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STATISTICAL ASSESSMENT AND CALIBRATION OF NUMERICAL
ECG MODELS

N. TARABELLONI, E. SCHENONE, A. COLLIN, F. IEVA, A.M. PAGANONI,
AND J.-F. GERBEAU

Abstract. Objective: Because of the inter-subject variability of ECGs in a
healthy population, it is not straightforward to assess the quality of synthetic
ECGs produced by deterministic mathematical models. We propose a statistical
method to address this question.

Methods: We use a dataset of 1588 healthy, real ECGs and we introduce a
way to calibrate the deterministic model so that its output fits the dataset. Our
approach is based on the concepts of spatial quantiles and spatial depths. These
notions are convenient to manipulate functional data since they provide a non-
parametric way to measure the discrepancy of the model output with a distribu-
tion of data.

Results: The method is successfully applied to two very different models: a
phenomenological model based on ordinary differential equations, and a com-
plex biophysical model based on partial differential equations set on a three-
dimensional geometry of the heart and the torso. We show in particular that
the proposed calibration strategy allows us to improve the quality of the ECG
obtained with the biophysical model.

Significance: The proposedmethodology is to our knowledge the first attempt
to assess the quality of synthetic ECGs with quantitative statistical arguments.
More generally it can be applied to other situations where a deterministic model
produces a functional output that has to be compared with a population of mea-
surements containing inter-subject variability.

1. Introduction

The generation of synthetic electrocardiograms (ECGs) by computer simulations
has been the object of many studies. The models can be based on ordinary differ-
ential equations (ODEs) (McSharry et al., 2003; Clifford et al., 2005), on three-
dimensional cellular automata (Wei et al., 1995), or on three-dimensional partial
differential equations (PDEs) (Potse et al., 2003, 2009; Trudel et al., 2004; Boulakia
et al., 2010; Martin et al., 2012). These approaches are motivated by different
problems: for example, the smoothing of real data (Clifford et al., 2005), the as-
sessment of cardiac simulations and the evaluation of modeling hypotheses (Potse
et al., 2014), the resolution of the inverse problem of electrocardiography through
parameter identification of a forward model (Rincon et al., 2013; Boulakia et al.,
2012; Corrado et al., 2015).

One of the difficulties to assess and to calibrate those models stems from the
variability of the real ECGs: many different ECGs can be observed in different
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healthy subjects. The calibration of a synthetic ECG should therefore not be done
with respect to one specific measurement, as it is typically done for engineering
problems, but rather with respect to a population of measurements.

In this paper, we propose an original statistical strategy to address this problem
and we illustrate it on two very different models of ECGs. The database used for
the calibration is made of 1588 real, healthy ECGs.

When the calibration is done on a population of measurements, the distribution
of observations in the sample is an important information. In order to model the
randomness of the reference output, it could be useful to gather information on
the probability distribution of data. But, since our data are functions, this would
require to work with probability distributions on functional spaces, i.e. infinite-
dimensional spaces. To avoid this difficulty, we used the concepts of spatial depth
and spatial quantiles (Chaudhuri, 1996; Chakraborty and Chaudhuri, 2014), which
are non-parametric tools. The proposed methodology is of course not limited to
ECGs. It can be typically used to calibrate a deterministic model whose output is
a function which has to be compared to a population of measurements.

The article is organized as follows. The general methodology is presented in
Section 2: Section 2.1.1 and Section 2.1.2 are devoted to a brief presentation of the
ODE and the PDE models, respectively; the statistical framework of Functional
Data Analysis and the calibration problem are presented in Section 2.2; an overview
of the real dataset of ECG signals used to carry out the calibration is proposed 2.3.
In Section 3 the results obtained with the ODE and PDE models are presented. A
discussion is proposed in Section 4, and a some concluding remarks in Section 5.

2. Methods and Materials

2.1. ECGModels. In this section we briefly introduce the mathematical models
describing human ECGs which will be used in the following to illustrate the cali-
bration strategy.

2.1.1. AModel Based on Ordinary Differential Equations. Here we describe a deter-
ministic model based on a ODE system reproducing lead I of an ECG signal. This
model was first proposed inMcSharry et al. (2003) and then refined inClifford et al.
(2005) in order to provide a simple yet effective way to simulate synthetic ECG sig-
nals. It was also employed to filter out noise from rawECGmeasurements (Clifford
et al., 2005). It is based on a phenomenological ODE system yielding a morpho-
logically valid ECG shape.

In its general form, the model describes the ECG as a set of 5 deflections cor-
responding to the P, Q, R, S and T waves. It generates a trajectory in the three-
dimensional state-space with coordinates (x, y, z), whose periodicity is reflected by
the movement of the trajectory around an attracting limit cycle of unit radius in the
x− y plane. The model reads:
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(1)


ẋ = αx− ωy

ẏ = αy + ωx

ż = −
5∑

i=1

ai∆θi exp
(
−∆θ2i

2b2i

)
− (z − z0)

with initial state (−1, 0, 0), where α = 1−
√

x2 + y2,∆θi = θ−θi mod 2π, θ =
atan2(y, x) (the fourth quadrant arctangent of x and y, with −π ≤ atan2(y, x) ≤
π, ω = 2π/T , having the meaning of angular velocity, is obtained by signal’s pe-
riod T and the index i spans over the 5 waves of the ECG mentioned above. The
parameters to be chosen are the triplets (ai, θi, bi) for each of the 5 waves for a total
of 15 parameters.

The ECG signal is then obtained by computing z(t). The quantity z − z0 is a
shifting term, where for instance z0 can be taken as a sinusoidal wave, acting as a
baseline correction. Since the real data we are going to use in the ECG application
have already been corrected for this baseline, such a term is not needed in our model,
thus we take z − z0 = 0. We can resort to a cylindric coordinate representation of
the dynamical system, then after integrating the z equation with respect to θ, we
get:

(2) z(θ) =
5∑

i=1

aib
2
i

ω
exp

(
−∆θ2i

2b2i

)
, θ = ωt− π.

2.1.2. A Model Based on Partial Differential Equations. To illustrate the versatility
of the approach proposed in this study, we consider another way to generate syn-
thetic ECGs. Contrary to the previous one, the purpose here is no longer to mimic
the ECG curves with a low-complexity dynamical system, but to use biophysical
equations to model the electrophysiology of the cells, the myocardium and the torso.
We summarize here the main features of the model, and we refer to Schenone et al.
(2015) for more details.

In the ventricles, we use the standard bidomain equations (Sachse, 2004; Sundnes
et al., 2006). Denoting by ue, ui and Vm = ui − ue the extracellular, the intracel-
lular and the transmembrane potential respectively, we have:

(3)


Am

(
Cm

∂Vm

∂t
+ IMV

ion (Vm, w1, . . . , wn)
)

− div
(
⃗⃗σi · ∇⃗Vm

)
= div

(
⃗⃗σi · ∇⃗ue

)
+AmIapp,

div
((

⃗⃗σi + ⃗⃗σe
)
· ∇⃗ue

)
= − div

(
⃗⃗σi · ∇⃗Vm

)
,

in B × (0, T ), where B denotes the domain occupied by the ventricles, Am the
ratio of membrane area per unit volume, Cm the membrane capacitance per unit
surface and Iapp a given applied stimulus current. The current IMV

ion is defined by the
minimal ventricular (MV) model (Bueno-Orovio et al., 2008). The conductivity
tensors ⃗⃗σi and ⃗⃗σe are defined by ⃗⃗σi,e = σv,t

i,e
⃗⃗
I + (σv,l

i,e − σv,t
i,e ) τ⃗ ⊗ τ⃗ , where ⃗⃗

I

denotes the three-dimensional identity matrix, the vector τ⃗ is of unit length and
parallel to the local fiber direction, and σv,l

i,e and σ
v,t
i,e are respectively the conductivity
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coefficients in the intra- and extra-cellular ventricular medium measured along and
across the fiber direction.

For the atria, we use a surface model derived by asymptotic analysis from the vol-
ume bidomain model. Once introduced the formalism needed to write the partial
differential equations on a two-dimensional manifold, the model is similar to (3).
We refer to Chapelle et al. (2013) and Collin et al. (2013) for its precise form. Here
we just emphasize that, even if it is set on the midsurface, it actually takes into ac-
count volume effects, like the anisotropy variations across the thickness. Indeed,
the intra- and extra-cellular diffusion tensors σ i and σ e are defined by

(4) σ i,e = σa,t
i,e I + (σa,l

i,e − σa,t
i,e )

[
I0(θ)τ0 ⊗ τ0 + J0(θ)τ

⊥
0 ⊗ τ⊥0

]
,

where I denotes the identity tensor in the tangential plane, τ0 is a unit vector
parallel to the local fiber direction on the atria midsurface. The variation of the
fibers through the thickness of the atria is modeled by the terms I0(θ) = 1

2 +
1
4θ sin(2θ) and J0(θ) = 1 − I0(θ). The cell activity in the atria is described with
the Courtemanche-Ramirez-Nattel ionic model (Courtemanche et al., 1998). The
fast conduction regions in the atria (Bachmann bundle, crista terminalis, pectinate
muscles) and the low conduction regions (fossa ovalis) are modeled by modifying
the maximum conductance of the sodium channel. The two atria are connected by
the Bachmann bundle and the fossa ovalis. The fibrous skeleton which separates the
atria and the ventricles is modeled with a thin layer where the intracellular conduc-
tivity is set to zero and the extracellular conductivity is very low. In the ventricle,
the Purkinje fibers are roughly modeled with a predefined stimulus pattern which
lasts 5 ms.

To obtain an electrocardiogram, the volume and surface bidomain equations are
coupled with a Poisson problem in the torso ΩT :

(5) − div(σT ∇⃗uT ) = 0,

where the electrical conductivity σT takes different scalar values in the ribs, the
lungs, and the remaining part of the torso (Buist and Pullan, 2003). For the trans-
mission conditions at the heart-body interface ∂ΩH , we assume that the extracellu-
lar current does not flow through the pericardium (isolated heart assumption) and
we consider a resistor-capacitor conditions (Boulakia et al., 2010; Schenone et al.,
2015).
Then the numerical ECG is obtained by extracting the values of uT in the standard
locations of the electrode leads (Malmivuo and Plonsey, 1995) (see e.g. the first lead
in Fig. 1). In Schenone et al. (2015), the ECGs obtained with this approach have
been assessed with respect to several qualitative and quantitative criteria (QRS and
ST segment duration, wave orientation and amplitude, etc.), both in healthy and
pathological cases. The pathologies considered were the ventricular bundle blocks,
the Bachmann’s bundle blocks and the Wolff-Parkinson-White syndrome.

2.2. Statistical Calibration. ECGs are data in form of functions, and as such they
can be conveniently interpreted within the recent and growing statistical framework
of Functional Data Analysis (FDA). Functional data generally describe the evolu-
tion of quantities of interest depending on a continuous variable (the time in our
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Figure . Numerical ECG obtained with the three-dimensional
biophysical model (section 2.1.2). Top left: the heart geometry.
Left: the first lead of the ECG. Right: the body surface potential.

case). Our assessment and calibration strategy will be directly settled within the
FDA framework.

Though keeping some similarities with classic concepts of standard multivariate
statistics, functional data are structurally different both from a mathematical and
empirical perspective. The most important difference is that functional data are
sample observations of random functions, i.e. random elements of Hilbert spaces,
rather than the Euclidean space Rd. Hence proper statistical tools have to be in-
troduced to underpin their analysis. In the following, we will consider random
processes of the form X : (Ω,B,P) −→ (V, ∥ · ∥) where (Ω,B,P) is a probabil-
ity space and V denotes a real separable Hilbert space, with norm ∥ · ∥ and scalar
product ⟨·, ·⟩. For all ω ∈ Ω, Xω denotes the function t 7−→ X(ω, t), which is an
element of V .

2.2.1. SpatialQuantiles. Quantiles are of great importance for functional data, since
they provide direct, non-parametric information on the distribution of data, with-
out assumptions which could be difficult to prove in practice.

Spatial quantiles, a particular type of M-quantiles (Koltchinskii, 1997), were
originally proposed for multivariate data (Chaudhuri, 1996) and then generalized
to functional data in separable Hilbert spaces (Chakraborty and Chaudhuri, 2014).
For a random function X ∈ V and u ∈ V s.t. ∥u∥ < 1, the spatial u−quantile of
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X is the solution of the problem

(Q) QX(u) := argmin
Q∈V

{E [∥X −Q∥ − ∥X∥]− ⟨u,Q⟩} .

To give a more intuitive understanding of QX(u), let us consider the case of a
real random variable (r.v.) and show that this definition generalizes the standard
notion of univariate quantiles. Let Y be a continuous, real r.v. with cumulative
distribution function FY , and u = 2α− 1, with α ∈ (0, 1). Then:

QY (u) = argmin
Q∈R

E (|Y −Q| − |Y | −Q(2α− 1)) ,

and by differentiation

2α− 1 = −E
Y −QY (u)

|Y −QY (u)|
= 2FY (QY (u))− 1,

fromwhichFY (QY (u)) = α, henceQY (u) is the α-th quantile of Y . In particular,
if u = 0 then QY (0) is the usual median of Y . In view of this, the standard
one-dimensional quantiles can be re-indexed by u so that they are centered on the
median and that outlyingness corresponds to a signed increase of u towards −1 or
+1.

In view of this, the choice u = 0 in (Q) gives the spatial median ofX , in analogy
with the scalar case. The spatial median was introduced long before the spatial
quantiles in the context robust statistics (see Kemperman, 1987). It enjoys some
of the classical and attractive properties of the usual median, like robustness (50%
breakdown point) or the fact that for symmetric distributions of X around a point
m (i.e. X −m ∼ −X +m), it coincides with m.

Consider now the case of u ∈ V, ∥u∥ < 1 and u ̸= 0, then the norm ∥u∥ ∈ (0, 1)
gives a measure of outlyingness of QX(u) along the direction u/∥u∥ or, in other
words, it expresses the order of the u−quantile QX(u).

2.2.2. The Calibration Method. For the sake of clarity, the model is denoted by the
map M : Θ ⊂ Rd → V , where Θ is the parameter domain. The output of the
model with respect to the parameters θ is a function t 7→ fθ(t). This is denoted by
M(θ) = fθ. Without loss of generality we denoted by t the continuous variable of
the functional output, which can be thought of as time.

We assume to have a dataset of N functional data, D = {X1, X2, . . . , XN},
where the Xi are functions of t. As an example, D may be a database of empirical
measurements of the output of the process (like in our application to ECGs), a
dataset of measurements used for benchmark purposes, or just a set of representative
solutions corresponding to some configurations of interest of the model.

Given a u ∈ V , with ∥u∥ < 1, our calibration procedure consists in solving the
following problem:

(C) θ∗u := argmin
θ∈Θ

{E [∥X − fθ∥ − ∥X∥]− ⟨u, fθ⟩} .

Thus, θ∗u is found by minimizing the cost functional that defines the spatial u-
quantile, but the minimization is now performed only over the subset of V cor-
responding to the outputs of the model. It is interesting to notice that this cost
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function takes into account the random nature of data in a natural way. As a con-
sequence, the optimisation problem may yield better results than the bare repro-
duction of the target quantile through the model, namely the solution to a classic
L2-norm minimisation of model’s error (see Section 3). Moreover, problem (C)
is indexed by u, whose choice can be driven by the application. We will show an
example of this in Subsection 3.1.

In practice, only the finite-dimensional, sample version of problem (C) can be
considered, i.e:

(Ĉ) θ̂∗u := argmin
θ∈Θ

{
1

N

N∑
i=1

[
∥X(n)

i − fθ(t)
(n)∥ − ∥X(n)

i ∥
]
−⟨u(n), fθ(t)(n)⟩

}
where the superscript (n) indicates the projection onto a finite-dimensional sub-
space Vn ⊂ V . It is worth noticing that the whole dataset is employed in the
definition of the cost functional, without parametric assumptions on data distribu-
tion. From a computational point of view, it can be solved with any reliable, global
optimisation algorithm (for some examples, see Section 3).

2.2.3. Measuring the Quality of the Calibration. In order to have a measure of the
quality of the calibration achieved by solving (Ĉ), we consider the quantity:

(6) B(u) =

∥∥∥∥∥∥ 1

N

N∑
i=1

X
(n)
i − f

θ̂∗u
(t)(n)∥∥∥X(n)

i − f
θ̂∗u
(t)(n)

∥∥∥ + u(n)

∥∥∥∥∥∥ ,
which is the norm of the gradient of the spatial quantile cost functional (i.e. the
sample version of problem (Q)) evaluated at the solution. B(u) also has a statistical
interpretation. It can be compared with a natural, standardised range of values,
namely 0 ≤ B(u) ≤ 2, that makes diagnostics arguments easy and interpretable.
Here, values close to 2 indicate a calibration on the opposite direction of u(n), while
values close to 0 correspond to good results.

When u = 0, the calibration problem targets the spatial median, and B(0) can
be interpreted in terms of statistical spatial depth (SD). Given a general r.v. X , we
can define the spatial depth of a point z ∈ V as

SD(z;X) = 1−
∥∥∥∥E [

(z −X)

∥z −X∥

] ∥∥∥∥ .
Given a dataset X1, . . . , XN , its sample version becomes

ŜD(z;X) = 1−

∥∥∥∥∥ 1

N

N∑
i=1

(z −Xi)

∥z −Xi∥

∥∥∥∥∥ .
It is clear that SD ranges between 0 and 1 and reaches its maximum when z coin-
cides with the spatial median ofX . Therefore, statistical depths allow to introduce
a center-outward order relation in high-dimensional data spaces where no natural
order relation is available. They are completely non-parametric, easy to interpret
and provide a natural range for comparisons.

In view of this, B(0) can be interpreted as one minus the spatial depth of the
optimised output with respect to the empirical distribution of X (Chakraborty
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and Chaudhuri, 2014). Thus, it provides a standardised, meaningful and easy-to-
interpret measure of outlyingness. When u ̸= 0, (6) is no more a median-centric
depth, but rather a quantile-centric depth of the optimised output. In any case,
this quantity will only account for the quality of the calibration per se, serving as a
measure of model bias, and not for the quality of the outcome of the minimisation
algorithm used.

2.3. TheDataset of Real ECGs. The real data we use are part of a database created
within the PROMETEO project (PROgetto sull ’area Milanese Elettrocardiogrammi
Teletrasferiti dall ’Extra Ospedaliero). This project saw the collaboration of Azienda
Regionale Emergenza Urgenza (AREU), Abbott Vascular and Mortara Rangoni
Europe s.r.l., and was started by 118 Dispatch Center of Milan in the end of 2008,
with the aim of spreading the intensive use of ECGs as pre-hospital diagnostic tool.

The standard ECG trace of a patient is composed of 12 records of the body sur-
face electric potential. The data provided within PROMETEO project comprised
eight records corresponding to leads I , II , V 1, V 2, V 3, V 4, V 5 and V 6. In the
present work, we only consider lead I , which is widely used and allows us to assess
the potentiality of the calibration procedure in a simpler framework. Moreover,
we restrict the analysis only to healthy subjects, for a total of N = 1588 different
signals.

Data were acquired in form of noisy, point-wise measurements (P = 1200 time
points for each signal), and then pre-processed following standard procedures of
functional data analysis (Ramsay and Silverman, 2005). First, they were smoothed
and projected onto a suitable Fourier basis. Second, they were registered with the
following landmarks: P-wave onset and offset, the QRS onset, the R peak, the
QRS offset, the T peak and offset.

Registration, or alignment, is a standard step in the practice of functional data
analysis accounting for the dispersion in time of the same features in the dataset.
Since all inference is carried out under the assumption that the time-by-time com-
parison of signals is proper, we have to ensure that the same biological features
happen at the same reference time. Healthy ECGs can be naturally registered by
building a piecewise linear transformation constrained to map a set of landmarks to
a reference grid of landmarks, i.e for each signal we compute: Hi : [0, T ] → [0, T ],

s = Hi(t) =
K∑
j=1

[
t− lij−1

lij − lij−1

( l̃j − l̃j−1 ) + l̃j−1

]
1t

(
[lij , l

i
j−1)

)
,

∀i = 1, . . . , N , where {0 = li0, l
i
1, . . . , l

i
K = T} indicates the original land-

marks and {0 = l̃0, l̃1, . . . , l̃K = T}j indicates the reference landmarks (for in-
stance, the medians across the sample). The registered signals are given by X̃i(s) =

(Xi ◦ H−1
i )(s), ∀i = 1, . . . , N . A picture of the data at the different stages of the

preprocessing is given in Fig. 2.

3. Results

In this section, the results of the calibration procedure are reported for the ODE
and the PDE models.
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Figure . Real ECG signals, from raw data (top left), to
smoothed (top right and bottom left) and registered data (bottom
right).

Table . Values of calibrated set of parameters for ODE model

aP aQ aR aS aT bP bQ bR bS bT

0.041 −0.045 0.704 0.107 0.008 0.184 5e-4 0.106 1e-10 0.523

3.1. Calibration of the ODE Model. We consider (1) as the model generating
the synthetic profiles of ECGs and we search for the best set of parameters cali-
brating the model to the spatial median of the real ECG dataset. Among the 15
model parameters we fix θP , . . . , θT to the corresponding values of real functional
data which, as described in Subsection 2.3, have been aligned via the corresponding
landmarks. The 10 remaining parameters (ai, bi) are targeted by the minimisation
problem (Ĉ), which is solved through the L-BFGS-B optimisation algorithm im-
plemented within the R (RCore Team, 2014) package stats, and able to deal with
the positivity constraints of bi’s.

In order to highlight the robustness and effectiveness of the method, the opti-
misation step was initialized with an arbitrary set of parameters values. The results
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are shown in Fig. 3. At the top of the figure, the initial guess, the calibrated output
and the empirical spatial median are displayed, along with the data. We can see
that the calibrated output and the spatial median are very similar. In the diagnostic
plots we take advantage of the meaning of B(0) and compare the spatial depth of
the calibrated output with the empirical spatial depth of real data; we recall that the
highest value of depth marks the empirical spatial median. It is clear that the cal-
ibrated output reaches a greater depth (i.e. is more central w.r.t the given dataset)
than any other observation in the sample, spatial median included. This implies
that by taking into account the whole set of data, a satisfactory result in terms of
closeness to the true, unobserved, median can be reached; moreover, the outcome
we get is even better than what would happen by calibrating the model to fit the
empirical spatial median of the real dataset with a classic L2-norm minimization
problem, which in our case yields a spatial depth of the calibrated output of 0.511
(corresponding to the 86% quantile of the empirical distribution of spatial depth,
which has to be compared to the 100% quantile obtained by solving (Ĉ) as shown
in Fig. 3). We report the value of calibrated parameters in Tab. 1.

Besides the calibration to the spatial median of data, we also targeted other quan-
tiles in order to show the flexibility of the methodology. To do so, we considered
the principal component (PC) decomposition of our dataset. Like in classic multi-
variate statistics, a principal component analysis (PCA) can be introduced for func-
tional data, after defining a suitable analogue of variance-covariance structure for
functions, i.e. the covariance operator. Functional PCs are the directions along
which most of the variability of the process is expressed (for more details, see Ram-
say and Silverman, 2005). The first one is generally the most important and in our
application concerning real data it captures approximately 60% of the overall vari-
ability. It can be interesting then to calibrate the model to reproduce a selected set
of quantiles along those directions, in order to capture that variability through the
model. To do so, we compute the PCs {φi}Li=1, select the first, and set u = cφ1,
with c = ±{0.083, 0.16, 0.25, 0.33, 0.416, 0.5}.

It must be noticed that the principal component basis can be used to parsimo-
niously represent both X

(n)
i ’s, fθ(t)(n) and u(n) in problem (Ĉ), only thanks to

the peculiar translation-scale-rotation equivariance of spatial quantiles (Chaudhuri,
1996).

The results of the calibration procedure are displayed altogether in Fig. 4. When
running the optimisation algorithm, we sorted the problems by (signed) increasing
order of cj , using as guess for the subsequent run of L-BFGS-B the result of the
previous one. The values of B(u) show a good quality of calibration as they are
all between 0.15 and 0.26, with higher results corresponding to bigger values of c
(which seems to be quite natural, as higher order quantiles are located farther away
from the center of the data cloud, where data are sparser and inference is harder).
By looking at Fig. 4, it can be seen how the ODE model, properly calibrated, is
able to capture the variation of the median’s shape expressed by φ1, corresponding
to the increasing order of quantiles.

By calibrating themodel to several other quantiles than themedian, one can draw
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Figure . Above: Outcome of the calibration procedure to the
spatial median (u(n) = 0). Below: Diagnostics of the calibration.

level sets (or central regions) in the parameter space that produce spatial quantiles
of a desired order. This, in turn, can be used directly to get both a summary of the
variability ensuing from the variation in the parameters space, and to estimate the
quantile order of model’s output at a new set of parameters’ values.

3.2. Calibration of the PDE Model. We applied the proposed calibration strat-
egy to the PDE model described in Subsection 2.1.2. At first, we assessed the
general quality of synthetic ECG obtained with the original parameters published
in Schenone et al. (2015). In this article, the assessment was done by verifying
that various biomarkers lay in the range found in the medical literature. Here we
have a more systematic and quantitative approach by looking at the spatial depth of
the signal with respect to the dataset of real ECGs. This allows us to quantify the
quality of the synthetic signals in terms of centrality/outlyingness with respect to a
real population. The graphics in Fig. 5 show that the original synthetic signals are
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Figure . Output of the calibration of ODE model to general
quantiles along first PC φ1 (darker colours indicate calibration to
higher order of quantiles, ∥ui∥ = |ci|, light yellow denotes the
calibration to the median.).

almost always within the natural range of real data depths. But we can also see that
their depths are too low to mark a well representative signal. We wish therefore
to enhance the quality of model’s output by calibrating it to the median of the real
population.

In order to do so, among the many parameters involved in the composite PDE
model, we choose gPM

Na , gCT
Na and gBB

Na for Courtemanche-Ramirez-Nattel ionic
model, and τso1 parameters in Minimum Ventricular model, which assumes 4 dis-
tinct values in epicardium, endocardium, M-cells and right ventricle, and it is such
that τ endoso1 > τ episo1 (we refer to Courtemanche et al., 1998; Bueno-Orovio et al.,
2008; Schenone et al., 2015 for the precise meaning of these parameters).

We then choose u = 0 and solve the optimisation problem (Ĉ) for the values of
the selected 7 parameters, where fθ(t)(n) is the PDE model’s output at parameters
θ, projected onto the first n = 8 principal components of the real dataset. The
optimisation is carried out exploiting the efficient implementation of evolutionary
algorithm CMA-ES (available within R through package cmaes), interfacing for
each model’s evaluation with the C++ parallel library FELiScE, solving the PDE
model. In particular, at each iteration we: 1) evaluate the PDEmodel at parameters
θ; 2) reconstruct the synthetic signal and align its landmarks to those of real data
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Figure . Above: Spatial Depths (SD) of original PDE-based
ECG signal (red star), with respect to the real data (whose SD are
displayed in the background boxplots), lead by lead. Below: SD
of original PDE-based ECG signal (red star) with respect to real
data, by lead and section (P, QRS and T wave).

(functional registration); 3) update the cost functional of problem (Ĉ) and obtain
the new parameter set for the next iteration.

At the end of the optimisation process, we obtain the results displayed in Fig. 6.
By globally looking at the calibrated synthetic ECG signal, we can notice that the
selected parameters mainly affect the vertical displacement inside S-T section, while
the signal is practically unchanged in P- and QRS-wave.
In particular, the parameters influencing the atria dynamics, namely gPM

Na , gCT
Na
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Table . Values of chosen parameters for calibrated PDE model

gPM
Na gCT

Na gBB
Na τ episo1 τ endoso1 τMc

so1 τRV
so1

14.508 27.378 47.112 19.15 30.17 45.19 19.56

and gBB
Na does not seem to modify the shape of the P-wave in a way that drives

the optimisation towards the selection of values yielding a better fit to data. On
the contrary, the peak value of the T wave is successfully set to its correct value,
determining a better fit of the model to the dataset’s central tendency, and also the
asymmetric shape of T wave is correctly reproduced. By looking at the boxplot
of spatial depths (top right graphic in Fig. 6) we notice a slight rise in the value
of depth for the synthetic signal, between initial and calibrated case. Such depth
values are, respectively, 0.039 and 0.086.

The enhancement is clearer when looking at the only section that is affected by
the calibration (bottom graphics in Fig. 6). In this case, if we truncate the time do-
main and compute again the spatial depths for the initial and calibrated synthetic
signals, and for real data, we obtain a higher rise in data depth, from (respectively)
0.019 to 0.28. In particular, the calibrated S-T section is correctly situated within
the bulk of real data (left graphic) and therefore its depth belongs to the central box
of the boxplot. A summary of the values of parameters yielding this optimised out-
put is given in Tab. 2 (the conductance parameters gPM

Na , gCT
Na , gBB

Na are all expressed
in nS.pF−1, while τso parameters dimensionless).

4. Discussion

The results displayed in Subsection 3.1 show a remarkably good ability of the
proposed methodology to identify the set of parameters reproducing a desired func-
tional target, be it the spatial median or other spatial quantiles. If we focus on the
spatial median, the even low calibration error can be ascribed mainly to the inability
of the model to reproduce asymmetric P and T waves.

When turning to the biophysical PDEmodel, results in Subsection 3.2 still show
good results, even if with a smaller calibration gain. This is mainly due to the dra-
matically increased complexity of the model, and to the choice to focus on only a
few parameters, for computational reasons. The results are still encouraging, and
the enhancement in model’s output is noticeable both visually (graphics on the left
in Fig. 6) and quantitatively (graphics on the right in Fig. 6).

To this regard, the increase in optimal output’s depth is less than what a visual
comparison on signals would lead to, as spatial depths result from an overall measure
of fit that cannot be split into time-by-time contributions. In other words, a shape
twist in a time sub-interval of the synthetic signal would affect its depth as a whole,
and to an extent not necessarily equal to the sub-interval’s size. Other definitions of
statistical depth, like Modified Band Depths (see Lopez-Pintado and Romo, 2007
and Lopez-Pintado and Romo, 2009), would average a scalar depth measure for
each time point of the signal along the domain in order to determine the overall,
functional depth. Therefore, if used to compute the depths of real and simulated
signals that we obtained in our example, they would highlight a higher increment.
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Figure . Outcome of the problem of calibrating the PDEmodel
to the median of real data. Above: Initial synthetic signal (red)
and optimised output (blue), compared to the real dataset (grey).
Below: Comparison of synthetic initial and optimised signals with
real data, only in the S-T segment.

5. Conclusion

We proposed and motivated a new calibration methodology based on statistical
concepts, able to drive numerical models towards the reproduction of representative
outputs with respect to a dataset of real data. Our applicative focus was on the
calibration of numerical models for the production of synthetic ECGs, of which we
described two possible instances based on ordinary or partial differential equations.
We also introduced the notion of spatial quantiles and statistical depths, which
are directly employed in the calibration methodology to provide a general, non-
parametric and meaningful optimisation problem. In particular, we described in
detail the interpretation of both the problem and the diagnostic quantities that can
be used to assess the quality of its solution.

We applied this framework to the calibration of the two considered ECGmodels,
exploiting a rich dataset of real measurements. In the ODE case we calibrated the
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model to the spatial median of the dataset and to other quantiles along the first
principal component, while in the PDE case we targeted the spatial median. For
the ODE case, the values reported in Tab. 1 can be useful to people who use the
model proposed in Clifford et al. (2005); McSharry et al. (2003) and who wants a
synthetic healthy ECG calibrated on a real population.
For the PDE case, our procedure allowed us to assess and to improve the quality of
the ECG obtained with the original parameters, in particular as far as the T-wave
is concerned. The results we obtained, both from a qualitative and quantitative
standpoint, support the flexibility and effectiveness of the proposed method, and
pave the way to its application to different contexts and models.
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