
MOX-Report No. 32/2019

Polygonal surface processing and mesh generation tools

for numerical simulations of the complete cardiac

function.

Fedele, M.� ✁✂✄☎✆✝☎✞✟✠✡ ☛☞

MOX, Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

Polygonal surface processing and mesh generation tools for

numerical simulations of the complete cardiac function

Marco Fedele1,∗, Alfio Quarteroni1,2

1 MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
2 Professor Emeritus, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

∗marco.fedele@polimi.it

Abstract

In order to simulate the cardiac function for a patient-specific geometry, the generation of
the computational mesh is crucially important. In practice, the input is typically a set of un-
processed polygonal surfaces coming either from a template geometry or from medical images.
These surfaces need ad-hoc processing to be suitable for a volumetric mesh generation. In this
work we propose a set of new algorithms and tools aiming to facilitate the mesh generation
process. In particular, we focus on different aspects of a cardiac mesh generation pipeline: a)
specific polygonal surface processing for cardiac geometries, like connection of different heart
chambers or segmentation outputs; b) generation of accurate boundary tags; c) definition of
mesh-size functions dependent on relevant geometric quantities; d) processing and connecting
together several volumetric meshes. The new algorithms – implemented in the open-source soft-
ware vmtk – can be combined with each other allowing the creation of personalized pipelines,
that can be optimized for each cardiac geometry or for each aspect of the cardiac function to
be modeled. Thanks to these features, the proposed tools can significantly speed-up the mesh
generation process for a large range of cardiac applications, from single-chamber single-physics
simulations to multi-chambers multi-physics simulations. We detail all the proposed algorithms
motivating them in the cardiac context and we highlight their flexibility by showing different
examples of cardiac mesh generation pipelines.

keywords: cardiac mesh generation, polygonal surface processing, patient-specific modeling,
heart modeling.

This report, or a modified version of it, has been also published on:
“International Journal for Numerical Methods in Biomedical Engineering”.

1 Introduction

The mathematical and numerical modeling of the cardiac function is a very challenging research
topic [2]. Advances in this field can help to better understand the heart physiology [3, 4, 5, 6, 7, 8]
and are promoting a new approach to the study of cardiac pathologies and their treatments [9,
10, 11, 12, 13, 14, 15].

In terms of modeling, the multi-physics aspects of the cardiac function can be grouped into
three main processes: the electrophysiology that takes into account the electric signal propagation
and the biochemical processing occurring at cells level; the active and passive mechanics that,
driven by the electric signal and by the pressure evolution inside the cardiac chambers, models
the movement and the internal stresses of the cardiac muscle; and the fluid-dynamics that,

1

(b)

(c) (d)

RA

RV

LA

LV

(a)

Figure 1: On the left (a), an example of heart geometry, elaborated from the Zygote Solid Heart
model [1]: the Left Atrium (LA) and the Left Ventricle (LV) are filled up with oxygenated blood (in
red), while the Right Atrium (RA) and the Right Ventricle (RV) are full of non-oxygenated blood
(in blue); the ventricular myocardial muscle is shown in transparency, while the atrial muscle – being
very thin – is not depicted. On the right (b-c-d), the same ventricular geometry depicted with a
decreasing level of details; for the most detailed one (b) an inside zoom of the papillary muscles and
trabeculae carneae is also shown.

2

together with the motion of the four cardiac valves, regulates the blood flow circulation in the
entire human body.

From the geometric point of view, the heart is characterized by a very complex anatomy, as
illustrated in Fig. 1, (a). Both the ventricular and the atrial muscles are in continuity from the
left to the right side of the heart, while they are connected to each other only by the fibrotic
tissue of the annuli, which also acts as electrical insulators [16]. On the contrary, from the
hemodynamic point of view, the internal cavities are connected only along the atrioventricular
direction, while a clear separation between the right and the left cavities is necessary to divide
the oxygenated and the non-oxygenated blood [16]. Thus, from the geometric point of view, a
complete electro-mechano-fluid model of the cardiac function must take into account both the
atrio-ventricular muscle separation and the right-left hemodynamic division. The complexity
is furtherly increased by the presence on the endocardium of the papillary muscles and the
trabeculae carneae, which make the inner part of the heart a rough and irregular surface, as
shown for the ventricles in Fig. 1,(b). Depending on the focus of the study, this geometric
complexity can be addressed with a different level of detail, see e.g. Fig. 1, (b)-(c)-(d).

Starting from these general considerations, in the literature we can find a variety of com-
putational studies focused on completely different aspects of the cardiac function: standalone
electrophysiology simulations [17, 18, 19] often focused on particular pathologies and clinical ap-
plications [14, 20]; electromechanics studies [3, 21, 22, 8]; fluid-dynamics simulations involving
the cardiac valve modeling [23, 24, 25, 26, 27, 28]; and, more seldom, full electro-mechano-fluid
simulations of the heart, albeit with some simplifications [29, 30].

A computational study of the cardiac function, especially in the case of patient-specific
geometries reconstructed from medical images, generally starts from the processing of polygonal
surfaces and the generation of a computational mesh. The difficulty of this first pre-processing
step increases with the number of cardiac chambers we aim to address and the level of geometric
detail desired. On the one hand, the mesh generation of a smooth left-ventricle cut at the base
(see Fig. 1, (d)) can be considered a relatively simple process. On the other hand, dealing with
detailed cardiac geometries (see Fig. 1, (b)) or with the constraint of creating conforming meshes
between the different chambers of the heart can be a very challenging time- and manpower-
consuming operation.

Mesh generation is a field characterized by very different techniques. A detailed review of
this topic goes beyond the aim of this paper and can be found, for instance, in [31, 32, 33, 34,
35]. Concerning the cardiac field, various application-specific pipelines have been proposed in
literature [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

In this context, grid-based techniques [47] invariably start from an initial regular grid – e.g.
the medical image voxel grid – and adapt the mesh till matching the desired geometry – e.g. a
multi-label image segmentation. Exploiting such kind of techniques, Prassl et al. [38] proposed
a pipeline to build detailed biventricular geometries for electrophysiology models. Similarly,
Strocchi et al. [45] generated a cohort of four-chambers meshes for electro-mechanical models
from high-resolution CT-scans, exploiting the integration in the pipeline of an automatic multi-
label segmentation method [48]. As a drawback, these methods all rely on a specific kind of
image data or segmentation technique [38]. Thus, they are not applicable, for instance, in the
case where each chamber is reconstructed from a different image.

Another technique consists in the use of an application-specific template mesh, that is de-
formed into each patient-specific geometry [39, 40, 49, 46]. The template can be an idealized
geometry [39] or an atlas built from a large dataset of medical images [50, 51, 52, 53]. In this
context, Lamata et al. [39], using an idealized biventricular template, proposed a pipeline to
generate smooth biventricular hexahedral meshes for mechanics simulations; This et al. [46]
exploit a smooth template geometry of the left-heart endocardium to perform patient-specific
hemodynamics simulations; Hoogendoorn et al. [49] adopt an atlas-based method to perform
patient-specific electrophysiology simulations in smooth biventricular geometries; Zhang et al.
[40] proposed an atlas-based method to build cubic Hermite finite element meshes of a full-heart

3

CARDIAC
MESH
TOOLS

MESH PROCESSING

TA
G

S SURFACE PROCESSING

M
ESH-SIZE

Figure 2: A sketch of the cardiac mesh tools covered in this paper, highlighting the four groups
into which they are divided.

smooth geometry. Recently, template-based techniques have also been proposed in the context
of isogeometric analysis [54, 55]. However, all these techniques strongly rely on the features of
the template geometry and are strictly related to the application they are designed for. Addi-
tionally, they may have difficulty capturing detailed cardiac geometries, due to the significant
anatomical variations of the heart [56, 57, 58].

In the context of patient-specific cardiovascular applications, surface-based techniques such
as advancing-fronts [59, 60, 61] and Delaunay-based methods [62] still remain very popular.
These methods discretize the domain starting from the external polygonal surface and propagate
the mesh-size of the polygonal elements towards the inside of the volume. The main advantage
is a full control over the meshing process through, for instance, coarsening or refinement of
specific parts of the surface. Moreover, since they can start from the output of any medical
image segmentation algorithm, they can accurately reproduce detailed patient-specific geome-
tries of both healthy or pathological hearts. This is of fundamental importance since, among all
the parameters considered for a cardiovascular simulation, recent studies demonstrate how the
geometry has a significant impact on the outputs [63, 64, 65]. As a drawback, these methods
require triangulated surfaces of sufficient good quality, whereas thin or intersecting surfaces,
typical of cardiac segmentation outputs, can be problematic. Consequently, flexible and easy-
to-use algorithms to process polygonal surfaces are required to make surface-based techniques
more powerful for cardiac mesh generation.

Summarizing, a unique mesh generation pipeline for all the cardiac applications can not
hardly proposed. For this reason, in this paper, in the context of surface-based techniques,
we propose various independent algorithms and tools that can be combined with each other
in a flexible way, creating application-dependent pipelines. In particular, we start from stable
algorithms and tools originally designed for vascular surface processing and mesh generation
and implemented in the vascular modeling toolkit (vmtk)1 library [66] and we extend them

1http://www.vmtk.org/

4

http://www.vmtk.org/

with new specific algorithms developed for cardiac mesh generation. As sketched in Fig. 2, the
proposed algorithms will address four different tasks: polygonal surface processing; boundary
tags definition; mesh-size definition; volumetric mesh processing. For each of these tasks, we
propose new algorithms to facilitate and automatize common steps in a cardiac mesh generation
pipeline, overcoming the typical problems related to surface-based techniques and cardiac mesh
generation. The proposed algorithms – publicly available in a fork of vmtk2 – are released in a
unique framework that allows tremendous flexibility in the creation of mesh-generation pipelines
designed for the needs of the specific cardiac model. Thus, the proposed framework can be used
to create single- or multi-chamber geometries with different levels of details, depending on the
kind of simulation to be performed. This feature can be considered the primary contribution of
our paper. Indeed, despite the existence of numerous open-source or commercial softwares in
this area (e.g. Gmsh [67], Netgen [68], Cubit [69], MeshLab [70], Meshmixer [71], Meshtool [44],
Blender [72]), having all the tools required to build a cardiac computational mesh in a single
pipeline can significantly speed-up this time- and manpower-consuming operation.

Moreover, the possibility of creating fully-automatic pipelines for a specific application can
also be exploited for clinical studies on huge datasets or to create virtual cohorts of heart models
[73].

The outline of the paper is as follows: in Section 2 we illustrate all the proposed algorithms,
and for each of them we provide motivations through significant examples in the cardiac context;
in Section 3 we combine the proposed algorithms in single pipelines to generate different kinds
of cardiac meshes, and show some examples of already published numerical studies focused on
different aspects of the cardiac function; a final discussion and the conclusions of our work are
drawn in Section 4.

2 Methods

In Table 1 we summarize all the new algorithms and tools proposed in this paper, underlining
their main input and output. As sketched in Fig. 2, we can group them into the following four
macro-areas, to each of which we will dedicate a specific section.

� Polygonal surface processing (Section 2.1). Among the variety of algorithms related to
this broad topic, we propose four algorithms designed for specific processing needs in the
framework of cardiac applications. In particular, three of them – surface-connection (Sec-
tion 2.1.1), boolean-connection (Section 2.1.2), and harmonic-connection (Section 2.1.3)
– concern different ways to join two separate polygonal surfaces. This operation is of
paramount importance in cardiac applications, where the segmentation output can consist
of multiple surfaces, e.g. the endocardium and the epicardium of the ventricles or different
cardiac chambers. Additionally, we also propose an algorithm – surface-thickening (Sec-
tion 2.1.4) – to post-process a cardiac muscular mesh (e.g. an atrium or a ventricle) in
order to locally modify its thickness.

� Boundary tags definition (Section 2.2). While in most engineering applications the
geometry can be defined as a CAD model [74] and consequently the boundaries are iden-
tifiable as part of this model (e.g. by exploiting sharp edges), significant boundaries of
cardiovascular geometries (e.g. valvular annuli) could also appear in smooth parts of the
domain. In this context, we propose a flexible and precise tool – surface-tagger (Sec-
tion 2.2) – to automatically tag a surface by exploiting significant functions defined on
it.

� Array processing and mesh-size definition (Section 2.3). While for vascular appli-
cations the mesh-size is usually dependent on the local radius of the vessel [75, 76, 66],
for complex cardiac geometries (see, for instance, Fig. 1, (b)) more than one geometric

2https://github.com/marco-fedele/vmtk

5

https://github.com/marco-fedele/vmtk

Name Input Output

surface-connection
(Section 2.1.1)

two open surfaces separated
by a gap

a continuous surface obtained by
smoothly connecting two boundaries of
the input surfaces

boolean-connection
(Section 2.1.2)

two intersecting surfaces a continuous smooth surface made of
regular triangles obtained as the union,
the difference, or the intersection of the
two inputs

harmonic-
connection (Sec-
tion 2.1.3)

an input surface and a refer-
ence surface

a continuous surface made of regular tri-
angles obtained by deforming a bound-
ary of the input surface into a boundary
of the reference one, and extending the
deformation through a harmonic map

surface-thickening
(Section 2.1.4)

a surface with an array de-
fined on it representing the
thickness

a thickened surface in the regions where
the input thickness is lower than a
threshold

surface-tagger (Sec-
tion 2.2)

a surface with geometric
quantities defined on it as
arrays

a tagged surface where the boundary
tags are created by exploiting different
algorithms based on either the manipu-
lation of the input arrays or an interac-
tive graphical interface

harmonic-extension
(Section 2.3.1)

a surface with a scalar or vec-
tor field defined only on a sub-
part of it

a surface with the input field extended
on the whole domain through a har-
monic map

surface-thickness
(Section 2.3.2)

a tagged surface with specific
tags for the internal and the
external walls

a surface with its thickness defined on it
as an array

surface-mesh-size
(Section 2.3.3)

a surface with geometric
quantities defined on it as
arrays

a surface with an additional array repre-
senting the mesh-size, computed by ma-
nipulating the input arrays

mesh-connection
(Section 2.4.1)

two tagged volumetric meshes
separated by a gap

a unique volumetric mesh created by
generating a connecting volume between
two selected regions of the two input
meshes

mesh-refinement
(Section 2.4.2)

a volumetric mesh with a ge-
ometric quantity or function
defined on it

a volumetric mesh locally refined by ex-
ploiting the input array as a sizing func-
tion

tet-hex (Sec-
tion 2.4.3)

a tetrahedral volumetric mesh a hexahedral volumetric mesh obtained
by subdividing each tetrahedron intro
four hexahedra

Table 1: List of all the proposed algorithms and tools with their main input and output.

6

quantity needs to be considered (e.g. local curvature, muscle thickness). This topic is also
linked to the definition of specific arrays on a surface and to their processing. In this con-
text, we propose the surface-thickness algorithm (Section 2.3.2) to compute the thickness
of the cardiac muscle, and the harmonic-extension algorithm (Section 2.3.1) to extend a
field defined only on a part of the surface. Finally, we propose a tool – surface-mesh-size
(Section 2.3.3) – to combine and manipulate different arrays in order to flexibly define the
desired mesh-size function on a surface.

� Volumetric mesh processing (Section 2.4). In surface-based techniques, after the gen-
eration of a surface mesh of the desired mesh-size, the volumetric mesh generation is a
straightforward operation based on well-known algorithms [62, 68, 60, 77]. However, for
some cardiac applications, additional processing on the volumetric mesh could be nec-
essary. For this purpose, we propose three algorithms: the mesh-connection algorithm
(Section 2.4.1) to connect two disconnected volumetric meshes, e.g. two cardiac chambers
at their valvular annuli; a local-refinement algorithm – mesh-refinement (Section 2.4.2)
– based on the constrained Delaunay refinement method of TetGen [62]; and the tet-hex
algorithm (Section 2.4.3) to include in our framework a well-know strategy to convert
tetrahedral meshes into hexahedral ones.

We conclude this introduction to the proposed algorithms by motivating the choice of vmtk as
development environment and summarizing some notations that we will adopt in the following
sections. vmtk is a library written in C++ and Python that can be used as a collection of
Python scripts linkable to each other in a pipeline, meaning that the output of a script can be
automatically used as the input of another script and so on. Moreover many algorithms and
tools of vmtk – despite being originally thought for vascular modeling – can also be applied
in the cardiac context. We mention in particular the remeshing algorithm, which is able to
remesh a surface according to a mesh-size function defined on it and preserving the geometry
of the boundary tags. Moreover, the remeshing can be localized only on a subset of tags,
allowing a significant speed-up when dealing with complex geometries. In the following, the
word “remeshing” always refers to the vmtk remeshing algorithm; we refer to Antiga et al. [66]
for more details. Two other fundamental features of vmtk are the embedding of TetGen[62] – for
the volumetric mesh generation through an efficient version of the Delaunay algorithm [77, 60]
– and its internal structure based on the VTK library [78]. In particular, we use the latter to
require user input through a 3D interactive graphical interface.

In the following algorithms, we deal with both 3D domains, 2D manifolds, and 1D curves,
depending on the operation to be performed. We assign a specific Greek letter to each of
these three cases, by denoting with Ω the 3D volumetric meshes, with Σ the 2D polygonal
surfaces, and with Γ the 1D curves. A closed 1D curve typically appears as a boundary of
a polygonal surface. In this context, we often denote it as ring, since the boundary of the
cardiovascular surfaces is usually ring-shaped. If not otherwise specified, we suppose that Ω
is made of tetrahedral elements, Σ of triangles, and Γ of lines. We indicate a surface without
boundary as closed surface, the opposite case as open surface. Finally, we denote as unsigned
distance the positive scalar function representing the euclidean distance from a reference object
and as signed distance the same distance with a positive or negative sign depending on whether
the point is outside or inside the reference object, respectively. These distances are computed
using the angle weighted pseudonormal algorithm implemented in VTK [79, 80].

2.1 Polygonal surface processing

2.1.1 Connection of disconnected surfaces: the surface-connection algorithm

Motivations The starting point of a patent-specific mesh generation pipeline in the cardio-
vascular context can often be a set of disconnected surfaces separated by a gap. For instance,
the generation of a mesh for the simulation of the fluid dynamics in the heart chambers can

7

Σ1

Σ2

Γ1

Γ2

Figure 3: Connecting the right atrium (Σ1) and the right ventricle (Σ2) at the tricuspid valvular
annulus (Γ1 and Γ2) using the surface-connection algorithm. Each generated triangle lies on Γ1

(red triangles) or Γ2 (green-triangles) depending on a minimum distance criterion, while a specific
criterion is used for the last triangle that closes the triangulation (in blue).

typically start from the disconnected internal surfaces of the right/left ventricle, the right/left
atrium, and the various inlet/outlet vessels. Indeed, all these geometries can be reconstructed
independently from different kinds of images and need to be merged in order to create a con-
tinuous triangulation. We will see a complete example of a pipeline to generate such kind of
fluid-dynamic mesh in Section 3, whereas here we detail the new algorithm proposed to connect
two disconnected surfaces.

Input, output, parameters and options The algorithm takes as input two non-overlapping
disconnected open surfaces – named Σ1 and Σ2. As output, we obtain a unique surface Σ con-
necting the two input surfaces from a ring Γ1 ∈ Σ1 to a ring Γ2 ∈ Σ2 through a smooth
continuous triangulation coherent with the shape of the two boundaries. The connecting tri-
angulation is marked with a specific tag. No parameters are required since the algorithm is
completely automatic; if Σ1 or Σ2 have more than a single boundary ring, a graphical interface
allows the user to choose which one to connect.

The surface-connection algorithm Our algorithm starts from a random point on Γ1 and
from its closest point on Γ2, then it iteratively adds a triangle on Γ1 or on Γ2 choosing always
the triangle with the shortest connecting edge between the two rings. In Fig. 3 we show an
example where the right atrium Σ1 and the right ventricle Σ2 are connected at their boundaries
Γ1 and Γ2, respectively, located at the tricuspid valve annulus. More in detail the algorithm
proceeds as follows:

1. Extract from Σ1 and Σ2 all the boundaries, storing them into two sets of N1 and N2 rings,
respectively;

2. select Γ1 and Γ2 from the two boundary sets, using a graphical interface if N1 > 1 or
N2 > 1;

3. supposing that Γ1 and Γ2 are made of n1 and n2 points, respectively, select a random
point P 0

1 on Γ1 and find the closest point P 0
2 on Γ2. These are the two starting points of

8

the connecting triangulation, that at this stage is made of the set of points P = {P 0
1 , P

0
2 }

and of an empty set of triangles T = ∅;
4. find the two neighbor points of P 0

1 and select randomly one of them as P ∗1 ;

5. find the two neighbor points of P 0
2 and select as P ∗2 the closest point to P ∗1 ;

6. initializing P1 = P 0
1 , P2 = P 0

2 , and i = 2 as the counter of the points inserted in P, proceed
as follows while i ≤ (n1 + n2):

(a) compute the distances d1 = |P ∗1 − P2| and d2 = |P ∗2 − P1|;
(b) if d1 < d2, then set P ∗ = P ∗1 (red-triangle case of Fig. 3), else set P ∗ = P ∗2 (green-

triangle case of Fig. 3);

(c) insert P ∗ into the set of points P = P ∪ {P ∗} and increment i = i+ 1;

(d) create the triangle T made by the points (P1, P2, P
∗) and insert it in the triangulation

T = T ∪ {T};
(e) if d1 < d2, then update P1 = P ∗ and P ∗1 as the neighbor of P1 not yet inserted in P,

otherwise do the same operation for P2 and P ∗2 ;

7. at the end of the cycle, P comprises (n1 + n2 + 1) points. Indeed, only one point between
P 0

1 and P 0
2 – i.e. the two initial points – has been inserted twice. Thus, at this stage,

(P1 = P 0
1) Y (P2 = P 0

2). In order to close the triangulation T , we have to insert the last
triangle T ∗ – depicted in blue in Fig. 3, right – exploiting the point between P 0

1 and P 0
2

that has not yet been inserted twice: if P1 = P 0
1 , then T ∗ is made of (P1, P2, P

0
2), else T ∗

is made of (P1, P2, P
0
1).

8. assign a specific tag to the triangles of the just created connecting triangulation T ;

9. merge T with the two input surfaces by removing duplicate points, creating a unique
connected surface Σ = Σ1 ∪ T ∪ Σ2.

Discussion The proposed algorithm demonstrates its robustness when applied to complex
cardiac geometries (see Section 3), since it works also when the distance between the rings Γ1

and Γ2 varies in a large range. Moreover, we remark that the two rings to be connected can be
made of a very different number of points. Indeed, thanks to the minimum distance criterion,
the algorithm will insert always the best possible triangle that maintains the smoothness of the
connection. Clearly, the resulting triangulation T can be made of “slim” or “fat” triangles.
However, using the capability of vmtk of remeshing only a single tag, the new triangulation
can be easily remeshed with an arbitrary mesh-size, recovering its regularity and, at the same
time, maintaining both the shape of the triangulation T and the conformity with the two input
surfaces Σ1 and Σ2.

2.1.2 Connection of intersecting surfaces: the boolean-connection algorithm

Motivations Outputs of cardiac medical imaging segmentation can be intersecting surfaces.
For instance, it is common to reconstruct the endocardium and the epicardium of the left
ventricle separately. Since the volume occupied by blood is usually the part with more contrast
in a cardiac image – either because of an injection of a contrast agent (like in CT-scans) or
because of specific acquisition protocol (like in cardiac MRI) – the endocardium is reconstructed
as the external limit of the blood regions inside the heart. This typically produces a surface
that includes a part of the left-atrial endocardium and of the aortic root. On the contrary,
the epicardium is typically reconstructed as a closed surface capped at the valvular annulus.
An example of such kind of segmentation outputs is shown in Fig. 4, center. In that case the
left-ventricle can be reconstructed by connecting the two surfaces at their intersection. This
operation can be achieved with boolean operation between surfaces [80], in particular using
the difference boolean operator. However, the output surface can be characterized by irregular

9

Σ2

Σ1

Σ

Figure 4: Comparison between the connection of two intersecting surfaces using classical boolean
operations and the proposed boolean-connection algorithm: on the center, the left-ventricular epi-
cardium (Σ1) and endocardium (Σ2) as delivered by the segmentation process; on the left, the
output of a classical boolean difference operator Σ1 − Σ2 which produces irregular triangles and
narrowed regions, as depicted in the zoomed box; on the right, the output (Σ) of the same difference
computed with the boolean-connection algorithm which generates a smooth surface made of regular
triangles and which also assigns the tags of the endocardium (red), the epicardium (grey) and the
newly-generated valvular annulus (blue).

10

triangles and narrowed regions on the intersection zone, as shown in the zoomed box of Fig. 4,
left. This kind of angular geometry makes the volumetric mesh generation challenging or even
not possible without any additional processing. For these reasons, we propose a slightly different
approach that generates as output a smoother and already tagged surface ready for volumetric
mesh generation, as shown in Fig. 4, right, for the aforementioned example.

Input, output, parameters and options Two triangulated surfaces – named Σ1 and
Σ2 – intersecting in one or more closed lines are taken as input. Both Σ1 and Σ2 should be
closed surfaces, otherwise an undesired output could be produced since the internally-used signed
distance is not robustly defined for open surfaces. Fortunately, polygonal surfaces generated by
a medical image segmentation are usually closed. Another requirement is that both surfaces
are characterized by outward normals, as it is common for polygonal closed surfaces. Our
algorithm provides as output a unique closed surface Σ defined as the difference, the union,
or the intersection between Σ1 and Σ2. The two input surfaces are clipped at a user-defined
distance ε from their intersections and then connected using the surface-connection algorithm.
Optionally, the clip operation can be done only on a single input surface. Moreover, the final
surface Σ is remeshed – optionally only near the intersection zone – using a user-defined constant
mesh-size h.

The boolean-connection algorithm

1. On Σ1, compute the signed distance d1 from Σ2 and vice-versa to obtain d2;

2. clip Σ1 and Σ2 at their intersection, i.e. at the level where d1 = d2 = 0. Name the two
resulting boundary rings Γ1 and Γ2. At this stage, Σ1 and Σ2 are split into two parts: Σ+

1

and Σ+
2 where d1 ≥ 0 and d2 ≥ 0, respectively; Σ−1 and Σ−2 where d1 ≤ 0 and d2 ≤ 0,

respectively;

3. depending on the desired boolean operation, keep only the negative or the positive part of
the two surfaces and name them as Σ∗1 and Σ∗2, respectively:

� difference: Σ∗1 = Σ+
1 and Σ∗2 = Σ−2 ;

� union: Σ∗1 = Σ+
1 and Σ∗2 = Σ+

2 ;

� intersection: Σ∗1 = Σ−1 and Σ∗2 = Σ−2 ;

4. on Σ∗1 and Σ∗2 compute the unsigned distances D1 and D2 from the boundary rings Γ1 and
Γ2, respectively;

5. using the user-defined parameter ε, clip Σ∗1 and Σ∗2 at the level where D1 = D2 = ε and
keep the part where D1 ≥ ε and D2 ≥ ε, respectively. Optionally, this operation can be
done only on Σ∗1 or on Σ∗2, to preserve the sharpness of the intersection;

6. remesh both Σ∗1 and Σ∗2 using the parameter h as constant mesh-size, in order to gener-
ate better quality triangles at the level of the clip, where the generated polygons would
be otherwise split into narrowed triangles. This remeshing can be optionally performed
only on a 3h-wide “buffer-zone”, in order to avoid remeshing those regions far from the
intersection zone;

7. now Σ∗1 and Σ∗2 both have open boundaries near the intersection zone made of regular
triangles. Thus, we can connect them by exploiting the surface-connection algorithm
(Section 2.1.1) generating the continuous conforming surface Σ. This operation also assigns
specific tags to the three different regions of Σ (Σ∗1, Σ∗2, and the connecting ring). If more
than one boundary per-surface are present, each boundary is automatically connected with
the nearest one;

8. remesh also the connecting zone of the final surface Σ with the constant mesh-size h.

11

Discussion In Fig. 4 we show the result of the difference operator between the epicardium
(Σ1) and the endocardium (Σ2) of the left-ventricle. We compare the results of a traditional
boolean algorithm [80] (on the left) with the newly proposed boolean-connection algorithm (on
the right). Thanks to the clip at distance ε from the intersection ring, the output of our
algorithm consists in a smoother surface, with no unrealistic narrowed regions at the valvular
annulus. Moreover, the automatic generation of tags identifies particular regions like the valvular
annulus (Fig. 4, right, in blue) that cannot be easily reconstructed from medical images and
that can be defined with a realistic thickness by suitably tuning the parameter ε. Finally, the
integrated remeshing process generates a surface made of regular triangles, avoiding the creation
of degenerate stretched elements. The output surface is now ready for the volumetric mesh
generation, contrary to what would happen with traditional algorithms. Thus, the proposed
algorithm can contribute to speed up the mesh generation process, especially when the focus
is a patient-specific single-chamber model as the one shown in Fig. 4. For other applications,
however, a “smooth” connection can produce a worse result. For instance, this can happen when
an artificial device – like the implantation of a cannula – orthogonally intersects a vessel or a
cardiac chamber. In this case, the user can activate the option to perform the clip operation only
on a single input surface (see step 5 of the algorithm). Indeed, this will produce the same sharp
intersection provided by the traditional algorithm, but still taking advantage of the integrated
remeshing procedure that generates a surface ready for the volumetric mesh generation.

Although we have limited our example to the difference operation, union and intersection
operations may also be useful in the cardiac context. For instance, union can be used to connect
the atrial endocardium with the ventricular endocardium when the segmentation produces two
closed surfaces reconstructed from two different medical images.

2.1.3 Connecting two surfaces through a deformation: the harmonic-connection
algorithm

Motivations The surface-connection algorithm (Section 2.1.1) is used to connect two discon-
nected surfaces separated by a gap, creating a connecting triangulation between two boundary
rings. However, in some applications we could be interested to attach a given surface to a ref-
erence surface, by deforming its boundary ring onto the reference one. In Fig. 5, as an example
of this situation, we show a case that may happen e.g. for patient-specific hemodynamic simu-
lations [28], when only a part of the computational domain can be reconstructed from medical
images: the left ventricle endocardium (in gray) is segmented from a short-axis cine-MRI – that
in standard clinical exam typically captures only the ventricular geometry – while the remaining
left-heart comes from a template geometry, in this case the Zygote Solid Heart Model [1]. In
order to address this situation, we propose here a new algorithm that exploits the solution of a
Laplace-Beltrami equation.

Input, output, parameters and options Our algorithm requires as input a surface ΣIN

and a reference surface ΣREF, both with at least a boundary ring ΓIN ⊂ ΣIN and ΓREF ⊂ ΣREF.
Note that the quality of the triangulation ΣIN is important to guarantee a good numerical ap-
proximation of the Laplace-Beltrami equation. The two surfaces can also be far from each other,
since a rigid registration between the two open boundaries ΓIN and ΓREF can be performed at
the beginning of the algorithm. As output, a unique continuous surface Σ is created. Briefly,
Σ is obtained by deforming ΓIN to match ΓREF and then by harmonically extending the de-
formation on the whole ΣIN, as shown in the example of Fig. 5. The deformed input surface
ΣDEF

IN ⊂ Σ can be optionally remeshed to recover, in case of large deformations, the regularity
of the triangulation. User can also force a null deformation on a subset of ΣIN selected through
a set of tags T ⊂ ΣIN. Thus, we define the deformation domain as Σ∗ = ΣIN \ T . Both homo-
geneous Neumann or homogeneous Dirichlet conditions can be imposed at the free boundaries
Γ = ∂Σ∗ \ΓIN. In case of remeshing of the deformed surface ΣDEF

IN , a parameter h identifies the

12

ΣIN

ΣREF

ΓIN

ΓREF

Γ0

ΣCON

dREF

Figure 5: The harmonic-connection algorithm in action: a template geometry ΣIN of the left-atrium
and ascending aorta is deformed till its boundary ring ΓIN (in red) matches the boundary ring ΓREF

(in black) of a patient-specific left-ventricle geometry ΣREF. On the left, the distance vector dREF

between the two rings ΓIN and ΓREF and the resulting deformation obtained by harmonically extend-
ing dREF from ΓIN to the whole surface ΣIN; on the right, the final continuous triangulated surface
Σ colored with its tags, where the purple ones represent the homogeneous Dirichlet boundaries Γ0

of the harmonic problem.

13

desired constant mesh-size. This parameter is also adopted to set the thickness of the buffer
zone between ΣDEF

IN and ΣREF, created to guarantee the conformity of the final triangulation Σ.

The harmonic-connection algorithm

1. Select ΓIN ∈ ΣIN and ΓREF ∈ ΣREF, using a graphical interface if necessary;

2. optionally perform a rigid registration of ΓIN on ΓREF and apply the resulting rigid trans-
formation R to the whole ΣIN. This step can be performed in two different ways:

� by simply aligning the geometric centers of ΓIN and ΓREF. In this case the resulting
transformation R is just a translation;

� by performing an Iterative Closest Points (ICP) algorithm [81, 82] in order to minimize
the average distance between the two rings. In this case R includes also a rotation;

3. on ΓIN, compute the distance vector dREF from ΓREF. An example of dREF between the
two registered rings ΓIN and ΓREF is shown on the zoomed box of Fig. 5, left;

4. set the deformation ϕ equal to zero on the user-defined excluded tags T and define the
deformation domain Σ∗ = ΣIN \ T . The boundary of the domain Σ∗ is divided into three
non-overlapping sets ∂Σ∗ = ΓIN∪Γ0∪Γ, where Γ0 is the homogeneous Dirichlet boundary
between T and Σ∗, while Γ = ∂Σ∗ \ {ΓIN ∪ Γ0} is the remaining part of the boundary
where homogeneous Neumann conditions are assigned;

5. at this stage, if Γ 6= ∅, the user can optionally move the boundary rings of Γ into Γ0, to
fix a null deformation also on them;

6. find the harmonic deformation ϕ by solving the following vectorial Laplace-Beltrami equa-
tion using the finite element method with piecewise linear elements [83, 84]:

∆ϕ = 0, in Σ∗

ϕ = dREF, on ΓIN

ϕ = 0, on Γ0

∇ϕ · n = 0, on Γ

. (1)

A prerequisite for the accurate solution of this surface-PDE is that a good-quality mesh
must be available. If this is not the case, a preprocessing step can be performed by using
the remeshing algorithm of vmtk in order to improve the quality of the triangulation ΣIN.
At the end of this stage, the deformation ϕ is defined as a vector on each point of the
triangulation ΣIN; an example is shown in Fig. 5, left;

7. obtain ΣDEF
IN warping the surface ΣIN according to the vector ϕ. Note that, at this stage,

ΣDEF
IN and ΣREF are already perfectly adhering at their boundary rings, but their elements

are non-conforming;

8. on ΣDEF
IN compute the distance dREF from ΓREF and clip the part where dREF ≤ h, creating

a small gap between the two surfaces;

9. connect ΣDEF
IN and ΣREF through a conforming triangulation ΣCON using the surface-

connection algorithm (Section 2.1.1). The thin connection ring ΣCON is automatically
remeshed with a constant mesh-size h and a specific tag is assigned to it. In this way, we
obtain the final continuous triangulation Σ = ΣDEF

IN ∪ ΣCON ∪ ΣREF, as shown in Fig. 5,
right, where also the remeshed thin region ΣCON can be appreciated;

10. optionally also the deformed part ΣDEF
IN can be remeshed with the user-defined constant

mesh-size h.

14

Discussion The main idea of the harmonic-connection algorithm is to automatically attach
one surface to another through a harmonic map, by exploiting the distance between two of
their boundary rings. The final result depends on the chosen parameters. Since the template
geometry ΣIN is not generally located in the same region of the patient-specific one ΣREF, the
first choice is about the rigid registration to be performed: geometric center alignment vs ICP
algorithm. The former is preferable when ΣIN and ΣREF are coherently oriented; this is not a
rare case, since most of medical images are based on the sagittal-coronal-axial system of reference
[85]. If no information is available about the orientation, the ICP algorithm produces a good
initialization between the two rings ΓIN and ΓREF, as shown in Fig. 5, left. However, if more
complex registration algorithms – e.g. based on medical image registration – are necessary,
users can perform this step using external tools and providing the already registered surfaces as
input. The other important setting regards the boundary conditions. In the example reported
in Fig. 5 we assign a homogeneous Dirichlet condition both at the outlet of the ascending aorta
and at the pulmonary veins, setting the excluded tags T as these regions (colored in purple)
in order to properly define Γ0. Thus, this choice of T fixes the external part of the template
geometry ΣIN. In other applications it could be preferable to leave one or more boundaries free
to move rigidly according to the deformation, assigning a homogeneous Neumann condition on
it.

2.1.4 Modification of the structure thickness: the surface-thickening algo-
rithm

Motivations When a patient-specific geometry is reconstructed from medical images, some
regions of the reconstructed surface – for instance the atria, or some regions of the right ventricle
– can be unrealistically thin. This can happen because the thickness of these chambers is
comparable with the resolution of the standard medical images. Furthermore, remeshing or
creating a volumetric mesh of a very thin structure can be challenging or rather impossible.
The proposed surface-thickening algorithm aims at enlarging the structure where it is too thin,
according to a user-defined threshold. Optionally, also the reverse operation can be done, i.e.
decrease the thickness of a surface where it is larger than a user-defined threshold.

Input, output, parameters and options The input of our algorithm is a closed surface
ΣIN with a function τ(x) – i.e. an array defined at all the points – representing the local thickness
of the structure. We will present an ad-hoc algorithm to compute the thickness of a cardiac
chamber in Section 2.3.2. As output, the algorithm provides a closed surface Σ characterized
by a minimum thickness σ chosen by the user, obtained by enlarging ΣIN where its original
thickness is lower than σ. Moreover, a set of tags TEXC can be excluded from the thickening and
a scalar factor α – by default set equal to 1 – can be multiplied by the deformation. Finally,
an invert-option can invert the behavior of the algorithm, making thinner all the parts of the
input surface where τ(x) ≥ σ.

The surface-thickening algorithm

1. define the vectorial function w to deform ΣIN as a function of the excluded tags TEXC, the
threshold σ, the scalar factor α, and the local outward normal n:

� if the invert-option is not active:

w(x) =

{
1
2
α
(
σ − τ(x)

)
n, if τ(x) < σ and x /∈ TEXC

0, otherwise
; (2)

� else:

w(x) =

{
1
2
α
(
σ − τ(x)

)
n, if τ(x) > σ and x /∈ TEXC

0, otherwise
. (3)

15

Note that the 1
2

factor is necessary since the deformation acts both on the internal
and the external surfaces;

2. warp all the points x ∈ ΣIN according to the just defined function w, obtaining the
deformed surface Σ.

RVOT RVOT

ΣIN Σ

Figure 6: The surface-thickening algorithm applied to an abnormally thin Right Ventricle Outflow
Tract (RVOT): on the left, the thickness of the input surface ΣIN characterized by a minimum value
of 0.13mm; on the right, the thickness of the enlarged output surface Σ where a more physiological
value of 1mm is recovered.

Discussion In Fig. 6 we apply the surface-thickening algorithm to a biventricular geometry
in order to enlarge the surface in the region of the Right Ventricle Outflow Tract (RVOT),
setting σ = 1mm and α = 0.8. Despite the function w aiming to recover the desired minimum
thickness σ, it acts in the surface normal direction. Thus, it is not guaranteed that, after the
warping, the thickness is exactly equal to the desired value of σ. The scalar factor α can be
exploited as a manual correction to achieve this purpose.

We remark also that, despite the fact that the default algorithm consists in moving all the
points of the input surface where the local thickness is lower than a threshold σ, the set of tags
TEXC and the parameters α can be used to localize the algorithm only on a specific region of
the surface or towards a specific direction. For instance, in the case of atrial septum – where
the right and left epicardium are close to each other – the surface can be enlarged only towards
the internal direction, in order to avoid triangles intersections at the epicardium. This can be
achieved by setting TEXC as the epicardium and α = 2, in order to create a deformation w that
acts with a double magnitude only at the endocardium, still reaching the minimum deformed
thickness σ.

2.2 Boundary tags definition: the surface-tagger tool

Assigning different tags to different regions of a surface is a crucial operation in a mesh gen-
eration pipeline. Indeed, tags can be exploited to impose boundary conditions or physical
parameters, or to assign a specific mesh-size to a part of the domain. In particular, boundaries
of cardiac geometries are not clearly defined as sharp edges. For instance, on the ventricles, the
limit between the endocardium and the epicardium lies on a smooth portion of the myocardial
muscle, in proximity of the valvular annuli. A possibility in theses cases is to generate the
tags manually by exploiting a graphical interface. However, besides being time-consuming, this
procedure generates irregularly shaped tags, depending on the geometric distribution of the sur-
face elements. In order to create more precise tags, we propose a tool that exploits significant
functions defined on the surface, like, for instance, some distances from relevant objects. In
practice, these functions are discrete arrays defined at each point of the polygonal surface. By
selecting a cut-off threshold, the values of these arrays can be used to assign two different tags
to the elements. In detail, the proposed tool can perform this operation by choosing among

16

Figure 7: Comparison of the results of the three array-based tagging algorithms included in the
surface-tagger tool, applied to a ventricular geometry on which the array representing the distance
from the mitral annulus is defined (top-left): on the top-right the simple-array algorithm; on the
bottom-left the clip-array algorithm; on the bottom-right the harmonic-array algorithm. Details on
the three algorithms can be found in Section 2.2.

17

three different algorithms, as illustrated in Fig. 7, where we use the distance from the mitral
valve annulus to tag a ventricular geometry:

1. the simple-array algorithm assigns the tags without modifying the original triangles of the
input surface. Thus, in most cases, it produces an irregular “zig-zag” ring between tags,
as illustrated in Fig. 7, top-right;

2. the clip-array algorithm clips the elements exactly at the cut-off value. In this way it
produces precise tags, but distorted triangles, as shown in Fig. 7, bottom-left. Therefore,
it is necessary to operate a surface remeshing that preserves the tags (this is possible with
vmtk) to restore the regularity of the triangles;

3. the harmonic-array algorithm produces regular and precise tags without creating any
distorted triangle, as shown in Fig. 7, bottom-right. This is obtained by moving the
points on the irregular “zig-zag” ring created by the simple-array algorithm till they lay
onto the precise ring produced by the clip-array algorithm. This movement is extended
harmonically to the points of a surrounding buffer zone.

Finally, the surface-tagger tool includes also two other algorithms for tagging a surface, that are
not related with an array defined on it:

� the connectivity algorithm, given an already tagged surface, assigns a different tag to each
disconnected part of each tag;

� the drawing algorithm allows the user to manually draw the tag using an interactive graph-
ical interface.

Input, output, parameters and options This tool needs as input a surface ΣIN, op-
tionally with a set of tags already defined on it. As output, our algorithm generates a new
tag τNEW on the output surface Σ. Users can select the desired tagging algorithm among the
simple-array, the clip-array, the harmonic-array, the connectivity, and the drawing. If an array-
based algorithm is selected, users must specify also the name of the array f to be used and its
cut-off threshold σ. Alternatively, the function f can be automatically computed as a signed
or unsigned distance function from a reference surface ΣREF, provided by the user. A further
parameter of the harmonic-array algorithm is the radius ρ which represents the thickness of the
buffer zone where the harmonic extension acts. Optionally, the algorithm can be limited to a
subset of Σ, specifying a subset of tags T ⊂ Σ to be excluded.

The surface-tagger tool If the excluded tags T ⊂ Σ is a non-empty set, the algorithms are
performed on the surface Σ \ T and the subdomain T is merged to the final surface after the
tagging operation. For the sake of simplicity, we detail hereafter the array-based algorithms in
the case of T = ∅. The connectivity and the drawing algorithms are not discussed since they are
based on existing VTK filters to select connected parts of a surface and to graphically interact
with it, respectively.

� simple-array: given the surface Σ, the function f(x) defined on all the points x ∈ Σ, and
the cut-off value σ, the algorithm proceeds as follows:

1. cycling on all the cells c of the polygonal surface Σ, evaluate the function f at the
barycenter of the cell xc;

2. if f(xc) ≤ σ assign the specific tag τNEW, else leave the existing tag.

In case of a non-tagged input surface Σ, a different tag is also assigned to those cells where
f(xc) > σ. Optionally the user can invert the behavior of the algorithm by assigning the
tag τNEW to the cells where f(xc) ≥ σ. We refer to the irregular “zig-zag” ring between
the two tags created by this algorithm as ΓZIG (Fig. 7, top-right).

� clip-array:

18

(a)

(b)

(c)

Figure 8: The harmonic-array algorithm of the surface-tagger tool in action: (a) initialization with
the simple-array algorithm; (b)-(c) the result obtained without (b) and with (c) the fixing-point
correction procedure. The vertices of a triangle are colored to follow their evolution; in red, the
region where triangles collapse if not corrected.

1. clip the surface ΣIN at the ring ΓCLIP defined as the level where the function f is
equal to σ, generating the two surface Σ1 and Σ2:

ΓCLIP = {x ∈ ΣIN : f(x) = σ} ; (4)

Σ1 = {x ∈ ΣIN : f(x) ≤ σ} ; (5)

Σ2 = {x ∈ ΣIN : f(x) > σ} . (6)

The polygons arising on Σ1 and Σ2 after the clip are re-triangulated splitting them
in triangles (Fig. 7, bottom-left);

2. assign τNEW to Σ1. Also in this case, optionally, the behavior can be inverted assigning
τNEW to Σ2;

� harmonic-array:

1. exploit the clip-array algorithm to generate the ΓCLIP ring;

2. exploit the simple-array algorithm to generate the ΓZIG ring and initialize the ring
Γ∆ = ΓZIG;

3. numbering the N points xi ∈ ΓZIG with an index i = 0 . . . N − 1 such that xi is
connected to xi+1, if three consecutive points {xi,xi+1,xi+2} belong to the same
triangle c ∈ ΣIN, delete x∗ = xi or x∗ = xi+1 from Γ∆ connecting x∗−1 directly to
x∗+1. In particular, delete x∗ = xi only if xi−1 ∈ Γ∆, i.e. xi−1 was not already
deleted. Otherwise, the point to be deleted is chosen as x∗ = xi+1. This step is
necessary to avoid that some triangles successively collapse into lines, as shown in
Fig. 8. In particular, as an example, taking the triangle c as the one with the colored
vertices, x∗ would be the yellow vertex (i.e. x∗ = xi+1 in this case);

19

4. on ΣIN, compute the unsigned distance d0 from the ring Γ∆ and, exploiting once again
the simple-array algorithm with σ = ρ, extract from ΣIN the two “zig-zag” rings Γ0

that define the homogeneous Dirichlet boundaries Γ0 delimiting the buffer zone;

5. on Γ∆ compute the vectorial distance d∆ from the ring ΓCLIP;

6. defining Σ∗ as the part of ΣIN between the two rings of Γ0, solve the following Laplace-
Beltrami problem in Σ∗, in order to find the deformation field ϕ:

∆ϕ = 0, in Σ∗

ϕ = d∆, on Γ∆

ϕ = 0, on Γ0

(7)

7. warp the surface ΣIN according to the field ϕ, obtaining the output surface Σ. At this
stage the points of Γ∆ lay on ΓCLIP, but the regularity of the triangles is preserved
thanks to the previously executed step 3 (see Fig. 8);

8. as the points of Σ have been moved, the discrete array f defined on these new points
must be updated according to the field ϕ. If f is a distance, this update can be per-
formed as a simple addition: f = f + |ϕ|. Otherwise, the field f must be recomputed
on the deformed surface, by redoing the original computation;

9. finally, the tag τNEW can be assigned using the simple-array algorithm with the up-
dated field f and the cut-off value σ.

Discussion The drawback of the clip-array algorithm is that it must be followed by a surface
remeshing algorithm in order to produce a surface ready for volumetric mesh generation. This
may not be a problem when the user plans to define a non-trivial tag-dependent mesh-size func-
tion, requiring a surface remeshing after the tagging operation. However, when this algorithm
generates too many distorted triangles, the surface remeshing procedure could fail. Moreover,
the remeshing is a very time-consuming operation when dealing with complex geometries, like
the one shown in Fig. 1, (b). As an additional motivation, sometimes the non-tagged geometry
is already the desired one in terms of mesh-size and mesh-quality. This could, for instance,
happen when the surface was already processed by a different mesh software that is unable to
generate this kind of tags. In all these situations the harmonic-array algorithm becomes very
useful, since it shares all the advantages of the clip-array algorithm, but not its disadvantages.
Concerning the simple-array algorithm, despite the irregular ring produced, this is the faster
algorithm available and it can be used, for instance, when the need is just to assign a specific
mesh-size to a subregion for a successive remeshing. Similar considerations can be done for the
drawing algorithm, that is also the unique possibility if no arrays are available. Finally, the con-
nectivity algorithm is useful in some particular cases like, for instance, in order to distinguish
between endocardium and epicardium after the individuation of the valvular rings. Indeed,
in this case the valvular tags divide the ventricular geometry into disconnected parts. This
algorithm automatically assigns a specific tag to each one of them.

We remark also that these algorithms can be performed on an already tagged surface and
excluding a subset of tags from the new tag generation. This allows flexibility, since for each
desired tag users can change the algorithm or array adopted.

2.3 Array processing and mesh-size definition

2.3.1 Extension of a field defined on a sub-domain: the harmonic-extension
algorithm

Motivations In several applications a scalar or vector field can be defined only on a subset
T of a surface Σ. This situation can happen, for instance, for a deformation field reconstructed
from dynamic medical images, for a cardiac fiber field reconstructed from DT-MRI data, or

20

even for some geometric quantities. A natural way to extend the field to the rest of the domain
is to solve a Laplace-Beltrami problem on the surface Σ∗ = Σ \ T , using the values of the
field at the boundary rings of the subregion T as Dirichlet boundary conditions of the problem.
Clearly, the result of the extension depends on the boundary conditions imposed on the other
boundaries Γ∗ = ∂Σ∗ \ ∂T , i.e. all the boundaries of Σ∗ that do not intersect the region where
the original field is defined. Here, we present an algorithm to perform this harmonic extension
automatically.

Input, output, parameters and options On a subset T ⊂ Σ of the input surface a
scalar or vector field ϕT (x) is defined ∀x ∈ T . As usual, T can be identified by the user as
a set of tags. On the domain Σ∗ = Σ \ T a further subregion T∗ ⊂ Σ∗ can be selected by
the user in order to impose a null Dirichlet value on it, similarly to the option available in
the harmonic-connection algorithm (Section 2.1.1). At the free boundaries Γ∗, instead, both
homogeneous Dirichlet or Neumann conditions can be imposed. Optionally, in order to increase
flexibility, user can impose also non-null constant values on these rings thanks to a graphical
interface. Note that, like in the harmonic-connection algorithm, also in this case the quality of
the input triangulation is important in order to guarantee the quality of the numerical solution
of the Laplace-Beltrami equation.

The harmonic-extension algorithm

1. Using the user-defined set of tags T , define the domain of the harmonic extensions Σ∗ =
Σ \ T ;

2. extract the common boundary ring of T and Σ∗, defined as ΓT = ∂T ∩ ∂Σ∗, and ini-
tialize the Dirichlet and Neumann boundaries as empty domains, named ΓDIR and ΓNEU,
respectively;

3. if the optional set of tags T∗ ⊂ Σ∗ 6= ∅, reduce the extension domain to Σ∗ = Σ∗ \ T∗ and
add the newly created boundary rings of Σ∗ to the Dirichlet boundaries ΓDIR;

4. all the other boundaries of Σ∗, if should they exist, can be optionally included into ΓDIR

by the user, otherwise they are assigned to ΓNEU. At this stage we have ∂Σ∗ = ΓT ∪
ΓDIR ∪ ΓNEU;

5. the Dirichlet data is initialized as a null function g(x) = 0,∀x ∈ ΓDIR. Optionally, the
function g can be modified through an interactive graphical interface, assigning a specific
constant value at each ring;

6. solve the following Laplace-Beltrami problem:
∆ϕ∗ = 0, on Σ∗

ϕ∗ = ϕT , on ΓT

ϕ∗ = g, on ΓDIR

∇ϕ∗ · n = 0, on ΓNEU.

(8)

We remark that the function ϕ can be either a scalar or a vector field depending on whether
the input field ϕT is a scalar or a vector function;

7. finally, the extended field ϕ can be defined on the original surface Σ as:

ϕ(x) =

ϕT (x), ∀x ∈ T
0, ∀x ∈ T∗
ϕ∗(x), ∀x ∈ Σ∗.

(9)

21

Figure 9: Recovering the left-atrium fiber field on the epicardium using the harmonic-extension
algorithm: on the left, the field as reconstructed from DT-MRI data where the regions with missing
data are colored in light blue; on the right, the recover field. The data is taken from [86].

Discussion In Fig. 9 we apply the algorithm to a fiber field on the left-atrium epicardium
reconstructed from DT-MRI data, where the information is missing in many regions. The data
is taken from [86] and then processed to artificially create the missing regions. The harmonic-
extension algorithm succeeds in recovering the fibers on the missing regions (Fig. 9, right), even
in the case of sharp changes (see e.g. the uppermost region). Another possible example concerns
the image-based hemodynamics simulations in hybrid patient-specific/template geometries (see
Fig. 5), where the deformation field reconstructed from dynamic medical images – e.g. on the
left-ventricle – can be harmonically extended to the rest of the template domain [28].

2.3.2 Computing the thickness of a structure: the surface-thickness algo-
rithm

Motivations The mesh-size of the elements of a cardiac muscular mesh can be dependent
from the thickness of the muscle. Here, we present an algorithm to compute the thickness of a
structure that works also in case of biventricular geometries, where the presence of the septum
makes however the definition of the thickness a little more involved.

Input, output, parameters and options The algorithm takes as input a tagged surface
Σ where the internal and the external surfaces can be identified by the two sets of tags TINT1 ⊂ Σ
and TEXT ⊂ Σ, respectively. In the specific case of a biventricular/biatrial geometry, the user
has to pass separately two sets of tags TINT1 and TINT2 for the two disconnected internal surfaces
which represent the left and the right endocardium. This allows to compute also the thickness
of the ventricular/atrial septum.

The surface-thickness algorithm

1. defining the domains TINT = TINT1 ∪ TINT2 and T = TEXT ∪ TINT, compute the func-
tions DEXT and DINT1 on T as the unsigned distance from the surfaces TEXT and TINT1,
respectively.

2. if TINT2 6= ∅, compute also the two distances DINT2 and DINT, accordingly defined using
the domain TINT2 and TINT, respectively.

22

3. ∀x ∈ T , compute the function τ(x) that represents the surface thickness distinguishing
two cases:

� if TINT2 = ∅, then
τ(x) = max (DEXT(x), DINT1(x)) ; (10)

� if TINT2 6= ∅, then

τ(x) = max (min (max (DINT1(x), DINT2(x)) , DEXT(x)) , DINT(x)) ; (11)

4. in order to define τ on the whole Σ, project the thickness function τ onto the remaining
part of the input surface Σ \ T .

Discussion Eq. (11) combines all the computed unsigned distances in order to take into
account the presence of the septum in a biventricular/biatrial geometry, where the thickness
can be defined as the distance between the right and the left endocardium. However, the
algorithm is not able to capture the thickness of thinner structures at the endocardium, like
papillary muscles and trabeculae carneae. We remark also that the thickness on the part of
the surface Σ \ T – i.e. the valvular annulus – is defined by projecting the value computed at
the boundaries of this region. Alternatively, in order to have a smoother function on Σ \ T ,
the thickness can be extended here using the harmonic-extension algorithm (Section 2.3.1) as a
further step of processing. Note that the thickness τ can be used directly as mesh-size for smooth
atrial or ventricular geometries (as the one shown in Fig. 4), in order to obtain a volumetric
mesh characterized by a constant number of elements from endocardium to epicardium. An
example of thickness computed with this algorithm has already been shown in Fig. 6.

2.3.3 Mesh-size computation: the surface-mesh-size tool

Motivations, input and output In order to define a mesh-size h(x) that depends on
relevant geometric quantities, we propose here the surface-mesh-size tool which, given a tagged
surface Σ, helps in the manipulation and combination of multiple arrays.

The surface-mesh-size tool The tool assigns a specific mesh-size function h(x) at each point
of the tagged input surface Σ, according to one of the following algorithms chosen by the user:

1. the constant algorithm simply sets the mesh-size as a constant positive value: h(x) = γ;

2. the array algorithm, given a function f on the input surface Σ, defines the mesh-size as:

h(x) = max
{
m,min

{
αf(x)β + γ,M

}}
, (12)

where the parameters of the expression are real numbers with the following default values:
α = 1, β = 1, γ = 0, m = 0, and M = +∞. Hence, the mesh-size is a function of the input
array f , which depends on the multiplicative factor α, the exponent β, and the offset γ,
and which is constrained in the interval [m,M];

3. the array-combination algorithm behaves similarly to the array algorithm, but with the
additional option of combining multiple input arrays fi. Indeed, supposing that the input
is made of N functions fi, i = 1, . . . , N , a set of parameters {αi, βi, γi, mi, Mi} is assigned
to each of them in order to define the corresponding mesh-size function hi, according to
Eq. (12). Then, the final mesh-size function is computed as:

h(x) = min {h1(x), . . . , hN (x)} . (13)

This algorithm allows to exploit more than one geometric quantities fi computing the
corresponding mesh-size hi and locally giving priority to the smaller hi.

23

Figure 10: Computing the mesh-size function h on the inferior part of the right ventricle: on the
left, the magnitude of the mean curvature |c| (top) and the thickness (bottom); on the center,
two mesh-size functions h1 (top) and h2 (bottom) computed from the curvature and the thickness,
respectively; on the right, the mesh-size h obtained combining h1 and h2 and a zoomed detail of the
related remeshed surface.

Thus, depending on the chosen algorithm, the parameter of the tool can be a single scalar γ,
a set of scalars {α, β, γ, m, M}, or N set of scalars {αi, βi, γi, mi, Mi}, i = 1, . . . , N . These
parameters are used to initialize the mesh-size function h on the whole surface Σ. If a mesh-size
h is already defined on Σ, the user can limit the computation of the new function h in a subset
of tags T ⊂ Σ. This operation can be optionally done also using a graphical interface which
requires the user to provide the set of tags T where to modify the mesh-size h, together with
the chosen algorithm and the associated parameters. After each modification, the current mesh-
size is displayed; this allows the user to evaluate whether further changes are needed. Finally,
together with the function h, the algorithm gives as output a smoother mesh-size function ĥ
computed using the vmtk algorithm to smooth a discrete array, that is based on a local average
on the values of nearby points. This provides a mesh-size function without high local gradients
and, consequently, to avoid a steep transition between small and large elements on the final
volumetric mesh.

Discussion In Fig. 10 we show a detail of the right ventricle where the myocardium is
very thin, the epicardium is smooth and the endocardium is very irregular because of the
presence of the papillary muscles and the trabeculae carneae. This is a case in which the

24

combination of more than one geometric quantities is necessary. In particular, we exploit the
array-combination algorithm selecting f1 as the mean curvature – computed using vmtk [75] –
and f2 as the myocardial thickness (Fig. 10, left). The result shown on the right is obtained by
fixing α1 = 0.3, β1 = −0.5, α2 = 0.5, β2 = 1, γ1 = γ2 = 0, m1 = m2 = 0.3, and M1 = M2 = 2.
Thus, the final mesh-size h on the one hand behaves as the inverse of the square root of the mean
curvature and on the other hand constraints at least two elements per-thickness. We remark
that the combination of these two quantities through the minimum operator is a conservative
way to define h (Fig. 10, right). Indeed, in this example, using just the curvature would produce
larger elements at the smooth epicardium (Fig. 10, top-center). Consequently, on the thinner
region of the muscle the final mesh would be characterized by distorted elements that connect
the large elements at the epicardium with the small ones at the endocardium. The combination
of the curvature and the thickness overcomes this problem.

Automatic tetrahedral mesh generators that are able to remesh a surface according to the
local curvature have been already proposed [68]. However, the tool that we have just described is
more suitable for the definition of mesh-size functions in the complex cardiac geometries, thanks
to the possibility of choosing a combination of an arbitrary number of quantities. Moreover,
since no constraints are given on the input arrays, they can also be quantities computed from a
numerical simulation on a coarser mesh, in order to define the mesh-size as a function of local
solution gradients. Finally, the possibility of defining a specific mesh-size on each tag can be
used when, for instance, specific geometric quantities can be associated to different regions or a
particular region needs higher resolution. An example of this type will be discussed in Section 3.

2.4 Volumetric mesh processing

2.4.1 Join two volumetric meshes: the mesh-connection algorithm

Motivations When dealing with multi-chamber simulations, connecting two volumetric meshes
is a necessary operation. For instance, for the mechanical model of the whole heart, the atria
and the ventricles can be considered as separate volumetric meshes to be connected by a vol-
umetric ring that represents the fibrotic tissue of the valvular annulus. This separation can
also help to assign the correct mechanical property to each part of the model. Indeed, differ-
ent tags can be assigned to each distinguished geometries in order to be able to associate this
tag to chamber-dependent parameters and constitutive law [45]. Similar considerations can be
done for electrophysiological models, where each chamber has specific electric property (e.g.
conductivity, ionic model), while the valvular annulus must not conduct.

Input, output, parameters and options With the above consideration in mind, we
propose an algorithm that, given two tagged volumetric meshes Ω1 and Ω2, generates a third
connecting mesh Ω3. As output, the three meshes are merged in a unique one Ω = Ω1 ∪Ω2 ∪Ω3

where the three parts are distinguishable thanks to volumetric tags. Moreover, all the original
surface tags are maintained and specific tags are assigned to each new generated surface. Thus,
naming the external surfaces of the two meshes Σ1 = ∂Ω1 and Σ2 = ∂Ω2, respectively, the
regions on the two surfaces to be connected can be selected as two sets of tags: T1 ⊂ Σ1 and
T2 ⊂ Σ2, respectively. Note also that, in order to be connectible, T1 and T2 need to be two
topologically equivalent regions. Thus, they need to have the same number n of boundary
rings. Finally, also the mesh-size h of the connection mesh Ω3 can be set by the user. All the
introduced notations are reported in Fig. 11 where the connection between two meshes of two
idealized cardiac chambers is shown.

The mesh-connection algorithm

1. From the two input meshes Ω1 and Ω2, extract the regions to be connected: T1 ⊂ Σ1 and
T2 ⊂ Σ2;

25

Σ1

Σ2

Σ3

Ω1

Ω3

Ω2

Σjw

Ωfluid

𝓣1

𝓣2

Figure 11: Connecting an idealized left atrium mesh Ω1 and an idealized left ventricle mesh Ω2 at
their annulus (T1 and T2) using the mesh-connection algorithm that automatically generates the
connecting volumetric ring Ω3. The final mesh Ω = Ω1 ∪ Ω2 ∪ Ω3 preserves all the original surface
tags and the algorithm assigns a specific tag to each of the three volumes and to the connection
walls Σj

w. Each surface/volume tag is displayed with a specific color in the figure. On the right, the
conforming fluid mesh Ωfluid obtained from the internal surface tags is shown.

2. extract the n boundary rings of each of the two regions, named Γi1 ⊂ T1 and Γi2 ⊂ T2,
respectively, where i = 1 . . . n. Note that the two regions need to have the same number
n of rings to be connectible;

3. at this stage, we aim to define the external surface of the connection mesh Σ3 = ∂Ω3,
that must be a closed surface. Thus, initializing Σ3 = T1 ∪ T2 and j = 1, while j ≤ n we
proceed as follows:

(a) exploiting the surface-connection algorithm (Section 2.1.1), connect the boundary
ring Γj1 with one of the rings Γi2, i = 1 . . . n, producing the connection surface Σjw, as
shown in the zoomed box of Fig. 11. The ring Γi2 can be chosen either automatically –
selecting the one at minimum average distance – or manually – through an interactive
graphical interface;

(b) assign a specific tag τ jw to the newly generated connection surface Σjw;

(c) update Σ3 = Σ3 ∪ Σjw and j = j + 1.

Note that, as required, Σ3 is a closed surface after this cycle;

4. remesh Σ3 only at the connection surfaces Σjw, j = 1 . . . n, using the user-defined constant
mesh-size h. Note that, excluding the other tags from remeshing, the conformity between
the surface Σ3 and the two input meshes Ω1 and Ω2 is maintained;

5. generate the volumetric mesh Ω3 using the standard algorithm of TetGen [62];

6. merge the three conforming meshes Ω1, Ω2 and Ω3 in a unique mesh Ω, cleaning all the
repeated points and cells at the interfaces T1 and T2.

Discussion The mesh-connection algorithm internally uses the surface-connection algorithm
(Section 2.1.1) in order to generate an intermediate volumetric mesh between two input meshes.

26

This requires that the two regions to be connected on the two input meshes are topologically
equivalent. For instance, two possibilities can be the connection of two circular boundaries –
e.g. the inlet/outlet of two fluid-dynamic meshes – or the connection of two annular boundaries
– e.g. the valvular annulus of two cardiac chambers. The latter case shows the ability of the
algorithm, given the single-chamber meshes, to build a complete mesh of the four heart chambers
by generating all the connecting meshes at the various valvular annuli. Moreover, the fact that
the original surface tags are kept on the final mesh and that specific tags are assigned to each
volume is of fundamental importance for multi-chamber cardiac modeling [45], since it allows
to assign different electro-mechanical properties and boundary conditions to each part of the
geometry.

Finally, this tagged 4-chamber mesh can also be exploited to generate a conforming fluid-
dynamic mesh. Indeed, at this stage, it is sufficient to perform some classic steps of mesh
generation using the vmtk library: the extraction of the internal surface of the left/right heart;
the creation of the flow-extensions at the boundary vessels, the optional creation of a boundary
layer of elements, and the generation of the volumetric mesh. In this way, we can generate a
couple of conforming meshes – i.e. the fluid-dynamic mesh in the blood domain (see Fig. 11,
right) and the multi-chamber electro-mechanical mesh in the muscular domain (Fig. 11, center)
– that can be used for the electro-mechano-fluid simulations of the whole cardiac function.

2.4.2 Local refinement: the mesh-refinement algorithm

Motivations In some applications, after the volumetric mesh generation, an a priori mesh
refinement in an internal subdomain could be necessary [87, 88, 89], because of several reasons:
for instance, the computation of accurate quantities on a specific part of the domain or the
necessity of a higher resolution in a numerically challenging part of the domain. Here, we
present a simple algorithm to perform this kind of local refinement.

Input, output, parameters and options The algorithm takes as input a tagged mesh
ΩIN with a function f defined on its points – e.g. a distance from a region of interest – to be
used for the local refinement. The output mesh Ω is refined according to the sizing function
h(x) = max{m, αf(x)β}, where α and β are two positive real numbers, and m represents
the minimum allowed mesh-size. In practice, naming hIN(x) the local mesh-size of ΩIN, the
refinement will modify only those elements where hIN(x) ≥ h(x).

The mesh-refinement algorithm

1. Compute the refinement sizing function h(x) = max{m, αf(x)β} for all the points x ∈
ΩIN, depending on the parameters chosen by the user;

2. refine the mesh ΩIN in all the cells where hIN(x) ≥ h(x) in order to reach the target mesh-
size function h(x), obtaining the final mesh Ω. The possibility of refining only the elements
where a user-defined sizing function is lower than the actual mesh-size is included in Tet-
Gen, where a constrained Delaunay refinement algorithm for adaptive quality tetrahedral
mesh generation is implemented [62];

3. in order to maintain the original tags, project all the volumetric and surface tags from
ΩIN into Ω. To carry out this operation, for each cell c ∈ Ω with xC its barycenter, it is
sufficient to find the cell cIN ∈ ΩIN such that xC ⊂ cIN and assign its tag tIN to the cell c.

Discussion In Fig. 12 we show two different results of this algorithm applied to the local
refinement of a fluid-dynamic mesh of the left heart near the mitral valve. In both cases we
set α = 0.2, β = 1, and m = 0.5. However, in the first case (on the top) f is the unsigned
distance from the valve and it is exploited to obtain a mesh refined only near the leaflets. On
the contrary, in the second case (on the bottom) f is taken as the signed distance from a capped

27

MV

MV

ΩIN

Ω

Ω

Figure 12: Two ways to perform a local mesh refinement on a fluid-dynamic mesh of the left heart
near the mitral valve: on the top, we exploit the unsigned distance |d| from the open leaflets (MV)
in order to refine the mesh only near them; on the bottom, we use the signed distance d from a
smoothly capped valve (MV) in order to refine the whole region inside the leaflets.

version of the mitral valve. In this way f assumes negative values in all the elements inside
this closed surface resulting on a refined mesh where the minimum mesh-size m is assigned to
all these elements. The former can be chosen if the valve movement is not taken into account
by the numerical model considered, while the latter would be preferable to follow the valve
deformation during a heart beat. In both cases a smooth transition from the smaller to the
larger elements can be appreciated. This kind of refinements is necessary when the valve is
treated as an immersed surface in a fluid-dynamics model [46] without the necessity of using a
conforming mesh with its surface. Indeed, in this cases the valve can be modeled as an implicit
surface without the necessity of generating a fluid mesh conforming with its leaflets [25, 28].

2.4.3 Transforming a tetrahedral mesh into a hexahedral one: the tet-hex
algorithm

Motivations Until now we have presented algorithms for surfaces made of triangles or meshes
made of tetrahedra. As an alternative, hexahedral meshes could be used. In principle, they
provide higher accuracy and reduced computational costs [90]. However, their application in
patient-specific computational cardiovascular studies is challenging due to the complexity of the
geometry and to the historical lack of automatic algorithms to generate volumetric elements
[90]. Recently, algorithms that produced a hexahedral mesh from a triangular surface have been
proposed and used in the cardiac context [43]. However, the generation of hexahedral meshes
usually needs lots of user interactions, performed in ad-hoc commercial softwares and resulting
in a very manpower-consuming operation that could also fail in complex cardiac geometries.
Alternatively, the usage of a template mesh model to be adapted to the various patient-specific
geometries can be considered [39]. However, also this strategy cannot be applied to complex
detailed geometries. In this context, an always-successful strategy is the generation of such kind

28

(a) (b)

(c) (d)

(e)

(f)

Figure 13: Transforming a tetrahedral mesh into a hexahedral one. On the left, the division of a
single tetrahedron into four hexahedra (a) and three successive iterations (b)-(c)-(d) of the Refine-
By-Splitting (RBS) procedure. On the right, the internal view of a left-ventricle hexahedral mesh
generated from a finer tetrahedral mesh with zero RBS (e) and from a coarser tetrahedral mesh with
two RBS (f), respectively.

of meshes simply dividing into hexahedra the elements of a tetrahedral mesh, resulting in a
finer unstructured mesh. Here, we adopt this strategy by proposing an algorithm integrated
in our pipelines to generate a hexahedral mesh from a tetrahedral one, maintaining the same
surface and volume tags. We also propose a possible strategy to minimize the final distortion
of the elements by exploiting the Refine-By-Splitting (RBS) algorithm (i.e. the refinement of a
hexahedral mesh by splitting each hexahedron into eight hexahedra, halving the original mesh-
size).

Input, output, parameters and options Given – as input – a tagged mesh ΩTET made
of tetrahedra inside the volume and of triangles at the boundaries, the algorithm produces – as
output – the corresponding mesh ΩHEX made of hexahedra and quads, respectively. Option-
ally, the resulting elements can be further refined through an arbitrary number nRBS of RBS
iterations. Tags of the input mesh ΩTET are preserved on the output mesh ΩHEX.

The tet-hex algorithm Output elements are obtained dividing each triangle into three
quads and each tetrahedron into four hexahedra, as shown in Fig. 13, (a). More in detail, in
order to obtain the quads from a triangle, its vertices, its barycenter, and the mid-points of each
edge are considered. Each quad is obtained by connecting each vertex with the two neighbor
mid-points and with the barycenter. Similarly, starting from a tetrahedron, the hexahedra are
obtained by first dividing each face into three quads, then creating the four hexahedra using
also the barycenter of the tetrahedron. Note also that, in practice, when defining an element
it is important to consider the order of insertion of the points, in order to ensure an outward
normal. The resulting quads and hexahedra can be iteratively split into four quads and eight
hexahedra, respectively, through the RBS iterations, as shown in Fig. 13, (b)-(c)-(d). Once

29

again it is sufficient to consider the mid-points of each edge, the barycenter of each face, and the
barycenter of each hexahedron. During the definition of a new element the tag of the original
element is preserved.

Discussion The quality of the output hexahedral mesh depends on the quality of the input
tetrahedral mesh. However, also in the case of a very regular tetrahedral mesh, the generated
hexahedral elements are slightly distorted if compared with the ones of a regular structured
mesh. This distortion decreases when performing additional RBS iterations. Indeed, in Fig. 13,
right, we compare two hexahedral meshes of a left-ventricle geometry with similar average mesh-
size: the former (e) is obtained without RBS iterations from a finer tetrahedral mesh, while the
latter (f) with two RBS iterations from a coarser tetrahedral mesh. It is evident that the
latter is made of less distorted elements. Thus, a possible strategy is to start from the coarsest
tetrahedral mesh possible, yet coherent with the constraint of geometric precision, and generate
the corresponding hexahedral mesh reaching the desired mesh-size by taking advantage of the
maximum number of RBS iterations. The tet-hex algorithm has the great advantage of always
producing automatically a hexahedral mesh. Moreover, being implemented in the same context
of the other algorithms presented in this paper, it can be easily integrated in a pipeline as final
step. The other side of the coin is that, when dealing with very complex cardiac geometries,
in order to accurately describe them the number of tetrahedral elements could already be very
high. Consequently, the resulting hexahedral mesh could be too computationally demanding,
considering that both the number of elements and the number of points grow significantly
after the application of the algorithm. In conclusion, direct hex meshing methods are difficult,
but preferable. However, considering the difficulties on producing native hexahedral meshes
on complex cardiac geometries, this automatic algorithm represents a valid alternative in the
cardiac context.

3 Examples of mesh generation pipelines

In this section, we show some examples of full cardiac mesh generation pipelines. In particular,
in Section 3.1 we summarize how to integrate the proposed algorithms into few-steps pipelines,
depending on the cardiac application. Then, we present two more complex cases: the generation
of a muscular mesh of a fully-detailed ventricular geometry (Section 3.2) and the generation of
a CFD mesh of the left-heart (Section 3.3). These are only two examples among all the possible
combinations, shown to make it clear how algorithms can be combined together. In Section 3.4,
we conclude by showing some numerical studies performed on computational meshes generated
using the algorithms proposed in this paper and related to the simulations of different processes
of the cardiac function.

3.1 Some examples of combinations of new algorithms in few-
steps pipelines.

A common occurrence is the generation of a patient-specific single-chamber mesh starting from
the smooth segmentations of the epicardium and the endocardium. In this case the boolean-
connection algorithm (Section 2.1.2) automatically generates the external surface of the muscular
geometry creating also three specific tags for the endocardium, the epicardium, and the valvular
ring (see Fig. 4) and remeshing the surface by a user-specified constant mesh-size. As an addi-
tional step, if we aim at generating a mesh with a constant number of elements per-thickness, the
thickness of the muscle can be computed using the surface-thickness algorithm (Section 2.3.2),
and the output can be optionally modified using the surface-thickening algorithm (Section 2.1.4,
see also Fig. 6). Then, the mesh-size can be defined as a function of the thickness using the
surface-mesh-size tool (Section 2.3.3, see also Fig. 10, top-left and top-center, for an example

30

of such kind of mesh-size function). Finally, the volumetric mesh is generated propagating onto
the volumetric elements this mesh-size using TetGen [62].

If we are interested in generating a multi-chamber mesh, once the single-chamber meshes
have been generated they can be connected with each other using the mesh-connection algorithm
(Section 2.4.1, Fig. 11). In this case, also the conforming fluid-dynamics mesh can be easily
generated starting from the internal surfaces of the multi-chamber mesh (see Fig. 11, right).

A different case occurs when a patient-specific surface describes only a part of the domain
of interest of a numerical simulation. In this case the harmonic-connection algorithm (Sec-
tion 2.1.3, see also Fig. 5) can be used to connect the patient-specific geometry to a template
geometry of the missing part of the domain. In this context, a scalar or vector field defined on the
patient-specific domain can be extended on the template domain using the harmonic-extension
algorithm (Section 2.3.1). Then, boundary tags can be created using the surface-tagger tool (Sec-
tion 2.2), the desired mesh-size can be defined using the surface-mesh-size tool (Section 2.3.3),
and the volumetric mesh can be generated accordingly. We also remark that additional steps
of processing that can be applied to any kind of volumetric meshes are the mesh-refinement
algorithm (Section 2.4.2, Fig. 12) and the tet-hex algorithm (Section 2.4.3, Fig. 13).

The aforementioned examples represent only some of the many possibilities that the combi-
nation of the proposed algorithms offers. Depending on the specific applications at hand, more
complex pipelines can be built, as in the examples shown in the next two sections.

3.2 Generation of a fully-detailed ventricular muscular mesh

We describe a complete pipeline for the generation of the volumetric mesh of the myocardium of
a fully-detailed biventricular geometry included in the Zygote Solid 3D Heart Model [1], a CAD
geometry representing an average healthy heart. This geometry was reconstructed from high
resolution CT-scans of an healthy middle-age male and scaled in order to reach the average size
of an healthy heart [1]. All the papillary muscles and trabeculae carneae are included in the
geometry, making this case a challenging example of mesh generation to test our algorithms. In
this pipeline we mainly exploit the surface-tagger tool (Section 2.2) and the surface-mesh-size
(Section 2.3.3) tool by showing how they can be used repeatedly to generate a tagged-mesh of
such a complex cardiac geometry.

First of all, we aim to precisely tag all the components of the biventricular geometry: the
endocardium, the epicardium, and the four valvular rings. The latter are not identifiable as
sharp edges on such kind of geometries. Thus, we have to exploit some suitable functions
defined on the surface to generate these tags. From the Zygote model we can extract the
valvular rings directly from the surfaces of the cardiac valves. Indeed, the Mitral Valve (MV),
the Tricuspid Valve (TV), the Aortic Valve (AV), and the Pulmonary Valve (PV) are available
as distinguished files in this CAD model. Hence, their rings can be used as reference data to
compute on the myocardial surface the unsigned distances from them. In case the ventricular
geometry was reconstructed from a routine medical image, this kind of data should be extracted
directly by exploiting image processing tools. The resulting unsigned distances dMV, dTV, dAV,
and dPV from the four valvular rings are shown in Fig. 14, (a). Exploiting these distances, the
surface-tagger tool can be used as follows:

1. for i = {MV, AV, TV, PV}, use the clip-array algorithm fixing the cut-off value σ = 1mm.
In this way, a specific tag is generated for each valvular annulus;

2. at this stage, the valvular rings are dividing the rest of the ventricular surfaces into three
disconnected parts. Thus, we use the connectivity algorithm to generate three specific
tags for the left-ventricular endocardium, the right-ventricular endocardium, and the epi-
cardium.

The resulting tags are shown in Fig. 14, (b). Note that, in this case we use the clip-array algo-
rithm instead of the harmonic-array algorithm because, despite distorted triangles are generated

31

(a)

(b)

(c)

TV

PV

MV

AV

Figure 14: Tagging procedure for a biventricular geometry: a) distances from the four valvular rings;
b) resulting tags of the four valvular annulus (TV in yellow, MV in pale green, PV in orange, AV
in dark green), the epicardium (in gray), and the right and left endocardium (in blue and light
blue, respectively), obtained using the surface-tagger tool, clip-array algorithm; c) additional tags
at the papillary muscles and trabeculae carneae (in violet), and at and a specific region of the left-
ventricular base (in red), generated using the surface-tagger tool, array and drawing algorithms,
respectively.

at the boundaries of the tags, we plan to remesh the surface according to a newly defined mesh-
size function. In case the surface to be tagged is already remeshed with the desired mesh-size
(for instance with an external software) the harmonic-array algorithm should be considered,
since it produces both regular triangles and precise tags, as discussed in Section 2.2.

In order to define the mesh-size function h on the surface, we proceed similarly to the example
shown in Section 2.3.3 (Fig. 10, but here we also want to explore the feature of defining different
mesh-size functions in different regions. For this purpose, we generate additional tags on the
papillary muscles and on a part of the base of the left-ventricle by proceeding as follows:

1. on the whole surface, compute the distance dENDO from a smoothed version of the left and
right ventricular endocardium. Note that, in our case, this smooth endocardium can be
obtained with standard processing on the original detailed CAD model. Conversely, in case
of a geometry coming from a medical image processing, obtaining a smooth endocardium
is clearly an easier step if compared to the reconstruction of a detailed geometry which
includes papillary muscles and trabeculae carneae.

2. use the simple-array algorithm with a threshold σ = 1.5mm to tag all the papillary muscles
and trabeculae carneae;

3. use the drawing algorithm to depict interactively an additional tag on the base of the left-
ventricle. Note that this location is just an example. Such interactive tag can be useful
when high resolution is needed on a part of the mesh, for instance to study a particular
pathological region.

The two additional tags created are shown in Fig. 14, (c). We remark that both the simple-array
algorithm and the drawing algorithm generate tags characterized by an irregular boundary (see
also Fig. 7). However, in this case, the two additional tags are generated just to define a specific
mesh-size function on them and after this operation they can be deleted. Moreover, since no

32

(a) (b) (c)

Figure 15: Generation of the myocardium volumetric mesh: a) the piecewise mesh-size h; b) the

smoothed version ĥ after array smoothing operation; c) the same ĥ saturating the scale in order to
highlight elements where the mesh-size is lower than 1mm and a zoom on the resulting final mesh.

clipped or irregular triangles are generated, this choice help in making the successive remeshing
faster.

At this stage, we can define the mesh-size function h independently on each tag. The
general idea is to define h as a constant value on some regions and as a combination of functions
depending on relevant geometric quantities on some others. For the latter case, proceeding
in the same way as in Section 2.3.3, we first compute the mean curvature (using vmtk) and
the thickness of the muscle (using the surface-thickness algorithm, Section 2.3.2). Then, the
mesh-size function is computed using the surface-mesh-size tool as follows:

1. using the array algorithm, initialize h on the whole surface as a function of the thickness
hτ . In particular, we modify the following parameters in Eq. (12): α = 0.5, m = 0.5mm,
M = 3mm. This initialization will remain active only in the epicardium, while in the
following steps we will modify the mesh-size in all the other tags. We remark that, thanks
to the chosen value of α, hτ guarantees at least two elements per-thickness;

2. using the array-combination algorithm, modify h at the endocardium as a function of both
the thickness and the curvature. Here, we choose the same parameters as in the example
of Section 2.3.3 (Fig. 10);

3. using the array algorithm, modify h only in the tag which identifies the papillary muscles
and the trabeculae carneae. Here, we define the mesh-size dependent only on the mean
curvature. In particular, setting α = 0.2, β = −0.5, m = 0.2mm, and M = 1mm, we
recover a smaller mesh-size in this region with respect to the one on the endocardium.

4. using the constant algorithm, set the mesh-size equal to 0.75mm on the valvular annulus
and equal to 0.5mm on the tag drawn on the left-ventricular base. The former value
guarantees that at least two elements appear along the width of each annulus.

The tool gives as output both the final mesh-size h – defined piecewise on each tag – and its
smooth version ĥ, as shown in Fig. 15, (a) and (b), respectively. For instance, this mesh-size
smoothing is evident by comparing h and ĥ on the boundary of the tag drawn on the ventricular
base. Clearly, the smoother mesh-size is preferable in order to avoid sharp changes on the size of
the final volumetric elements. As a technical note, we also remark that the modification of the
initial mesh-size can be achieved using the surface-mesh-size tool in two different ways: on the
one hand, they can use a graphical interface in order to select the set of tags to be modified and
to review all the performed changes; on the other hand users can perform this operation without
interaction, by running the algorithm more than one time and localizing its action each time on

33

(a) (b) (c)

(f)(e)(d)

Figure 16: Generation of a fluid-dynamics mesh of the left heart: a) the starting internal surfaces
of the left ventricle (LV), the left atrium (LA), and the aortic root (AR), divided by a small gap; b)
connecting the LV with the AR; c) remesh the connection; d) open the mitral valve ring; e) connect
the LV with the LA and remesh the connection; f) generate the volumetric mesh.

a different subset of tags. The latter case is suggested when, once the desired parameters have
been set, the user wants to automatically process a large quantity of surfaces.

In Fig. 15, (c), we highlight the regions where the final smooth mesh-size function ĥ is
lower than 1mm. These regions are located only where they are required by the complexity
of the geometry, mainly on the papillary muscles and the trabeculae carneae. Even in these
parts, a mesh-size lower than 0.5mm appears only on the smallest trabeculae or on the most
curved zones. Thus, remeshing the surface following this mesh-size function and generating the
volumetric mesh accordingly will produce an optimized volumetric mesh, where small elements
appear only where they are really necessary. A zoom on this final mesh – made of about 300K
triangular surface elements and 1.1M volumetric tetrahedral elements – is shown in Fig. 15, (c).

3.3 A fluid-dynamics mesh of the left heart.

In this section, we provide an example of fluid-dynamics mesh generation of the whole left-
heart. This example is mainly conceived to demonstrate the robustness of our surface-connection
algorithm (Section 2.1.1). Indeed, this is a crucial algorithm of our work since it is used internally
in the boolean-connection (Section 2.1.2), the harmonic-connection (Section 2.1.3), and the mesh-
connection (Section 2.4.1) algorithms. As input, we use once again surfaces coming from the
Zygote model [1]: the left-ventricular endocardium ΣLV, the left-atrial endocardium ΣLA, and
the internal surface of the aortic root ΣAR. Similar input can be reconstructed from different
segmentations or when each chamber is reconstructed from a specific medical image. Although
we neglect the papillary muscles and the trabeculae carneae, by properly defining the mesh-size
as in Section 3.2, the described pipeline can be naturally extended to the detailed case.

These input surfaces are divided from each-other by a gap, as shown in Fig. 16, (a). The

34

(a) (b) (c)

Figure 17: Some examples of numerical studies of the cardiac function performed on meshes gener-
ated with the tools proposed in this paper: (a) the electrical activation time of an electrophysiology
simulation of the whole four-chambers heart, see Piersanti et al. [91]; (b) the resulting displacement
field at the end of systole of a left-ventricular electro-mechanical simulation, see Regazzoni et al.
[92]; (c) the velocity field at the end of systole of a patient-specific hemodynamics simulation of the
systolic anterior motion of the mitral valve, see Fumagalli et al. [28].

difficulty of this connection is that the left ventricle is characterized by a unique hole where both
the mitral valve and the aortic root are connected. Indeed, the anterior leaflet of the mitral
valve is in fibrotic continuity with the aortic outflow tract. In order to connect the three organs,
we proceed as follows:

1. using the surface-connection algorithm, join the left-ventricle endocardium with the aortic
root. This step also caps the mitral orifice, as shown in Fig. 16, (b);

2. remesh the just created connection recovering the regularity of the triangles and assign
a specific tag to the aorta and the ventricle using the surface-tagger tool, connectivity
algorithm (Fig. 16, (c));

3. recreate the mitral orifice, as shown in Fig. 16, (d). This step can be done manually – using
the local correction tool of vmtk – or automatically – clipping the surface by exploiting a
signed distance from the mitral annulus;

4. using the surface-connection algorithm, connect the geometry to the left atrial endo-
cardium (Fig. 16, (e)) and remesh as desired the connection ring.

We underline that the connection performed as the first step generates abnormally stretched
triangles, but at the same time it creates a cap which perfectly matches with the annulus shape.
This demonstrates the robustness of the surface-connection algorithm and its ability to produce
the expected result also when the two rings to be connected vary their distances and are made
of a very different number of points. As a final step, like in the other examples, the desired
mesh-size can be defined on the surface and, accordingly, the volumetric mesh can be generated.
The example shown in Fig. 16, (f), is made of about 400K elements. However, for this smooth
geometry, coarser or finer meshes can be easily generated by playing with the mesh-size.

35

3.4 Examples of numerical simulations

The algorithms proposed in this paper have already provided the baseline of several works
concerning the numerical simulation of the cardiac function. In Fig. 17 we show some examples
of these studies focused on different aspects of the heart modeling:

� Piersanti et al. [91] proposed new methods for the cardiac fibers generation. In this work
electrophysiology simulations on a four-chambers cardiac geometry were performed, as
shown in Fig. 17, (a). This complex mesh has been generated by exploiting most of the
proposed algorithms of this paper, especially the ones concerning tagging, connections,
and mesh-size function definition;

� in their multiscale study of the cardiac active mechanics, Regazzoni et al. [92] used our
algorithms to generate a left-ventricular mesh for electro-mechanical simulations, as shown
in Fig. 17, (b);

� Fumagalli et al. [28] performed a computational hemodynamics study of the left heart to
assess the pathological systolic anterior motion of the mitral valve, as shown in Fig. 17, (c).
They used both the harmonic-connection and harmonic-extension algorithms in order to
connect the patient-specific ventricle with a template geometry and to extend the image-
based displacement field on the whole domain. They also took advantage of the tagging,
mesh-size and local refinement tools.

Moreover, the meshing tools proposed in this paper have also been used in other works regard-
ing the cardiac electrophysiology [93, 94], the cardiac electromechanics [95], and the cardiac
perfusion [96]. Finally, we remark that also electro-mechanics and electro-mechano-fluid models
of the whole heart are currently under development.

The variety of these numerical studies demonstrates the flexibility of the proposed algorithms
that, being connectible with each other into personalized pipelines, can be adapted to the specific
needs of different numerical models of the cardiac function.

4 Discussion and Conclusions

In this paper, we proposed a set of new algorithms and tools for polygonal surface processing and
mesh generation in the context of numerical simulations of the different physical processes that
characterize the cardiac function. Our study is motivated by the complexity of the shape of the
human heart and by the multi-physics and multi-scale cardiac processes that can be simulated
numerically. This complexity reverberates in the mesh generation pipeline which, depending
on the aspects of the cardiac function to be studied, can consist on a large amount of time-
consuming steps, especially in terms of manpower needed. As a consequence, a general unique
pipeline for the cardiac mesh generation is very likely unsuitable, since the procedure strictly
depends on the specific cardiac physics or region to be studied. For this reason we proposed
various independent algorithms and tools which can be combined in different and flexible ways
depending on the specific interest. This allows the creation of ad-hoc mesh generation pipelines
for each cardiac application, ranging from the simplest case of a single physics simulation in a
single cardiac chamber to the most complex ones of an electro-mechano-fluid model of the whole
heart.

We developed our algorithms as an extension of the vascular modeling toolkit (vmtk) library
[66]. Indeed, we use vmtk both for the already existing algorithms – originally designed for the
vascular applications – and for its ability of nesting multiple algorithms in a single pipeline. We
presented the algorithms grouping them into four different topics: polygonal surface processing,
boundary tags definition, array processing and mesh-size definition, volumetric mesh processing.
We summarize hereafter the main results obtained for each of them.

36

1. Polygonal surface processing. In order to perform patient-specific simulations of the
cardiac function, a mesh generation pipeline usually starts from unprocessed surfaces re-
constructed from medical images. Moreover, the various parts of the heart – for instance
the endocardium, the epicardium, or each cardiac chamber – are usually reconstructed
separately, producing disconnected or intersecting surfaces. In this context, we proposed
three different algorithms to connect separated surfaces into a unique triangulation ready
for the volumetric mesh generation:

� the surface-connection algorithm (Section 2.1.1) connects two disconnected surfaces
by automatically generating a triangulation between two of their boundary rings.
The robustness of the proposed technique is demonstrated in the example of mesh
generation pipeline shown in Section 3.3, where we joined the endocardium of the left
ventricle with the endocardium of the left atrium and the aortic root (see Fig. 16);

� the boolean-connection algorithm (Section 2.1.2) performs boolean operations between
intersecting polygonal surfaces by producing, differently than with standard algo-
rithms [80], a regular triangulation ready for the volumetric mesh generation. An
example applied to the connection of the left-ventricular endocardium and epicardium
is shown in Section 2.1.2, see also Fig. 4.

� the harmonic-connection algorithm (Section 2.1.3) produces a continuous surface by
deforming a boundary of an input surface into a boundary of a reference surface and
by harmonically extending this deformation on the whole input surface. The confor-
mity of the output triangulation is guaranteed by the internal usage of the surface-
connection algorithm. In Section 2.1.3 we showed the application of this technique
to the deformation, at the valvular annulus, of a left-atrial template geometry into a
patient-specific left-ventricle, see Fig. 5.

We also proposed an algorithm to inflate a surface representing a structure – e.g. a cardiac
muscle – in order to correct regions where the muscular thickness is unrealistically small
(the surface-thickening algorithm, Section 2.1.4), as shown for the right ventricular outflow
tract in Fig. 6.

2. Boundary tags definition. Usually, cardiac boundaries are not sharp edges easy to be
localized. Thus, tagging cardiac polygonal surfaces in order to identify specific regions –
for instance for the imposition of boundary conditions – is not always a trivial operation.
The surface-tagger tool (Section 2.2) generates tags by exploiting a function defined on it,
for instance a distance from an object. In particular, the boundary of the new tag is built
at the level where the function assumes a user-defined value. The resulting tags can have
different features depending on the specific algorithm used:

� the simple-array algorithm does not modify the triangulation, by limiting its action
to the assignment of a tag to the already existing triangles. Thus, the boundary of
the generated tag is typically irregular;

� the clip-array algorithm splits the original triangles into more elements, in order to
accurately define the tag exactly at the level where the input function assumes the
user-defined value. Thus, this algorithm generates irregular triangles and must be
followed by a surface remeshing to recover the regularity of the triangulation;

� the harmonic-array algorithm, instead, is a novel approach that moves the points of
the triangulation thanks to a harmonic map by ensuring that some of them lie on the
user-defined level of the input function. In this way, the generated tag is accurate and
the regularity of the triangulation is preserved.

A comparison of the results of the three algorithms has been graphically reported in Fig. 7.
Although the harmonic-array algorithm shares the advantages of both the simple-array
and the clip-array algorithms without any drawback, the other two algorithms can be used
for some mesh-generation pipelines, like in the example shown in Section 3.2 where they

37

are used to generate on a detailed biventricular geometry the tags of valvular annulus and
the papillary muscles, respectively (see Fig. 14).

3. Array processing and mesh-size definition. Through the surface-mesh-size tool (Sec-
tion 2.3.3), we defined the mesh-size as a function of relevant geometric quantities. Ad-
ditionally, we introduced the flexibility of setting it in a different way on each tag. This
allows, for instance, to generate volumetric meshes characterized by small elements only
where they are required by the geometric complexity or where the user desires a particular
accuracy. An example of this strategy is discussed in Section 3.2 for a detailed biventricu-
lar geometry (see Fig. 15). In this context, we also proposed new algorithms to manipulate
arrays defined on the surface – by the harmonic-extension algorithm (Section 2.3.1) – or to
compute relevant geometric quantities for the heart – by the surface-thickness algorithm
(Section 2.3.2).

4. Volumetric mesh processing. Once the mesh-size is defined on the surface, the volumet-
ric tetrahedral mesh can be generated using well-known robust algorithms [62]. However,
additional processing can be required for some applications. For instance, the proposed
mesh-refinement algorithm (Section 2.4.2) performs an a priori local refinement of the
mesh near a region of interest, as shown in Fig. 16 for a hemodynamics mesh of the left-
heart refined near the mitral valve. We also proposed a possible strategy to exploit the
tet-hex algorithm (Section 2.4.3) in order to generate hexahedral meshes from tetrahedral
ones, trying to limit the distortion of the final elements (see Fig. 13 for an application to
a ventricular geometry). Finally, the proposed mesh-connection algorithm (Section 2.4.1)
is of particular interest for the mesh generation of the whole heart. Indeed, it is able to
generate a volumetric mesh between two corresponding tags on the surfaces of two vol-
umetric meshes, as shown in Fig. 11 for an idealized geometry. This can be applied, for
instance, to the generation of the volumetric meshes of the valvular annulus that con-
nect the ventricles to the atria. In addition, starting from the internal surface of the
connected meshes, a conforming mesh for the fluid-dynamics simulations can be easily
generated. Moreover, the tool also assigns a specific tag to each different volume. This
feature can help to assign specific physical properties to each region, as it is required by
multi-chambers electro-mechanical models [45]. All these considerations make this algo-
rithm of fundamental importance for the generation of the whole heart mesh, essential for
the full electro-mechano-fluid model of the cardiac function.

The proposed algorithms have been combined into ad-hoc pipelines to test them in some complex
cardiac applications, like the mesh generation of a fully-detailed ventricular geometry including
the papillary muscles and the trabeculae carneae (Section 3.2) or a complete fluid-dynamics
mesh of the left-heart (Section 3.3). Moreover, as discussed in Section 3.4, they have already
been successfully used in other papers to address a broad range of applications [91, 93, 94,
92, 95, 28, 96]. These examples highlight the flexibility of these tools and their ability to be
easily applicable to a large variety of cardiac mesh generations through the building of ad-hoc
application-dependent pipelines. Despite these pipelines can be made up of many steps, once
the procedure for the specific application has been established, it can be automatically applied
to large datasets, potentially having a strong impact in clinical studies or in the creation of
virtual cohorts of heart models [73].

Financial disclosure

This project has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agreement No 740132,
IHEART 2017-2022, P.I. A. Quarteroni).

38

Conflict of interest

The authors declare no potential conflict of interests.

References

[1] Zygote solid 3D heart generation II developement report. tech. rep., Zygote Media Group
Inc.; 2014.

[2] Quarteroni A, Manzoni A, Vergara C. The cardiovascular system: mathematical modelling,
numerical algorithms and clinical applications. Acta Numerica 2017; 26: 365–590.

[3] Trayanova NA. Whole-heart modeling: applications to cardiac electrophysiology and elec-
tromechanics. Circulation research 2011; 108(1): 113–128.

[4] Dössel O, Krueger MW, Weber FM, Wilhelms M, Seemann G. Computational modeling
of the human atrial anatomy and electrophysiology. Medical & biological engineering &
computing 2012; 50(8): 773–799.

[5] Roberts BN, Yang PC, Behrens SB, Moreno JD, Clancy CE. Computational approaches
to understand cardiac electrophysiology and arrhythmias. American Journal of Physiology-
Heart and Circulatory Physiology 2012; 303(7): H766–H783.

[6] Franzone PC, Pavarino LF, Scacchi S. Mathematical cardiac electrophysiology. 13. Springer
. 2014.

[7] Chabiniok R, Wang VY, Hadjicharalambous M, et al. Multiphysics and multiscale mod-
elling, data–model fusion and integration of organ physiology in the clinic: ventricular
cardiac mechanics. Interface focus 2016; 6(2): 20150083.

[8] Strocchi M, Gsell MA, Augustin CM, et al. Simulating ventricular systolic motion in a
four-chamber heart model with spatially varying robin boundary conditions to model the
effect of the pericardium. Journal of Biomechanics 2020; 101: 109645.

[9] Smith N, Vecchi dA, McCormick M, et al. euHeart: personalized and integrated cardiac
care using patient-specific cardiovascular modelling. Interface focus 2011; 1(3): 349–364.

[10] Pennati G, Corsini C, Hsia TY, Migliavacca F. Computational fluid dynamics models and
congenital heart diseases. Frontiers in pediatrics 2013; 1: 4.

[11] Sun W, Martin C, Pham T. Computational modeling of cardiac valve function and inter-
vention. Annual review of biomedical engineering 2014; 16: 53–76.

[12] Lopez-Perez A, Sebastian R, Ferrero JM. Three-dimensional cardiac computational mod-
elling: methods, features and applications. Biomedical engineering online 2015; 14(1): 35.

[13] Morris PD, Narracott A, Tengg-Kobligk vH, et al. Computational fluid dynamics modelling
in cardiovascular medicine. Heart 2016; 102(1): 18–28.

[14] Arevalo HJ, Vadakkumpadan F, Guallar E, et al. Arrhythmia risk stratification of patients
after myocardial infarction using personalized heart models. Nature communications 2016;
7: 11437.

[15] Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nature Re-
views Cardiology 2019; 16(2): 100–111.

[16] Iaizzo PA. Handbook of cardiac anatomy, physiology, and devices. Springer Science &
Business Media . 2009.

[17] Kutzner C, Grubmüller H, De Groot BL, Zachariae U. Computational electrophysiology:
the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Bio-
physical journal 2011; 101(4): 809–817.

39

[18] Vázquez M, Aŕıs R, Houzeaux G, et al. A massively parallel computational electrophysi-
ology model of the heart. International journal for numerical methods in biomedical engi-
neering 2011; 27(12): 1911–1929.

[19] Pagani S, Manzoni A, Quarteroni A. Numerical approximation of parametrized problems
in cardiac electrophysiology by a local reduced basis method. Computer Methods in Applied
Mechanics and Engineering 2018; 340: 530–558.

[20] McDowell KS, Zahid S, Vadakkumpadan F, Blauer J, MacLeod RS, Trayanova NA. Virtual
electrophysiological study of atrial fibrillation in fibrotic remodeling. PloS one 2015; 10(2):
e0117110.

[21] Nordsletten D, Niederer S, Nash M, Hunter P, Smith N. Coupling multi-physics models to
cardiac mechanics. Progress in biophysics and molecular biology 2011; 104(1-3): 77–88.

[22] Regazzoni F, Dedè L, Quarteroni A. Active contraction of cardiac cells: a reduced model
for sarcomere dynamics with cooperative interactions. Biomechanics and modeling in
mechanobiology 2018; 17(6): 1663–1686.

[23] Peskin CS. The fluid dynamics of heart valves: experimental, theoretical, and computa-
tional methods. Annual review of fluid mechanics 1982; 14(1): 235–259.

[24] Quaini A, Canic S, Guidoboni G, et al. A three-dimensional computational fluid dynamics
model of regurgitant mitral valve flow: validation against in vitro standards and 3D color
Doppler methods. Cardiovascular engineering and technology 2011; 2(2): 77–89.

[25] Fedele M, Faggiano E, Dedè L, Quarteroni A. A patient-specific aortic valve model based on
moving resistive immersed implicit surfaces. Biomechanics and modeling in mechanobiology
2017; 16(5): 1779–1803.

[26] Masci A, Barone L, Dedè L, et al. The impact of left atrial appendage morphology on stroke
risk assessment in atrial fibrillation: a computational fluid dynamics study. Frontiers in
physiology 2018; 9: 1938.

[27] This A, Boilevin-Kayl L, Fernández MA, Gerbeau JF. Augmented Resistive Immersed
Surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases.
International journal for numerical methods in biomedical engineering 2019: e3223.

[28] Fumagalli I, Fedele M, Vergara C, et al. An image-based computational hemodynamics
study of the Systolic Anterior Motion of the mitral valve. Computers in Biology and
Medicine 2020; 123: 103922.

[29] Sugiura S, Washio T, Hatano A, Okada J, Watanabe H, Hisada T. Multi-scale simulations
of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator.
Progress in biophysics and molecular biology 2012; 110(2-3): 380–389.

[30] Santiago A, Aguado-Sierra J, Zavala-Aké M, et al. Fully coupled fluid-electro-mechanical
model of the human heart for supercomputers. International journal for numerical methods
in biomedical engineering 2018; 34(12): e3140.

[31] Owen SJ. A survey of unstructured mesh generation technology.. IMR 1998; 239: 267.

[32] Frey PJ, George PL. Mesh generation: application to finite elements. Iste . 2007.

[33] Cheng SW, Dey TK, Shewchuk J. Delaunay mesh generation. CRC Press . 2012.

[34] Lo DS. Finite element mesh generation. CRC Press . 2014.

[35] Zhang YJ. Geometric modeling and mesh generation from scanned images. CRC Press .
2018.

[36] Zhang Y, Bajaj C. Finite element meshing for cardiac analysis. Univ. of Texas at Austin:
ICES Technical Report 2004.

40

[37] Burton RA, Plank G, Schneider JE, et al. Three-dimensional models of individual cardiac
histoanatomy: tools and challenges. Annals of the New York Academy of Sciences 2006;
1080: 301.

[38] Prassl AJ, Kickinger F, Ahammer H, et al. Automatically generated, anatomically ac-
curate meshes for cardiac electrophysiology problems. IEEE Transactions on Biomedical
Engineering 2009; 56(5): 1318–1330.

[39] Lamata P, Niederer S, Nordsletten D, et al. An accurate, fast and robust method to generate
patient-specific cubic Hermite meshes. Medical image analysis 2011; 15(6): 801–813.

[40] Zhang Y, Liang X, Ma J, et al. An atlas-based geometry pipeline for cardiac Hermite
model construction and diffusion tensor reorientation. Medical image analysis 2012; 16(6):
1130–1141.

[41] Augustin CM, Crozier A, Neic A, et al. Patient-specific modeling of left ventricular elec-
tromechanics as a driver for haemodynamic analysis. EP Europace 2016; 18(suppl 4):
iv121–iv129.

[42] Gillette K, Prassl A, Neic A, Plank G, Bayer J, Vigmond E. Automatic generation of bi-
ventricular models of cardiac electrophysiology for patient specific personalization using
non-invasive recordings. In: . 45. IEEE. ; 2018: 1–4.

[43] Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized
cardiac computational models: from clinical data to simulation of infarct-related ventricular
tachycardia. Frontiers in physiology 2019; 10: 580.

[44] Neic A, Gsell MA, Karabelas E, Prassl AJ, Plank G. Automating image-based mesh gen-
eration and manipulation tasks in cardiac modeling workflows using meshtool. SoftwareX
2020; 11: 100454.

[45] Strocchi M, Augustin CM, Gsell MA, et al. A publicly available virtual cohort of four-
chamber heart meshes for cardiac electro-mechanics simulations. PLoS One 2020; 15(6):
e0235145.

[46] This A, Morales HG, Bonnefous O, Fernández MA, Gerbeau JF. A pipeline for image
based intracardiac CFD modeling and application to the evaluation of the PISA method.
Computer Methods in Applied Mechanics and Engineering 2020; 358: 112627.

[47] Zhang Y, Bajaj C, Sohn BS. 3D finite element meshing from imaging data. Computer
methods in applied mechanics and engineering 2005; 194(48-49): 5083–5106.

[48] Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D. Four-chamber heart model-
ing and automatic segmentation for 3-D cardiac CT volumes using marginal space learning
and steerable features. IEEE transactions on medical imaging 2008; 27(11): 1668–1681.

[49] Hoogendoorn C, Sebastian R, Rodriguez JF, Lekadir K, Frangi AF. An atlas-and data-
driven approach to initializing reaction-diffusion systems in computer cardiac electrophys-
iology. International journal for numerical methods in biomedical engineering 2017; 33(8):
e2846.

[50] Frangi AF, Rueckert D, Schnabel JA, Niessen WJ. Automatic construction of multiple-
object three-dimensional statistical shape models: Application to cardiac modeling. IEEE
transactions on medical imaging 2002; 21(9): 1151–1166.

[51] Fonseca CG, Backhaus M, Bluemke DA, et al. The Cardiac Atlas Project—an imaging
database for computational modeling and statistical atlases of the heart. Bioinformatics
2011; 27(16): 2288–2295.

[52] Hoogendoorn C, Duchateau N, Sanchez-Quintana D, et al. A high-resolution atlas and
statistical model of the human heart from multislice CT. IEEE transactions on medical
imaging 2012; 32(1): 28–44.

41

[53] Bai W, Shi W, Marvao dA, et al. A bi-ventricular cardiac atlas built from 1000+ high
resolution MR images of healthy subjects and an analysis of shape and motion. Medical
image analysis 2015; 26(1): 133–145.

[54] Chan CL, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary
representation with PHT-splines. Computer-Aided Design 2017; 82: 29–41.

[55] Urick B, Sanders TM, Hossain SS, Zhang YJ, Hughes TJ. Review of patient-specific vas-
cular modeling: template-based isogeometric framework and the case for CAD. Archives of
Computational Methods in Engineering 2019; 26(2): 381–404.

[56] Xanthos T, Dalivigkas I, Ekmektzoglou KA. Anatomic variations of the cardiac valves and
papillary muscles of the right heart. Italian Journal of Anatomy and Embryology 2011;
116(2): 111–126.

[57] Shereen R, Lee S, Salandy S, Roberts W, Loukas M. A comprehensive review of the anatom-
ical variations in the right atrium and their clinical significance. Translational Research in
Anatomy 2019; 17: 100046.

[58] Wongcharoen W, TSAO HM, WU MH, et al. Morphologic characteristics of the left atrial
appendage, roof, and septum: implications for the ablation of atrial fibrillation. Journal of
cardiovascular electrophysiology 2006; 17(9): 951–956.

[59] Löhner R, Parikh P. Generation of three-dimensional unstructured grids by the advancing-
front method. International Journal for Numerical Methods in Fluids 1988; 8(10): 1135–
1149.

[60] George PL, Seveno É. The advancing-front mesh generation method revisited. International
Journal for Numerical Methods in Engineering 1994; 37(21): 3605–3619.

[61] Löhner R. Progress in grid generation via the advancing front technique. Engineering with
computers 1996; 12(3-4): 186–210.

[62] Si H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on
Mathematical Software (TOMS) 2015; 41(2): 11.

[63] Biehler J, Wall W. The impact of personalized probabilistic wall thickness models on peak
wall stress in abdominal aortic aneurysms. International journal for numerical methods in
biomedical engineering 2018; 34(2): e2922.

[64] Campos JO, Sundnes J, Santos dRW, Rocha BM. Effects of left ventricle wall thickness
uncertainties on cardiac mechanics. Biomechanics and modeling in mechanobiology 2019;
18(5): 1415–1427.

[65] Campos J, Sundnes J, Dos Santos R, Rocha B. Uncertainty quantification and sensitivity
analysis of left ventricular function during the full cardiac cycle. Philosophical Transactions
of the Royal Society A 2020; 378(2173): 20190381.

[66] Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-
based modeling framework for patient-specific computational hemodynamics. Medical &
biological engineering & computing 2008; 46(11): 1097–1112.

[67] Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator with built-in pre-and
post-processing facilities. International journal for numerical methods in engineering 2009;
79(11): 1309–1331.

[68] Schöberl J. NETGEN An advancing front 2D/3D-mesh generator based on abstract rules.
Computing and visualization in science 1997; 1(1): 41–52.

[69] Blacker TD, Owen SJ, Staten ML, et al. CUBIT geometry and mesh generation toolkit
15.2 user documentation. tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States); 2016.

42

[70] Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. Meshlab: an
open-source mesh processing tool.. In: . 2008. Salerno. ; 2008: 129–136.

[71] Schmidt R, Singh K. Meshmixer: an interface for rapid mesh composition. In: 2010 (pp.
1–1).

[72] Hess R. The essential Blender: guide to 3D creation with the open source suite Blender.
No Starch Press . 2007.

[73] Niederer S, Aboelkassem Y, Cantwell C, et al. Creation and application of virtual patient
cohorts of heart models. Philosophical Transactions of the Royal Society A 2020; 378(2173):
20190558.

[74] Thakur A, Banerjee AG, Gupta SK. A survey of CAD model simplification techniques for
physics-based simulation applications. Computer-Aided Design 2009; 41(2): 65–80.

[75] Antiga L, Ene-Iordache B, Remuzzi A. Computational geometry for patient-specific recon-
struction and meshing of blood vessels from MR and CT angiography. IEEE transactions
on medical imaging 2003; 22(5): 674–684.

[76] Antiga L. Patient-specific modeling of geometry and blood flow in large arteries. PhD thesis.
Politecnico di Milano, 2002.

[77] Lee DT, Schachter BJ. Two algorithms for constructing a Delaunay triangulation. Inter-
national Journal of Computer & Information Sciences 1980; 9(3): 219–242.

[78] Schroeder WJ, Lorensen B, Martin K. The visualization toolkit: an object-oriented approach
to 3D graphics. Kitware . 2004.

[79] Bærentzen JA, Aanaes H. Signed distance computation using the angle weighted pseudonor-
mal. IEEE Transactions on Visualization and Computer Graphics 2005; 11(3): 243–253.

[80] Quammen C, Weigle C, Taylor R. Boolean operations on surfaces in vtk without external
libraries. The Insight Journal 2011; 797: 1–12.

[81] Chetverikov D, Svirko D, Stepanov D, Krsek P. The trimmed iterative closest point algo-
rithm. In: . 3. IEEE. ; 2002: 545–548.

[82] Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of 3D point sets: the
trimmed iterative closest point algorithm. Image and vision computing 2005; 23(3): 299–
309.

[83] Dziuk G, Elliott CM. Finite element methods for surface PDEs. Acta Numerica 2013; 22:
289.

[84] Bonito A, Demlow A, Nochetto RH. Finite element methods for the Laplace–Beltrami
operator. In: . 21. Elsevier. 2020 (pp. 1–103).

[85] Suetens P. Fundamentals of medical imaging. Cambridge university press . 2017.

[86] Roney C, Bendikas R, Pashakhanloo F, et al. Constructing a Human Atrial Fibre Atlas.
Annals of Biomedical Engineering 2020.

[87] Bänsch E. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science
and Engineering 1991; 3(3): 181–191.

[88] Zienkiewicz O, Zhu J. Adaptivity and mesh generation. International Journal for Numerical
Methods in Engineering 1991; 32(4): 783–810.

[89] Bathe KJ, Zhang H. A mesh adaptivity procedure for CFD and fluid-structure interactions.
Computers & Structures 2009; 87(11-12): 604–617.

[90] De Santis G, De Beule M, Van Canneyt K, Segers P, Verdonck P, Verhegghe B. Full-
hexahedral structured meshing for image-based computational vascular modeling. Medical
engineering & physics 2011; 33(10): 1318–1325.

43

[91] Piersanti R, Africa PC, Fedele M, et al. Modeling cardiac muscle fibers in ventricular and
atrial electrophysiology simulations. Computer Methods in Applied Mechanics and Engi-
neering 2021; 373: 113468. doi: https://doi.org/10.1016/j.cma.2020.113468

[92] Regazzoni F, Dedè L, Quarteroni A. Biophysically detailed mathematical models of multi-
scale cardiac active mechanics. arXiv preprint arXiv:2004.07910 2020.

[93] Stella S, Vergara C, Maines M, et al. Integration of maps of activation times in computa-
tional cardiac electrophysiology. MOX report 2020; 19/2020.

[94] Fresca S, Manzoni A, Dedè L, Quarteroni A. Deep learning-based reduced order models in
cardiac electrophysiology. arXiv preprint arXiv:2006.03040 2020.

[95] Salvador M, Dede L, Quarteroni A. An intergrid transfer operator using radial basis func-
tions with application to cardiac electromechanics. Computational Mechanics 2020.

[96] Di Gregorio S, Fedele M, Pontone G, et al. A computational model applied to myocar-
dial perfusion in the human heart: from large coronaries to microvasculature. Journal of
Computational Physics 2020: 109836. doi: https://doi.org/10.1016/j.jcp.2020.109836

44

http://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113468
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109836

MOX Technical Reports, last issues

Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

31/2019 Pagani, S.; Vitulano, G.; De Blasi, G.; Frontera, A.

High density characterization of the atrial electrical substrate during sinus

rhythm in patients with atrial fibrillation

30/2019 Pagani, S.; Manzoni, A.; Quarteroni, A.

Forward uncertainty quantification in cardiac electrophysiology by reduced

order modeling and machine learning

29/2019 Dal Santo, N.; Manzoni, A.; Pagani, S.; Quarteroni, A.

Reduced order modeling for applications to the cardiovascular system

28/2019 Infantino, M.; Mazzieri, I.; Ozcebe, A.G.; Paolucci, R.; Stupazzini, M.

Physics-based probabilistic seismic hazard assessment in Istanbul

26/2019 Antonietti, P. F.; Bonaldi, F.; Mazzieri, I.

Simulation of 3D elasto-acoustic wave propagation based on a Discontinuous

Galerkin Spectral Element method

27/2019 Tantardini, M.; Ieva, F.; Tajoli, L.; Piccardi, C.

Comparing methods for comparing networks

25/2019 Gigante, G.; Vergara, C.

On the stability of a loosely-coupled scheme based on a Robin interface

condition for fluid-structure interaction

24/2019 Masci, C.; Ieva, F.; Agasisti, T.; Paganoni A.M.

Evaluating class and school effects on the joint achievements in different

subjects: a bivariate semi-parametric mixed-effects model

23/2019 Laurino, F; Zunino, P.

Derivation and analysis of coupled PDEs on manifolds with high

dimensionality gap arising from topological model reduction

22/2019 Gigante, G.; Sambataro, G.; Vergara, C.

Optimized Schwarz methods for spherical interfaces with application to

fluid-structure interaction

