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Abstract

We propose a Zienkiewicz-Zhu a posteriori error estimator in 2D, which
shares the computational advantages typical of the original estimator. The
novelty is the inclusion of the geometrical features of the computational mesh,
useful for an anisotropic mesh adaptation. The adapted triangulations are
shown numerically to be quasi-optimal with respect to the error-vs-number
of elements behaviour.

1 Motivations

Among the various a posteriori error estimation techniques available in the lit-
erature, one of the most popular in practice is the one proposed by Zienkiewicz
and Zhu ([11, 12]). The idea behind this estimator is quite simple: for example,
consider the finite element approximation uh to the solution u of an advection-
diffusion-reaction (ADR) equation. Since the gradient ∇uh is less accurate than
the solution, we recover an improved gradient, say ∇∗uh, by suitably fitting ∇uh

over some patches of elements. The discrepancy ‖∇∗uh−∇uh‖L2(Ω) then identifies
an estimator for the H1(Ω)-seminorm of the discretization error u − uh.
The popularity of this methodology can be attributed to various factors: the
method is independent of the problem, of the governing equations and of most
details of the finite element formulation (except for the finite element space), it is
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cheap to compute and easy to implement, and works very well in practice.
On the other hand, ADR problems often exhibit strong directional features (e.g.,
internal or boundary layers). In these cases the effectiveness of the finite element
approximation benefits from a suitable anisotropic computational mesh, fitting
size, shape and orientation of its triangles to the directional features of the solu-
tion at hand ([9, 1, 5]).
In this paper we propose some gradient recovery techniques suited to define an
anisotropic counterpart of the Zienkiewicz-Zhu estimator. The novelty is the in-
clusion of the geometrical information of the mesh triangles, maintaining the above
good properties of the standard Zienkiewicz-Zhu estimator. Despite the somewhat
heuristic nature of the proposed estimator, the overall anisotropic adaptation pro-
cedure turns out to be effective in practice. The adapted meshes, built through a
metric-based optimisation algorithm, are shown numerically to be quasi-optimal
with respect to the error-vs-number of elements behaviour.

2 Recovery procedures

In harmony with a Zienkiewicz-Zhu approach, we distinguish between two steps:
first we furnish a procedure for obtaining an approximate recovered gradient; sec-
ond, we employ this recovered gradient for a posteriori error purposes.
To fix ideas, we consider the standard ADR problem completed with homogeneous
Dirichlet boundary conditions, i.e., find u ∈ V , such that

∫

Ω
µ∇u · ∇v dx +

∫

Ω
b · ∇u v dx +

∫

Ω
γ u v dx =

∫

Ω
fv dx ∀v ∈ V, (1)

with Ω a polygonal domain in R
2, µ > 0, b ∈ W 1,∞(Ω), γ ∈ L∞(Ω), and where

V = H1
0 (Ω), standard notation being adopted for the Sobolev spaces and their

norms. Proper assumptions are enforced to guarantee the well-posedness of (1).
Let Th = {K} be a conforming partition of Ω consisting of triangles and uh be the
Galerkin affine finite element approximation to (1), possibly involving stabilization.
We now provide a family of recovery procedures to improve the discrete gradient
∇uh, using information only related to uh. Several approaches are available in
the literature for this purpose (see, e.g., [11, 10, 8]). We propose here a recovered
gradient, denoted by P r

∆K
(∇uh), which has degree r over the patch ∆K = {T ∈

Th : T ∩ K 6= ∅}. We seek P r
∆K

(∇uh) ∈ [Pr]
2 such that

∫

∆K

(∇uh − P r
∆K

(∇uh)) · w dx = 0 ∀w ∈ [Pr]
2, (2)

with Pr = span{xi
1 xj

2 | i + j ≤ r}. The recovered gradient P r
∆K

(∇uh) is strictly
associated with K, and not to the elements comprising ∆K (i.e., for any T ∈ ∆K ,
with T 6= K, P r

∆T
(∇uh) is, in general, different from P r

∆K
(∇uh)). In the particular
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case r = 0, we can write out the formula for the recovered gradient, given by

P 0
∆K

(∇uh) =
1

|∆K |
∑

T∈∆K

|T |∇uh|T ,

namely, we compute the area-weighted average over the patch ∆K of the gradients
of the discrete solution.

3 The anisotropic estimator

To devise the estimator proposed in this work, we embed the recovery procedures
above in a convenient anisotropic setting. This leads to a Zienkiewicz-Zhu-like es-
timator, automatically including the anisotropic information of the mesh elements.
The same potentiality is not so evident in the case of the standard Zienkiewicz-Zhu
estimator ([12]).

3.1 Anisotropic source

We move from the anisotropic setting in [4]. The size, shape and orientation
of each element K of Th are characterized by the affine map TK : K̂ → K,
where K̂ is the equilateral reference triangle centred at the origin, with coordi-
nates (−

√
3/2, −1/2), (

√
3/2, −1/2), (0, 1) and edge length

√
3. It holds x =

TK(x̂) = MK x̂+ tK , with MK ∈ R
2×2 the Jacobian and tK ∈ R

2 the shift vector.
Matrix MK is factorized as MK = BK ZK via the polar decomposition, where
BK ∈ R

2×2 is symmetric positive definite, and ZK ∈ R
2×2 is orthogonal. Then

BK is spectrally decomposed as BK = RT
K ΛK RK , with RT

K = [r1,K , r2,K ] and
ΛK = diag(λ1,K , λ2,K) the eigenvector and eigenvalue matrix, respectively.

Through TK the unit circle circumscribing K̂ is changed into an ellipse circum-
scribing K: the unit vectors {ri,K} define the corresponding principal directions,
whereas the quantities {λi,K} measure the length of the ellipse semi-axes. With-
out loss of generality, we assume λ1,K ≥ λ2,K > 0 so that the stretching factor,
sK = λ1,K/λ2,K , satisfies sK ≥ 1, for any K ∈ Th, equality holding when K is
equilateral.

The estimator proposed in Sect. 3.2 is inspired by an anisotropic interpolation
error estimate derived in this setting ([4]). In particular, let I1

h be the Clément
interpolant of degree 1 for functions v ∈ H1(Ω) .

Proposition 3.1 Let v ∈ H1(Ω). Then, if #∆K ≤ D and diam(∆̂K) ≤ δ, for
any K ∈ Th, there exists a constant C = C(D, δ), such that

‖v − I1
h(v)‖L2(K) ≤ C

( 2∑

i=1

λ2
i,K (rT

i,KG∆K
(∇v) ri,K)

)1/2
, (3)
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with GK(·) the symmetric semidefinite positive matrix with entries

[G∆K
(w)]i,j =

∑

T∈∆K

∫

T
wi wj dx, with i, j = 1, 2, (4)

for any vector-valued function w = (w1, w2)
T ∈ [L2(Ω)]2, #∆K the cardinality of

the patch, diam(∆̂K) the diametre of ∆̂K = T−1
K (∆K), the pullback of ∆K via the

map TK .

Remark 3.1 Hypotheses of Proposition 3.1 constrain the variation of {ri,K} and
{λi,K} over ∆K but do not limit the anisotropy of K.

3.2 The estimator

Driven by Proposition 3.1 we devise the anisotropic a posteriori error estimator.
Let E r

∆K
= P r

∆K
(∇uh) −∇uh|∆K

be the approximation for the error on the gra-
dient, over ∆K . We define the anisotropic Zienkiewicz-Zhu local estimator for the
H1-seminorm of the discretization error as

[
η r

K,A

]2
=

1

λ1,Kλ2,K

2∑

i=1

λ2
i,K

(
rT
i,K G∆K

(E r
∆K

)ri,K

)
, (5)

where the matrix G∆K
(·) is defined as in (4). Then the corresponding global error

estimator is given by [
η r
A

]2
=

∑

K∈Th

[
η r

K,A

]2
. (6)

The estimator (5)-(6) is essentially heuristic. The terms summed on the right-hand
side of (5) are suggested by (3) with v = u − uh, after substituting the partial
derivatives of u with the corresponding components of P r

∆K
(∇uh). However some

rationale can be provided. The scaling factor λ1,Kλ2,K guarantees a consistency
with respect to the isotropic case, i.e., when λ1,K = λ2,K , (5) turns into an isotropic
Zienkiewicz-Zhu-like estimator based on the patchwise recovered gradient (2), that
is [

η r
K, I

]2
=

∫

∆K

|E r
∆K

|2 dx and
[
η r
I

]2
=

∑

K∈Th

[
η r

K, I

]2
.

Moreover a sort of equivalence between η r
K,A and |u−uh|H1(∆K) can be proved. In

more detail, given a function v ∈ H1(Ω), let v̂ = v ◦TK be the associated pullback.
Virtually, we would like to choose v = u − uh. Then, we have

∫

b∆K

|∇̂ v̂|2 dx̂ =
1

λ1,Kλ2,K

2∑

i=1

λ2
i,K (rT

i,KG∆K
(∇v) ri,K),

s−1
K |v|2H1(∆K) ≤

1

λ1,Kλ2,K

2∑

i=1

λ2
i,K (rT

i,KG∆K
(∇v) ri,K) ≤ sK |v|2H1(∆K),
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where the middle term mimics estimator (5), on replacing ∇v with E r
∆K

.

The patch test
We aim to check the consistency of the recovery procedure by computing the local
effectivity index E.I.rK,A = η r

K,A/|u − uh|H1(K), for r = 0, 1. To avoid a bias effect
due to the grid, we consider the case when u is isotropic and the regular patch
∆K consists of 13 equilateral triangles, each of area 3

√
3/4, with pivot element K̂.

In particular let u = ax2
1 + 2b x1x2 + c x2

2, with a, b, c ∈ R, picked such that the
Hessian, H = [a b; b c], has eigenvalues with the same modulus. This happens only
when i) a = c and b = 0 or when ii) a = −c and b is arbitrary. As typical in a patch
test, let uh coincide with the Lagrange affine interpolant of u. It turns out that |u−
uh|H1(K) = |a|

√
|K|, ‖P 0

∆K
(∇uh) − ∇uh‖L2(∆K) = |a|

√
132 |K|, i.e., E.I.0K,A =√

132 ≃ 11.5 in the case i); the case ii) leads to |u − uh|H1(K) =
√

2 |K| (a2 + b2),

‖P 0
∆K

(∇uh)−∇uh‖L2(∆K) =
√

1884 |K| (a2 + b2)/13, i.e., E.I.0K,A =
√

1884/26 ≃
8.51. Analogously, for the case r = 1, we obtain E.I.1K,A ≃ 3.44 in the case i) and

E.I.1K,A ≃ 3.52 in the case ii).
It can be checked that the same values can be obtained after applying either roto-
translations or homotheties to ∆K .
Although this isotropic context may seem favorable, we expect a similar behaviour
also in the anisotropic case, provided that the mesh is adapted to the solution.

Estimator (5)-(6) is problem-free, i.e., it can be applied to more general prob-
lems, such as elasticity or Navier-Stokes equations. In such a case one could
replace, e.g., the gradient with the stress (rate) tensor ([11]). Alternately, the
adaptation can be driven by the gradient of a scalar variable representative of the
problem, like the pressure or the speed for the Navier-Stokes equations.
The estimator corresponding to r = 0 is extended to the 3D case in [2]. Here an
adaptation driven by a scalar quantity (speed for the Navier-Stokes equations and
density for a multimaterial application) is also assessed.

4 The adaptive procedure

We employ a metric-based adaptive procedure driven by estimator η r
A. In partic-

ular, for a fixed accuracy on the numerical solution, we look for the mesh with the
least number of elements. The tensor field M̃ : Ω → R

2, is the actual unknown.
According to a predictive procedure, at each iteration, j, of the adaptive process,

we deal with: i) the actual mesh T (j)
h , where problem (1) is approximated; ii) the

new metric M̃ (j+1) piecewise constant on T (j)
h , predicted elementwise through a

suitable local optimization procedure; iii) the new mesh T (j+1)
h guaranteeing that

all the edges are unit length with respect to M̃ (j+1) ([7]).
We focus on step ii), which is at the heart of the whole adaptive procedure. We

minimize
[
η r

K,A

]2
in (5) with respect to stretching and orientation, and then, via

an equidistribution criterion, we compute the actual values of λ1,K and λ2,K . For
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this purpose we first rewrite the estimator as

[
η r

K,A

]2
= sK (rT

1,K G∆K
(E r

∆K
) r1,K) + s−1

K (rT
2,K G∆K

(E r
∆K

) r2,K)

= λ1,K λ2,K |∆̂K |
[
sK (rT

1,K Ĝ∆K
(E r

∆K
) r1,K) + s−1

K (rT
2,K Ĝ∆K

(E r
∆K

) r2,K)
]
,(7)

where Ĝ∆K
(·) is the scaled matrix G∆K

(·)/|∆K |, and |∆K | = λ1,Kλ2,K |∆̂K |. The
idea is that we single out the area-dependent information (the multiplicative term)
from the quantity in brackets, depending on orientation and stretching. Then we
minimize this last term with respect to sK and {ri,K}, as stated by the following
result.

Proposition 4.1 Let

J(sK , {ri,K}i=1,2) = sK (rT
1,KĜ∆K

(E r
∆K

)r1,K) + s−1
K (rT

2,KĜ∆K
(E r

∆K
)r2,K), (8)

and let {gi,gi}i=1,2 be the eigen-pairs associated with Ĝ∆K
(E r

∆K
), where it is un-

derstood g1 ≥ g2 > 0 and {gi}i=1,2 are orthonormal. Then J(·) is minimized
when

sK =
√

g1/g2, r1,K = g2, r2,K = g1. (9)

Proof. The result follows from Proposition 14 in [3]. �

Notice that the optimal values in (9) equalize the two terms in (8), i.e., sK g2 =
s−1
K g1 =

√
g1 g2. This implies that the minimum of J(·) does not depend on

sK . To construct M̃ (j+1), we just have to compute {λi,K}i=1,2. For this purpose

we employ the equidistribution criterion, according to which
[
η r

K,A

]2
= τ2/#T (j)

h ,

where τ is the fixed accuracy and #T (j)
h is the cardinality of the background mesh.

Thanks to Proposition 4.1, we obtain λ1,K λ2,K = τ2/( 2#T (j)
h |∆̂K |√g1g2 ). Since

sK = λ1,K/λ2,K , we have

λ1,K = g
−1/2
2

(
τ2

2#T (j)
h |∆̂K |

)1/2

, λ2,K = g
−1/2
1

(
τ2

2#T (j)
h |∆̂K |

)1/2

. (10)

The predicted metric M̃ (j+1) is formed, elementwise, by M̃
(j+1)
K = M̃ (j+1)|K =

RT
KΛ−2

K RK , with RT
K = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K), where {ri,K}i=1,2

and {λi,K}i=1,2 are provided by (9) and (10), respectively.
Now, for task iii), we employ the function adaptmesh in [6]. Since it takes as

input a nodewise representation of M̃ (j+1), we have to average the elementwise in-

formation. The nodewise metric is thus M̃
(j+1)
N = (3 |∆N |)−1

∑
K∈∆N

|K| M̃ (j+1)
K ,

where ∆N is the patch of elements sharing node N and |∆N | is the corresponding
area. The scaling factor 1/3 shrinks the reference triangle to a unit edge one.

Remark 4.1 The hypothesis on the eigenvalues in Proposition 4.1 can be relaxed
by assuming g1 ≥ g2 ≥ 0, i.e., that Ĝ∆K

(E r
∆K

) is actually positive semidefinite.
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This degenerate case is tackled by choosing gi = max(gi, gmin), for i = 1, 2, where

gmin = τ2/
(
h2

Ω 2#T (j)
h |∆̂K |

)
, with hΩ the diameter of the domain. Thus, if gi is

degenerate, λi,K = hΩ.

Test case 1: pure diffusion

We solve (1) with µ = 1, b = 0, γ = 0 on Ω = (−1, 1)2, with f chosen such
that u(x1, x2) = tanh(10x2

2 − 20x3
1)(x

2
2 − 1) and Dirichlet compatible boundary

conditions. We apply the above adaptive procedure with the choices τ = 2, 1, 0.5
and r = 0, 1. Figure 1 gathers the final adapted grids for τ = 1, obtained after
eight iterations. The meshes match the anisotropic features of u, as highlighted by
the detail on the right. In Tables 1 and 2 a more quantitative analysis is provided.
The effectivity index E.I.rA = η r

A/|u − uh|H1(Ω) is essentially independent of τ .
In the case r = 1 the meshes are coarser, E.I.1A being closer to 1. The error-vs-
number of elements behaviour is quasi-optimal in both cases, i.e., of the order of
about −0.5.
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Figure 1: Final adapted grids for test case 1: τ = 1, r = 1 (left), r = 0 (middle
and right).

Table 1: Test case 1: r = 0
τ #Th max sK |u − uh|H1(Ω) η 0

A E.I.0A η 0
I E.I.0I

2 1861 25.15 0.3038 · 10+0 0.2108·10+1 6.939 0.3019·10+1 9.938
1 6220 31.13 0.1552 · 10+0 0.1081·10+1 6.965 0.1572·10+1 10.12
0.5 22388 48.13 0.8024 · 10−1 0.5522·10+0 6.882 0.8149·10+0 10.16

Table 2: Test case 1: r = 1
τ #Th max sK |u − uh|H1(Ω) η 1

A E.I.1A η 1
I E.I.1I

2 533 19.64 0.6753 · 10+0 0.1747·10+1 2.586 0.2393·10+1 3.543
1 1541 17.34 0.3503 · 10+0 0.8802·10+0 2.512 0.1209·10+1 3.450
0.5 4699 27.71 0.1893 · 10+0 0.4408·10+0 2.328 0.6180·10+0 3.264
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Test case 2: advection-diffusion

We now consider an instance of (1) more complex than test case 1, choosing
µ = 10−3, b = (x2,−x1)

T, γ = 0, f = 1 on Ω = (0, 1)2. The exact solution,
not explicitly available, exhibits two boundary layers and a circular internal layer.
We discretize (1) by the SUPG method. The adaptive procedure is run, picking
τ = 2, 1 and r = 1. All the layers are sharply detected by the anisotropic estimator
(see Figure 2). The results in Table 3 confirm the reliability of both the estimator
and the adaptive procedure. Notice also the large values of the stretching factor,
the maximum being reached in correspondence with the two boundary layers.
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Figure 2: Final adapted grids for test case 2: r = 1, τ = 2 (left), τ = 1 (middle
and right).

Table 3: Test case 2 : r = 1

τ #Th max sK η 1
A η 1

I

2 482 57.33 0.1727 · 10+1 0.3884·10+1

1 1273 109.98 0.8925 · 10+0 0.2062·10+1

5 Conclusions

Despite its heuristic nature, the proposed anisotropic Zienkiewicz-Zhu a posteriori
estimator provides satisfactory results. Indeed it detects the anisotropic features
of the problem at hand, exhibiting a quasi-optimal error-vs-number of elements
behaviour as well. This occurs even in the case r = 0, which identifies the roughest
gradient recovery in the proposed class of estimators.
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