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Abstract

Subsurface flows are influenced by the presence of faults and large frac-
tures which act as preferential paths or barriers for the flow. In literature
models were proposed to handle fractures in a porous medium as objects
of codimension 1. In this work we consider the case of a network of in-
tersecting fractures, with the aim of deriving physically consistent and ef-
fective interface conditions to impose at the intersection between fractures.
This new model accounts for the angle between fractures at the intersec-
tions and allows for jumps of pressure across the intersection. This latter
property permits to describe more accurately the flow when fractures are
characterised by different properties, than other models that impose pres-
sure continuity. The main mathematical properties of the model, derived
in the two-dimensional setting, are analysed. As concerns the numerical
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discretization we allow the grids of the fractures to be independent, thus in
general non-matching at the intersection, by means of the extended finite
element method (XFEM), to increase the flexibility of the method in the
case of complex geometries characterized by a high number of fractures.

1 Introduction

The presence of fractures can largely influence the flow in porous media in geo-
physical applications. In particular, large fractures and faults can act, according
to their different permeabilities, as barriers of preferential paths to the flow. At
a different space scale micro fractures can alter, according to their density and
orientation, the overall permeability of the porous medium. Numerical simula-
tions of problems related to groundwater flow such as CO2 storage, oil migration
and recovery or groundwater contamination should be able to account for the
presence of fractures to yield accurate results.
In the applications we are considering, the porous medium is usually character-
ized by the presence of several fractures that can intersect each other. Moreover
the characteristic thickness, or aperture, of the fractures is very small compared
to their length and, in particular, compared to the typical size of the domain
of interest. This geometric complexity makes the simulations particularly chal-
lenging for standard methods.
In [2, 13, 15] the authors proposed a model reduction strategy to overcome part
of the aforementioned problems by using a domain decomposition approach,
where fractures are represented as natural one-codimension interfaces inside the
porous domains. The proposed model can successfully reduce the number of
unknowns in the simulation since, instead of refining the grid to capture a thin
n-dimensional region we are replacing it with a n − 1-dimensional interface.
This approach, originally developed for the single-phase Darcy problem has been
successfully extended to passive transport in porous media [10] and to two-phase
flow [14, 11], with suitable reduced models to describe the flow in the fracture.
However the aforementioned works consider just the restricted case of non-
intersecting fractures, that completely cut the domain into two separated sub-
domains. In [4] this assumptions are relaxed to include fractures that do not cut
entirely the domain, i.e. fractures with tips immersed in the enclosing porous
medium, with the constraint of mesh conformity between the fractures and the
porous medium.
Realistic simulations in a three dimensional domain are presented in [3], where
suitable coupling conditions are imposed at the intersections between fractures.
In particular, the continuity of pressure and mass conservation are enforced.
These conditions however, also used in [2], may lead to inaccurate results if
two intersecting fractures have different characteristics, in particular different
permeabilities. In this case one may expect strong variations of pressure near the
intersection, thus pressure continuity does not seems an appropriate condition
to represent this behaviour in a model reduction approach.
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In this work we focus on the development of a reduced model that generalizes the
coupling conditions of [3, 2] to account for different properties of the fractures
such as different permeabilities and thicknesses and to include the effect of the
intersection angle. The new coupling conditions allow for pressure and velocity
jumps at the intersection, similarly to the conditions derived in [15] for the
matrix-fracture system. Hence, we account for the fact that in a fracture system
one fracture can act as a barrier or a preferential path with respect to the
other. We analyse the resulting coupled system of equations to derive its well
posedness, and assess its conservation and positivity properties. Although the
analysis is focused on the two dimensional case, where fractures are modelled
as one dimensional manifolds. We propose a discretization method that allows
for non matching grids at the intersection points with the intent of providing
the maximal flexibility when dealing with complex networks. More precisely,
we employ an extended finite element (XFEM) strategy to treat intersecting
fractures.
We focus just on the fracture network neglecting the flow in the surrounding
medium. This choice can be regarded as an intermediate step for the devel-
opment of the fully coupled model with intersecting fractures immersed in a
permeable medium, but also as a reasonable approximation of realistic situa-
tions where the rock has low permeability and the flow occurs mainly through
the fracture network.
The paper is structured as follows. In Section 2 we introduce the governing equa-
tions and provide the setting for the derivation of the reduced model. In Section
3 the reduced model for the intersecting fractures is derived. The corresponding
weak formulation in mixed form and its analysis is presented in Section 4, while
in Section 5 we address the numerical discretization. In Section 6 we present
some numerical test cases to assess the theoretical properties of the model and
the discretization method. Finally, Section 7 is devoted to conclusions.

2 The governing equations

For the sake of simplicity, let us consider two intersecting fractures Ω1,Ω2 ∈ R
n,

included in a domain of interest D ⊂ R
n. The results illustrated in this section

may be extended rather easily to the case of several fractures, as the examples
in section 6 show. Furthermore, here we consider the case n = 2.
Following [15] we suppose that, for each Ωi, there exists a non auto-intersecting
one dimensional manifold γi of class C

2 such that Ωi may be defined as

Ωi =

{
x ∈ R

n : x = s+ rni, s ∈ γi, r ∈
(
−di (s)

2
,
di (s)

2

)}
, (1)

where di ∈ C2(γi) is the thickness of Ωi and ni the unit normal of γi. If |γi|
we assume that |γi| ≫ di, for i = 1, 2. Furthermore, we assume that there exist
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c1, c2 ∈ R
+, with c2 “small”, such that

di (s) > c1,
∣∣d′i (s)

∣∣ < c2 ∀s ∈ γi for i = 1, 2.

In other words, we assume that the thickness of the fracture varies slowly and
is small compared to the other dimensions of the fracture.

Remark 1 The requirement that γi be of class C2 may be partially dispensed
with. Indeed, it is sufficient that γi be a piecewise C2 curve.

We set I := Ω1 ∩ Ω2. We assume that each Ωi can be subdivided into three
disjoint and non-empty sub-regions Ωi1, Ωi2 and I, i.e. a T shaped intersection
is not allowed. For convenience let us introduce the following sets, for i, j = 1, 2

Ω := Ω1 ∪ Ω2, γ := γ1 ∪ γ2, ip := γ1 ∩ γ2 and ∂Iij := ∂I ∩ ∂Ωij . (2)

It is implicit in this definitions that we assume that γ1 and γ2 intersect each
other at a single point, indicated with ip. The extension to multiple intersection
is however straightforward, see Figure 1 for a more general case of multiples
fractures in two dimensions.

Ω1

Ω2

I2,3
I1,2

d1
d3

d2

Ω3

γ2

γ3

∂D
γ1

D

Figure 1: Example of a network of fractures and its subdivision (2).

We assume a Lipschitz-continuous boundary for both D and Ω. We indicate
with nij ,nΩ and nD the outward unit normals to ∂Iij , ∂Ω and ∂D, respec-
tively. Here and in the sequel we indicate with the lower case subscripts i and
ij the restriction of data and unknowns to Ωi or Ωij , respectively, and with the
subscript I the restriction to I. For instance, for ui in Ωi, uij indicates the func-
tion in Ωij such that uij = ui|Ωij

and so on. We are interested in computing the
steady pressure field p and the velocity field u in the whole network Ω, which
are governed by the Darcy problem formulated in Ωi and I as

{
∇·ui = fi

K−1
i ui +∇pi = 0

in Ωi for i = 1, 2,

{
∇·uI = fI

K−1
I uI +∇pI = 0

in I. (3)

Here Ki ∈ [L∞ (Ω)]n×n and KI ∈ [L∞ (Ω)]n×n denote the permeability tensors,
which are symmetric and positive definite, and f ∈ L2 (Ω) is a source term which
represents a possible mass source.
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We consider the following physical coupling conditions between I and Ω \ I
{
pij = pI

uij · nij = uI · nij

on ∂Iij for i, j = 1, 2, (4)

and the boundary conditions





u · nΩ = 0 on ∂Ω \ ∂D,

p = g on Γp,

u · nD = b on Γu.

(5)

The first condition of (5) means that we are considering the fractures as im-
mersed in an impermeable medium D \ Ω. In the remaining part of ∂Ω we
impose boundary condition for the pressure on Γp with g ∈ H1/2 (Γp), or for
the flux on Γu with b ∈ H−1/2 (Γu). Moreover we require that Γp 6= ∅ and that
∂Ωij ∩ ∂D belongs to Γp or Γu for i, j = 1, 2. Introducing the vector functional
space

Hdiv (Ω) :=
{
v ∈Hdiv (Ω) : 〈v · nD − b, w〉 = 0, ∀w ∈ H1

0,Γu (Ω)
}
,

with H1
0,Γu (Ω) :=

{
w ∈ H1 (Ω) : w = 0 in Γu

}
, we have the following standard

result for the Darcy problem, see [6, 16, 8].

Theorem 2.1 Under the given hypothesis of the data problem (3) coupled with
(4) and (5) is well posed. In particular we have (u, p) ∈ Hdiv (Ω)× L2 (Ω).

3 Derivation of a reduced model

The derivation of the reduced model follows the approach presented, in a different
framework, in [15]. We start by introducing a reduced model for each Ωi, which
approximates the fracture with the line γi.
We indicate the projection operators in the normal and tangential direction of γi
asNi := ni⊗ni and Ti := I−Ni respectively, with I the identity tensor. Given
two regular functions g and q, we define the tangential gradient and divergence
for each γi as

∇τi
g := Ti∇g and ∇τi

· q := Ti : ∇q, (6)

respectively. We require that the permeability tensor Ki in Ωi \ I, i = 1, 2,
can be written as Ki = Ki,nNi + Ki, τTi, with Ki,n,Ki, τ ∈ L∞ (Ωij) and
strictly positive. This is a reasonable request since we are assuming, in the two-
dimensional case, that the permeability tensor is diagonal in a frame of reference
that is aligned with the fracture. In the three dimensional case this assumption
also implies that the permeability should be isotropic in the tangent plane of the
fracture.
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We indicate with the symbol ·̂ the reduced variables defined on γi. In particular,
for any si ∈ γi, we introduce the reduced pressure p̂ and velocity û as

ûi(si) :=

∫ di
2

−
di
2

Tiui (si + rni) dr and p̂i(si) :=
1

di

∫ di
2

−
di
2

pi (si + rni) dr.

(7)

Moreover, the reduced source term f̂ and the inverse of the scaled permeabilities
ηγ and η̂ are defined as

f̂i(si) :=

∫ di
2

−
di
2

fi (si + rni) dr, ηγi :=
di

Ki,n
and η̂i :=

1

diKi, τ
.

Using (7) and approximating Γu
i with ∂γui and Γp

i with ∂γpi , so that ∂γui ∩
∂γpi = ∅, we obtain the corresponding reduced boundary data from the last two
expressions of (5),

b̂ij :=

∫

∂Ωij∩∂D
bij (σ) dσ and ĝij :=

1

|∂Ωij ∩ ∂D|

∫

∂Ωij∩∂D
gij (σ) dσ.

Indeed, by the definition in (7) we have that ûi · ni = 0 on γi, i.e. ûi is aligned
to the tangential plane.
The reduced model on each Ωij is obtained by integrating 3 along the fracture
thickness and can then be written as

{
∇τi

· ûi = f̂i

η̂iûi +∇τi
p̂i = 0

in γi \ ip,
{
ûi · nD = b̂i on ∂γui
p̂i = ĝi on ∂γpi

for i = 1, 2.

We derive now a reduced model for the flow in the intersecting region I in
order to find proper coupling conditions. To this aim, we assume that I can
be modelled as a quadrilateral with parallel sides, i.e. the thicknesses di can be
considered constant in I. Furthermore, we have assumed that the permeability
tensor KI can be taken constant in I. Let us indicate with τi the tangential
unit vector to γi, and with τi,ip its value at ip, and define d∗i := di sin θ

−1, with

sin θ =
√
1−

(
τ1,ip · τ2,ip

)2
. Then |I| = d∗1d

∗
2 |sin θ|. Note that θ is the angle

between the two fractures at the intersection as shown in Figure 2. We can write
the intersecting region as

I =

{
x ∈ Ω : x = ip + x1τ1,ip + x2τ2,ip , xi ∈

(
−
d∗j
2
,
d∗j
2

)
for i 6= j = 1, 2

}
,

see Figure 2 for an example. The reduction process approximates I with ip
and assumes that the fluxes ûi and the pressures p̂i can be discontinuous at
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I d1

∂I1,2∂I1,1τ1

n1

γ1

θ

d1d∗1

γ2

ip

Figure 2: Example of an intersection.

ip. Thus, we denote with p̂I ∈ R the reduced value of the pressure at the
intersection, defined as

p̂I :=
1

|I|

∫

I
pI (x) dx. (8)

The intersection point divides each line γi into two parts, γi1 and γi2 respectively,
where the indexes 1 and 2 refer to the orientation induced by the tangent vectors.
The double subscript ij, with i, j = 1, 2, will then be used to indicate quantities
on γij . Furthermore, since ûi is by definition aligned along γi we may write
ûi = uiτi.
We can then define the jump and mean operator across ip as

JaiKip := ai1 − ai2 and {{ai}}ip :=
ai1 + ai2

2
, for i = 1, 2.

Thanks to (4), it is reasonable to make the following assumptions,
∫

∂Iij

uI ≈ ûij (ip) and
1

d∗i

∫

∂Iij

pI ≈ p̂ij (ip) , for i, j = 1, 2.

Mass conservation implies that

2∑

k=1

Jûk · τkKip = f̂I with f̂I :=
1

|I|

∫

I
fI (x) dx.

We integrate the first of (3) on I, approximating the integral involving the
velocity uI by the trapezoidal rule on each fracture, to find

∫

I
K−1

I uI ≈K−1
I

|I|
2

2∑

k=1

1

d∗k
(ûk1 + ûk2) =K

−1
I |I|

2∑

k=1

1

d∗k
{{ûk}}ip .

Furthermore the integral of the gradient of the pressure pI in the intersection
can be written as

∫

I
∇pI =

2∑

i,j=1

nij

∫

∂Iij

pI ≈ (p̂12 − p̂11)n2d
∗
1 + (p̂22 − p̂21)n1d

∗
2 =

= −Jp̂1Kipn2d
∗
1 − Jp̂2Kipn1d

∗
2.
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Then, we obtain

K−1
I |I|

2∑

k=1

1

d∗k
{{ûk}}ip = Jp̂1Kipn2d

∗
1 + Jp̂2Kipn1d

∗
2.

Multiplying the above relation by τ1, or similarly by τ2, using the identity d1 =
d∗1n2 · τ1 and the fact the ûi = (ûi · τi)τi we obtain, for i = 1 and 2,

|I|
di

2∑

k=1

ηIik
d∗k

{{ûk · τk}}ip = Jp̂iKip in ip, (9)

where

ηIij := τ
⊤
i,ip ·K−1

I τj,ip . (10)

If γ1 and γ2 are orthogonal and the permeability tensor KI is such that

K−1
I = ηγ1τ1,ip ⊗ τ1,ip + ηγ2τ2,ip ⊗ τ2,ip (11)

the coupling conditions (9) can be simplified yielding

ηγi
dj
di

{{ûi · τi}}ip = Jp̂iKip in ip, for i, j = 1, 2, j 6= i.

To close the system we derive now a model for the pressure at the intersection.
For each fracture in the first half of the transversal section we approximate the
value of the pressure in ip by the following truncated Taylor expansion

pj (ip) = pI (x1) +
d∗j
2
∇pI (θ1) · τi with i 6= j, (12)

where θ1 = ip−τiξ1d∗j/2 with ξ1 ∈ [0, 1], see Figure 3. In the second transversal

τ1

n1

τ2

n2∂I2,2

γ2

∂I1,1 ∂I1,2

γ1ip

∂I2,1
x1

x2

Figure 3: Example of a bi-dimensional intersection between two fractures.

section we approximate the value of the pressure in the intersection point ip by

pj (ip) = pI (x2)−
d∗j
2
∇pI (θ2) · τi with i 6= j, (13)
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where θ2 = ip + τiξ2d
∗
j/2 with ξ2 ∈ [0, 1]. Using (3) and (4) we find

pj (ip) = pi,k + (−1)k
d∗j
2
τ⊤
i ·K−1

I uI(θk) for k = 1, 2. (14)

The values of uI in both θ1 and θ2 are unknown, therefore we express them by
the following convex combination for each fracture

uI (θ1) = ξ1u1,1 + (1− ξ1)u1,2 +
1

2
(u2,1 + u2,2) for ξ1 ∈ [0, 1],

uI (θ2) = ξ2u1,2 + (1− ξ2)u1,1 +
1

2
(u2,2 + u2,1) for ξ2 ∈ [0, 1].

Using the previous expression for uI and integrating in I, equation (14) becomes

p̂I = p̂i,1 − τ⊤
i ·K−1

I

[
1

2

(
dj
di

{{ûi}}ip + {{ûj}}ip
)
+ ξ̂0,1

dj
di

JûiKip

]
,

p̂I = p̂i,2 + τ
⊤
i ·K−1

I

[
1

2

(
dj
di

{{ûi}}ip + {{ûj}}ip
)
− ξ̂0,2

dj
di

JûiKip

]
,

where ξ̂0,k := (2ξk − 1)/4 for k = 1, 2. Finally using (9) and the fact that

pressure p̂I is single valued, thus ξ̂0,k = ξ̂0 for k = 1, 2, we obtain the last
coupling condition of our reduced model

ξ̂0
dj
di
ηIiiJûi · τiKip = {{p̂i}}ip − p̂I in ip, (15)

To sum up, the complete reduced model that describes the evolution of ûi, p̂i
and p̂I consists of the following system of partial differential equations
{
∇τi

· ûi = f̂i,

η̂iûi +∇τi
p̂i = 0,

in γi \ ip,
{
ûi · nD = b̂i on ∂γui ,

p̂i = ĝi on ∂γpi ,
for i = 1, 2. (16)

and the coupling conditions for the fracture-fracture system for i 6= j = 1, 2,




2∑

k=1

Jûk · τkKip = f̂I ,

|I|
di

2∑

k=1

ηIik
d∗k

{{ûk · τk}}ip = Jp̂iKip ,

ξ̂0
dj
di
ηIiiJûi · τiKip = {{p̂i}}ip − p̂I .

in ip. (17)

If the intersection region has a high permeability then ηIij ≈ 0 and conditions
(17) reduce to those in [1, 3], i.e. continuity of pressure and mass conservation.
However, our model is more general as it allows for different choices of KI , and
it is useful in practical situations where fractures have rather different perme-
abilities and may even act as barrier to the flow. This fact will be illustrated in
the section dedicated to numerical experimentation.
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4 Weak formulation and functional setting

We describe here the functional setting for homogeneous essential boundary
conditions, i.e. all possible b̂i are set to zero, since the non-homogeneous case
may be recovered by standard lifting techniques. For a given regular curve
γ : (0, L) → R

2 with tangent τ defined almost everywhere on γ we define the
vector space

Hdiv(γ) :=
{
w ∈

[
L2(γ)

]2
: ∇τ ·w ∈ L2(γ), w · n = 0 and w · nD = 0

}
,

with norm

‖w‖2
Hdiv(γ)

:= ‖w‖2L2(γ) + ‖∇τ ·w‖2L2(γ)

Furthermore we assume here that elements of w ∈ Hdiv(γ) are aligned with γ,
i.e. for a w ∈ Hdiv(γ) we have w = wτ , with w ∈ H1(γ). We set Wij :=
Hdiv (γij) and Wi :=Wi1 ×Wi2 with norm

‖wi‖2Wi
:= ‖wi1‖2Wi1

+ ‖wi2‖2Wi2
+ Jwi · τiK2ip where wi = (wi1, wi2) ∈Wi.

Let Qij := L2 (γij) and Qi := Qi1 ×Qi2, Qi may be identified with L2 (γi). We
set W :=W1 ×W2 with norm

‖w‖2
W

:= ‖w1‖2W1
+ ‖w2‖2W2

, where w = (w1, w2) ∈W ,

and Q := Q1 ×Q2 × R with norm

‖q‖2Q := ‖q1‖2Q1
+ ‖q2‖2Q2

+ q23, where q = (q1, q2, q3) ∈ Q.

All those spaces are in fact Hilbert spaces equipped with scalar products asso-
ciated with the chosen norms.
To obtain the weak formulation of (16) we take a test function qi ∈ Qi and
integrate on each branch γi,j the first equation in (16) to obtain, summing over
j

(∇τi · ûi, qi)γi =
(
f̂i, qi

)
γi

∀qi ∈ Qi, i = 1, 2.

Taking then a test function wi ∈ Wi and integrating on each γi,j the second
equation in (16) we obtain

(η̂iûi, wi)γi − (p̂i,j , ∇τi ·wi)γi + Jp̂iwi · τiKip +
∑

ij: ∂γp
ij 6=∅

ĝi (wi · nD) |∂γp
ij
= 0

∀wi ∈Wi, i = 1, 2.

Note that we have integrated by parts the pressure term and used the natural
boundary conditions. Thanks to the identity JabK = JaK {{b}} + {{a}} JbK we can
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include the coupling conditions (17) substituting the expression of the pressure
jump and average in

Jp̂iwi · τiKip =Jp̂iKip {{wi · τi}}ip + {{p̂i}}ip Jwi · τiKip .

Introducing û := (û1, û2) ∈ W and p̂ := (p̂1, p̂2, p̂I) ∈ Q and summing over i
the weak formulation of the coupled problem (16) and (17) can be now written
as: find (û, p̂) ∈W ×Q such that

{
A(û, w) + B(p̂, w) = F (w) ∀w ∈W
B(q, û) = Q (q) ∀q ∈ Q.

(18)

The functionals and bilinear forms in (18) are defined as

A(u, w) :=
2∑

i=1

ai(ui, wi) +
2∑

i,j=1
i 6=j

ηIij {{uj · τj}}ip {{wj · τj}}ip , (19a)

B(q, w) :=
2∑

i=1

−(qi, ∇τi
·wi)L2(γi)

+ q3Jwi · τiKip , (19b)

F (w) :=
∑

ij: ∂γp
ij 6=∅

−ĝi (wi · nD) |∂γp
ij

(19c)

Q (q) :=

2∑

i=1

−
(
f̂i, qi

)
L2(γi)

+ f̂Iq3. (19d)

The bilinear forms ai in A are given, for i, j = 1, 2 and i 6= j, by

ai(u, w) :=(η̂iu, w)L2(γi)
+ ηIii

dj
di

(
ξ̂0Ju · τiKipJw · τiKip + {{u · τi}}ip {{w · τi}}ip

)
.

(20)

We have the following

Lemma 4.1 (Boundedness of A) There exist a constant C ∈ R
+ such that

|A(u, w)| ≤ C‖u‖
W

‖w‖
W

∀u,w ∈W .

Proof. A is clearly a bilinear form onW . Since each uij andwij are aligned along γij ,
that is uij = uijτi, the request that uij ∈ Hdiv(γij) implies that uij ∈ H1(γij). Then
the boundedness of A can be obtained from the application Cauchy-Schwarz inequality
together with Sobolev embeddings and trace inequalities, by which we can finally state
that ∃C ∈ R

+ such that

|A(u, w)| ≤ C‖u‖
W

‖w‖
W

where C = C
(
‖η̂‖L∞(γ1∪γ2)

, λmax, d, cγ

)

with d := max
i 6=j=1,2

di/dj and cγ depends on the trace inequality constants for each γij . �
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Lemma 4.2 (Coercivity of A) There exist a constant α ∈ R
+ such that

A(u, u) ≥ α‖u‖2
W

∀u ∈W0

where W0 := {w ∈W : B(q, w) = 0, ∀q ∈ Q}.

Proof. By definition of B we have that a w ∈W0 is characterised by ∇τi
·wij = 0

almost everywhere on γij and Jwi · τiKip = 0, for i, j = 1, 2. Therefore, for a w ∈ W0

we have ‖w‖2
W

=
∑2

i=1 ‖wi‖2L2(γi)
. Moreover, if w ∈W0 we have

A(w, w) =

2∑

i=1

∥∥∥η1/2i wi

∥∥∥
2

L2(γi)
+

2∑

i,j=1
i 6=j

(
ηIii

dj
di

{{wi · τi}}2ip+ ηIij {{wi · τi}}ip{{wj · τj}}ip
)
.

Let us introduce the vectors ai =
√

dj/di {{wi · τi}}ip τi, for i, j = 1, 2 and j 6= i and

the scalar product (a1,a2)K = aT
1K

−1
I a2. We recall the definition of ηIij in (10) to note

that the last sum in the previous equality may be written as

(a1,a1)K + (a2,a2)K + 2(a1,a2)K = (a1 + a2,a1 + a2)K ≥ 0.

Therefore, the wanted inequality is proved with α = infess
x∈γ1∪γ2

η̂(x). �

We indicate with M the set of indices ij corresponding to portions of fracture
where we impose pressure boundary conditions, that is

M :=
{
(i, j) : i, j = 1, 2 and ∂γij ∩ ∂γpij 6= ∅

}
and nd := ♯M.

Theorem 4.1 (Inf-sup condition) If nd > 0, then for all p ∈ Q there exist a
w ∈W with w 6= 0 such that

B(p, w) ≥ β‖p‖Q‖w‖
W

,

for β ∈ R
+ independent on p and w.

Proof. Given p = (p̂1, p̂2, p̂I) ∈ Q we construct the following auxiliary problems.
For (i, j) ∈ M we look for function φij ∈ H2(γij) such that





−∇τi
· (∇τi

φij) = p̂ij in γij

∂φij

∂τi
=

p̂I
nd

(−1)j+1 |γ| on ip

φij = 0 on ∂γij ∩ ∂γp
ij

(21)

with |γ| =∑i |γi|. While, for all other values of the indices i and j we look for the φij

solution of




−∇τi
· (∇τi

φij) = p̂ij in γij

∂φij

∂τi
= 0 on ∂γij ∩ ∂γu

ij

φij = 0 on ip

(22)

12



Both problems are well posed and enjoy elliptic regularity.
We consider wij = ∇τi

φij . We have, by construction, that the solution of (21) provides
at the intersection point ip

wij · τi =
p̂I
nd

(−1)j+1 |γ| . (23)

For the solution of (22) by simple computations we derive that at ip

wij · τi = −
∫

γij

(−1)j+1p̂ijdγ. (24)

Furthermore,

B(p, w) =

2∑

i,j=1

‖p̂ij‖2L2(γij)
+ |γ| p̂2I +

∑

(i, j)∈M

∫

γij

p̂ij p̂I ,

Thanks to Young’s inequality applied to the third term, we have that

B(p, w) ≥ 1

2




2∑

i,j=1

‖p̂ij‖2L2(γij)
+ |γ| p̂2I


 ≥ c‖p‖2Q,

with c = 1
2 min {1, |γ|}. Exploiting standard stability results for the solution of (21)

and (22), we infer that

2∑

i=1

‖wij‖2L2(γij)
=

2∑

i=1

‖∇τi
φij‖2L2(γij)

≤ C

(
p̂2I +

2∑

i=1

‖p̂ij‖2L2(γij)

)
,

moreover we have

2∑

i=1

‖∇τi
·wij‖2L2(γij)

=
2∑

i=1

‖∇τi
· (∇τi

φij)‖2L2(γij)
=

=
2∑

i=1

‖φij‖2H2(γij)
≤ C

(
p̂2I +

2∑

i=1

‖p̂ij‖2L2(γij)

)

Thus,
∑

ij ‖wij‖2Wij
. ‖p‖2Q. Furthermore, JwiK

2
ip

. ‖pi‖2Qi
+ p̂2I because of (24) and

(23). In conclusion there exist a constant C ∈ R
+ such that ‖w‖

W
≤ C‖p‖Q. This

result allows us to complete the proof. �

Remark 2 The condition nd ≥ 1 in the previous proof is needed, otherwise
we are not able to control the pressure p̂I . However, if all boundary conditions
are imposed on the velocity we are still able to find a solution provided that
the boundary velocity satisfy a global mass conservation. In this case, however,
p̂ij ∈ L2(γ) \ R and p̂I may take any arbitrary value.

Lemma 4.3 (Boundedness of F and Q) There exists C1, C2 ∈ R
+ such that

|F (w)| ≤ C1‖w‖
W

and |Q (q)| ≤ C2‖q‖Q ∀(w, q) ∈W ×Q.

13



Proof. Let (i, j) ∈ M , then (wij · nD) |∂γp

ij
satisfies

|wij · nD| ≤ |wij | |τi · nD| ≤ |wij | ≤ Cγij
‖wij‖H1(γij)

≤ Cγij
‖wij‖Wij

≤ Cγij
‖w‖

W
.

We have used the trace inequality for functions in H1. By summing over all (i, j) ∈ M
we have

|F (w)| ≤ max
ij: ∂γp

ij
6=∅

(
|ĝij |Cγij

)
‖w‖

W
.

Furthermore

|Q (q)| ≤
2∑

i=1

∥∥∥f̂i
∥∥∥
L2(γi)

‖qi‖L2(γi)
+
∣∣∣f̂I
∣∣∣ |q3| ≤

(
2∑

i=1

∥∥∥f̂i
∥∥∥
L2(γi)

+
∣∣∣f̂I
∣∣∣
)
‖q‖Q.

�

Thanks to the previous results problem (18) is well posed, [6].
We state now a maximum principle for the continuous problem (18). It is well
know that the original problem in Ω1∪Ω2 expressed by (3) satisfies a maximum
principle for the pressure. Namely, in the absence of the source terms fi and
fI a smooth pressure solution is always within the maximal and minimal value
taken at the boundary. We verify the conditions under which a similar property
is enjoyed by the solution of the reduced model.

θ

û1,2

γ1

τ1

û1,1

ip

τ2

û1,2

û2,2

γ2

Figure 4: Example of an intersection with the convention of the directions for
Theorem 4.2.

Theorem 4.2 (Maximum principle) In the case f̂i = 0 and f̂I = 0, if the
permeability tensor KI is isotropic and if the parameter ξ̂0 is such that

sin2(θ)

4(d21,2 + 1)
≤ ξ̂0 ≤

d1,2
4(d21,2 + 1)

sin2(θ)

cos(θ)
,

where d1,2 = d1/d2, then a maximum principle is satisfied by problem (16) cou-
pled with (17). In particular, given a smooth solution p̂ we have that all pressures
p̂ij in γij, as well as p̂I are within the values taken by the pressure at boundaries
∂γij ∩ ∂D.

14



Proof. Let û and p̂ be a solution of the reduced model (16) with f̂i = 0 and f̂I = 0.
Each pij enjoys the maximum principle on γij . To prove that this is the case also for the
global problem it is sufficient to prove that: (a) the reduced pressures in the fractures
at the intersection point can be expressed as convex combinations of the pressures at
the external boundaries; (b) the pressure p̂I is a convex combination of the pressures in
the fractures at the intersection.
The tangent vectors τi are continuous at ip. Without loss of generality we choose a frame
of reference such that τ1,2 = (1 +m2)−1[1, ∓m]⊤, with m = tan θ/2 and 0 < |m| < 1,
where θ is the angle between fractures as Figure 4 shows. Moreover, since the numbering
of the fractures is arbitrary we suppose that d1,2 ≤ 1. Since we have assumed that the
permeability tensor at the intersection KI is isotropic we set KI = ηiI.
Let us indicate with pij the value of pij at ip and with gij the value at the corresponding
external boundary point of γij . Then, by integrating (16), we get, referring to Figure 2,

pij − gij = p̂i (Lij)− p̂ij(0) = −
∫ Lij

0

η̂iûijds = −ûij

∫ Lij

0

η̂ids, (25)

where we have denoted with Lij the length of the j-th branch of γi, and set ûij = ±ûi ·τi
with the convention that ûij is directed towards the intersection. Note that ûij is
constant because of the continuity equation and the absence of source term.
We introduce the following vectors p = [p11, p12, p21, p22]

⊤
, g = [g11, g12, g21, g22]

⊤
and

u = [û11, û12, û21, û22]
⊤

and matrix

D = diag {D11, D12, D21, D22} with Dij = −
∫ Lij

0

η̂ids.

Relation (25) may be rewritten as

u =D−1 (g − p) . (26)

Moreover, by manipulating the interface conditions (17) we are able to write

Ap = u. (27)

Now we show that A is such that ker (A) = span
(
[1, 1, 1, 1]

⊤
)
, and that −A is a Z-

matrix for some values of the parameter ξ̂0. The entries of the matrix can be written as

Aij = ANij

[
4 ξ̂0 ηI m

2 d2
(
d21 + d22

)]−1

, where ANij
read:

AN1,1
= AN2,2

= −d1

(
ξ̂0(d

2
1 + d22)(1 +m2)2 + d22m

2
)

AN3,3
= AN4,4

= −d22d
−1
1

(
ξ̂0
(
d21 + d22

) (
1 +m2

)2
+ d21m

2
)

AN1,2
= AN2,1

= d1

(
ξ̂0
(
d21 + d22

) (
1 +m2

)2 − d22m
2
)

AN1,3
= AN3,1

= AN2,4
= AN2,4

= d2

(
ξ̂0
(
d21 + d22

) (
1−m4

)
+ d1d2m

2
)

AN1,4
= AN4,1

= AN2,3
= AN3,2

= d2

(
−ξ̂0

(
d21 + d22

) (
1−m4

)
+ d1d2m

2
)

AN3,4
= AN4,3

= d22d
−1
1

(
ξ̂0
(
d21 + d22

) (
1 +m2

)2 − d21m
2
)
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It can be verified directly that each row of the matrix sums to zero, which proves that
the kernel of the matrix contains the constant vector.
The diagonal elements of A are negative for any ξ̂0 ≥ 0 therefore −A is a Z-matrix if
the off-diagonal elements of A are positive. It follows that the parameter ξ̂0 must satisfy
the following system of inequalities

ξ̂0 ≥ 1

d21,2 + 1

m2

(1 +m2)2
ξ̂0 ≥

d21,2
d21,2 + 1

m2

(1 +m2)2

(1−m2)ξ̂0 ≥ − d1,2
d21,2 + 1

m2

(1 +m2)
(1−m2)ξ̂0 ≤ d1,2

d21,2 + 1

m2

(1 +m2)

Since |m| < 1 the third inequality is satisfied for all ξ̂0 and, since d1,2 ≤ 1, the first
constraint is at least as restrictive as the second. The system can thus be rewritten as

sin2(θ)

4(d21,2 + 1)
≤ ξ̂0 ≤ d1,2

4(d21,2 + 1)

sin2(θ)

cos(θ)
.

We highlight that the bounds depends both on the angle θ and on the ratio of the
thicknesses, but not on the permeability. Combining (27) and (26) we can write

(
I +D−1A

)
p = g

Since D is negative and A has the aforementioned properties I+D−1A is an M-matrix
whose rows sum to one, therefore the pressures pij are convex combinations of the
boundary values g.

We need now to verify that p̂I is a convex combination of the pij . Summing the two

interface conditions (17) we get p̂I = 1
4

∑2
i,j=1 pij − ξ0d

−1
1,2η

I
ii

∑2
i,j=1 ûij , which becomes

by using (27), p̂I = eT
(
1

4
I − ξ0d

−1
1,2η

I
iiA

)
p, where eT = [1, 1, 1, 1]. Because of the

stated properties of A, the vector eT (1/4I − ξ0d
−1
1,2η

I
iiA) has all positive entries which

sum to one, then p̂I is a convex combination of the pressures p, which completes the

proof. �

5 Numerical discretization

We still consider two fractures with a single intersection, the extension to more
general cases being straightforward. We discretize each curve γi, i = 1, 2 with
a polygonal line γh,i with vertexes xi,k ∈ γi, for k = 1, · · · , Nh,i, and xk 6=
ip. Clearly, xi,1 and xi,Nh,i

correspond the ends of the curve. For the sake of
notation, we indicate with the same symbol γh,i the polygonal line and the mesh
formed by the union of the line elements li,k = [xi,k−1,xk]. Moreover, we set
hi,k = |li,k| and hi = maxk hi,k, while h = max(h1, h2).
Let lci,k be the curved element on γi with the same end points of li,k ∈ γh,i. If
the mesh is fine enough there exists a unique mapping Fi : γi → γh,i defined on
each li,k ∈ γh,i by

x = y −Di(y)nh,i for x ∈ li,k and y ∈ lci,k.
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Here, nh is the normal vector to γh,i, which is piecewise constant in each li,k, and
Di(y) := dist(y, γh,i). The collection of the curved elements lci,k will be denoted
by γch,i, which geometrically coincides with γi. Because of the assumptions made
on the regularity of γi, and in particular the boundedness on the curvature, we
have that |D(y)| = O

(
h2
)
for all y ∈ γi . If we indicate with Ḋi the rate of

variation of Di(y) along γh,i, we may note that the arc length measures on γi
and γh,i satisfy

dγi = (1 + Ḋ2
i )

1/2 dγh,i.

We assume that the mesh is fine enough so that Ḋi = O (h) and, in particular,
we have Ḋi ∈ L∞(γh,i). By properly selecting the orientation of the curves we
have the useful relations

nh,i · τi = Ḋi(1 + Ḋ2
i )

−1/2, τi · τh,i = (1 + Ḋ2
i )

−1/2, (28)

where τh,i is the (piecewise constant) tangent vector of γh,i. Furthermore, we
have that (1 + Ḋ2

i )
−1/2 = 1 + O (h). Let now f : γh,i → R, we consider the

transformations Pi given by

f c = Pif = f ◦ Fi. (29)

Clearly, f c : γi → R.
For a vector function v : γh,i → R

2 aligned with γh,i, i.e. v = vτh,i, we consider
instead the transformation P i given by

vc = P iv = (v ◦ Fi) · τh,iτi = (v ◦ Fi)τh,i ⊗ τi.

Lemma 5.1 Transformation Pi is an isomorphism between H1(γh,i) and H1(γi),
while transformation P i is an isomorphism between Hdiv(γh,i) and Hdiv(γi).
Furthermore,

∫

γi

∇τi
· vcqcdγ =

∫

γh,i

∇τh,i
· vqdγ (30)

for all q ∈ L2(γh,i), v ∈ Hdiv(γh,i) with qc = Piq and vc = P iv, respectively.
Moreover, for each element lh,i of γh,i
∣∣∇τh,i

· v
∣∣
H1(lh,i)

=
∥∥∇τh,i

∇τh,i
· v
∥∥
L2(lh,i)

. |∇τi
· vc|

H1(lc
h,i

) + h‖∇τi
· vc‖L2(lc

h,i
)

(31)

Proof. By standard integration rules

‖f c‖2L2(γi)
=

∫

γi

(f c)2dγ =

∫

γh,i

(1 + Ḋ2
i )

1/2f2dγ
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Thus,

‖f‖2L2(γh,i)
≤ ‖f c‖2L2(γi)

≤ Ch‖f‖2L2(γh,i)
(32)

with Ch = 1 +O (h) ≥ 1. By the same technique we prove that

‖v‖2L2(γh,i)
≤ ‖vc‖2L2(γi)

≤ Ch‖v‖2L2(γh,i)
. (33)

We now note that if s and t denote the arch length coordinates along γi and γh,i,
respectively, for a vector function v = vτh,i aligned along γh,i we have the identities

∇τh,i
· v =

dv

dt
and ∇τi

· vc = dvc

ds
. (34)

Thus,

∇τi
· vc = dv ◦ Fi

ds
=

dv

dt

dt

ds
= (1 + Ḋ2

i )
−1/2∇τh,i

· v, (35)

since ds/dt = (1 + Ḋ2
i )

1/2. Consequently,

ch
∥∥∇τh,i

· v
∥∥
L2(γh,i)

≤ ‖∇τi
· vc‖L2(γi)

≤
∥∥∇τh,i

· v
∥∥
L2(γh,i)

where ch is a positive constant that behaves as ch = 1 − O (h). Combining this last
result with (32) we get

ch‖v‖Hdiv(γh,i)
≤ ‖vc‖

Hdiv(γi)
≤ Ch‖v‖Hdiv(γh,i)

. (36)

Analogously,

∇τi
f c =

df c

ds
τi and ∇τh,i

f =
df

dt
τh,i.

Thus,

∇τi
f c =

df ◦ Fi

dt

dt

ds
τi = (1 + Ḋ2

i )
−1/2∇τh,i

f · τh,iτi.

Taking the L2 norm and applying the definition of the H1(γh,i) semi-norm we obtain

ch |f |H1(γh,i)
≤ |f c|H1(γi)

≤ Ch |f |H1(γh,i)
. (37)

As for (31) we use again the parametric representation to note that on each element lh,i

∇τi
∇τi

· vch,i =
d

ds
(∇τi

· vch,i)τi =
d

dt

[
(1 + Ḋ2)−1/2∇τh,i

· vh,i
]
τi

= (1 + Ḋ2)−1/2 d2

dt2
vh,iτi −

ḊD̈

(1 + Ḋ2)2
d

dt
vh,iτi =

= (1 + Ḋ2)−1/2τi ⊗ τh,i∇τh,i
∇τh,i

· vh,i −
ḊD̈

(1 + Ḋ2)
∇τi

· vch,iτi,

where it is understood that quantities are computed on corresponding points on lh,i and

lh, and we have used (34) and (35). By taking the L2 norm and using the fact that
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Ḋ = O (h) we obtain the wanted result. Finally, relation (30) is readily proved using

(35) and applying the usual integration rules. �

We are now in the position of setting up our discrete spaces. We start by defining,
for i = 1, 2,

RT0(γh,i) =
{
w ∈Hdiv(γh,i) : w ∈ P1(l), ∀l ∈ γh,i,w = wτh,i, w ∈ C0(γh,i)

}

Note that despite the fact that τh,i is only piecewise continuous the tangential
component of elements of RT0(γh,i) is continuous. We also remind that, since
we are treating problems on a one dimensional manifold, elements of Hdiv(γh,i)
have tangential component in H1 and thus admit a continuous representative.
The degrees of freedom on RT0(γh,i) are indeed the values of w = w · τh,i at the
mesh nodes. Correspondingly we have a set of basis function which we indicate
as {ψi,k, k = 1, . . . , Nh,i}.
To account for the discontinuity at the intersection we consider the points îp =
F−1
i (ip) projection of ip on γh,i and we enrich the space using the XFEM [12]

methodology.
More precisely, let Ch,i = [xi,k−1,xi,k] be the element crossed by the projected in-
tersection point and χi,1 and χi,2 the characteristic functions of the sub-elements

lXi,1 = [xi,k−1, îp] and lXi,2 = [̂ip,xi,k], respectively. We consider the space

Eu(γh,i) := {vh,i : vh,i = v∗i,1ψi,kχi,1 + v∗i,2ψi,k−1χi,2}.

The spaces RT0 and Eu have been defined on γh,i, we can then project them on
the curve and account for essential boundary conditions by defining

W c
h,i := P i(RT0(γh,i)⊕Ep(γh,i)) ∩Wi. (38)

Correspondingly, Wh,i = P
−1
i (W c

h,i). By construction, Wh,i ⊂ RT0(γh,i) ⊕
E(γh,i).

Remark 3 The points F−1
i (ip) are in general different, unless the fractures γi

are straight lines, and
∥∥F−1

1 (ip)−F−1
2 (ip)

∥∥ = O
(
h2
)
as h → 0. However, in

most practical situations fractures are almost straight and for a sufficiently fine
mesh the distance of the two projection is rather small. For this reason, and
for the sake of notation, we have used a unique symbol, îp for both projected
intersection points.

For the pressure we proceed by setting

Qh,i :=
{
q ∈ L2(γh,i) : q|l = qil, ∀l ∈ γh,i \ Ch,i, q|Ch,i = q∗i1χi,1 + q∗i2χi,2

}
,

which is the extended space of piecewise constant functions on γh,i, and we lift it
to γi, by defining Qc

h,i := Pi(Qh,i). The space Qc
h,i is in fact made by piecewise

constant functions on the curved mesh γch,i. By construction, both Wh,i and
Qh,i are broken spaces, i.e.

Wh,i =Wh,i1 ×Wh,i2 and Qh,i = Qh,i1 ×Qh,i2,
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where Wh,ij is the restriction of Wh,i on γh,ij = P−1
i (γij), and we have that

Wh,ij ⊂Hdiv(γh,ij). Consequently, also W
c
h,i and Qc

h,i can be written as

W c
h,i =W

c
h,i1 ×wc

h,i2 and Qc
h = Qc

h,i1 ×Qc
h,i2,

with W c
h,ij ⊂Wij and Qc

h,ij ⊂ Qij . Thus W
c
h,i ⊂Wi and Qc

h,i ⊂ Qi. We define
W c

h :=W c
h,1 ×W c

h,2 and Qc
h = Qc

h,1 ×Qc
h,2 × R, and analogously Wh and Qh.

We can now write the discrete weak formulation of the coupled problem (16)
and (17) as: find (ûc

h, p̂
c
h) ∈W c

h ×Qc
h such that

{
A(ûc

h, w
c
h) + B(p̂ch, wc

h) = F (wc
h) ∀wc

h ∈W c
h

B(qch, ûc
h) = Q (qch) ∀qch ∈ Qc

h.
(39)

We introduce the following weighted L2 norm on functions of L2(γh,i)

‖w‖L2

h
(γh,i)

=

∫

γh,i

(1 + Ḋ2)−1/2w2 dγ, (40)

which, is equivalent to the natural L2 norm thanks to Lemma 5.1.
We define now the following problem on the polygonal lines approximating the
fractures: find (ûh, p̂h) ∈Wh ×Qh such that

{
Ah(ûh, wh) + Bh(p̂h, wh) = Fh (wh) ∀wh ∈Wh

Bh(qh, ûh) = Qh (qh) ∀qh ∈ Qh,
(41)

where

Ah(uh, wh) :=

2∑

i=1

ah,i(uh,i, wh,i) +

2∑

i,j=1
i 6=j

ηIij {{uh,j · τh,j}}îp {{wh,i · τh,i}}îp ,

(42a)

Bh(qh, wh) :=−
2∑

i=1

(
qh,i, ∇τh,i

·wh,i

)
L2(γh,i)

+ q3Jwh,i · τh,iKîp , (42b)

Fh (w) :=
∑

ij: ∂γp
ij 6=∅

−ĝiwh,i ·P−1
i nD (42c)

Qh (q) :=
2∑

i=1

−
(
f̂i ◦ F−1

i , qh,i

)
L2

h
(γi)

+ f̂Iq3. (42d)

Here, the bilinear forms ah,i are defined as

ah,i(u, w) :=(η̂iu, w)L2

h
(γi)

+

2∑

i=1

ηI
dj
di

(
ξ̂0Juh,i · τh,iKîpJwh,i · τh,iKîp+

+ {{uh,i · τh,i}}îp {{wh,i · τh,i}}îp
)

with j 6= i.
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Lemma 5.2 Problem (39) is equivalent to (41) in the sense that if taken ûh =
(uh,1,uh,2) ∈ Wh and p̂h = (q1, q2, qI) ∈ Qh is a solution of (41) then the
projections (P1uh,1,P2uh,2) ∈ W c

h and (P1q1,P2q2, qI) ∈ Qc
h are a solution of

(39). Vice versa, if ûc
h = (uc

h,1,u
c
h,2) ∈ W c

h and p̂ch = (qc1, q
c
2, qI) ∈ Qc

h is a

solution of (41) then (P−1
1 u

c
h,1,P

−1
2 u

c
h,2) ∈ Wh and (P−1

1 q1,P−1
2 q2, qI) ∈ Qh

are a solution of (41).

Proof. It is sufficient to apply the definition of the discrete spaces and of the

transformations Pi and P i, together with (30), (40) and apply Lemma 5.1. �

Ch,1

Bh,2

Bh,1

Ch,2
ip

γh,2

γh,1

Figure 5: Subdivision of γh,i = Ch,i ∪ Bh,i.

Theorem 5.1 (Well posedness of the discrete problem) Under the same
conditions of Theorem 4.1, problem (39) is well posed.

Proof. We tackle problem (39) by considering the equivalent problem (41) instead.
First of all we note that thanks to Lemma 5.1 all bilinear forms and functionals in
(41) are bounded, since we have already demonstrated the boundedness of the ones
used in (39). We now note that Wh,ij does in fact define a one dimensional RT0 finite
element space on the “extended grid” γ̂h,ij = (γh,ij \ Ch,i) ∪ lXi,j and Qh,ij a piecewise
constant finite element space on γ̂h,ij . Therefore we can define a standard interpolation
Πij : Hdiv(γ̂h,ij) → Wh,ij and projection operators πij : L2(γ̂h,ij) → Qh,ij . It is
known that in one dimension the two operator commute with the tangential divergence,
i.e. ∇τh,i

·Πijv = πij∇τh,i
v, for all v ∈Hdiv(γ̂h,ij).

We can then repeat the same steps of Theorem 4.1 on problem (41), where now we take

as velocity field associated to a given qh,ij ∈ Qh,ij the quantity vh,ij = Πij∇τh,i
φij to

prove the inf-sup stability of Bh. �

Theorem 5.2 (Maximum principle) The maximum principle is satisfied for
problem (39) under the same conditions of Theorem 4.2.

Proof. Again we refer first to the equivalent problem (41). In the absence of source
term the second equation implies that ∇τh,i

uh,i = 0 on each element of the extended
grid γ̂h,ij . Therefore uh,ij = uh,ijτh,i is constant. If for any couple i, j we take as test
function wh the function such that wh,ij · τh,ij = 1 on all vertexes xk internal to γ̂h,ij
and zero at all other nodes of γh,1∪γh,2 and on the intersection point îp, then by simple
computations, the first equation of (41) gives the following relation for the pressures
p̂h,ij,1 and p̂h,ij,Nij

at the first and last element lh,ij,1 and lh,ij,Nij
of γ̂h,ij ,

p̂h,ij,Nh
− p̂h,ij,1 = −uh,ij

∫

γ̂h,ij

η̂iwh,ij · τh,ijdx.
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Since wh,ij · τh,ij is not negative, p̂h,ij is thus varying monotonically at the interior
nodes of γ̂h,ij . Thus, also in this case we are left to prove the same conditions (a)

and (b) stated in Theorem 4.2, where now g = [p̂h,11,1, p̂h,12,1, p̂h,21,1, p̂h,2,1]
⊤

and p =

[p̂h,11,Nh
, p̂h,12,Nh

, p̂h,21,Nh
, p̂h,22,Nh

]
⊤
. Since the interface conditions at the intersection

are unchanged from the continuous case we can repeat the same argument of the cited
theorem to conclude the proof for the solution of (41).

As for the solution of (39), it is sufficient to recall Lemma 5.2 and note that the elemental

values of the pressure are unchanged in the two problems and that the transformation

Pi maintains monotonicity. �

Theorem 5.3 (Convergence) Let (û, p̂) solution of (18) with ûi ∈ H2(γi)
and p̂i ∈ H1(γi) and (ûc

h, p̂
c
h) solution of (39), then

‖û− ûc
h‖W + ‖p̂− p̂ch‖Q ≤ Ch

(
|û|

W
+ |p̂|Q

)
,

where

|û|2
W

=
2∑

i=1

∑

lc
h,i

∈γc
h,i

|∇τi
· û|2

H1(lc
h,i

) and |p̂|2Q =
2∑

i=1

|p̂|2H1(γi)
.

Proof. By standard results of saddle point problems [6, 8] we have that there exist
a constant C independent from h such that

‖û− ûc
h‖W + ‖p̂− p̂ch‖Q .

(
inf

wc
h
∈W c

h

‖û−wc
h‖W + inf

qc
h
∈Qc

h

‖p̂− qch‖Q
)
.

We set P to be the composition of the operators P i, and operating on each portion of
γij of the fractures. That is, for a wc

h ∈W we have that Pwc
h =

∏2
i,j=1 P iw

c
ij ∈Wh.

Because of Lemma 5.1 we have

‖û−wc
h‖W .

∥∥P−1û−wh

∥∥
Wh

,

where wh = P
−1wc

h ∈Wh. We choose then on each γh,i, wh,i = Π∗
iP

−1ûi, where Π∗
i

is the extended RT0 interpolant for the velocity field on described in [7], which is an
extension of that introduced in [5]. We can then apply the interpolation error bound
contained in the cited references with the results of Lemma 5.1 to obtain

∥∥P−1û−wh

∥∥
Wh

.

2∑

i=1

∑

lh,i∈γh,i

|lh,i|
∣∣∇τh,i

·P−1û
∣∣
H1(lh,i)

.

Applying (31) and using the fact that ‖∇τi
· û‖L2(lc

h,i
) is bounded we obtain

inf
wc

h
∈W c

h

‖û−wc
h‖W . h |û|

W
.

We proceed analogously for the pressure term. We consider the transformation P
which maps (q11, q12, q21, q22, qI) ∈ Qh to (P1q11,P1q12,P2q21,P2q22, qI) ∈ Qc

h. We
have thanks to Lemma 5.1

‖p̂− qch‖Q .
∥∥P−1p̂− qh

∥∥
Qh

.
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We choose qh = (qh,11, qh,12, qh,21, qh,22, qh,I) by applying the extended L2 interpolant
π∗
i defined in [7] on (P−1

i qi1,P−1
i qi2), for i = 1, 2, while we set qh,I = qI . Using the

result of the interpolation error for this extended interpolant we have

∥∥P−1p̂− qh
∥∥
Qh

.

2∑

i=1

∑

lh,i∈γh,i

|lh,i|
∣∣P−1

i p̂
∣∣
H1(γh,i)

.

We then apply (37) on each γh,ij to map back on the curve γij and obtain the wanted

result. �

Remark 4 In the numerical setting we will solve the problem in the form given
by (41). Note that, since we use RT0 finite elements we may replace the norm
L2
h(γh,i) with the (simpler to compute) norm L2(γh,i). Indeed, since Ḋ = O (h)

by the application of the Strang Lemma to our problem we obtain a solution
converging with the same order of convergence.

6 Applicative examples

We present some numerical experiments to validate the proposed reduced model
and verify the theoretical results.

6.1 Model error

We start with an analysis to validate the reduced model presented in Section
3. We consider two rectilinear fractures γ1 and γ2 of thickness di = 0.005
intersecting orthogonally. The fracture permeabilities are K1, τ = 1 and K2, τ =
10−2, respectively and in the intersection we have KI = 10−2I. Thus, γ2 acts
as a barrier for the other fracture. The scalar source term is set to zero in
both fractures and the shape parameter is taken as ξ̂0 = 0.25. We impose only
essential boundary conditions, namely g1,1 = 0, g1,2 = 1, g2,1 = −1 and g2,2 = 1.
We want to compare the results obtained with the reduced model with a reference
solution obtained solving the complete two-dimensional problem with a very fine
two-dimensional grid of approximately 120 · 103 triangular elements.
We compare our reduced model with that proposed in [1, 3], where continuity
of pressure is assumed at the interface. The results are represented in Figure 6.
The solution of the two-dimensional problem is smooth in the intersection region
but nevertheless exhibits a steep pressure gradient due to the low permeability
imposed in Ω2 and in the intersection region. If we consider the reduced model
with the coupling conditions presented in [1, 3] the solution cannot not reproduce
this behaviour, while with the proposed conditions (17) we are able to replace
the pressure gradient of the 2D solution with a correct pressure jump at the
intersection and thus obtain the correct pressure gradient and flux in each branch
of the fractures.
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Figure 6: In the top-left figure p and a zoom near the intersection of (3) with
(4). In the top-right figure the solution of (16) with the conditions of [1, 3]. At
the bottom the solution (16) with (17). In the 1D simulations γ1 is coloured in
blue and γ2 in red.

We now consider the behaviour of our reduced model for different values of the
parameters. To this purpose we compare the pressure of the fractures at the in-
tersection point and the pressure in the intersection obtained solving the original
problem (3), (4) with the reduced pressures given by (7),(8). The solution of the
two-dimensional problem is computed again with a fine grid and the computed
pressure is averaged in the intersection region and on each edge of I to obtain
the values to compare with those produced by the reduced model.

Table 1: Comparison of the model error for different values of the slope m.
The two-dimensional mesh is formed by ∼ 120k triangles, while both the mono-
dimensional meshes have ∼ 50 segments.

|m| = 1 |m| = 10 |m| = 0.1

2D 1D errrel 2D 1D errrel 2D 1D errrel
pI 0.494 0.493 0.2% 0.495 0.493 0.4% 0.495 0.493 0.4%

p̂1,1 0.366 0.327 10.7% 0.324 0.331 2.2% 0.314 0.324 3.2%

p̂1,2 0.624 0.663 6.25% 0.666 0.660 0.9% 0.676 0.666 1.2%

p̂2,1 0.492 0.478 2.85% 0.639 0.642 0.5% 0.337 0.317 5.9%

p̂2,2 0.496 0.498 0.4% 0.351 0.334 4.8% 0.652 0.658 0.9%

We first consider the effect of the intersection angle. Let the two fractures
have slope ±m respectively in the xy plane. We set K1, τ = 1, K2, τ = 10−2,
KI = 10−2I and di = 10−2. Table 1 shows the comparison of the pressures
for different values of m. The relative error errrel is computed as the ratio
between the difference of the corresponding pressures and the pressure of the bi-
dimensional grid. We can see that the errors are rather small and independent on
m. This indicates that reduced model is sound and capable of treating reasonable
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well intersections at different angle.

Table 2: Comparison of the model error for decreasing values of the thickness
di. The spacing of the meshes are the same as in Table 1.

di = 0.01 di = 0.005 di = 0.0025

2D 1D errrel 2D 1D errrel 2D 1D errrel
pI 0.495 0.494 0.2% 0.495 0.494 0.2% 0.495 0.495 -

p̂1,1 0.411 0.392 4.6% 0.45 0.437 2.9% 0.472 0.463 1.9%

p̂1,2 0.579 0.598 3.3% 0.54 0.553 2.4% 0.519 0.527 1.5%

p̂2,1 0.493 0.483 2% 0.494 0.485 1.8% 0.495 0.486 1.8%

p̂2,2 0.495 0.498 0.6% 0.495 0.498 0.6% 0.495 0.498 0.6%

Table 2 shows instead the relative errors when the thickness of the fractures
decreases. In this case we have taken KI = 50.5−1I, i.e. the harmonic mean
of the Ki, τ , and |m| = 1. Also in this case the errors are rather small and, as
we expected, they decrease when the thicknesses decrease. Even if this is not a
rigorous analysis of the model error, it gives numerical evidence of its asymptotic
behaviour with respect to the fracture thickness.
Finally we address some different choices to prescribe the permeability in the
intersection region. The choice should of course be driven by physical arguments.
For instance, if we assume that γ1 is “younger” then γ2, i.e. it was generated
after γ2, than KI should be equal to the K1, τ . Alternatively we can impose
a tensor KH = KHI that is the harmonic mean of Ki, τ , if we suppose that
the properties of each γi are mixed in I. Finally we can impose to KI , in the
direction aligned to each γi, the value Ki, τ obtaining a non-isotropic tensorKT .
In Table 3 we compare the three choices for a system of two orthogonal fractures
of thickness di = 0.01 and permeabilities K1,τ = 1, K2,τ = 10−4. This test is the
most critical for our reduced model. The best fit between the two dimensional
and our reduced model is obtained with the third strategy, imposing a non-
isotropic tensor at the intersection. In the other cases, the mismatch of the
pressure, particularly evident for p̂1,1, is due to the complex two-dimensional
pressure distribution in the intersection region I that the reduced model is not
able to reproduce in full.

Table 3: Comparison of the model error for different values of KI . The spacing
of the meshes are the same as in Table 1.

KI = K2, τI KI = KH KI = KT

2D 1D errrel 2D 1D errrel 2D 1D errrel
pI 0.499 0.497 0.4% 0.500 0.499 0.2% 0.500 0.500 −

p̂1,1 0.0208 0.01 51.9% 0.029 0.019 34.5% 0.502 0.505 0.6%

p̂1,2 0.979 0.990 1.1% 0.971 0.981 1.1% 0.500 0.485 3%

p̂2,1 0.497 0.483 2.9% 0.498 0.488 2% 0.500 0.505 1%

p̂2,2 0.500 0.5024 0.5% 0.500 0.502 0.5% 0.500 0.505 1%
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6.2 Maximum principle

We want to verify, with numerical experiments, the bounds derived in Theorem
5.2 for the parameter ξ̂0 that ensure the fulfilment of the maximum principle.
Let us consider two fractures of the same length L = 1 and thickness di = 0.01
that intersect orthogonally. We set ηi = 1 while in the intersection point we
consider an isotropic permeability tensor KI = 10−4I. We impose pressure
as a boundary condition on all four end points, in particular we set gi,1 = 0
and gi,2 = 1 for i = 1, 2. For this configuration, according to Theorem 5.2,

the maximum principle is satisfied if ξ̂0 ≥ 1/8. Figure 7 shows the solution
we obtained with ξ̂0 = 0, a value that does not satisfy the hypotheses: it is
clear that the maximum principle is violated, indeed the pressure inside the
domain exceeds 1 which is the maximum at the boundary. In the same figure
we represent the solution obtained with ξ̂0 = 1/8, which satisfies the maximum
principle, as indicated by the theory.

Figure 7: In the left image ξ̂0 is such that the maximum principle is not fulfilled,
while in the right is fulfilled.

In the first part of Table 4 we report the maximum value of pressure in the
domain for different ξ̂0 to prove that the violation of the maximum principle
vanishes as we approach the theoretical bounds.

Table 4: Top values of maxi p̂i for different ξ̂0 in the orthogonal case, bottom for
the non-orthogonal case.

ξ̂0 0.025 0.05 0.075 0.1 0.125

maxi p̂i 1.022 1.003 0.996 0.992 0.990

ξ̂0 0 0.0025 0.005 0.0075 0.01

maxi p̂i 1.116 1.033 0.993 1.018 1.035

We then consider two fractures that intersect forming a small angle of 0.2rad. In
this case the bound on ξ̂0 are 4.934 · 10−3 ≤ ξ̂0 ≤ 5.034 · 10−3. We report in the
second part of Table 4 the maximum pressure in the domain for different ξ̂0: it
can be observed that 0.005 is indeed the only value for which the solution fulfils
the maximum principle. This numerical experiment points out the bounds are
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rather sharp.

6.3 Convergence rates

Let us consider two intersecting fractures described by equations

γ1 = {(x, y) : y = x} and γ2 = {(x, y) : y = 1− x} , x ∈
[
−
√
2

2
,

√
2

2

]
.

The permeability of the fractures is Ki, τ = 1 while KI = 0.01I. Both fractures
have thickness di = 0.01, the boundary conditions are g = [0, 1, 0, 1] and the
source term is set to f1 = 0.01 only in γ1 for x < 0. Finally choosing ξ0 = 1

4 ,
the exact solution is

p̂1(s) =





−s2

2
+

13

12
s s ∈ [0, 1)

−1

4
(1− s) + 1 s ∈ (1, 2]

, p̂2(s) =





5

12
s s ∈ [0, 1)

−1

4
(1− s) + 1 s ∈ (1, 2]

and p̂I = 5/8. Figure 8 shows the errors computed with decreasing grid spacings.
The numerical results are in good agreement with theorem 5.3.

10−6

10−5

10−4

10−3

10−2

0.01 0.05 0.1

‖p̂h − p̂‖
|p̂I,h − p̂I |
‖ûh − û‖
‖∇τ · (ûh − û)‖∣∣Jûh − ûKip · τ

∣∣

reference O (h)

Figure 8: Convergence rates for each pieces of the normW and Q. In the legend
we have indicated by ‖·‖ the L2 norm.

Let us now consider the case of curved fractures to evaluate the error associated
with the approximation of geometry as piecewise linear. The two fractures are
now described by the following equations

γ1 = {(x, y) : x = 0, y = θ} and

γ2 = {(x, y) : x = sin θ, y = 1 + cos θ} , θ ∈ [−1, 1] .

We impose the same permeabilities, thicknesses, source term and boundary con-
ditions as in the previous case: since the arc length of the four branches is the
same we obtain the same exact solution. The errors obtained for different grid
spacings are reported in Figure 9. It can be observed that the error decreases
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linearly as in the case of straight fractures and the absolute values are compara-
ble, thus, if the grid size is small enough compared to the fracture curvature, the
approximation of geometry does not affect the quality of the numerical solution.
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‖p̂h − p̂‖
|p̂I,h − p̂I |
‖ûh − û‖
‖∇τ · (ûh − û)‖∣∣Jûh − ûKip · τ

∣∣

reference O (h)

Figure 9: Convergence rates for the curve case.

6.4 Network of fractures

As already mentioned the method proposed in this paper can be applied to
networks composed by an arbitrary number of fractures. Let us consider a set of
three fractures γ1,2,3 characterized by the same permeability. Imposing gi,1 = 0
and gi,2 = 1 for all i we obtain the pressure distribution reported in Figure 10.
We now insert a new fracture γ4 with lower permeability, and, following the
considerations of subsection 6.1, we impose in all the intersection with γ4 the
permeability of this latter. As shown in Figure 10 the solution obtained with the
classical model [1, 3] is everywhere continuous while the new coupling conditions
allow us to mimic the blocking nature of γ4.
In realistic applications fractured porous media are often characterized by the
density and orientation of the fractures rather than by detailed information on
the geometry and properties of the single fracture. In this second test case we
consider a grid of NH horizontal fractures and NV fractures that form a variable
angle θ with the horizontal ones. We impose homogeneous boundary conditions
for the pressure on all tips except for one where we set g1,2 = 1 as shown in Figure
11 left. Figure 11 right shows the resulting pressure field for NH = NV = 5 and
θ = 80◦. Thanks to the efficiency of the reduced one-dimensional model we are
able to analyse different configuration with a low computational cost. Figure
12 shows the value of the pressure in the centre of the network for different
orientations of the fractures, i.e. different angles θ, and for increasing density of
the vertical fractures in the orthogonal case. We can observe that as we increase
the number of fractures, thus the transmissibility of the network, the pressure
in the central point tends to an asymptotic value.
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Figure 10: Top-left: p̂i without γ4. Top-right and bottom: p̂i with the classical
conditions and our model respectively.

θ

p̂I

y g1,j

x

Figure 11: Left grid of fractures with the interesting point. Right simulation of
ten fractures with θ = 80◦.
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Figure 12: In the left p̂I for different values of the angle between the fractures.
In the right p̂I increasing the number of the fractures.
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7 Conclusions

In this paper we derived and analysed a reduced model for flow in a network
of fractures. The derivation is similar to that given in [15] and [7], yet here we
propose new coupling conditions to handle in a more realistic way the intersecting
fractures. These conditions takes into account the intersection angle and, by
allowing a discontinuous pressure at the interface they are capable of giving
accurate results also in the case where the permeability of the fractures are very
different. This is not the case for the coupling conditions in [3, 2]. This can
be relevant to applications since a fracture may sometimes act as a barrier or a
preferential path.
Well posedness analysis has been given for both the continuous and discrete prob-
lem and numerical experiments have been performed to validate the theoretical
results of convergence and positivity. The comparison with two dimensional
simulations on refined grids proved that the new coupling conditions give rea-
sonable accurate results, and they perform better than the classical one in the
case of impermeable fractures. We have also shown how the model can be used
to simulate more realistic configurations with the presence of several intersecting
fractures.
Further developments will consist in extending the analysis to the coupling be-
tween the network and the surrounding porous medium introduced in [9], to
obtain a complete framework for the simulation of mono-phase flow in presence
of an arbitrary set of fractures.
We have dealt only with two dimensional problems. However the derivation here
presented forms the basis for a similar reduced model in a three dimensional
setting. The main difficulty in the extension to three dimensional problems is
that the interface condition is not anymore an algebraic one, but it involves
the interaction with a one-dimensional model that describes the flow along the
intersection. This matter is the subject of ongoing work. Two dimensional
simulations have however, already an applicative relevance. They may be used
to better understand the behaviour of the flow in the presence of fractures and
drive, for instance, upscaling techniques.
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