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Abstract

We want to construct a response adaptive design, described in terms
of two colors urn model targeting fixed asymptotic allocations. We
prove asymptotic results for the process of colors generated by the urn
and for the process of its compositions. Applications to sequential clin-
ical trials are considered as well as connections with response-adaptive
design of experiments.

Key words: Reinforced processes, urn schemes, sequential clinical
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1 Introduction

Consider a clinical trial with two competitive treatments, say R and
W . We want to construct a response adaptive design, described in
term of urn model, targeting any optimal fixed asymptotic allocation,
in order to compare these models with the other ones studied in litera-
ture. A large class of response-adaptive randomized designs is based on
urn models, a classical tool to guarantee a randomized device (Rosen-
berger 2002, Zhang, Hu and Cheung 2006), to construct designs tar-
geting the best treatment (Muliere, Paganoni and Secchi 2006, May
and Flournoy 2009) or to balance the allocations (Baldi Antognini and
Giannerini 2007). The two-color, Randomly Reinforced Urn (RRU) in-
troduced in Muliere, Paganoni and Secchi (2006) and studied in Aletti,
May and Secchi (2009a, 2009b) is a randomized device able to target
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the optimal treatment, see Muliere, Paganoni and Secchi (2006). In
this paper we modify the reinforcement scheme of the urn to asymp-
totically target an optimal allocation proportion. Let us consider two
probability distributions µR and µW with support contained in [α, β],
where 0 ≤ α ≤ β < +∞ and a sequence (Un)n of independent uniform
random variable on (0, 1). We will interpret µR and µW as the laws
of the responses to treatment R and W respectively. We assume that

both the means mR =
∫ β

α
xµR(dx) and mW =

∫ β

α
xµW (dx) are strictly

positive. Visualize an urn initially containing r0 balls of color R and
w0 balls of color W . Set

R0 = r0, W0 = w0, D0 = R0 +W0, Z0 =
R0

D0
.

At time n = 1, a ball is sampled from the urn; its color is X1 =
1[0,Z0](U1), a random variable with Bernoulli(Z0) distribution. Let M1

and N1 be two independent random variables with distribution µR and
µW , respectively; assume that X1,M1 and N1 are independent. Next if
the sampled ball is R it is replaced in the urn together with X1M1 balls
of the same color if Z0 < η where η ∈ (0, 1) is a suitable parameter,
otherwise the urn composition does not change; if the sampled ball
is W it is replaced in the urn together with (1 − X1)N1 balls of the
same color if Z0 > δ where δ < η ∈ (0, 1) is a suitable parameter,
otherwise the urn composition does not change. So we can update the
urn composition in the following way

R1 = R0 +X1M11[Z0<η],

W1 = W0 + (1−X1)N11[Z0>δ],

D1 = R1 +W1, Z1 =
R1

D1
.

(1.1)

Now iterate this sampling scheme forever. Thus, at time n + 1, given
the sigma-field Fn generated by X1, ..., Xn,M1, ...,Mn and N1, ..., Nn,
let Xn+1 = 1[0,Zn](Un+1) be a Bernoulli(Zn) random variable and, in-
dependently from Fn and Xn+1, assume that Mn+1 and Nn+1 are two
independent random variables with distribution µR and µW respec-
tively. Set

Rn+1 = Rn +Xn+1Mn+11[Zn<η],

Wn+1 = Wn + (1−Xn+1)Nn+11[Zn>δ],

Dn+1 = Rn+1 +Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(1.2)

We thus generate an infinite sequenceX = (Xn, n = 1, 2, ..) of Bernoulli
random variables, with Xn representing the color of the ball sampled
from the urn at time n, and a process (Z,D) = ((Zn, Dn), n = 0, 1, 2...)
with values in [0, 1]× (0,∞), where Dn represents the total number of
balls in the urn before it is sampled for the (n+ 1)-th time and Zn is
the proportion of balls of color R; we call X the process of colors gen-
erated by the urn while (Z,D) is the process of its compositions. Let
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us observe that the process (Z,D) is a Markov sequence with respect
to the filtration Fn.

In this work we study the asymptotic behavior of the urn process.
In particular, in Section 2 we prove some general results concerning
urn processes, in Section 3 the convergence result on urn composition is
proved and finally Section 4 contains a simulation study on application
of urn design to sequential clinical trials.

2 Upcrossing and reinforcements

We are interested in studying the convergence of an adapted bounded
process (Zn)n. Without loss of generality, we will take Zn ∈ [0, 1], ∀n.
We study the upcrossing of a strip [u, d], where 0 < d < u < 1. More
precisely, let t−1 = −1 and define for every j ∈ Z+ two stopping times

τj =

{
inf{n > tj−1 : Zn < d} if {n > tj−1 : Zn < d} 6= ∅;

+∞ otherwise.

tj =

{
inf{n > τj : Zn > u} if {n > τj : Zn > u} 6= ∅;

+∞ otherwise.

(2.1)

We call j-th excursion the random interval (τj−1, τj ], and we denote
by

νZ[u,d] =

{
sup{j : τj < ∞} if τ0 < +∞;

0 otherwise,

i.e., νZ[u,d] counts the total number that the process Z crosses the strip

[u, d].

Theorem 2.1. (Zn)n converges a.s. if and only if, for any 0 < d <
u < 1, ∑

P (τj+1 = ∞|τj < ∞) = ∞,

with the convention that P (τj+1 = ∞|τj < ∞) = 1 if P (τj = ∞) = 1.

Proof. We first note that

(Zn)n converges a.s.
∀0<d<u<1

⇐⇒ P (νZ[u,d] = ∞) = 0

∀0<d<u<1
⇐⇒ 0 = lim

n→∞
P (νZ[u,d] ≥ n)

= lim
n→∞

P (∩n
j=0{τj < ∞})

as a consequence of the countability of Q in [0, 1]. Now,

P ({τj < ∞, j = 0, . . . , n}) = P (τ0 < ∞)

n∏

j=1

P (τj < ∞|τj−1 < ∞)
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and it is well known that, if (pj)j ⊆ (0, 1] then

lim
n→∞

n∏

j=1

pj = 0 ⇐⇒
∞∑

j=1

(1− pj) = ∞.

The fact that some (pn)n might be zero is controlled by the assumption
that pn = 0 ⇒ pm = 0, ∀m > n.

Now, we will prove the convergence of a general class of urn pro-
cesses.

Definition 2.2 (General Urn Process). Let (Ω,F , (Fn)n, P ) be a fil-
tered space. A vector process (Rn,Wn)n on (Ω,F , (Fn)n, P ) is called
General Urn Process (GUP) if (Rn,Wn)n is (Fn)n–adapted, the pro-
cesses (Rn)n and (Wn)n are nonnegative and increasing (i.e., 0 ≤ R0 ≤
R1 ≤ . . . Rn ≤ . . . and 0 ≤ W0 ≤ W1 ≤ . . .Wn ≤ . . .) and R0+W0 > 0.
Let Dn = Rn +Wn, for n ∈ N.

Lemma 2.3 (Reinforcements during excursions). For any GUP,

Dτj ≥

(
u(1− d)

d(1− u)

)
Dτj−1

≥ ... ≥

(
u(1− d)

d(1− u)

)j

Dτ0

Proof. For every j ∈ N0 we have that

• Rτj+1
≥ Rtj =⇒ Zτj+1

Dτj+1
≥ ZtjDtj

• Wtj ≥ Wτj =⇒ (1− Ztj )Dtj ≥ (1− Zτj )Dτj

Since Zτj < d and Ztj > u for every j ∈ N, we find

• dDτj+1
≥ uDtj

• (1− u)Dtj ≥ (1− d)Dτj

From this we have immediately the following result

Dτj ≥

(
u(1− d)

d(1− u)

)
Dτj−1

≥ ... ≥

(
u(1− d)

d(1− u)

)j

Dτ0

Given a sequence of stopping times (τn)n, it is always possible to
define the counting process

Cn :=

{∑∞
j=1 1{τj≤n} if τ0 ≤ n;

−1 if τ0 > n.

A GUP (Rn,Wn)n is associated to the sequence (τn)n, if (Rn,Wn, Cn)n
is a time-homogeneous Markov process. In this case

P (τi+1 < ∞|τi < ∞) = f(Rτi ,Wτi , i). (2.2)

Finally, note that, given a GUP (Rn,Wn)n, it is always possible to
define two adapted processes {Dn := Rn + Wn, n ∈ N} and {Zn :=
Rn/Dn, n ∈ N}.
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Proposition 2.4. Given a Markov GUP, the process (Zn)n converges
a.s. if, for any 0 < d < u < 1, there exists a function g : [0,∞) ×
[0,∞) → [0, 1], (Rn,Wn)n is associated to the sequence (τn)n defined
in (2.1), and

f(x, y, ·) ≤ g(x′, y′) if x+ y ≥ x′ + y′

g(c1, c2) < 1 for some c1, c2 > 0

where f is given in (2.2).

Proof. On {τ0 = ∞}, we get νZ[u,d] = 0. On {τ0 < ∞}, we have that, if

j ≥ log u(1−d)
d(1−u)

c1 + c2
Dτ0

then, by Lemma 2.3,

P (τj+1 = ∞|τj < ∞) ≥ 1− g(c1, c2) = a > 0.

Thesis follows by Theorem 2.1.

3 Convergence Theorem

Let us consider the urn model described in Section 1. We have

Theorem 3.1. The sequence of proportions Z = (Zn, n = 1, 2, ...) of
the urn process described in Section 1 converges almost surely to the
following limit

limn→∞ Zn =





η if
∫ β

α
xµR(dx) >

∫ β

α
xµW (dx),

δ if
∫ β

α
xµR(dx) <

∫ β

α
xµW (dx).

To get this task, we provide auxiliary results based on the Doob
decomposition

Zn = Z0 +Mn +An

where (Mn)n is a martingale and (An)n is a predictable process, both

null at n = 0. Denote mR =
∫ β

α
xµR(dx) and mW =

∫ β

α
xµW (dx), the

means of the patients responses to treatments.

Lemma 3.2 (Aletti, May and Secchi (2009a), Lemma A.2,A.3). As-
sume mR = mW = m. If D0 ≥ 2β, then

E(sup
n

|An|) ≤
β

D0
;

E(〈M〉∞ − 〈M〉n|Fn) ≤
β

D0
, for any n ≥ 0.

As a consequence, we get
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Lemma 3.3. Assume mR = mW = m. If D0 ≥ 2β, then

P (sup
n

|Zn − Z0| ≥ h) ≤
β

D0

( 4

h2
+

2

h

)

for every h > 0.

Proof. First note that, since (Mn)n is a martingale null at n = 0, we
have, by Lemma 3.2 (choosing n = 0 in the second inequality) that

lim
n→∞

E(M2
n) = lim

n→∞
E(〈M〉n) ≤

β

D0
,

and hence, by Doob’s L2–inequality,

P ({sup
n

|Mn| ≥ h/2}) ≤ lim
n→∞

E(M2
n)

(h/2)2
≤

4β

h2D0

for any h > 0. We easily get

P (sup
n

|Zn − Z0| ≥ h) ≤ P ({sup
n

|Mn| ≥ h/2} ∪ {sup
n

|An| ≥ h/2})

≤ P ({sup
n

|Mn| ≥ h/2}) + P ({sup
n

|An| ≥ h/2})

≤
β

D0

( 4

h2
+

2

h

)

Proof of Theorem 3.1. We have an urn containing at the starting time
R0 red balls and W0 white balls. Let us consider the case mR < mW ;
the opposite case (mR > mW ) is completely analogous. In the case
described in Muliere, Paganoni and Secchi (2006) the process (Zn)n∈N

is a super-martingale converging to zero but, because of the barrier δ
(see (1.2)), it’s not like this anymore. Anyway, we want to prove that
the process (Zn)n∈N still converges, but in this case the limit is equal
to δ.

First of all, we will prove that

lim inf Zn ≤ δ, a.s

By contradiction, there exists l > δ such that P (lim inf Zn ≥ l) > 0.
Then, there exists n0 such that P (Zn > l+δ

2 , ∀n ≥ n0) > 0. This

contradicts the fact that, by Markov property, P (Zn > l+δ
2 , ev.) = 0,

since it is a RRU with reinforcement with different means that goes to
0 (see Muliere, Paganoni and Secchi, 2006).

With the same argument, one may prove that lim supZn ≥ δ, since
the urn that eventually stays below δ is a RRU with reinforcement
with different means that goes to 1 (again, see Muliere, Paganoni and
Secchi, 2006).
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In fact, one can prove more, with the arguments of Muliere, Paganoni
and Secchi (2006): the barrier δ must be crossed infinitely times al-
most surely. With this result in mind, we will prove in a moment that
lim inf Zn ≥ δ. In fact, if there exists l < δ such that P (lim inf Zn ≤
l) > 0, then with positive probability the process must cross the strip
( l+δ

2 , δ) infinite times. By Lemma 2.3, after a sufficiently large number

of times, Dn > β l+δ
δ−l

and therefore, if k is any successive downcross of
δ,

Zk ≥
Rk−1

Dk−1 + β
≥

δDn

Dn + β
>

l + δ

2

since each reinforced is bounded by β and Rk−1

Dk−1
= Zk−1 > δ.

We have proved that lim inf Zn = δ a.s.

Let d and u (δ < d < u) be two arbitrary points and let (τi)i
and (ti)i be as in (2.1), in order to apply Proposition 2.4. Let i >

log u(1−d)
d(1−u)

β(1−d)
Dτ0

(d−δ) be fixed, so that, by Lemma 2.3, Dτi >
β(1−d)
d−δ

, and

denote by (̂·n)n∈N the renewed process on {τi < ∞}: (R̂n, Ŵn) =

(Rτi+n,Wτi+n), D̂n = R̂n + Ŵn = Dτi+n, Ẑn = R̂n/D̂n = Zτi+n,

Ûn = Uτi+n. The Markov property of the original urn ensures that,
on {τi < ∞}, the process (̂·n)n started afresh a new urn with initial
composition (Rτi ,Wτi) and dynamic as in (1.1) and (1.2). We denote
by Pi(·) = P (·|τi < ∞), and therefore, if

t =

{
inf{n : Ẑn > u} if {n : Ẑn > u} 6= ∅;

+∞ otherwise

then we have

Pi(t < ∞) = Pi(ti < ∞) ≥ P (τi+1 < ∞|τi < ∞) (3.1)

Define the sequences (t∗n, τ
∗
n)n of stopping times which indicate the

(Ẑn)n-crosses of the border δ: let t
∗
−1 = −1 and define for every j ∈ Z+

two stopping times

τ∗j =

{
inf{n > t∗j−1 : Ẑn ≤ δ} if {n > t∗j−1 : Ẑn ≤ δ} 6= ∅;

+∞ otherwise.

t∗j =

{
inf{n > τ∗j : Ẑn > δ} if {n > τ∗j : Ẑn > δ} 6= ∅;

+∞ otherwise.

(3.2)

Note that,

R

R+W
≤ δ,

(R+W ) >
β(1− d)

d− δ

=⇒
R+ x

R+W + x
< d, ∀x ≤ β,
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and hence, since the reinforcements are bounded by β, we have

Ẑt∗
j
−1 ≤ δ,

D̂t∗
j
−1 >

β(1− d)

d− δ





=⇒ Ẑt∗
j
< d =⇒ R̂t∗

j
< Ŵt∗

j
−1

d

1− d
.

(3.3)
We now define a process (̃·n)n∈N to set a new urn, coupled with

(̂·n)n∈N, with the following features:

W̃0 = Ŵ0

R̃0 = W̃0
u+ d

2− u− d

X̃n+1 = 1[0,Z̃n]
(Ûn+1),

M̃n+1 = M̂n+1 + (mR −mW )

Ñn+1 = N̂n+1

R̃n+1 = (R̃n + X̃n+1M̃n+1)1[Ẑn>δ] + W̃n

u+ d

2− u− d
1[Ẑn≤δ],

W̃n+1 = (W̃n + (1− X̃n+1)Ñn+1)1[Ẑn>δ] + W̃n1[Ẑn≤δ],

D̃n+1 = R̃n+1 + W̃n+1,

Z̃n+1 =
R̃n+1

D̃n+1

.

The new urn process is a urn process that starts with Z̃0 = u+d
2 ,

it is reinforced at time n + 1 only when Ẑn > δ with nonnegative
reinforcements that have the same mean mR and it is rebuilt at time
n+ 1 only when Ẑn ≤ δ .

We will prove by induction that, for any n,

Z̃n > Ẑn, W̃n ≤ Ŵn, R̃n > R̂n (3.4)

In other words, we will show that (Z̃n)n∈N is always above the original

process (Ẑn)n∈N.
In fact, by construction we have that

Z̃0 =
d+ u

2
> d > Ẑ0, W̃0 = Ŵ0

which immediately implies R̃0 > R̂0. Assume (3.4) by induction hy-
pothesis. . We divide the two cases:

[Ẑn ≤ δ]: W̃n+1 = Ŵn+1 by construction. By (3.3), Ẑn+1 < d < Z̃n =

Z̃n+1 and hence R̃n+1 > R̂n+1;

[Ẑn > δ]: Since X̃n+1 = 1[0,Z̃n]
≥ 1[0,Ẑn]

= X̂n+1 by construction, we
get

R̂n+1 − R̂n = X̂n+1M̂n+1 ≤ X̃n+1M̃n+1 = R̃n+1 − R̃n,

Ŵn+1 − Ŵn = (1− X̂n+1)N̂n+1 ≥ (1− X̃n+1)Ñn+1 = W̃n+1 − W̃n.
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Note that, for any m ≥ 1, the process (Z̃t∗
m−1+n)

τ∗

m−t∗m−1

n=0 is an
urn process reinforced with distributions with same mean and initial
composition (R̃t∗

m−1
, W̃t∗

m−1
). Therefore, if Tm is the stopping time for

(Z̃t∗
m−1+n)n to exit from (d, u) before τ∗m:

Tm =





inf{n ≤ τ∗m − t∗m−1 : Z̃t∗
m−1+n ≤ d or Z̃t∗

m−1+n ≥ u}

if {n ≤ τ∗m − t∗m−1 : Z̃t∗
m−1+n ≤ d or Z̃t∗

m−1+n ≥ u} 6= ∅;

+∞ otherwise,

then we have stated that

Pi(Tm < ∞) ≥ Pi(t < ∞|{t∗m−1 < t < τ∗m}). (3.5)

Now, as a consequence of Lemma 3.3 and the fact that D̃t∗
m−1

≥ D̃0 ≥

Dτi , if we set h = u−d
2 , we get

Pi(Tm < ∞) ≤ P (sup
n

|Z̃t∗
m−1+n−Z̃t∗

m−1
| ≥ h) ≤ min

( β

Dτi

( 4

h2
+
2

h

)
, 1
)
.

Thus define the function g : [0,∞) × [0,∞) → [0, 1] in the following
way

g(x, y) := min
( β

x+ y

( 4

h2
+

2

h

)
, 1
)
,

and note that g(8β/h2, 4β/h) = 1/2 and g is monotone in x + y. We
can apply Proposition 2.4 to get the thesis, since, by (3.1) and (3.5)

P (τi+1 < ∞|τi < ∞)

≤
∑

m

Pi(t < ∞|{t∗m−1 < t < τ∗m})Pi({t
∗
m−1 < t < τ∗m})

≤ sup
m

Pi(t < ∞|{t∗m−1 < t < τ∗m})

≤ g(Rτi ,Wτi).

Remark 3.4. Note that in the proof it was never necessary to know
which is the type of distribution that generates the reinforcements.
Indeed, we don’t need all information about the probability laws, but
we deal only with the means of those distributions. In particular, in
the proof we only needed to know which of the two reinforcements has
the greatest mean. For this reason, all the results still hold if we change
the dynamic of the process, maintaining fixed the sign of the difference
of the means.

Remark 3.5. Consider the particular case in which the reinforcements
are independent Bernoulli variables, with parameters πR for the red
balls and πW for the white balls. In this situation, our model is equiv-
alent to the one studied by Hill, Lane and Sudderth (1980), in which
the urn function f can be defined like follows:
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f(x) =
xπR1{x<η}

xπR1{x<η} + (1− x)πW 1{x>δ}

Looking at the expression above and applying the Theorem 4.1. of
Hill, Lane and Sudderth (1980), we can reach to the same result of
convergence proved in this paper.

Now let us consider the target allocation ρ(mR,mW ) = η1[mR>mW ]+
δ1[mR<mW ], we have shown that for the reinforcement scheme intro-
duced here Zn converges almost surely to ρ. By using the same mar-
tingale argument of Melfi, Page and Geraldes (2001) we can prove that
NR(n)/n → ρ almost surely. This results allows us to force the design
to be asymptotic balanced or unbalanced for a fixed suitable quantity:
in fact (NR(n)−NW (n))/n → 2ρ− 1. Moreover, consider an estima-
tion problem of the means mR and mW of the responses to treatments.
The limit of the process ρ is within the open interval (0, 1) and so both
the sequences NR(n) =

∑n
i=1 Xi and NW (n) =

∑n
i=1(1−Xi) diverge

to infinity almost surely as long as n increases to infinity. This allows
us to define the following adaptive consistence estimators based on the
observed responses until time n, with random sample sizes NR(n) and
NW (n) respectively:

M(n) =

∑n
i=1 XiMi

NR(n)
and N(n) =

∑n
i=1(1−Xi)Ni

NW (n)
.

We can apply the results proved in Melfi, Page and Geraldes (2001) to
state the following

Proposition 3.6. The estimators M(n) and N(n) are consistent es-
timators of mR and mW , respectively. Moreover as n → ∞,

(√
NR(n)

(M(n)−mR)

σR

,
√

NW (n)
(N(n)−mW )

σW

)
→ (Z1, Z2)

in distribution, where (Z1, Z2) are independent standard random vari-
ables.

4 A simulation study

In this section we present a possible application which concerns the
convergence theorem proved in this paper. Let us consider to have an
unknown treatment W , whose we want to know the mean effect on
patients. In statistical terms, this means we are interested in finding
out which is the mean of the patients responses distribution to this
treatment. Then, we introduce a well-known treatment R, having the
propriety that its mean effect on patients can be chosen arbitrarily.
The aim of the experiment is to infer the mean effect of the treatment
W by modifying suitably the mean effect of treatment R.
Let us consider K urns with the same initial composition (r0, w0). Red
balls are associated with treatment R, while white balls with treatment
W . The model applied for each urn process is the one described in
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Section 1. We will denote with Zj = (Zj
n)n∈N the process of the

urn proportion in the jth urn, for j ∈ {1, 2, ..,K}. For every urn the
convergence Theorem 3.1 tells us that

limn→∞ Zn =





η if mR > mW ,

δ if mR < mW .

When mR = mW we don’t have the explicit form of the asymptotic
distribution of the urn proportion Zn. Nevertheless, we know it con-
verges to a random variable Z∞ whose distribution has no atoms and
its support S∞ = [δ, η].
The idea is to use this theorem in order to find out which is the un-
known mean effect of treatment W . At the beginning, we set the mean
effect of treatment R to a standard value mR,0. As say, in each urn
the reinforcements of red and white balls will follow distributions with
different means, respectively mR,0 and mW . Then, we let start the
K urn processes simultaneously. At each step we will have an array
composed by K urn proportions which we can use to compute the em-
pirical cumulative distribution function F̂n for the random variable Zn.
Thanks to the Theorem 3.1, for every x ∈ [0, 1], F̂n(x) must converge
to





Fη(x) = 1{x≥η} if mR,0 > mW ,

Fδ(x) = 1{x≥δ} if mR,0 < mW .

If mR,0 = mW we assume that both the reinforcements have the
same distributions. Since we know the distribution of the reinforcement
of red balls and the exact value mR,0, we have all the information to

compute offline the asymptotic cumulative distribution F̂e,

1

K

K∑

j=1

1{Zj
n<x} ≃ F̂e(x), for large n.

We can say this approach works because we expect that the asymptotic
distribution of urn process do not depend so much on the particular
kind of reinforcement, whenever they present the same mean effect.

At each step, once every urn has been reinforced, we use the nor-
malized Wasserstein distance (dW ) in order to compute the distance
between Zn with the three asymptotic possible distributions. Then,
we take the minimum among these distances and if it is lower than a
suitable quantity α we can assume the proportion Zn has reached its
limit. Otherwise, the urn processes go on with the next draws. We
stop the algorithm at step ñ if

min {dW (Zñ, δη) , dW (Zñ, Z∞) , dW (Zñ, δδ)} =

min

{∫ 1

0

|Fñ(x)− Fη(x)|dx ,

∫ 1

0

|Fñ(x)− F̂e(x)|dx ,

∫ 1

0

|Fñ(x)− Fδ(x)|dx

}
< α
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Figure 2: Normalized Wasserstein distances (yellow zone) for d(Zñ, δδ) (left panel),
d(Zñ, Z∞) (central panel) and d(Zñ, δη) (right panel) in the case of mR = 30 and
mW = 18.195 (first iteration). The limit of the process seems to be η = 0.7.

Figure 3: Normalized Wasserstein distances (yellow zone) for d(Zñ, δδ) (left panel),
d(Zñ, Z∞) (central panel) and d(Zñ, δη) (right panel) in the case of mR = 15 and
mW = 18.195 (third iteration). The limit of the process seems to be δ = 0.3.
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