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Abstract. Residual stresses may appear in elastic bodies due to the forma-
tion of misfits in the micro-structure, driven by plastic deformations, thermal
or growth processes. They are especially widespread in living matter, result-
ing from the dynamic remodelling processes aiming at optimizing the overall
structural response to environmental physical forces. From a mechanical view-
point, residual stresses are classically modelled through the introduction of a
virtual incompatible configuration that maps the natural state of the body. In
this work, we instead employ an alternative approach based on a strain energy
function that constitutively depends on both the deformation gradient and
the residual stress tensor. In particular, our objective is to study the morpho-
logical stability of an incompressible sphere, made of a neo-Hookean material
and subjected to given distributions of residual stresses. The boundary value
elastic problem is studied with analytic and numerical tools. Firstly, we per-
form a linear stability analysis on the pre-stressed sphere using the method
of incremental deformations. The marginal stability conditions are given as a
function of a control parameter, being the dimensionless variable that repre-
sents the characteristic intensity of the residual stresses. Secondly, we perform
finite element simulations using a mixed formulation in order to investigate the
post-buckling morphology in the fully nonlinear regime. Considering different
initial distributions of the residual stresses, we find that different morpholog-
ical transitions are all localized around the material domain where the hoop
residual stress reaches its maximum compressive value. The loss of spherical
symmetry is found to be controlled by the mechanical and geometrical prop-
erties of the sphere, as well as on the spatial distribution of the residual stress.
The results provide useful guidelines in order to design morphable soft spheres,
for example by controlling the residual stresses through active deformations.
They finally open a pathway for the non-disruptive characterization of residual
stresses in soft tissues, such as solid tumours.
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1. Introduction

Mechanical stresses may be present inside elastic solid materials even in absence
of external forces: they are commonly known as residual stresses [1, 2]. These
stresses results from the presence of micro-structural misfits, for example after
plastic deformations (e.g. in metals), thermal processes (e.g. quick solidification
in glass) or the geometrically incompatible growth of biological tissues. Indeed, it
is well acknowledged that there exists a mechanical feedback in many biological
processes, such as cell mitosis [3, 4], that generates residual stresses either in phys-
iological conditions (e.g. within arteries or the gastro-intestinal tract [5, 6, 7]) or
pathological situations (e.g. solid tumors [8, 9, 10]). Moreover, residual stresses
can accumulate reaching a critical threshold beyond which a morphological transi-
tion is triggered, possibly leading to complex pattern formation, such as wrinkling,
creasing or folding [11].

Several studies about mechanical instabilities in soft materials have been carried
out in the last decades. The stability of spherical elastic shells has been studied
with respect to the application of an external [12, 13] or internal pressure [14, 15].
More recently, the influence of residual stresses on stability in growing spherical
shells [16] as well as in spherical solid tumor [17] has been addressed.

Residual stresses are classically modeled performing a multiplicative decomposi-
tion of the deformation gradient [18]. The key point of this method is the multiplica-
tive decomposition of the deformation gradient F into two parts, being F = FeFo, in
which the tensor Fo defines the natural state of the material free of any geometrical
constraint, whereas Fe is the elastic deformation tensor restoring the geometrical
compatibility under the action of the external forces.

The main drawback of this method is the necessity of the a priori knowledge
of the natural state, since it is not often physically accessible. Indeed, from an
experimental viewpoint, its determination would requires several cuttings (ideally
infinite) on the elastic body in order to release all the underlying residual stresses
[6, 7, 8, 10].

In this work, we employ an alternative approach based on a strain energy function
that constitutively depends on both the deformation gradient and the residual stress
tensor in the reference configuration [19]. In particular, our objective is to study
the morphological stability of an incompressible sphere, naturally made of a neo-
Hookean material and subjected to given distributions of residual stresses.

The work is organized as follows. Firstly, we introduce the hyperelastic model for
a pre-stressed material, defining the constitutive assumptions as a function of given
distributions of residual stresses. Secondly, we apply the theory of incremental
deformations in order to study the linear stability of a pre-stressed sphere with
respect to the underlying residual stresses. Finally, we implement a numerical
algorithm using the mixed finite element method in order to approximate the fully
non-linear elastic solution. In the last section we discuss the results of the linear
and non-linear analysis, together with some concluding remarks.

2. The elastic model

Let us consider a soft residually-stressed sphere composed of an incompressible
hyperelastic material in a reference configuration Ω ⊂ E3, where E3 is the three-
dimensional Euclidean space. We use a spherical coordinate system in the reference
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configuration so that the material position vector is given by X = (R, Θ, Φ) where
R is the radial coordinate, Θ is the polar angle and Φ is the azimuthal angle.

We define the domain Ω as the set such that

Ω = {X = (R,Θ, Φ) | R ∈ [0, Ro), Θ ∈ [0, π], Φ ∈ [0, 2π]} ,
and we indicate with eR, eΘ and eΦ be the local orthonormal vector basis.

2.1. Constitutive assumptions. Indicating with x = ϕ(X) the spatial position
vector, so that ϕ is the deformation field, we follow the approach exposed in [19].

We assume that the strain energy density of the body ψ is a function depending
on both the deformation gradient F = Gradϕ and the Cauchy stress Σ in the
reference configuration (i.e. the residual stress [1]):

(1) ψ = ψ(F, Σ).

Hence, the first Piola–Kirchhoff stress tensor S and the Cauchy stress tensor T
are given by

(2) S(F, Σ) =
∂ψ

∂F
(F, Σ)− pF−1, T(F, Σ) = FS

where p is the Lagrangian multiplier that enforces the incompressibility constraint.
Hence, the fully non-linear problem in the quasi-static case reads

(3) Div S = 0.

where Div denotes the divergence operator in material coordinates; the boundary
conditions are

(4) STeR = 0 when R = Ro

where u(X) = (ϕ(X)−X) is the displacement vector field.
When we evaluate the Piola–Kirchhoff stress in the reference configuration, we

obtain the residual stress Σ, i.e. setting F equal to the identity tensor I in Eq. 2,
we get

(5) Σ =
∂ψ

∂F
(I, Σ)− p0I;

this relation represents the initial stress compatibility condition [20, 21], where p0

is a scalar field corresponding to the pressure field in the unloaded case.
Moreover, since Σ is the Cauchy stress tensor in the reference configuration, the

balance of the linear and the angular momentum impose

(6) Div Σ = 0, Σ = ΣT in Ω,

together with the following boundary conditions

(7) ΣRR = ΣΘR = ΣΦR = 0 for R = Ro.

From Eqs. (6)-(7), it is possible to prove that [2]∫
Ω

Σ dL3(X) = 0,

so that the residual stress field must be inhomogeneous, with zero mean value.
We also impose the initial stress reference indipendence (see [20, 21] for fur-

ther details), which states that the strain energy density of the material must be
independent of the reference configuration chosen, namely

(8) ψ (F1F2, Σ) = ψ (F1, T (F2, Σ)) .
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The Eq. (8) must hold for all second order tensor F1, F2 with positive determi-
nant and for all the possible tensors Σ which satisfies the Eqs. (6)-(7).

The general material with a strain energy given by Eq. (1) such that it is isotropic
in absence of residual stress when Σ = 0, may depend up to ten independent
invariants [19].

A simple possible choice for the strain energy density which satisfy both the
initial stress compatibility condition and the initial stress reference independence
is the one corresponding to an initially stressed neo–Hookean material. The strain
energy of such material is constructed so that if a virtual relaxed configuration
exists, then T naturally behaves as a neo–Hookean material (see [20] for a detailed
derivation).

It is proved that to describe the constitutive behavior of such material from
this reference state, we only need a functional dependence on the following five
invariants:

I1 = tr C, J1 = tr (ΣC) ,

IΣ1 = tr Σ, IΣ2 =
(tr Σ)2 − tr Σ2

2
, IΣ3 = det Σ,

where C = FTF is the right Cauchy–Green tensor.
Accordingly, the strain energy of an initially stressed Neo–Hookean solid reads

(9) ψ (I1, J1, IΣ1, IΣ2, IΣ3) =
1

2
(J1 + p̃I1 − 3µ),

where p̃ = p̃(Σ) is a solution of the following equation

(10) p̃3 + p̃2IΣ1 + p̃IΣ2 + IΣ3 − µ3 = 0

where µ is the shear modulus of the material in absence of residual stresses.
The only real root of Eq. (10) for all Σ is given by [20]

p̃ =
1

3

[
T3 +

T1

T3
− IΣ1

]
,

where

T1 = I2
Σ1 − 3IΣ2,

T2 = I3
Σ1 −

9

2
IΣ1IΣ2 +

27

2

(
IΣ3 − µ3

)
,

T3 =
3

√√
T 2

2 − T 3
1 − T2.

In the following, we use symmetry arguments to discuss few possible choices for
the distribution of the residual stresses.

2.2. Residual stress distribution. We assume that the residual stress Σ depends
only on the variable R. Hence the system of equations given by Eq. (6) reduces to

(11)


∂ΣRR
∂R

+
2

R
(ΣRR − ΣΘΘ) = 0,

ΣRΘ = ΣRΦ = ΣΘΦ = 0;
.
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Figure 1. Plot of the radial (solid line) and hoop (dashed line)
residual stress components normalized with respect to α µ when
f(R) is given by Eq. (12) (left) f(R) is given by Eq. (13) (right).
Both the dimensionless parameters β and γ are set equal to 2.

Then, it is possible to define an Airy stress function f such that the residual
stress tensor solution is given by

Σ = diag

(
f(R),

R

2
f ′(R) + f(R),

R

2
f ′(R) + f(R),

)
where f : [0, Ro] → R is such that f(Ro) = 0 in order to satisfy automatically
Eq. (11).

In the following, we will focus on two possible choices for the function f :

case (a) : f(R) = αµ
Rβ −Rβo
Rβo

,(12)

case (b) : f(R) = αµ

(
R

Ro

)γ
log

(
R

Ro

)
,(13)

where α, β and γ are real dimensionless parameters with β, γ > 1. The correspond-
ing residual stress components are depicted in Fig. 1.

In this setting, it is possible to prove that the pressure field in the reference
configuration is given by p = p̃(Σ) [20].

In the next section we apply the theory of incremental deformations in order to
study the stability of the residually stressed configuration with respect to the mag-
nitude of the underlying residual stresses expressed by the dimensionless parameters
α, β and γ.

3. Incremental problem and linear stability analysis

3.1. Structure of the incremental equations. In order to study the linear
stability of the undeformed configuration with respect to the magnitude of the
residual stresses, we use the method of the incremental elastic deformations [22].
We denote with δu the incremental displacement vector and with Γ the gradient of
the vector field δu, namely Γ = Grad δu.

The linearized incremental Piola–Kirchhoff stress tensor reads

(14) δS = A1
0 : Γ + pΓ− qI
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where q is the increment of the Lagrangian multiplier p and(
A1

0 : Γ
)
ij

:= A1
0ijhkΓkh =

∂ψ

∂Fji∂Fkh

∣∣∣∣
F=I

Γkh,

with A0 being the fourth order tensor of the elastic moduli, and the summation
over repeated subscripts is assumed.

From Eq. (9) and following [19], we get

A1
0ijhk = δjk(2ψ,I1 δih + Σih),

where δij is the Kronecker delta the comma denotes the partial derivative.
Hence, the incremental equilibrium equation is given by

(15) Div δS = 0,

and the boundary conditions read

(16) δSTeR = 0 at R = Ro.

The incompressibility of the incremental deformation is given by the constraint

(17) tr Γ = 0.

We assume an axis-symmetric incremental displacement vector given by

δu = u(R, Θ)eR + v(R, Θ)eΘ,

this choice is motivated by the fact that, imposing a general incremental displace-
ment vector, the resulting governing equations in the azymuthal direction decouple
[12, 13], thus not influencing the linearized bifurcation analysis.

Hence, the incremental displacement gradient is given by

Γ =


u,R

u,Θ−v
R

0

v,R
u+ v,Θ
R

0

0 0
u+ cot(Θ)v

R

 .
In order to build a robust numerical procedure to solve the incremental boundary

value problem, we first rewrite Eqs. (15)-(17) using a more convenient form, known
as Stroh formulation.

3.2. Stroh formulation. Since the residually stressed material is inhomogeneous
only in the radial direction, we study the bifurcation problem by assuming variable
separation for the incremental displacement [23], namely

u(R, Θ) = U(R)Pm(cos Θ),(18)

v(R, Θ) = V (R)
1√

m(m+ 1)

dPm(cos Θ)

dΘ
,(19)

δSRR(R, Θ) = sRR(R)Pm(cos Θ),(20)

δSRΘ(R, Θ) = sRΘ(R)
1√

m(m+ 1)

dPm(cos Θ)

dΘ
,(21)

where Pm(Θ) denotes the Legendre polynomial of order m.
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In order to write the incremental boundary value problem Eqs. (15)-(17) in the
Stroh formulation, we introduce the displacement-traction vector η, defined as

η(R) =

[
U(R)
R2T (R)

]
,

where

U(R) =

[
U(R)
V (R)

]
, T (R) =

[
sRR(R)
sRΘ(R)

]
.

An expression of q is found by substituting Eq. (14) in Eq. (20), so that

(22) q = Pm(cos(Θ)) (U ′(R) (2ψ,I1 +f(R) + p)− δSRR(R)) .

Thus, using a well established procedure [24], we can use the definition of the
linearized incremental Piola–Kirchhoff given by Eq. (14), the incremental equilib-
rium equations given by Eq. (15) and the linearized incompressibility constraint
Eq. (17) to obtain a first order system of ordinary differential equations, namely

(23)
dη

dR
=

1

R2
Nη,

where N(R) is the Stroh matrix which has the following structure

N =

(
N1 N2

N3 −NT
1

)
,

where the sub-blocks read:

N1 =

( −2R
√
m(m+ 1)R

−
√
m(m+1)pR

f(R)+2ψ,I1

pR
f(R)+2ψ,I1

)
,

N2 =

(
0 0
0 1

f(R)+2ψ,I1

)
, N3 =

(
ν1 ν2

ν2 ν3

)
.

The expression of the coefficients ν1, ν2 and ν3 is given by:

ν1 =
R2((2ψ,I1 +f(R))(4(m

2 +m+ 6)ψ,I1 +(m2 +m+ 2)Rf ′(R)

2(2ψ,I1 +f(R))
+

+
2(m2 +m+ 6)f(R) + 12p)− 2m(m+ 1)p2)

2(2ψ,I1 +f(R))
,

ν2 =
R2
√
m(m+ 1)

(
p2 − (2ψ,I1 +f(R)) (8ψ,I1 +Rf

′(R) + 4f(R) + 3p)
)

2ψ,I1 +f(R)
,

ν3 =
R2 (2ψ,I1 +f(R)) (m(m+ 1) (8ψ,I1 +Rf

′(R) + 4f(R)) + 2(2m(m+ 1)− 1)p)

2 (2ψ,I1 +f(R))
+

− 2R2p2

2 (2ψ,I1 +f(R))
.

In the next section, we solve the Eq. (23) by using the impedance matrix method.

3.3. Impedance matrix method. Let us briefly sketch the main theoretical as-
pects of this method [25, 26]. We define a linear functional relation between U and
T , namely

(24) R2T = ZU .

where Z is the so called surface impedance matrix.
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By substituting Eq. (24) in Eq. (23), we obtain

U ′ =
1

R2
(N1U + N2ZU),(25)

Z′U + ZU ′ =
1

R2
(N3U + N4ZU).(26)

Thus, by substituting Eq. (25) in Eq. (26), a Riccati differential equation is found
for Z, being

(27)
dZ

dR
=

1

R2

(
N3 − NT

1 Z− ZN1 − ZN2Z
)
.

Let now us define M as the solution to the following problem

(28)

[
d

dR
− N

R2

]
M(R, Ro) = 0

M(Ro, Ro) = I.

where the matricant M(R, Ro) is a 4× 4 matrix, called conditional matrix.
Since M is the solution of the problem given in Eq. (28), from Eq. (23) it is

straightforward to show that

(29) η(R) = M(R, Ro)η(Ro).

Let us split the conditional matrix into four blocks as

(30) M =

[
M1(R, Ro) M2(R, Ro)
M3(R, Ro) M4(R, Ro)

]
.

We can use two possible ways to construct the surface impedance matrix, either
the conditional impedance matrix Zc(R, Ro) or the solid impedance matrix Zs(R)
[27].

In fact, considering that T (Ro) = 0 and by using the Eqs. (29)-(30), we can
define the conditional impedance matrix as Zc(R, Ro) := M3(R, Ro)M−1

1 (R, Ro).
Such matrix is called conditional since it depends explicitly on its value at R = Ro.

Conversely, the solid impedance matrix does not explicitly depend on its value
at one point, instead it is built so that the surface impedance matrix is well posed
in the origin.

Following [27], we consider a Taylor series expansion of the solid impedance
matrix Zs(R) around R = 0, namely

(31) Zs(R) = Z0 + Z1R+ o(R),

where Z0 is called central impedance matrix.
From the Eq. (27), the solid impedance matrix is well posed in the origin only if

the central impedance matrix satisfies the following algebraic Riccati equation:

N3(0)− NT
1 (0)Z0 − Z0N1(0)− Z0N2(0)Z0 = 0;

whose general solution is given by

(32) Z0 = δe1 ⊗ e1, δ ∈ R.
By substituting Eq. (31) in Eq. (27) and setting R = Rc � 1, we obtain the

following algebraic Riccati equation

(33)
0 = N3(Rc)− NT

1 (Rc)Z0 − Z0N1(Rc)− Z0N2(Rc)Z0 −R2
cZ1N2(Rc)Z1+

−RcZ1

(
N1(Rc) + N2(Rc)Z0 +

Rc
2

I

)
−Rc

(
NT

1 (Rc) + Z0N2(Rc) +
Rc
2

I

)
Z1
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whose only stable solution is the only one such that the eigenvalues of

−Rc
(

N1(Rc) + N2(Rc)Z0 +
Rc
2

I

)
−R2

cN2(Rc)Z1

are all negative [28].
In summary, the surface impedance method allow to avoid the direct resolution of

the boundary value problem given by Eqs. (15)-(17) by using a numerical integration
of the Riccati equation given by Eq. (27).

3.4. Numerical procedure and results of the linear stability analysis. The
aim of this section is to implement a robust numerical sprocedure to analyze the
onset of a morphological transition as a function of the dimensionless parameters
α, β and γ representing the magnitude and the spatial distribution of the residual
stresses.

The solution of the incremental boundary value problem can be obtained by a
numerical integration of the differential Riccati Eq. (27) using two different proce-
dures.

First, the differential Riccati equation in Eq. (27) can be integrated from Rc to
Ro with starting value

(34) Zs(Rc) = Z0 +RcZ1,

given by the solid impedance matrix in Eq. (31).
Using Eq. (34), we numerically solve Eq. (27) by iterating on the value α in

Eqs. (12)-(13), starting from 0 until the stop condition

(35) det Zs(Ro) = 0,

is reached, namely when the impedance matrix is singular and the incremental
Eqs. (15) and (17) admit a non-null solution that satisfies Eq. (16).

A second approach is to integrate Eq. (27) by using the conditional impedance
matrix Zc(R, Ro). Since from Eq. (29) it can be shown that M(Ro, Ro) = I, the
definition of the conditional impedance matrix given by Eq. (28) allows to set the
following initial condition:

(36) Zc(Ro, Ro) = 0.

Analogously, we iteratively integrate Eq. (27) until the stop condition

(37) det(Zc(Rc, Ro)− Z0 − Z1Rc) = 0

is reached. This condition corresponds to the existence of non-null solutions for the
variable U imposing the continuity of the incremental stress vector T at R = Rc.

In both cases, in order to find the incremental displacement field, we integrate
Eq. (25) using the procedure described in [29].

The two numerical schemes were implemented by using the softwareMathematica
11.0 (Wolfram Research, Champaign, IL, USA) in order to identify the marginal
stability curves as function of the dimensionless parameters α, β and γ.

3.4.1. Case (a): exponential polynomial case. Let us first consider the case in which
the expression of f(R) is the exponential polynomial given by Eq. (12). We use the
initial condition given by Eq. (34).

We find out that the stop condition given by Eq. (35) is satisfied only for negative
values of α, namely we can find an instability only if the hoop residual stress
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Figure 2. Marginal stability curves for the residually stressed
sphere where f(R) is given by the Eq. (12), showing the critical α
at varying the wavenumber m (left) and the critical wavenumber
mcr vs β (right).
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Figure 3. Solution of the linearized incremental problem for β =
3 and m = mcr = 7 where f(R) is given by the Eq. (12). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

is tensile close to the center and compressive near the boundary. Moreover, the
results exposed are independent on the choice of the δ in Eq. (32).

For fixed β and m, let αm be the first value such that the stop condition Eq. (35)
is satisfied, we define the critical wavenumber mcr as the wavenumber with min-
imum |αm| and we denote such critical value with αcr. In Fig. 2 (left) we depict
several instability curves for various β whilst in Fig. 2 (right) we plot the criti-
cal wavenumber at varying the parameter β. We highlight that, as we increase
the parameter β, the critical wavenumber mcr also increases with a nearly linear
behavior.

In Fig. 3 we plot the solution of the linearized incremental problem for β = 3
wherem = mcr = 7 (see Fig. 2 (right)), we observe that the deformation is localized
in the outer rim of the sphere, where the hoop residual stress is compressive.
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Figure 4. Marginal stability curves for the residually stressed
sphere where f(R) is given by the Eq. (13), showing the critical
positive α at varying the wavenumber m (left) and the critical
wavenumber mcr vs γ (right).
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Figure 5. Solution of the linearized incremental problem for γ =
2 and m = mcr = 10 where f(R) is given by the Eq. (13). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

3.4.2. Case (b): logarithmic case. Let us now consider the case in which f(R) is
given by Eq. (13), we find that the residually stressed sphere is unstable for both
positive and negative values of α.

When we consider positive values for the control parameter α, we integrate
the differential Riccati equation given by Eq. (27) from R = Ro, using the initial
condition given by Eq. (36), and using the stop condition at R = Rc given by
Eq. (37).

Whilst, when α is negative, we use as initial condition the Eq. (34) and as stop
condtion the Eq. (35); this means that we integrate the Riccati equation from the
interior to the exterior.
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Figure 7. Solution of the linearized incremental problem for γ =
2 and m = mcr = 3 where f(R) is given by the Eq. (13). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

Let us first consider the case in which α is negative, namely when the hoop stress
is compressive at the boundary (see Fig. 1). In this framework, in Fig. 4 (left) we
depict several instability curves for various γ, whereas in Fig. 4 (right) we plot
the values of the critical wavenumber at varying the parameter γ. As previously
observed, by increasing γ, also the critical wavenumber mcr increases with a nearly
linear behavior.

In Fig. 5 we plot the solution of the linearized incremental for γ = 2, where
m = mcr = 7 (see Fig. 4, right); as in the polynomial case, we can notice how the
deformation is localized in the outer rim of the domain, where the hoop residual
stress is compressive.

We perform the same calculations for the positive values. In Fig. 6 we depict
the resulting marginal stability curves for various γ and m.
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Figure 8. Representation of the conformal mapping between the
physical domain B and its image B̂, defined through the coordinate
trasformation in Eq. (38).

In Fig. 7 we plot the solution of the linearized incremental problem for γ = 2
and m = mcr = 3. We highlight that the displacement is localized in the center of
the sphere whereas the exterior shell remains almost undeformed.

Also in this case, we found that all the results exposed are independent on the
chosen value of δ in Eq. (32).

In the next section, we implement a finite element code in order to investigate
the fully non-linear evolution of the morphological instability.

4. Finite element implementation and post-buckling analysis

4.1. Mixed finite element implementation. We use a mixed variational formu-
lation of the problem implemented with the open source project FEniCS [30]. Let
B be a semicircle and B̂ = (0, 1)× (0, π) as depicted in Fig. 8. We define g : B → B̂
as the mapping that associate each point in B with the point in R2 such that the
two components are the normalized radial distance R/Ro and the polar angle Θ.
Hence, denoting with X1 and X2 the first and the second coordinates respectively
and with e1 and e2 the canonical unit basis vectors, we get that

(38)

X1 =
R

Ro
,

X2 = Θ.

We solve the nonlinear problem using a triangular mesh B̂h obtained through the
discretization of the set B̂. The mesh is composed of 14677 elements, 7519 vertices
and the maximum diameter of the cells is 0.033.

We use the Taylor–Hood elements P 2-P1, discretizing the displacement field
by using piecewise quadratic functions, whereas the pressure field by piecewise
linear functions. The Taylor-Hood element is numerically stable for linear elasticity
problems [31] and has been used in several applications of non-linear elasticity [32].

In order to study the behavior of the bifurcated solution in the post-buckling
regime, we impose a small imperfection on the mesh at the boundary [33] with the
form given by Eqs. (18)-(19), where m is the critical wavenumber obtained from
the linear stability analysis and the amplitude is of the order of 10−4.
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Figure 9. Plots of the ratio Enum/Etheor (left) and the normalized
buckling amplitude ∆r/Ro (right) versus the control parameter α.
The numerical results are in good agreement with the theoretical
instability threshold αcr = −4.9084 (red square marker).

We impose as boundary conditions

(39)


uh = 0 if X1 = 0,

uh · e2 = 0 and e1 · SThe2 = 0 if X2 = 0 or X2 = π,

SThe1 = 0 if X1 = 1;

where uh is the discretized displacement field and Sh the first discretized Piola–
Kirchhoff stress tensor.

The problem is solved by using an iterative Newton–Raphson method whilst
adaptively incrementing the control parameter α. The code automatically adjusts
the increment of this parameter either near the marginal stability threshold or when
the Newton method does not converge.

Each step of the Newton–Raphson method is performed using PETSc as linear
algebra back-end and then the linear system is solved through an LU decomposition.

4.2. Results of the finite element simulations.

4.2.1. Case (a): exponential polynomial case. We first show the results for the case
in which f(R) is given by Eq. (12). We denote with Enum the total strain energy
of the deformed material, and with Etheor the theoretically computed strain energy
of the undeformed sphere, namely in the reference configuration.

In Fig. 9 (left) we plot the ratio between Enum and Etheor vs. α when β = 1.1;
the mode of the imperfection applied on the mesh is the critical one mcr = 2, we
also computed the amplitude of the pattern, defined as

∆r := max
Θ∈[0,π]

rh(Ro, Θ)− min
Θ∈[0,π]

rh(Ro, Θ),

at varying α where rh is the discretized deformation field in the radial direction
(Fig. 9 (right)). We observe that there is a smooth increase of such amplitude when
the control parameter is lower than αcr.

When performing a cyclic variation of the control parameter, decreasing α first
and then increasing it to zero, both the amplitude of the wrinkling and the energy
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Figure 10. Comparison between the ratios Enum/Etheor at vary-
ing the wavenumber m. The squares denote the thresholds αm
computed in the previous section.

ratio do not encounter any discontinuity and they both follow the same curve in
both directions.

Since αcr is very close to the other values αm, in Fig. 10 we compare the energy
ratio also for the cases in which the wavenumber of the imperfection is not the
critical one, specificallym = 3 andm = 4. We can observe that there is a continuous
decrease of such ratio when the threshold αm is reached. From the picture we can
also notice that there is no intersection of the curves that represent the ratio of the
energies, thus suggesting the absence of secondary bifurcations.

Setting β = 1.1, in Fig. 11 we depict the deformed configuration of the sphere
when α = −5.62, when m = mcr = 2 (top) and α = −5.55 when m = 4 (bottom),
with the color bar we indicate the norm of the displacement ‖uh‖ (left) and the
trace of the Cauchy stress tensor Th normalized with respect to the shear modulus
µ (right).

4.2.2. Case (b): logarithmic case. We performed the same numerical procedure for
simulating the logarithmic case.

We considered the case in which α is positive, from the linear stability analysis
we expect that the instability is localized in the interior part of the sphere (Fig. 7).

Let γ = 1.1, in Fig. 12 we plot the ratio Enum/Etheor at varying α. We performed
a cyclic variation of the control parameter α, first increasing it and then decreasing it
up to zero Fig. 12 (right). We highlight the presence of both a jump across the linear
threshold and hysteresis, thus highlighting the presence of a subcritical bifurcation.
The linear stability threshold in in good agreement with the theoretical prediction,
given that subcritical bifurcations have a higher sensitivity to imperfection than
supercritical ones.

In Fig. 13 we show the deformed configuration of the sphere when α = 58.8 for
γ = 1.1, where the color bars indicate the norm of the displacement ‖uh‖ and the
trace the Cauchy stress tensor Th normalized with respect to the shear modulus µ.

We remark that we obtain small numerical oscillations of the displacement field
near the center of the sphere in the fully nonlinear post-buckling regime. These
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Figure 11. Plot of the deformed configuration when f(R) is given
by Eq. (12), β = 1.1, α = −5.62 andm = mcr = 2 (top); α = −5.55
and m = 4 (bottom). The color bars indicate the norm of the
displacement ‖uh‖ (left) and the trace of the Cauchy stress tensor
normalized with respect to the shear modulus µ (right). On the
right we depict a 3D representation of the deformed sphere.

errors eventually get amplified during the computation of the stress field, and the
numerical solution no longer converges. In some cases, we observed that the Newton
method failed to converge for some different values of the parameter γ when α is
just beyond the marginal stability threshold αcr. The improvement of the numerical
continuation method is out of scopes of this work, but we acknowledge that a
different approach, e.g. using scalable iterative solvers and preconditioners [34],
could improve the stability of the numerical solution in the post-buckling regime.

5. Discussion and concluding remarks

This work investigated the morphological stability of a soft elastic sphere sub-
jected to residual stresses.

In the first part, we modeled the sphere as a hyperelastic material by introduc-
ing a strain energy depending explicitly on the deformation gradient and on the
initial stress [20, 21]. In this way, we can avoid the classical deformation gradient
decomposition [18] which has the drawback of requiring the a priori knowledge of
a virtual relaxed configuration
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parameter α (right), first increasing it beyond the linear stability
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the threshold α2 = 48.60 computed in the previous section.
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Figure 13. Plot of the deformed configuration when f(R) is given
by Eq. (13), γ = 1.1, α = 58.8 and m = mcr = 2. The color bars
indicate the norm of the displacement ‖uh‖ (left) and the trace
of the Cauchy stress tensor (right). On the right we depict a 3D
representation of the deformed sphere.

Secondly, we described the residual stress fields by using an Airy stress function
f(R). This function depends on the dimensionless parameters α, β and γ where
α is the normalized intensity of the residual stress whereas β and γ describe the
spatial distribution of the residual stress components within the sphere.

We investigates two possible distributions of the Airy function f(R), one based
on a polynomial function, the other on a logarithmic one. We denote these two
choices as case (a) and (b) respectively.



18 SHAPE TRANSITIONS IN A RESIDUALLY STRESSED SPHERE

We performed the linear stability analysis in both cases by using the theory
of incremental deformations superposed on the undeformed, pre-stressed configu-
ration. In order to solve the incremental boundary value problem, we used the
Stroh formulation and the surface impedance matrix method to transform it into
the differential Riccati equation given by Eq. (27) [23] .

We integrated numerically the resulting incremental initial value problem iter-
ating the control parameter until a stop condition is reached, in order to find the
marginal stability thresholds. We found out that the morphological transition is
always localized in the region where the hoop residual stress reaches its maximum
magnitude in compression.

In the case (a) we find an instability only for α > 0, whilst in case (b) we find an
instability for both α positive and negative. In this latter case, when α is positive
the instability is localized in the inner region of the sphere whereas if α is negative
it is localized in the external region. The results of such analysis are reported in
Figures 2-7.

Finally, we implemented a numerical procedure by using the mixed finite element
method in order to approximate the fully non-linear problem. After the validation
of the numerical simulations obtained by the comparison with the results of the
linear stability analysis; we analyze the resulting morphology in the fully non-linear
regime.

In the case (a), the instability is localized in the external part of the sphere where
the hoop residual stress is compressive. The continuous transition from the initial
configuration to the buckled state indicates that the bifurcation is supercritical.

In the case (b), the instability is localized near the center of the sphere when the
parameter α > 0. In contrast to the previous case, the bifurcation is found to be
subcritical, thus suffering a jump across the linear stability threshold. The results
of these simulations are reported in Figures 9-13.

Future efforts will be directed to improve the proposed analysis either by imple-
menting of a fully 3D numerical model in order to study the secondary bifurcation
that might appear in the azimuthal direction or by accounting for the presence of
material anisotropy, a major determinant for the residual stresses distribution in
living matter, e.g. tumor spheroids [9].

In summary, this work proposes a novel approach that may be of help in de-
termining the residual stress distribution in soft spheres through a non-disruptive
approach. This may be of interest for many biological studies since residual stress
has a crucial role in the growth of human and animal tissues [17, 9]. In fact, the
present method for measuring the residual stress consists in cutting the tissue in
order to release the stress [8]; however, our model allows to correlate the parameters
and the geometrical properties of the buckled sphere with the distribution of the
residual stress. This work also opens the path towards the development of non-
disrupting methods to measure the residual stress distribution in spherical objects
through wave propagation [35, 36]. Finally, thanks to the possibility to achieve a
targeted distribution of residual stresses in digital fabrication techniques [37], the
results of this work provide useful guidelines for proposing innovative mechanical
meta-materials. In particular, by designing a pre-stressed material in proximity of
the linear stability threshold it would be possible to create morphable soft spheres in
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response to active deformation [38] or external stimuli [39], with application rang-
ing from adaptive drag reduction [40] to the fabrication of patterns on spherical
surfaces [41, 42].
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