the FCSD empirical estimator proposed in Subsec-
tion 4.1.1 when {Xs, s ∈ D} is represented by a tail-up model. Recall that the
expression of the trace-semivariogram expression for tail-up models is

γ(si, sj) =


0 if si = sj (i.e if h = 0)
θv if si and sj are not flow connected
θv − πi,jCt(h|θ) otherwise.

(34)

Here, Ct(h|θ) is the trace-covariogram for the moving average functional process on
the real line, which is related to the unweighted flow-connected trace-semivariogram
γ(h) by the relation

Ct(h|θ) = Ct(0)− γ(h) = θv − γ(h). (35)

Plugging-in (35) in (34) we get

γ(si, sj) =


0 if si = sj (i.e if h = 0)
θv if si and sj are not flow connected
θv − πi,j

(
θv − γ(h)

)
otherwise.

(36)

From this expression we can easily see that, in the absence of weights (i.e.,
setting πi,j = 1) γ(si, sj) effectively would correspond to γ(h), which is targetted
by FCSD. Concerning the flow-connected portion of expression (36), i.e., focusing
on locations flow-connected si, sj , one has

1

2
VarH(Xsi −Xsj )H = θv − πi,jθv + πi,jγ(h), (37)

that, rearranging the terms, reads

γ(h) = θv +
1

2πi,j
VarH(Xsi −Xsj )−

1

πi,j
θv.

Given that the FCSD empirical estimator (20) is an unbiased estimator for
1
2 VarH(Xsi −Xsj ), it straightforwardly follow that it is biased for the unweighted
flow-connected semivariogram γ(h), unless πi,j = 1 for all i, j. Unbiased estimators
named FCWA and FCWA2 are derived and studies in the Supplementary Material,
adjusting for the bias of the FCSD according to eq. (37).

C Drift estimation

We here briefly recall the procedure which can be used to estimate the linear
model in (22). The model for the vector of observations X = (Xs1 , ...,Xsn)T can
be expressed as

X = Fa+ δ, (38)
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where a = (a0, . . . , aL)T is the vector of (functional) coefficients, δ = (δs1 , . . . , δsn)T

is the random vector of spatially-correlated residuals and F ∈ Rn×(L+1) is the
design matrix, i.e., Fi,l = (fl(si)). Menafoglio et al. (2013) propose to estimate
the functional coefficients a given X based on a generalized least square criterion
(GLS) with weighting matrix Σ−1, i.e., the inverse of the n× n covariance matrix
Σ of X . Since âGLS depends itself on Σ, which is usually unknown, the following
iterative algorithm, can be used for its actual computation.

Algorithm 1 (Menafoglio et al. (2013)). Given a realization x = (xs1 , . . . , xsn)
of X , represented as in (22):

1. Estimate the drift vector m through the OLS method and set m̂ = m̂OLS ,
with m̂OLS = F(FTF)−1FTx.

2. Compute the residual estimate δ̂ = (δ̂s1 , . . . , δ̂sn) by difference: δ̂ = x− m̂.
3. Estimate the trace-semivariogram γ(·, ·) of the residual process {δs, s ∈ D}

from δ̂ first with the FCSD empirical estimator (20) and then fitting to
this a valid model γ(·;θ), obtaining θ̂. Plug-in θ̂ in the stream-network
trace-covariogram expression of Σ (see Table 1, Σi,j = C(si, sj |θ)) yielding
Σ̂ (with Σ̂i,j = C(si, sj |θ̂)).

4. Estimate the drift vector m with m̂GLS , obtained from x using: m̂GLS =
F(FTΣ−1F)−1FTΣ−1x.

5. Repeat 2.-4. until convergence.
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1 Derivation of weight adjusted empirical estimators

Aiming to derive unbiased empirical estimators for the unweighted flow-connected
trace-semivariogram for tail-up models, let us consider the relation for two
flow-connected locations si, sj separated by the stream distance hk, derived in
Appendix B:

γ(hk) = θv +
1

2πi,j
VarH(Xsi −Xsj )−

1

πi,j
θv (1)

Summing over all the couples of flow connected locations characterized by a
distance hk on both sides of (1) and rearranging the terms yields

γ(hk) = θv +
1

2
VarH

(
1
√
πi,j

(X (si)−X (sj))

)
− θv
|N(Ck)|

∑
(si,sj)∈N(Ck)

1

πi,j
,

where N(Ck) = {(si, sj) : d(si, sj) = hk, Usi ∩ Usj 6= ∅}, is the set of flow-
connected pairs separated by a stream distance hk, and |N(Ck)| is its cardinality.
To obtain an estimator γ̂(hk) for γ(hk) recall that the flow-unconnected portion
of the trace-semivariogram of a tail-up model is a constant function corresponding
to the partial sill θν . Therefore, γ̂FUSD is unbiased for this flow-unconnected
portion of the semivariogram and an estimate for the partial sill θv is given by
equation (19) of the main manuscript. Moreover, an empirical estimator for

VarH

(
1√
πi,j

(X (si)−X (sj))

)
is given by

1

|N(Ck)|
∑

(si,sj)∈N(Ck)

‖X (si)−X (sj)‖2

πi,j
,
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leading to

γ̂FCWA(hk) = γ̄FUSD −
1

2|N(Ck)|
∑

(si,sj)∈N(Ck)

2γ̄FUSD − ‖X (si)−X (sj)‖2

πi,j
. (2)

Equation (2) defines a weight-adjusted flow-connected semivariogram (hereafter
named FCWA), which is analogous to the definition given in Zimmerman and
Ver Hoef (2017) for scalar data. In practice, a tolerance is used in defining N(Ck),
by considering pairs of locations whose distance is approximately hk.
The estimator γ̂FCWA(hk) is unbiased for the unweighted flow-connected portion of
the semivariogram of a pure tail-up model but, as demonstrated in our Montecarlo
simulation presented in Section 2, it is characterised by having a very high
variability. This large variance is due to the division by πi,j when computing
γ̂FCWA(hk) in stream segments associated with small weights. In an attempt to
reduce this variability, the following modified estimator will also be studied

γ̂FCWA2(hk) = γ̄FUSD−
1

π̂
γ̄FUSD+

1

2|N(Ck)|π̂
∑

(si,sj)∈N(Ck)

‖X (si)−X (sj)‖2. (3)

In (3) π̂ is the average of all the weights of the couples considered in N(Ck)
and γ̄FUSD is defined as before. This expression can be obtained straightforwardly
from equation (1). The estimator in (3) is, as FCWA, unbiased for the unweighted
flow-connected portion of the semivariogram of a pure tail-up model. Furthermore,
we hope that averaging the weights will mitigate the effect of small outliers among
the weights πij associated to the couples (si, sj) ∈ N(Ck).

2 A comparison between FCSD, FCWA and FCWA2

A simulation analysis is presented to compare the validity of the three empirical
estimators (FCSD, FCWA and FCWA2) when used to estimate the unweigthed
flow-connected semivariogram in a pure tail-up model and the corresponding
covariance parameters.
In all the tested scenarios, the stream network with 250 segments and 200
observation sites employed in Section 5 of Barbi et al. (2022) has been used. B=500
independent realizations of the following functional field have been simulated:

Xs =
N∑
k=1

ξk(s)ek (4)

where N = 7, the elements {ek, k = 1, 2, ..., 7} represent the orthonormal basis
of H = L2([0, 1]) generated by the first N = 7 Fourier basis functions and
{ξk(s), s ∈ D} are independent second-order stationary Gaussian random fields,
characterized by a tail-up Spherical models with sill, range an nugget equal to
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(θ
(k)
v , θ

(k)
r , η(k)) = (10, 8.5, 0). Therefore the theoretical model for the functional

process (4) is a tail-up Spherical model with parameters (θv, θr, η) = (70, 8.5, 0).
For each of the B=500 simulations, the three empirical semivariograms FCSD,
FCWA and FCWA2 were computed by considering 15 lags and a maximum
distance equal to half the maximum distance in the network.
Table 1 displays the value of the theoretical unweighted semivariogram γ(h)
(i.e., Spherical with θv = 70 and θr = 8.5) together with the average of the 500
esitimated FCSD, FCWA and FCWA2 trace-semivariograms at selected distances
and their standard deviation. Notice that, to make this comparision reliable,
γ(h) at each distance is not the pointwise value of the theoretical semivariogram.
Instead, at each lag, it is the average of the theoretical values evaluated at the
same classes of distances used to obtain the three empirical semivariograms.
Comparison of these three values at each distance h indicates that the FCSD
semivariogram is positively biased, in particular at the first lags, where it almost
doubles the theoretical value. This appears to be the reason why we experienced
a rather underestimated range by fitting the theoretical parametric model to the
FCSD trace-semivariogram. On the other hand, the average FCWA and FCWA2
semivariograms reach the sill more slowly and as expected, they are both unbiased
estimators of the unweighted flow connected semivariogram. Nevertheless their
standard deviation is unacceptably high, especially as the distance increases. It is
worth noticing, however, that there is a slight improvement in terms of variability
of FCWA2 with respect to FCWA, at least in the first lags.

The FCWA and FCWA2 semivariogram’s variability can be unacceptably high
as exemplified in Figure 1. These plots represents all the 500 estimated trace-
semivariogram in the three cases ( FCSD, FCWA and FCWA2) together with
their average (red line) and the theoretical model (black line). The FCWA and
FCWA2 variograms are characterized by a much larger variation than the FCSD
trace-semivariogram. As the distance increases, in many of the 500 iterations,
both the FCWA and the FCWA2 semivariograms assume unnaturally high values
(in absolute value). The high variance is due to the division by small values
of πi,j , π̂ when computing γ̂FCWA(hk), γ̂FCWA2(hk) respectively. The slight
improvement in term of variances of the FCWA2 is easily explainable considering
the expressions of the FCWA in (2) and FCWA2 in (3). In the former, the weight
πi,j of every couple of locations (si, sj) considered in the bin whose representative
distance is hk appears at the denominator. Hence we are considering |N(Ck)|
different weights. If one of these weights were to be excessively small, then the
second term in expression (2) would explode in absolute value. In other words,
FCWA is highly sensitive to to the existence of outliers among the weights. In
fact, estimator FCWA2, taking the mean of all the |N(Ck)| weights, partially
mitigate this drawback. Indeed, FCWA2 seems to provide satisfactory results at
least for small distances. However, as the distance increases, also FCWA2 presents
very large values, as the higher the distance between two locations (si, sj), the
smaller will be the associated weight πi,j (see Section 2 in Barbi et al. (2022) for
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Table 1. Comparison between FCSD, FCWA and FCWA2 as estimators of the un-
weighted semivariogram γuw(h) at 15 lags.

Distances(h) 0.74 2.23 3.66 5.11 6.61 8.05 9.46 10.97

γ(h) 9.04 26.79 42.31 55.37 64.96 69.47 70.00 70.00

E[γ̂FCSD(h)] 18.97 45.80 59.23 65.44 68.38 69.94 69.80 69.63
σ[γ̂FCSD(h)] 1.66 4.30 6.15 7.22 7.97 8.51 9.67 10.22

E[γ̂FCWA(h)] 8.89 26.45 41.42 55.59 64.27 70.13 69.97 67.74
σ[γ̂FCWA(h)] 4.68 13.40 23.19 30.11 31.34 49.22 60.52 54.33

E[γ̂FCWA2(h)] 8.52 26.04 41.80 55.02 64.42 69.35 68.80 68.04
σ[γ̂FCWA2(h)] 1.85 6.41 13.35 19.53 22.93 33.81 37.58 39.99

Distances(h) 12.37 13.94 15.30 16.80 18.23 19.73 21.18

γuw(h) 70.00 70.00 70.00 70.00 70.00 70.00 70.00

E[γ̂FCSD(h)] 69.58 69.74 70.06 70.20 70.09 70.05 69.98
σ[γ̂FCSD(h)] 11.06 11.38 11.76 12.97 13.03 12.51 13.62

E[γ̂FCWA(h)] 67.30 68.00 69.96 71.41 70.30 69.87 68.95
σ[γ̂FCWA(h)] 61.34 63.83 78.50 80.78 83.37 91.18 95.16

E[γ̂FCWA2(h)] 67.76 68.29 69.77 70.56 70.00 69.69 69.30
σ[γ̂FCWA2(h)] 44.96 50.60 67.39 66.21 68.61 73.84 80.52
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Figure 1. Plot of the (a) FCSD, (b) FCWA, (c) FCWA2 trace-semivariograms for each
of the 500 simulations together with the average (red line) and the theoretical
unweighted trace-semivariogram (black line).

Figure 2. (a) Boxplots for the FCSD trace-semivariograms, FCWA and FCWA2 trace-
semivariograms. (b) Mean Square Errors of the three estimators (FCSD,
FCWA and FCWA2) for the unweighted trace-semivariograms.

weights definition). Further research is needed on alternative estimators of the
unweighted flow-connected portion of the semivariogram of a pure tail-up model
that balance bias and variance better than γ̂FCWA(hk) and γ̂FCWA2(hk) do.

The observations made are further confirmed by looking at Figure 2a, display-
ing the boxplots of the semivariograms at each lag. Here, the boxplots highlight
the excessive variability of both FCWA and FCWA2 trace-semivariograms. Figure
2b shows the Mean Square Error of each estimator at each distance. The MSE
associated to FCWA and FCWA2 is increasing for increasing values of the stream
distance, consistent with the results available in the literature for the scalar case.

We now dive a little deeper in the results of this simulation in terms of
parameters estimates. For the B=500 simulated datasets, each empirical estimator
(FCSD, FCWA, FCWA2) is exploited to estimate the sill and the range (using the
R package gstat, (Pebesma (2004)). Table 2 displays the relevant statistics for
this simulation. To automatize the procedure, the choice of the initial paramters
in the fit.variogram function, has been done as follows:
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1. The initial partial sill was set as the median of the last four estimates of
the empirical semivariogram;

2. The initial range was set as the minimum distance in which the empirical
semivariogram reach the 95% of the sill.

In this simulation the nugget has not been fitted. Moreover, despite this con-
vention, the fitting procedure implemented in fit.variogram did not always
reach convergence: it converged 497/500 times for the FCSD fitting, 317/500 for
the FCWA and 356/500 for FCWA2. The cases in which convergence was not
reached has been removed from the analysis. In Table 2, FUSD refers to the sill
estimate obtained by γ̄FUSD. Concerning this last estimate, it is clear that it
outperforms the others in terms of Root Mean Square error (RMSE). Regarding
the range estimates, we can appreciate the strong underestimation obtained by
fitting the FCSD semivariogram (both with respect to the mean and the median).
On the other hand, if FCWA and FCWA2 are more accurate on average (they
sligthly overestimate the theoretical range), they have higher RMSE due to their
incredible high variability. Figure 3a and Figure 3b present the distributions of
these estimates. All the considerations that have been made appear even more
clearly by looking at these graphs.

Figure 3. Distributions of the fitted ranges (a) and sills (b) obtained via FCSD, FCWA
and FCWA2. (c) Distributions of the fitted ranges obtained by fitting FCSD,
FCWA and FCWA2 empirical trace-semivairograms and fixing the sill to the
FUSD estimate.

Table 2. Simulation results in terms of sill (θv) and range (θr) estimation.

Theoretical θ̂v θ̂r

Mod θv θr Empirical Median Mean RMSE Median Mean RMSE

FCSD 68.05 69.35 9 4.87 5.04 3.62
Sph 70 8.5 FCWA 79.14 91.28 54.62 8.89 9.98 5.17

FCWA2 68.97 79.39 40.47 8.45 9.64 4.87
FUSD 69.69 70.11 4.63
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Finally, encouraged by the accuracy in the sill estimation (obtained via FUSD),
we exploited it in an attempt to improve the range estimate. Indeed, the theo-
retical models have also been fitted to the trace-semivariograms fixing the sill to
the FUSD estimate. The results, reported in Table 3, are sligtly better in terms
of RMSE, as far as FCWA and FCWA2 are concerned. Indeed, also by looking
at Figure 3c - which displays the distributions of the so obtained estimates - it
is clear that the parameters estimated via FCWA and FCWA2 exhibit a lower
variance than before.

Table 3. Simulation results for the empirical trace-semivariograms in terms of range
estimates.

Theoretical θ̂r

Mod θv θr Empirical Median Mean RMSE

FCSD 5.04 5.2 3.4
Sph 70 8.5 FCWA 7.07 8.18 3.19

FCWA2 7.9 8.81 3.47

3 Sensitivity of Kriging to range underestimation

Beyond variographic estimation and variance characterisation, our interest lies
in kriging prediction. Thus, in this Section, the impact that a rough estimate
of the range would entail is investigated. In particular, for each simulation, a
leave-one-out cross validation approach (LOOCV) has been employed to evaluate
the performance of the kriging predictor obtained by means of the parameters
estimated in that specific iteration ( via FCSD, FCWA and FCWA2). The proce-
dure is summarized as follows.

For each simulation b = 1, . . . , 500:

1. Fit the empirical semivariogram (FCSD, FCWA or FCWA2) to the valid
model and obtain the parameter estimates θ̂ = (θ̂v, θ̂r). (provided the
fit.variogram function reaches convergence).

2. for each location si, i = 1, . . . , 200:

(a) remove the data point Xsi from the b-th simulated dataset.

(b) Retrieve the covariance structure by plugging the estimate θ̂ in the
theoretical parametric model. Hence, predict the removed functional
data point Xsi via Kriging interpolation of the remaining data. Let
X ∗si be the estimated data point.

(c) compute the error ‖Xsi −X ∗si‖
2
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3. Compute the performance index associated to the b− th simulation.

SSEb =
200∑
i=1

‖Xsi −X ∗si‖
2

Figure 4 displays the violin plot of the distribution of the SSEb for the three
different parameter estimation methods.

Figure 4. Violin plots (and boxplots) of the sum of square errors SSEb, b = 1 . . . 500

The first thing we notice from Figure 4 is the presence of rather high outliers
when the empirical semivariogram was fitted via FCWA and FCWA2. Indeed,
since these estimators are featured by a strong variability, it is possible to come
up with highly unlikely parameters estimates (either too high or too low). Conse-
quently, in these extreme cases, the kriging prediction is compromised. On the
other hand, FCSD shows a slightly higher median. However, at least in this spe-
cific case, the range underestimation does not seem to heavily affect the Kriging
performance. Some research has been done in literature to investigate Kriging
robustness. Nevertheless greater attention has been posed on the misspecification
of the variogram family rather than bad parameters estimates. What emerges
from the classical texts (Cressie (1993), Chilès and Delfiner (2012)) is that the
range does affect the Kriging predictor, but certainly to a lesser extent than,
for example, the behaviour of the semivariogram near the origin (the nugget effect).

Beyond these general considerations, the conclusion we draw from this sim-
ulation study is that the excessive variability of the weights adjusted empirical
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semivariograms FCWA and FCWA2 makes them unusable from a practical point
of view. The mere fact that, in a large number of cases, the fit does not reach
convergence leads us to consider these estimators too unstable for real applica-
tions. Furthermore, their use does not seem to be encouraged by better predictive
performance either. Therefore, pending on the considerations in Zimmerman
and Ver Hoef (2017) and on the results of this analysis, we encourage the use
of γ̂FCSD(·) without modification to characterize flow-connected dependence,
despite its bias. Nevertheless it is not unusual for a theoretically biased estimator
- such as FCSD - to perform better in practice with respect to an unbiased one.

References

Barbi, C., Menafoglio, A., and Secchi, P. (2022), “An object-oriented approach
to the analysis of spatial complex data over stream-network domains,” MOX
report, .

Chilès, J., and Delfiner, P. (2012), Geostatistics: Modeling Spatial Uncertainty,
Second Edition, Wiley Series in Probability and Statistics John Wiley and Sons,
Inc.

Cressie, N. A. C. (1993), Correlation Theory of Stationary and Related Random
Functions, Vol. I, Wiley Series in Probability and Statistics John Wiley and
Sons, Inc.

Pebesma, E. J. (2004), “Multivariable geostatistics in S: the gstat package,”
Computers and Geosciences, 30, 683–691.

Zimmerman, D. L., and Ver Hoef, J. M. (2017), “The Torgegram For Fluvial
Variography,” Journal of Computational and Graphical Statistics, 13, 253–264.

9



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

31/2022 Bortolotti, T; Peli, R.; Lanzano, G; Sgobba, S.; Menafoglio, A
Weighted functional data analysis for the calibration of ground motion
models in Italy

30/2022 Bonetti S.; Botti M.; Antonietti P.F.
Discontinuous Galerkin approximation of the fully-coupled
thermo-poroelastic problem

29/2022 Fumagalli, I.; Polidori, R.; Renzi, F.; Fusini, L.; Quarteroni, A.; Pontone, G.; Vergara, C.
Fluid-structure interaction analysis of transcatheter aortic valve implantation

28/2022 Ciarletta, P.; Pozzi, G.; Riccobelli, D.
The Föppl–von Kármán equations of elastic plates with initial stress

26/2022 Orlando, G.
A filtering monotonization approach for DG discretizations of hyperbolic
problems

25/2022 Cavinato, L; Gozzi, N.; Sollini, M; Kirienko, M; Carlo-Stella, C; Rusconi, C; Chiti, A; Ieva, F.
Perspective transfer model building via imaging-based rules extraction from
retrospective cancer subtyping in Hodgkin Lymphoma

27/2022 Lazzari J., Asnaghi R., Clementi L., Santambrogio M. D. 
Math Skills: a New Look from Functional Data Analysis

24/2022 Cappozzo, A.; McCrory, C.; Robinson, O.; Freni Sterrantino, A.; Sacerdote, C.; Krogh, V.; Panico, S.; Tumino, R.; Iacoviello, L.; Ricceri, F.; Sieri, S.; Chiodini, P.; Kenny, R.A.; O'Halloran, A.; Polidoro, S.; Solinas, G.; Vineis, P.; Ieva, F.; Fiorito, G.;
A blood DNA methylation biomarker for predicting short-term risk of
cardiovascular events

23/2022 Masci, C.; Ieva, F.; Paganoni, A.M.
A multinomial mixed-effects model with discrete random effects for modelling
dependence across response categories

22/2022 Regazzoni, F.; Pagani, S.; Quarteroni, A.
Universal Solution Manifold Networks (USM-Nets): non-intrusive mesh-free
surrogate models for problems in variable domains


	qmox32-copertina
	mox-202256153123
	qmox32-terza_di_copertina

