
MOX-Report No. 31/2025

HypeRL: Parameter-Informed Reinforcement Learning for

Parametric PDEs

Botteghi, N.; Fresca, S.; Guo, M.; Manzoni, A.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs

Nicolò Botteghia, Stefania Frescab, Mengwu Guoc, Andrea Manzonib

aMathematics of Imaging and AI, University of Twente, Enschede, Netherlands
bMOX – Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy

cCentre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we devise a new, general-purpose reinforcement learning strategy for the optimal control of
parametric partial differential equations (PDEs). Such problems frequently arise in applied sciences and
engineering and entail a significant complexity when control and/or state variables are distributed in high-
dimensional space or depend on varying parameters. Traditional numerical methods, relying on either iterative
minimization algorithms – exploiting, e.g., the solution of the adjoint problem – or dynamic programming –
also involving the solution of the Hamilton-Jacobi-Bellman (HJB) equation – while reliable, often become
computationally infeasible. Indeed, in either way, the optimal control problem has to be solved for each
instance of the parameters, and this is out of reach when dealing with high-dimensional time-dependent and
parametric PDEs. In this paper, we propose HypeRL, a deep reinforcement learning (DRL) framework to
overcome the limitations shown by traditional methods. HypeRL aims at approximating the optimal control
policy directly, bypassing the need to numerically solve the HJB equation explicitly for all possible states
and parameters, or solving an adjoint problem within an iterative optimization loop for each parameter
instance. Specifically, we employ an actor-critic DRL approach to learn an optimal feedback control strategy
that can generalize across the range of variation of the parameters. To effectively learn such optimal control
laws for different instances of the parameters, encoding the parameter information into the DRL policy and
value function neural networks (NNs) is essential. To do so, HypeRL uses two additional NNs, often called
hypernetworks, to learn the weights and biases of the value function and the policy NNs. In this way, HypeRL
effectively embeds the parametric information into the value function and policy NNs. We validate the
proposed approach on two PDE-constrained optimal control benchmarks, namely a 1D Kuramoto-Sivashinsky
equation with in-domain control and on a 2D Navier-Stokes equations with boundary control, by showing
that the knowledge of the PDE parameters and how this information is encoded, i.e., via a hypernetwork, is
an essential ingredient for learning parameter-dependent control policies that can generalize effectively to
unseen scenarios and for improving the sample efficiency of such policies.

1. Introduction

Many complex, distributed dynamical systems can be modeled through a set of parametrized partial
differential equations (PDEs) and their optimal control (OC) represents a crucial challenge in many engineering
and science applications, going way beyond the single, direct simulation of these systems. OC allows the
integration of active control mechanisms into a control system and its most common application in addressing
such problems involves determining optimal closed-loop controls that minimize a specified objective functional
[1]. To solve a PDE-constrained OC problem, one possibility is to rely on the Hamilton-Jacobi-Bellman
(HJB) equation. However, the HJB is not easily tractable and is usually computationally expensive for
high-dimensional and large-time horizon control problems. Another option is to locally solve the OC problem
by exploiting the Pontryagin Maximum Principle (PMP). However, PMP involves the backward solution (in
time) of the adjoint problem with the same dimension of the state equation. Hence, to find the OC law one
should solve both the state and the adjoint equation repeatedly – forward and backward in time, respectively
– in the whole space-time domain. For high-dimensional problems, storage and computational requirements
make the PMP becoming quickly prohibitive. Traditional OC theory may present non-negligible shortcomings
[2], which are even more severe when the PDE parameters vary and the OC problem has to be solved for
each new instance of the parameters.

In this respect, reinforcement learning (RL) [3] is emerging as a new paradigm to address the solution of
PDE-constrained OC problems and has been shown to outperform other OC strategies when the system’s
states are high-dimensional, noisy, or only partial measurements are available. RL avoids to solve the HJB
or the adjoint equations explicitly, which would be untractable for extremely complex problems. Unlike
the aforementioned OC approaches, RL aims to solve control problems by learning an OC law (the policy),
while interacting with the dynamical system (the environment). RL assumes no prior knowledge of the
system, thus yielding broadly applicable control approaches. Deep reinforcement learning (DRL) is the
extension of RL using deep neural networks (NNs) to represent value functions and policies [4, 5, 6]. DRL
has shown outstanding capabilities in complex control problems such as games [7, 8, 9, 10, 11, 12], simulated
and real-world robotics [13, 14, 15, 16, 17, 18, 19], and recently PDEs, with particular emphasis on fluid
dynamics [20, 21, 22, 23, 24, 25, 26, 27].

Despite its success, DRL still suffers from two major drawbacks, namely (i) the sample inefficiency, making
the DRL algorithms extremely data hungry, and (ii) the limited generalization of the control strategies to
changes in the environments. Tackling these two challenges is crucial for advancing DRL towards large-scale
and real-world problems. These limitations are especially severe in the context of control of parametric PDEs,
where obtaining (state) measurements is challenging due to the computational complexity of the (forward)
PDE models. Moreover, little to no attempt has yet been made to devise DRL algorithms capable of handling
changes in the systems’ dynamics resulting from variations in known PDE parameters. This means that for
any new configuration of the system, the optimization problem must be solved from scratch. Additionally,
while DRL generally decreases the computational complexity of traditional methods for the solution of OC
problems, these algorithms still require huge training times and large amounts of data, i.e., we need the
repeated evaluation of the solution to the system state equations. Consequently, applying DRL algorithms to
address single problem scenarios would not be entirely justified.

Improving sample efficiency and generalization in DRL has been a key focus of recent research. Examples
of such approaches are imitation learning [28, 29], where expert data are used to pre-train the control policies
and to speed-up the (policy-)optimization process, transfer learning [30, 31], where an optimal policy is
transferred to a new environment with little or no retraining, and unsupervised representation learning
[32, 33], where unsupervised learning techniques are exploited to learn compact representations of the data.
Representation learning has been shown to improve the generalization of control policies to new environments
and scenarios [33]. Eventually, another prominent approach for enhancing the generalization capabilities of
DRL agents is meta learning [34, 35], where DRL policies are specifically built and optimized for adapting
to new scenarios. However, these approaches have yet to be developed to tackle the challenging problem of
controlling parametric PDEs, leaving a large gap for research and developments in the field.

Hypernetworks [36] are a class of NNs that provide the parameters, i.e., the weights and biases, of other
NNs, often referred to as main or primary networks. Hypernetworks have shown promising results in a
variety of deep learning problems, including continual learning, causal inference, transfer learning, weight
pruning, uncertainty quantification, zero-shot learning, natural language processing, and recently DRL
[37]. Indeed, hypernetworks are capable of enhancing the flexibility, expressivity, and performance of deep
learning-based architecture, opening new doors for the development of novel and more advanced architectures.
Hypernetworks in DRL were first used in [38] to learn the parameters of the value function or of the policy
NNs. Enhancing DRL with hypernetworks has been done in the context of meta RL, zero-shot RL, and
continual RL [39, 40, 41] for improving the performance of RL agents. However, to the best of our knowledge,
no one has tackled the problem of controlling parametric PDEs with hypernetworks and DRL so far.

In this paper, we propose a novel parameter-informed DRL framework, namely HypeRL, for the efficient
solution of parameter-dependent PDE-constrained OC problems by addressing the two aforementioned
limitations, namely sample efficiency and generalization. In particular, with reference to Figure 1, we
exploit the knowledge of PDE parameters µ to learn a parametrization of the control policy (and value
function), dependent on the parameters of the PDE, by means of a hypernetwork h(µ;θhπ) taking as input
the PDE parameters µ and providing as output the weights and biases θπ of the policy π(y;θπ) (and value
function). In contrast with the simple and widely-used concatenation of the parameters µ to the PDE state
y, this parametrization allows for learning OC strategies with less data and that can better adapt to unseen
instances of the PDE parameters, within and without the training range, i.e., interpolation and extrapolation,
respectively. Additionally, we show that the knowledge of the PDE parameters is crucial for learning OC
strategies, and that parameter-informed DRL outperforms parameter-unaware DRL.

2

Figure 1: HypeRL for parametric PDE-constrained OC. We rely on a hypernetwork h(µ;θhπ) to learn, from the PDE parameters
µ, the weights and biases of the policy (and value function) neural network.

The paper is organized as follows: in Section 2, we introduce the building blocks of our framework, namely
OC, RL, and hypernetworks. In Section 3, we describe our parameter-informed HypeRL framework combining
DRL with hypernetworks, and in Section 4 we show the results and discuss the findings. Some conclusions
are finally reported in Section 5.

2. Preliminaries

In this section, we frame the class of optimal control (OC) problems we aim at solving, and we introduce
the building blocks – namely reinforcement learning (RL) and hypernetworks – that will be combined, at a
later stage, to obtain the new HypeRL framework for OC of parametric partial differential equations (PDEs).

2.1. Optimal Control Problems
Along the paper we consider time-continuous OC problems under the following form [1]:

min
y∈Y, u∈Uad

J(y,u)

subject to
∂y

∂t
(t) = F (y(t),u(t);µ) for t ∈ [t0, tf] , with y(t0) = y0 ,

(1)

in which y : [t0, tf] → R|y| denotes the state solution in a function space Y = R|y| ⊗ C1[t0, tf], and
u : [t0, tf] → Uad ⊂ R|u| denotes the control input functions in an admissible space Uad = Uad ⊗ C[t0, tf],
Uad being the admissible set of input control vectors at each time instance. The state equation represents a
semi-discretized form of a nonlinear time-dependent PDE characterized by a parameter vector µ ∈M ⊂ R|µ|,

3

M being the compact parameter space, F is continuous in u and Lipschitz continuous in y (with a Lipschitz
constant independent of u)1, J : Y ×Uad → R is a cost functional, and y0 gives a prescribed initial condition.

In this work, we consider cost functionals of the following form:

J(y,u) =

∫ tf

t0

L(y(τ),u(τ), τ) dτ , (2)

in which

L : R|y| × Uad × [t0, tf]→ R, (x, z, τ) 7→ 1

2
||x− yref(τ)||2 +

α

2
||z − uref(τ)||2 , (3)

where α is a scalar coefficient balancing the contribution of the two terms, yref and uref are the reference
values of the state and of the control, respectively, and ‖ · ‖2 represents the Euclidean norm.

The OC problem in (1) can be addressed by introducing the value function V : R|y| × [t0, tf] → R as
follows:

V (y(t), t) := min
u∈Uad⊗C[t,tf]

∫ tf

t

L(y(τ),u(τ), τ) dτ . (4)

Note that the state equation is satisfied over the time interval [t, tf] with the state starting with y(t). To
note, such a value function is the solution to the Hamilton-Jacobi-Bellman (HJB) [43, 44] equation:

−∂V (y, t)

∂t
= min
u(t)∈Uad

{
L(y,u(t), t) + F (y,u(t);µ)T

∂V (y, t)

∂y

}
, (y, t) ∈ R|y| × [t0, tf] , (5)

which provides, at least in principle, the solution of the OC problem (1), that is, min J = V (y0, t0).
The HJB equation is typically a high-dimensional PDE as |y| is often large. Moreover, due to the

dependency of F (·) on the (many) parameters µ, the HJB equation has to be solved for each sampling
location of the parameters, because each sample defines an individual optimal control problem for the specific
µ. Therefore, (5) is not easily tractable and may be computationally prohibitive for high-dimensional OC
problems constrained by PDEs. This trait is commonly known as the curse of dimensionality [3]. We also
note that an alternative approach to solving the constrained OC problem (1) uses the Karush-Kuhn-Tucker
(KKT) optimality conditions [45, 46] via the introduction of a Lagrange multiplier. However, also in this case
the iterative nature of the optimization methods (like, e.g., gradient-based, Newton, quasi-Newton, sequential
quadratic programming) makes the numerical solution of each PDE-constrained optimization problem usually
very hard. In the case of multiple OC problems, for different parameter values, the overall computational
cost would be therefore prohibitive.

Remark 1. To solve (5) one possibility is to rely on traditional numerical methods, e.g., the finite element
method. In particular, in the latter case, the semi-discretized form of the HJB equation reads as follows. Let
V (y, t) be linearly approximated by a set of basis functions on R|y|, i.e., V (y, t) ≈

∑|v|
j=1 vj(t)φj(y), in which

φj is the j-th basis function, and v(t) = {v1(t), · · · , v|v|(t)}T collects the expansion coefficients. Using the
same test functions as the basis functions, the Galerkin scheme gives a semi-discretized form of the HJB
equation as follows: for t ∈ [t0, tf] and i = 1, · · · , |v|,

−
∑
j

dvj(t)

dt

∫
φi(y)φj(y) dy =

∫
φi(y) min

u(t)∈Uad

L(y,u(t), t) + F (y,u(t);µ)T

∑
j

vj(t)
dφj(y)

dy

 dy ,

(6)

which has to be solved for v(t). We highlight that the solution of (6) entails several issues which need to be
addressed. Indeed, the value function is expressed in terms of basis functions depending on the state solution;
thus requiring y to be known at each time instance. Moreover, handling the right-hand side of (6), that is the
minimum in the variational formulation, requires special treatment as, for example, solving local optimization
problems at quadrature points as in [47]. As a result, the HJB equation is not easily tractable and may become
extremely computationally expensive for high-dimensional and large-time horizon control problems.

1We refer, e.g., to the Picard–Lindelöf theorem [42].

4

2.2. From Dynamic Programming to Reinforcement Learning
Solving the HJB equation in (5) requires reformulating the problem in a time-discrete framework.

Algorithms solving the fully-discretized HJB are typically referred to as dynamic programming (DP) approaches
[3, 48]. DP methods can handle all kinds of hybrid systems, even with non-differentiable dynamics, and
stochastic OC problems [49]. Examples of DP algorithms are policy iteration and value iteration [3]. DP
utilizes the Markov Decision Process (MDP) as underlying mathematical framework in order to account for
stochastic systems’ dynamics and tackle a broader class of stochastic OC problems [48].

A MDP is a tuple 〈Y, Uad,T , R〉 where Y ⊂ R|y| is the set of observable states, Uad ⊂ R|u| is the set of
admissible actions, T : Y ×Y ×Uad −→ [0, 1]|y| such that (yk+1,yk,uk) 7−→ T (yk+1,yk,uk) is the transition
function, and R : Y ×Uad −→ R such that (yk,uk) 7−→ R(yk,uk) denotes the reward function. The transition
function (yk+1,yk,uk) 7−→ T (yk+1,yk,uk) describes the probability of reaching state yk+1 from state yk
while taking action uk,

p(Yk+1 = yk+1|Yk = yk,Uk = uk) , (7)

fulfilling ∑
yk+1∈Y

p(Yk+1 = yk+1|Yk = yk,Uk = uk) = 1, ∀ yk ∈ Y,uk ∈ Uad. (8)

It is worth mentioning that a deterministic transition function yk+1 = T (yk,uk) is a special case arising
when p(yk+1|yk,uk) = 1 and that the reward function is the fully-discretized counterpart of the running
cost L(·), but with opposite sign. Therefore, the value function in DP problems is typically written as a
maximization problem over the possible controls rather than a minimization one:

V (yk) = max
u∈Uad

E
[
R(Yk,Uk) + V (Yk+1)|Yk = yk,Uk = uk

]
, (9)

where we indicate with E[·] the expected value of a random variable, and Yk+1 ∼ T (yk+1,yk,uk). Equation
(9) can be seen as the fully-discretized HJB in stochastic settings.

The key idea of DP is to estimate the value function V (·) using the perfectly-known environment dynamics
R(·) and T (·) and then use it to structure the search for good control strategies. Despite their success, DP
algorithms (i) require perfect knowledge of R(·) and T (·) – despite they are, in many scenarios, often not
known exactly or extremely expensive to compute, especially when the dimensionality of the state is very
high – and (ii) are unpractical to use in problems with large number of states due to the need of solving
the HJB for all possible states. These two drawbacks drastically limit the application of DP algorithms to
complex and large-scale problems such as those arising in the OC of parametric PDEs.

Reinforcement learning (RL) [3] is a promising machine learning approach to solve sequential decision-
making problems through a trial-and-error process. Unlike DP, RL does not try to solve the HJB for all
possible states; rather, it aims at deriving OC laws from (i) measurements of the system – often referred to
as observations, and (ii) reward samples, without direct knowledge of T (·) and R(·) [3, 50]. In RL, we can
identify two main entities: the agent and the environment (see Figure 1). The agent aims to find the best
strategy to solve a given task by interacting with an unknown environment. Similarly to DP, the optimality
of the strategy learned by the agent is defined by a task-dependent reward function. In particular, we can use
RL to solve OC problems, such as the one in Equation (1), by learning an OC law from data without the
need to explicitly solve the HJB equation (either in continuous or in discrete settings) for all possible states.
Similarly to DP, we can rely on MDPs to mathematically formulate the RL problem. The goal of any RL
algorithm is to find the optimal policy (control law) maximizing the expected cumulative return Gk:

Gk = rk + γrk+1 + γ2rk+2 + · · · =
H∑
j=0

γjrk+j , (10)

where the control horizon2 H is defined as H = (tf − t0)/∆t, the subscript k denotes the time-step,
rk = R(yk,uk) is the instantaneous reward received by the agent at time-step k, and γ is a discount factor
balancing the contribution of present and future rewards, where 0 ≤ γ ≤ 1. It is worth mentioning that the

2The control horizon can be either finite or infinite.

5

expected return Gk is the analogous of the cost functional J(·) in Equation (2) in a fully-discretized and
discounted setting.

Almost all RL algorithms revolve around estimating the value function without any knowledge of the
true transition and reward functions, i.e., without explicitly solving the HJB for all possible states. Thus,
the value function is learned from state-action-reward trajectories, i.e., from data. Starting from an initial
estimate of the value function and of the optimal policy, RL algorithms iteratively improve these estimates
until the value function and the optimal policy are found. We can rewrite the value function V (·) using the
expected return Gk:

V (yk) = Eπ∗ [Gk|Yk = yk], (11)

where Eπ∗ [·|Yk = yk] denotes the conditional expectation of a random variable if the agent follows the optimal
policy π∗ on a time-step of length H, given the starting value Yk = yk. In general, a control policy π can be
either stochastic, i.e., π : Y × Uad → [0, 1]|u|, or deterministic, i.e., π : Y → Uad.

Similarly, we can define the action value function Q : Y × Uad → R, as the value of taking action uk at a
certain state yk:

Q(yk,uk) = Eπ∗ [Gk|Yk = yk,Uk = uk]. (12)

It is worth mentioning that there exists a direct relation between the value function V (yk) and the action-value
function Q(yk,uk). In particular, we can write:

V (yk) = max
uk∈Uad

Q(yk,uk). (13)

RL algorithms are usually classified as model-based or model-free methods [51]. In this context, the
keyword model indicates whether the agent relies (model-based) or not (model-free) on an environment model,
often built from the interaction data, to learn the value function and the policy. Another important distinction
can be found between online and offline approaches. Online RL aims at learning the optimal policy while
interacting with the environment. Conversely, offline RL aims to learn the policy offline given a fixed dataset
of trajectories. While online methods better embody the interactive nature of RL, in many (safety-critical)
applications it is not possible to apply random actions to explore the environment and offline approaches
are preferred. Eventually, we can distinguish among value-based, policy-based, and actor-critic algorithms
[3]. Value-based algorithms rely only on the estimation of the (action) value function and derive the optimal
policy by greedily selecting the action with the highest value at each time-step. Examples of value-based
algorithms are Q-learning [52] and its extensions relying on deep neural networks [11, 7, 12, 53]. Second,
policy-based algorithms directly optimize the parameters of the policies with the aim of maximizing the return
Gk via the policy gradient [3]. One of the first and most famous policy-based algorithms is REINFORCE
[54]. Third, actor-critic algorithms learn value function and policy at the same time. The keyword actor
refers to the policy acting on the environment, while critic refers to the value function assessing the quality
of the policy. Examples are deep deterministic policy gradient (DDPG) [55], proximal policy optimization
(PPO) [56], and soft actor-critic (SAC) [57]. Eventually, we can identify on-policy and off-policy methods.
On-policy approaches utilize the same policy for exploration and exploitation. Therefore, they often optimize
a stochastic policy that can either explore the environment, but also exploit good rewards. An example
of on-policy approach is PPO. On the other side, off-policy algorithms maintain two distinct policies for
exploration and exploitation, making it possible to reuse the interaction data to update the models. Examples
of off-policy algorithms are DDPG and SAC.

2.2.1. Twin-Delayed Deep Deterministic Policy Gradient
In our numerical experiments, we utilize a model-free, online, off-policy, and actor-critic approach, namely

Twin-Delayed Deep Deterministic Policy Gradient (TD3) [58]. However, our method can be directly used
by any other RL algorithm. TD3 learns a deterministic policy π(·), i.e., the actor, and the action-value
function Q(·), i.e., the critic. The actor and the critic are parametrized by means of two DNNs of parameters
θQ and θπ, respectively. We indicate the parametrized policy with π(yk;θπ) and the action-value function
with Q(yk,uk;θQ). TD3 can handle continuous3 state and action spaces, making it a suitable candidate for
controlling parametric PDEs using smooth control strategies.

3Space and time are discretized but each variable can assume any continuous value in the admissible ranges.

6

To learn the optimal action-value function4, TD3 relies on temporal-difference (TD) learning [3]. In
particular, starting from the definition of the action-value function in Equation (12), we can write:

Q(yk,uk) = Eπ[ΣHj=0γ
jrk+j |Yk = yk,Uk = uk]

= Eπ[rk + ΣHj=1γ
jrk+j |Yk = yk,Uk = uk]

= Eπ[rk + γ max
uk∈Uad

Q(Yk+1, ·)|Yk = yk,Uk = uk] ,

(14)

where we use bootstrapping to express the value of a state-action pair Q(yk,uk) by using in the update
rule (15) the estimate of the action-value function Q(yk+1, ·) instead of observed returns from complete
trajectories. The expectation is now with respect to a generic policy π, which may be far from the optimal
policy π∗. Using TD learning, we can iteratively update the estimate of the action-value function as:

Q(yk,uk)← Q(yk,uk) + α
(
rk + γ max

uk∈Uad
Q(yk+1, ·)−Q(yk,uk)

)
, (15)

where α is the learning rate. However, in the case of a continuous action space the update rule in Equation
(15) cannot be used directly. Indeed, while for discrete action spaces evaluating the maximum of the Q-value
for all the possible actions is straightforward, for continuous actions the bootstrap of the target Q-value would
require solving an (expensive) optimization problem over the entire action space. Therefore, for continuous
actions the following update rule is commonly used:

Q(yk,uk)← Q(yk,uk) + α
(
rk + γQ(yk+1,uk+1)−Q(yk,uk)

)
, (16)

where uk+1 = π(yk+1) is selected accordingly to the current estimate of the "optimal" policy.
TD3 relies on a memory buffer D to store the interaction data (yk,uk, rk,yk+1) for all time-steps k.

Given a randomly-sampled batch of interaction tuples, we can employ Equation (16) as a loss function for
updating the parameters θQ of the action-value function Q(yk,uk;θQ) as:

L(θQ) = Eyk,uk,yk+1,rk∼D[(rk + γQ̄(yk+1,uk+1;θQ̄)−Q(yk,uk;θQ))2]

= Eyk,uk,yk+1,rk∼D[(rk + γQ̄(yk+1, π̄(yk+1;θπ̄) + ε;θQ̄)︸ ︷︷ ︸
target value

−Q(yk,uk;θQ))2] , (17)

where the so-called target networks Q̄(yk,uk;θQ̄) and π̄(yk;θπ̄) are copies of Q(yk,uk;θQ) and π(yk;θπ),
respectively, with frozen parameters, i.e., they are not updated in the backpropagation step to improve
the stability of the training. We indicate with ε ∼ clip(N (0, σ̄),−c, c) the noise added to estimate the
action value in the interval [−c, c] around the target action. To reduce the problem of overestimation of
the target Q-values, TD3 estimates two independent action-value functions, namely Q1(yk,uk;θQ1

) and
Q2(yk,uk;θQ2

), and two target action-value functions Q̄1(yk,uk;θQ̄1
) and Q̄2(yk,uk;θQ̄2

), and computes
the target value for regression (see (17)) as:

rk + γ min
i=1,2

Q̄i(yk+1,uk+1;θQ̄i).︸ ︷︷ ︸
target value

(18)

The action-value function Q1(yk,uk;θQ1) is used to update the parameters of the deterministic policy
π(yk;θπ) according to the deterministic policy gradient theorem [59]. In particular, the gradient of the critic
guides the improvements of the actor and the policy parameters are updated to ascend the action-value
function:

L(θπ) = Eyk∼D[−∇ukQ1(yk, π(yk;θπ);θQ1
)]. (19)

4Because we do not directly solve the HJB equation to obtain the value function, its initial estimate may be far from the true
one. Therefore, we highlight the keyword "optimal" to distinguish the true value function from the estimated one.

7

The target networks, parametrized by θQ̄1
, θQ̄2

, and θπ̄, respectively, are updated with a slower frequency
than the actor and the critic according to:

θQ̄1
= ρθQ1

+ (1− ρ)θQ̄1
,

θQ̄2
= ρθQ2 + (1− ρ)θQ̄1

,

θπ̄ = ρθπ + (1− ρ)θπ̄ ,

(20)

where ρ is a constant factor determining the speed of the updates of the target parameters.

2.3. Hypernetworks
A hypernetwork [36] is a neural network (NN) that generates the weights and biases of another NN, often

referred to as main or primary network. Formally, a hypernetwork h : Z ⊂ R|z| → R|θf | learns the parameters
θf of the main network f : X ⊂ R|x| →W ⊂ R|w|. If we consider a standard supervised learning regression
task, and we assume the availability of a dataset of N input-output pairs [(x(1),w(1)), · · · , (x(N),w(N))] and
hypernetwork inputs [z(1), . . . ,z(N)], we can write:

θf = h(z(i);θh) ,

ŵ(i) = f(x(i);θf) ,
(21)

where z, often called context vector, can be a task-conditioned, data-conditioned, or noise-conditioned input
[37], and θh denotes the set of parameters of the hypernetwork h(·). The parameters of the two networks θh
and θf can be updated jointly by minimizing a prescribed loss function. In the specific case of a regression
task, the loss function is usually the mean-squared error between the target and predicted values:

L(θf ,θh) =

N∑
i=1

||w(i) − ŵ(i)||22. (22)

3. Methodology for HypeRL

Given all the elements introduced in the previous section, we are now ready to set our proposed strategy
to address OC of parametric PDEs through RL.

3.1. Problem Settings
We cast the parametric PDE-constrained OC problem, introduced in Equation (1), as RL problem, where

an agent, i.e., the controller, aims to learn the OC strategy by interacting with an unknown environment, i.e.,
the PDE state. The RL environment is defined by a transition and reward functions:

yk+1 = T (yk,uk;µ) ,

rk = R(yk,uk) ,
(23)

where the transition function is assumed to be deterministic and dependent on the PDE parameters µ. The
transition function corresponds to the fully-discretized form of the state equation (see Equation (1)) obtained
by introducing a suitable time-integration scheme over a partition of [t0, tf] made by Nt time-steps {tk}Ntk=0

such that the step size is ∆t = (tf − t0)/Nt. For example, by using an explicit Runge-Kutta scheme, we
obtain:

yk+1 = yk + ∆tΦ(tk,yk,uk; ∆t,F ,µ)︸ ︷︷ ︸
:=T (yk,uk;µ)

, k = 0, . . . , Nt − 1,
(24)

where yk ≈ y(tk) and uk ≈ u(tk), and Φ denotes the integration method’s increment function related to the
state equation. The reward function corresponds to the fully-discretized counterpart of the running cost in
Equation (3) with opposite sign. Starting from (3), in the following, our goal is to steer the PDE state to a
reference state while tracking a reference control signal. Therefore, we utilize the following reward function:

R(yk,uk) = −1

2
||yk − yref||22 −

α

2
||uk − uref||22 = −1

2
c1 −

α

2
c2 , (25)

8

where yref and uref indicate the reference values for the state and the control input, and α is a scalar positive
coefficient balancing the contribution of the two terms.

With reference to Algorithm 1, the agent-environment interaction scheme is organized in two loops: the
outer loop indicates the training episode; instead, the inner loop refers to the number of time-steps for each
episode. At the beginning of each new episode we sample a random initial condition and a PDE parameters
value µ to obtain the initial state. The agent utilizes the state at the current time-step and the PDE
parameters to select a control input. The control input is fed to the transition and reward models to obtain
the state at the next time-step and the reward. The tuples (yk,uk, rk,yk+1,µ) collected at each time-step k
of the interaction are used to train the policy (and value function) deep NN (DNN) to maximize the expected
cumulative reward at each episode.

Algorithm 1 Episodic RL for control of parametric PDEs
Initialize policy and value function DNN parameters θπ and θQ
for e = 1 : Emax do

Sample an initial condition and PDE parameter µ
Get initial measurement yk
for k = 1 : Kmax do

Sample action from a policy uk ∼ π(yk,µ;θπ) + ε, where ε ∼ N (0,σ)
Observe reward rk = R(yk,uk) and new state yk+1 = T (yk,uk;µ)
if train models then

Update policy and value function using the tuple (yk,uk, rk,yk+1,µ)
end if

end for
end for

Differently from the majority of the literature on RL for OC of PDEs, we focus on devising a control
strategy that is adaptable to changes of the systems’ dynamics deriving from variations of known parameters
µ. We assume the agent to be able to observe the PDE state and the parameters µ. In this setting, we
present a novel RL framework that can efficiently learn control policies for parametric PDEs from limited
samples and that can generalize to new, unseen instances of the PDE parameters µ (see Figure 1). In contrast
with the widely-used concatenation of information in the agent’s state, to enhance the sample-efficiency and
generalization capabilities of RL agents, we propose a parameter-informed HypeRL architecture relying on
hypernetworks (see Section 2.3). Hypernetworks allow us to express the weights and biases of the value
function and policy as functions of the PDE parameters µ (see Figure 2). This new paradigm for encoding
the information of the PDE parameters drastically improves the performance of the RL agent in terms of
total cumulative reward, sample efficiency, and generalization with respect to traditional RL approaches.

3.2. HypeRL TD3
In this work, we enhance the TD3 algorithm (see Section 2.2.1) with hypernetworks. However, our method

can be easily and directly applied to other RL algorithms, such as PPO and SAC. Analogously to the TD3
algorithm, we rely on the estimation of two action-value functions Q1(yk,uk;θQ1

) and Q2(yk,uk;θQ2
) and a

policy π(yk;θπ) by means of DNNs. However, the parameters of the main networks are now learned using
three hypernetworks hQ1(zk;θhQ1

), hQ2(zk;θhQ2
), and hπ(zk;θhπ):

θQ1
= hQ1

(zk;θhQ1
) ,

θQ2
= hQ2

(zk;θhQ2
) ,

θπ = hπ(zk;θhπ) ,

(26)

where zk indicates the hypernetwork input. With reference to Figure 2, we propose two variations of HypeRL:
(i) we utilize the PDE parameter vector µ as input to the hypernetworks, i.e., zk = µ and (ii) we utilize
state and PDE parameters as hypernetwork input, i.e., zk = [yk,µ]. In this way, we are able to learn a
representation of PDE parameters or of states and PDE parameter vector and encode this information in the

9

(a) (b)

(c) (d)

Figure 2: Hyper policy and hyper value function architectures. In Figure 2a and 2c only the PDE parameters are used as
input to the hypernetwork, i.e., zk = µ, while in Figure 2b and 2d the PDE state and parameters are used as input to the
hypernetwork, i.e., zk = [yk,µ].

parameters of the main networks. We can then obtain the actions from the policy as:

θπ = hπ(zk;θhπ) ,

uk = π(yk;θπ) ,
(27)

and analogously, we can obtain the Q-values as:

θQi = hQi(zk;θhQi) ,

qi,t = Qi(yk,uk;θQi) ,
(28)

where qi,t is the predicted Q-value by the action-value function Qi(·, ·).
The hypernetwork parameters are jointly optimized with the main network parameters by simply allowing

the gradient of the TD3 training objectives5 (see in Equation (17) and (19)) to flow through the hypernetworks:

L(θQi ,θhQi) = Eyk,uk,rk,yk+1∼D[(rk + γ min
i=1,2

Q̄i(yk+1,uk+1;θQ̄i)−Qi(yk,uk;θQi))
2] ,

L(θπ,θhπ) = Eyk∼D[−∇ukQ1(yk, π(yk;θπ);θQ1)].
(29)

5We do not need to change the TD3 working principles and losses.

10

In Algorithm 2, we show the HypeRL TD3 pseudo code, where we highlight in blue the changes to the
original TD3 algorithm. It is worth highlighting that our method can be plugged in any RL algorithm as we
did not change their working principles.

Algorithm 2 Parameter-Informed HypeRL TD3

Initialize Q1(y,u;θQ1
), Q2(y,u;θQ2

), and π(y;θπ)
Initialize hypernetworks hQ1

(z;θhQ1
), hQ2

(z;θhQ2
), and hπ(z;θhπ) with random parameters

θhQ1
,θhQ2

,θhπ
Initialize target hypernetworks θhQ̄1

← θhQ1
, θhQ̄2

← θhQ2
, θhπ̄ ← θhπ

Initialize memory buffer D
for e = 1 : Emax do

Initialize the system and get initial measurement yk,µ
for t = 1 : Tmax do

Set zk = µ or zk = [yk,µ]
Sample policy parameters θπ = hπ(zk;θhπ)
Sample action uk ∼ π(yk;θπ) + ε, where ε ∼ N (0,σ)
Observe reward rk and new state yk+1

Store tuple (yk,uk, rk,yk+1,µ) in D

if train models then
Sample mini-batch (yk,u, r,yk+1,µ) from D
Set zk+1 = µ or zk+1 = [yk+1,µ]
Sample target policy parameters θπ̄ = hπ̄(zk+1;θhπ̄)
uk+1 ← π̄(yk+1;θπ̄) + ε, where ε ∼ clip(N (0, σ̄),−c, c)
Sample target value functions parameters θQ̄1

= hQ̄1
(zk;θhQ̄1

) and θQ̄2
= hQ̄2

(zk;θhQ̄2
)

qk ← rk + γmini=1,2 Q̄(yk+1,uk+1;θQ̄i)
Sample value functions parameters θQ1

= hQ̄1
(zk;θhQ1

) and θQ2
= hQ2

(zk;θhQ2
)

Update critic parameters and hypernetworks parameters according:
L(θQi ,θhQi) = Eyk,uk,rk,yk+1∼D[(qk −Qi(yk,uk;θQi))

2] with i ∈ {1, 2}
if train actor then

Sample policy parameters θπ = hπ(zk;θhπ)
Update policy parameters and hypernetworks parameters according to:
L(θπ,θhπ) = Eyk∼D[−∇ukQ1(yk, π(yk;θπ);θQ1

)
Update target networks by updating the hypernetworks parameters:
θhQ̄1

= ρθhQ1
+ (1− ρ)θhQ̄1

θhQ̄2
= ρθhQ2

+ (1− ρ)θhQ̄2

θhπ̄ = ρθhπ + (1− ρ)θhπ̄
end if

end if
end for

end for

4. Numerical Experiments

We validate our proposed approach on two control baselines, namely (i) a parametric Kuramoto-Sivashinsky
PDE with distributed in-domain actuators, and (ii) a 2D Navier-Stokes equation with boundary control.

4.1. 1D Kuramoto-Sivashinsky equation
The Kuramoto-Sivashinsky (KS) equation is a nonlinear 1D PDE describing pattern and instability in

fluid dynamics, plasma physics, and combustion, e.g., the diffusive-thermal instabilities in a laminar flame
front [60]. Similarly to [25, 27], we write the KS PDE with state y(x, t) = y and forcing term u(x, t) = u

11

with the addition of a parametric cosine term, breaking the spatial symmetries of the equation and making
the search for the optimal control policy more challenging:

∂y

∂t
+ y

∂y

∂x
+
∂2y

∂x2
+
∂4y

∂x4
+ µ cos (

4πx

L
) = u ,

u =

Na∑
i=1

aiψ(x,mi) ,

ψ(x,mi) =
1

2
exp(−(

x−mi

σ
)
2

) ,

(30)

where u is the control input function with ai ∈ [−1, 1], ψ(x, ci) is a Gaussian kernel of mean ci and standard
deviation σ = 0.8, µ ∈ [−0.25, 0.25] is the parameter of interest of the system, and D = [0, 22] is the spatial
domain with periodic boundary conditions. Small values of µ generates chaotic solutions, while large values
of µ periodic solutions, making it a very challenging test case and requiring strong generalization capabilities
of the control policies. To numerically solve the PDE, we discretize the spatial domain with Nx = 64. We
assume to have Na = 8 equally-spaced actuators. The state of the agent is set equal to the (discretized)
PDE state (although we are not limited to that). Similarly to [25, 27], we utilize the reward function (see
Equation (25)) with yref = 0, uref = 0, and α = 0.1. The choice of α = 0.1 is dictated by the need for
balancing the contribution of the state cost c1 and the action cost c2. In particular, in our experiments we
prioritize steering the system to the reference state over the minimization of the injected energy. We train the
control policies by randomly sampling a value of the parameter µ at the beginning of each training episode
∈ [−0.225,−0.2,−0.175, . . . ,−0.05,−0.025, 0.0, 0.025, 0.05, . . . , 0.175, 0.2, 0.225]. To test the generalization
abilities of the policies, we evaluate the agents on unseen and randomly-sampled parameters ∈ [−0.25, 0.25].
We compare our two variants of HypeRL TD3 agent (see Section 3) with (i) the standard TD3 agent with
state yk augmented by the parameter µ, and (ii) the TD3 algorithms without access to the parameter µ.

In Table 1 and 2, we show the training and evaluation rewards collected by the different agents over
5 different random seeds, where we highlight in bold the highest scores in three different phases of the
training/evaluation. We consider the average cumulative reward of 5 independent runs over the whole
training/evaluation episodes, the average cumulative rewards collected after 500/10 episodes until the end,
and the average cumulative rewards collected after 1000/20 episodes until the end. The evaluation is performed
by randomly-sampling 10 different instances of the parameter µ and then record the agents performance.

Cumulative reward mean ± std mean ± std (> 500 ep.) mean ± std (> 1000 ep.)
HypeRL-TD3 −160.06± 81.35 −130.56± 53.71 −112.66± 48.29

HypeRL-TD3 (µ only) −149.09± 79.01 −129.65± 69.19 −118.21± 76.41
TD3 −186.59± 72.56 −168.28± 61.39 −148.12± 42.04

TD3 (no µ) −197.98± 97.52 −165.62± 63.06 −150.08± 49.58

Table 1: Mean and standard deviation of the cumulative reward over training collected by the different algorithms. The results
report the average performance over 5 different random seeds.

Cumulative reward mean ± std mean ± std (> 10 ep.) mean ± std (> 20 ep.)
HypeRL-TD3 −163.68± 62.35 −136.95± 37.63 −114.28± 32.70

HypeRL-TD3 (µ only) −150.09± 37.40 −138.21± 34.84 −122.98± 37.88
TD3 −189.67± 43.88 −174.59± 30.75 −154.58± 17.97

TD3 (no µ) −193.29± 77.11 −165.16± 32.39 −164.49± 42.13

Table 2: Mean and standard deviation of the cumulative reward over evaluation collected by the different algorithms. The
results report the average performance over 5 different random seeds.

The results show that the hypernetwork-based algorithms, namely HypeRL-TD3 and HypeRL-TD3 (µ only),
outperform the TD3 agents not only in later stages of the training but also in early ones, showing that the
way the information about the PDE parameter is encoded is crucial for sample efficiency and generalization of

12

(a) (b)

Figure 3: Training and evaluation results. The solid line represents the mean and the shaded area the standard deviation over 5
different random seeds.

(a) (b)

Figure 4: 95% confidence intervals of the training and evaluation reward for the different phases of training and evaluation. This
metric, suggested in [61], allows to assess the reliability of the results accounting for the stochastic nature of the RL experiments.

the RL algorithms. HypeRL-TD3 (µ only) is the algorithm capable of achieving the highest average training
rewards, followed by HypeRL-TD3, TD3, and TD3 (no µ). However, if we only consider later stages of the
training HypeRL-TD3 is the best performing agent. We see similar trends in the evaluation results.

In Figure 3 and Figure B.10, we show the mean and the standard deviation of the cumulative reward,
state cost, and action cost during training and evaluation, respectively. It is possible to notice the superior
performance of the hypernetwork-based agents in early and later stages of the training and during evaluation
with unseen values of the parameter µ. Additionally, due to the stochastic nature of the experiments and
to improve the reliability of the results, we compute and show in Figure 4 the 95% confidence intervals, as
suggested in [61]. The 95% confidence intervals are aligned and consistent with the average training and
evaluation results and again highlights the higher sample efficiency and generalization capabilities of the
hypeRL agents.

Eventually, in Figure 5 we show examples of controlled solution of the KS PDE. The KS PDE is evolved
for 100 time-steps before turning the controllers ON. In particular, we highlights two different test cases: (a)
interpolation regime with µ = 0.062 (unseen but withing the training range), and (b) extrapolation regime

13

Figure 5: Controlled solutions for µ = −0.062 and µ = 0.25.

with µ = 0.25 (unseen and outside the training range). We also report the state and action costs of the
solutions after enabling the controllers. The hypeRL agents are capable of quickly steering the state of the
KS PDE very close to the reference value with very little control effort in interpolation and extrapolation
regimes, even when the PDE dynamics is very different. On the other side, the TD3 agents (with and without
access to the PDE parameter µ) struggle to achieve good state tracking, especially in extrapolation regimes.
In both interpolation and extrapolation the hypeRL agents improve the results with respect to the TD3
agents, showing that learning the main networks weights’ with a PDE-parameter dependent hypernetwork is
the key ingredient for improving generalization and sample efficiency of RL algorithms.

4.2. 2D Navier-Stokes equations
As a second test case, we consider a 2D parametric incompressible Navier-Stokes (NS) equations. The NS

equations are in fluid dynamics with applications in different fields of engineering and science [62]:

∇ · y = 0

∂y

∂t
+ y · ∇y = −1

ρ
∇p+ µ∇2y ,

(31)

where y = (y1, y2) : X × [t0, tf]→ R2 represents the 2D velocity field, X = [0, 1]× [0, 1] is the spatial domain,
µ is the kinematic viscosity, ρ is the fluid density, and p is the pressure field. To numerically solve the
PDE, we discretize the spatial domain in 21 × 21 × 2 = 882 dimensions. The control is applied from one
of the boundaries of the domain u(x1 = x, x2 = 0, t) = uk,∀x ∈ [0, 1], where x1, x2 represent the spatial
variables in the 2D domain. We use Dirichlet conditions for all the other boundaries. Similarly to the KS, we
utilize the reward function in Equation (25) where yref is obtained when applying the controls u = 3− 5t for
t ∈ [t0 = 0, tf = T], uref = 2.0, T = 0.2, and α = 0.01. It is worth mentioning that the reference solution
is the one provided by PDEControlGym with a default and fixed value of the kinematic viscosity µ and it
is kept the same for all the difference instances of the parameter. The initial velocity field and the initial
pressure are sampled from a uniform distribution ∈ (−5, 5).

14

We extend the implementation of PDEControlGym [63] to include a variations of the kinematic viscosity
µ, our parameter of interest. Changing the kinematic viscosity is an effective way to change the Reynolds
number (Re ∝ 1/µ). In particular, we vary µ ∈ [0.01, 0.025, 0.05, 0.075, 0.1] during training, while we
evaluate the different agents for µ ∈ [0.009, 0.12]. The agents observe the (discretized) velocity field yk at
different time-steps and predict the 1D control action uk. We use the same main network and hypernetwork
architectures of the KS case. However, due to the high-dimensionality of the state (21× 21× 2), we utilize
a convolutional encoder to reduce the state dimensionality to 20 dimensions before feeding it to the RL
networks. We discuss the architecture of the convolutional encoder in Appendix Appendix A. Again, we
compare our two variants of HypeRL TD3 agent (see Section 3) with (i) the standard TD3 agent with state
yk augmented by the parameter µ, and (ii) the TD3 algorithms without access to the parameter µ.

In Table 3 and 4, we show the training and evaluation rewards collected by the different agents, where
we highlight in bold the highest scores in three different phases of the training/evaluation. We consider the
average cumulative reward over the whole training/evaluation episodes, the cumulative rewards collected
after 250/40 episodes until the end, and the cumulative rewards collected after 450/80 episodes until the end.
Even in the NS case, the HypeRL agents still outperform the TD3 agents. However, because the control

Cumulative reward mean ± std mean ± std (> 250 ep.) mean ± std (> 450 ep.)
HypeRL-TD3 −13.50± 4.00 −13.47± 4.10 −13.07± 3.85

HypeRL-TD3 (µ only) −13.64± 4.02 −13.57± 4.09 −13.16± 3.83
TD3 −13.80± 4.10 −13.68± 4.18 −13.24± 3.94

TD3 (no µ) −13.97± 4.04 −13.88± 4.13 −13.41± 3.84

Table 3: Mean and standard deviation of the cumulative reward over training collected by the different algorithms.

Cumulative reward mean ± std mean ± std (> 40 ep.) mean ± std (> 80 ep.)
HypeRL-TD3 −10.21± 1.62 −9.69± 0.89 −9.45± 0.88

HypeRL-TD3 (µ only) −10.37± 1.88 −9.70± 0.93 −9.41± 0.02
TD3 −10.58± 2.36 −9.68± 0.90 −9.40± 0.87

TD3 (no µ) −10.77± 2.24 −9.90± 0.91 −9.62± 0.89

Table 4: Mean and standard deviation of the cumulative reward over evaluation collected by the different algorithms.

is only applied on one boundary, the system is less "controllable" than the KS PDE and the difference in
performance among the different agents is smaller. For example, if we only consider the later stages of the
training, the TD3 agent is capable of achieving similar performance to the HypeRL agents in evaluation,
while still inferior in early training/evaluation stages.

In Figure 6, B.11, and 7, we show average rewards, state and action costs, and 95% confidence bounds of
the rewards collected by the different agents. Similarly to the KS case, the results, especially in early stages
of the training (see Figure 6 (d)), show the superior performance of the parameter-informed HypeRL-TD3
agents. Again, the agent without access to the parameter µ achieves the worst performance. The analysis of
the confidence interval is consistent with the previous results and show very clearly that, especially in early
stages of the training, the HypeRL agents can learn good policies with limited training time.

Eventually, we show controlled solutions for t = tf and µ = 0.077 (unseen value inside the training
range) in Figure 8 and µ = 0.11 (unseen value outside the training range) in Figure 9 and we report the
state cost c1, and action cost αc2. Analogously to the KS case, the TD3 agent without access to the PDE
parameter µ is the worst-performing method in interpolation and extrapolation regimes. In the two examples
shown, the HypeRL-TD3 with only access to the parameter is the best performing agent, closely followed by
HypeRL-TD3, and TD3 with knowledge of µ. It is worth highlighting that the differences in performance
among the agents is less pronounced than in the KS case. This happens for two main reasons: (i) the control
only affects the system through one boundary, leaving the agent less capabilities to freely steer the PDE
towards the desired state, and (ii) the reference state and control used in the reward function in Equation
(25), provided by PDEControlGym, were generated for the case of µ = 0.1, making the control problem
extremely complex for different values of the parameters.

15

(a) (b)

Figure 6: Training and evaluation results. The solid line represents the mean and the shaded area the standard deviation over 5
different random seeds.

(a) (b)

Figure 7: 95% confidence intervals of the training and evaluation reward for the different phases of training and evaluation. This
metric, suggested in [61], allows to assess the reliability of the results accounting for the stochastic nature of the RL experiments.

5. Conclusion

In this paper, we proposed a novel approach for optimal control of parametric PDEs using RL and
hypernetworks that we named HypeRL. In particular, due to the high computational cost of solving PDEs,
we focused on developing a framework for enhancing the performance of RL algorithms in terms of sample
efficiency and generalization to unseen instances of the PDE parameters when trained on a limited number of
instances of such parameters. We tested the capabilities of HypeRL on two challenging control problems of
chaotic and parametric PDEs, namely a 1D Kuramoto Sivashinsky and a 2D Navier Stokes. We showed that
knowledge of the PDE parameters and how this information is encoded, i.e., via hypernetorks, is an essential
ingredient for sample-efficient learning of control policies that can generalize effectively.

Acknowledgments

AM and SF are members of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica
(GNCS-INdAM) and acknowledge the project “Dipartimento di Eccellenza” 2023-2027, funded by MUR. SF

16

Figure 8: Controlled solutions y(t = tf) for µ = 0.077.

Figure 9: Controlled solutions y(t = tf) for µ = 0.11.

17

acknowledges the Istituto Nazionale di Alta Matematica (INdAM) for the financial support received through
the “Concorso a n. 45 mensilità di borse di studio per l’estero per l’a.a. 2023-2024”. AM acknowledges the
PRIN 2022 Project “Numerical approximation of uncertainty quantification problems for PDEs by multi-
fidelity methods (UQ-FLY)” (No. 202222PACR), funded by the European Union - NextGenerationEU, and
the Project “Reduced Order Modeling and Deep Learning for the real- time approximation of PDEs (DREAM)”
(Starting Grant No. FIS00003154), funded by the Italian Science Fund (FIS) - Ministero dell’Università e
della Ricerca. AM and SF acknowledge the project FAIR (Future Artificial Intelligence Research), funded by
the NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial
Intelligence).

References

[1] Andrea Manzoni, Alfio Quarteroni, and Sandro Salsa. Optimal control of partial differential equations.
Springer, 2021.

[2] S. S. Collis, R. D. Joslin, A. Seifert, and V. Theofilis. Issues in active flow control: theory, control,
simulation, and experiment. Progress in Aerospace Sciences, 40(4-5):237–289, 2004.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[5] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[6] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al.
An introduction to deep reinforcement learning. Foundations and Trends R© in Machine Learning,
11(3-4):219–354, 2018.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[8] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng
Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6672–6679, 2020.

[9] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforcement
learning in video games. arXiv preprint arXiv:1912.10944, 2019.

[10] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[12] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[13] Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie Mellon University, 1992.

[14] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[15] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning: Appli-
cations on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

18

[16] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. Towards vision-based
deep reinforcement learning for robotic motion control. In Australasian Conference on Robotics and
Automation 2015. Australian Robotics and Automation Association (ARAA), 2015.

[17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3389–3396. IEEE, 2017.

[18] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI),
pages 737–744. IEEE, 2020.

[19] Nicolò Botteghi, Khaled Alaa, Mannes Poel, Beril Sirmacek, Christoph Brune, Abeje Mersha, and
Stefano Stramigioli. Low dimensional state representation learning with robotics priors in continuous
action spaces. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 190–197. IEEE, 2021.

[20] Gerben Beintema, Alessandro Corbetta, Luca Biferale, and Federico Toschi. Controlling rayleigh–benard
convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.

[21] Michele Buzzicotti, Luca Biferale, Fabio Bonaccorso, Patricio Clark di Leoni, and Kristian Gustavsson.
Optimal control of point-to-point navigation in turbulent time dependent flows using reinforcement
learning. Springer, 2020.

[22] Dixia Fan, Liu Yang, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis. Reinforce-
ment learning for bluff body active flow control in experiments and simulations. Proceedings of the
National Academy of Sciences, 117(42):26091–26098, 2020.

[23] Jean Rabault and Alexander Kuhnle. Accelerating deep reinforcement learning strategies of flow control
through a multi-environment approach. Physics of Fluids, 31(9), 2019.

[24] Chengwei Xia, Junjie Zhang, Eric C Kerrigan, and Georgios Rigas. Active flow control for bluff body
drag reduction using reinforcement learning with partial measurements. Journal of Fluid Mechanics,
981:A17, 2024.

[25] Sebastian Peitz, Jan Stenner, Vikas Chidananda, Oliver Wallscheid, Steven L Brunton, and Kunihiko
Taira. Distributed control of partial differential equations using convolutional reinforcement learning.
arXiv preprint arXiv:2301.10737, 2023.

[26] Nicholas Zolman, Urban Fasel, J Nathan Kutz, and Steven L Brunton. Sindy-rl: Interpretable and
efficient model-based reinforcement learning. arXiv preprint arXiv:2403.09110, 2024.

[27] Nicolò Botteghi and Urban Fasel. Parametric pde control with deep reinforcement learning and
differentiable l0-sparse polynomial policies. arXiv preprint arXiv:2403.15267, 2024.

[28] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2), 2017.

[29] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pages 4950–4957, 2018.

[30] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques, pages 242–264. IGI global, 2010.

[31] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big
data, 3(1):1–40, 2016.

[32] Timothee Lesort, Natalia Diaz-Rodriguez, Jean-Franois Goudou, and David Filliat. State representation
learning for control: An overview. Neural Networks, 108:379–392, 2018.

19

[33] Nicolò Botteghi, Mannes Poel, and Christoph Brune. Unsupervised representation learning in deep
reinforcement learning: A review. arXiv preprint arXiv:2208.14226, 2022.

[34] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169,
2021.

[35] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial intelligence
review, 18:77–95, 2002.

[36] David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016.

[37] Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A brief review
of hypernetworks in deep learning. arXiv preprint arXiv:2306.06955, 2023.

[38] Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing the reinforcement learning building blocks
with hypernetworks. In International Conference on Machine Learning, pages 9301–9312. PMLR, 2021.

[39] Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks in meta-
reinforcement learning. In Conference on Robot Learning, pages 1478–1487. PMLR, 2023.

[40] Sahand Rezaei-Shoshtari, Charlotte Morissette, Francois R Hogan, Gregory Dudek, and David Meger.
Hypernetworks for zero-shot transfer in reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 9579–9587, 2023.

[41] Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based reinforce-
ment learning with hypernetworks. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 799–805. IEEE, 2021.

[42] E. Lindelöf. Sur l’application de la méthode des approximations successives aux équations différentielles
ordinaires du premier ordre. Comptes rendus hebdomadaires des séances de l’Académie des sciences,
118:454–7, 1894.

[43] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[44] Wendell H. Fleming and H.M. Soner. Controlled Markov processes and viscosity solutions. Springer New
York, NY, 2006.

[45] W. Karush. Minima of functions of several variables with inequalities as side constraints. M.Sc. Thesis,
1939.

[46] H. W. Kuhn and A. W. Tucker. Nonlinear programming. Proceedings of 2nd Berkeley Symposium, pages
481–492, 1951.

[47] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian approximation schemes for linear and Hamilton-
Jacobi equations. 2014.

[48] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific,
2012.

[49] Moritz Diehl and Sébastien Gros. Numerical optimal control. Optimization in Engineering Center
(OPTEC), 2011.

[50] Frank L Lewis and Draguna Vrabie. Reinforcement learning and adaptive dynamic programming for
feedback control. IEEE circuits and systems magazine, 9(3):32–50, 2009.

[51] Chayan Banerjee, Kien Nguyen, Clinton Fookes, and Maziar Raissi. A survey on physics informed
reinforcement learning: Review and open problems. arXiv preprint arXiv:2309.01909, 2023.

[52] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

20

[53] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

[54] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

[55] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[57] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[58] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[59] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In International conference on machine learning, pages 387–395.
Pmlr, 2014.

[60] Nikolai A Kudryashov. Exact solutions of the generalized kuramoto-sivashinsky equation. Physics Letters
A, 147(5-6):287–291, 1990.

[61] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

[62] Roger Temam. Navier–Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Society, 2024.

[63] Luke Bhan, Yuexin Bian, Miroslav Krstic, and Yuanyuan Shi. Pde control gym: A benchmark for
data-driven boundary control of partial differential equations, 2024.

Appendix A. Neural Network Architectures

Appendix A.1. HypeRL Architecture
The main policy and value function networks are composed of one input layer of dimension equal to

the state dimension |yk|, and state and action dimension |yk| + |uk|, respectively, one hidden layer with
256 neurons, and an output layer of dimension equal to the control action dimension |uk|, and dimension 1,
respectively. These weights and biases are learned by two hypernetworks with inputs the PDE parameter µ or
state and PDE parameter yk and µ. The hypernetworks use the same architecture and weight initialization
proposed in [38].

Appendix A.2. TD3 Architecture
The TD3 algorithms use the default and widely-used architectures introduced in [58]. The architectures

are analogous to the main policy and value function described in Section Appendix A.1 but with an additional
hidden layer of dimension 256. The input to these networks are state and PDE parameter, and state, action,
and PDE parameter, respectively. The TD3 without parameter has the very same architecture but without
access to the PDE parameter.

21

(a) (b)

(c) (d)

Figure B.10: Training and evaluation results. The solid line represents the mean and the shaded area the standard deviation
over 5 different random seeds.

Appendix A.3. Convolutional Encoder 2D Navier-Stokes Equations
Due to the high dimensionality of the state (21× 21× 2 = 882 dimensions) in the NS test case, we utilize

a convolutional encoder to reduce the dimensionality of the state to 20 dimensions before feeding it to the RL
networks. The convolutional encoder is composed of 4 2D convolutional layers with 32 output channels, kernel
size of 3× 3, and stride length equal to 1 (with the exception of the first layer that uses stride length equal to
2). After the second and forth convolutional layer, we use a batch-normalization layer. The features are then
flattened and fed to two fully-connected layers to reduce the state dimension to 20. A similar architecture
was employed in [33].

Appendix B. Additional Results

Appendix B.1. 1D Kuramoto-Sivashinsky PDE
In Figure B.10, we show the state and action costs over training and evaluation for the KS PDE.

Appendix B.2. 2D Navier-Stokes Equations
In Figure B.11, we show the state and action costs over training and evaluation for the NS equations.

22

(a) (b)

(c) (d)

Figure B.11: Training and evaluation results. The solid line represents the mean and the shaded area the standard deviation
over 5 different random seeds.

23

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

30/2025 Rosafalco, L.; Conti, P.; Manzoni, A.; Mariani, S.; Frangi, A.

Online learning in bifurcating dynamic systems via SINDy and Kalman filtering

29/2025 Centofanti, E.; Ziarelli, G.; Parolini, N.; Scacchi, S.; Verani, M. ; Pavarino, L. F.

Learning cardiac activation and repolarization times with operator learning

28/2025 Ciaramella, G.; Gander, M.J.; Mazzieri, I.

Discontinuous Galerkin time integration for second-order differential problems: formulations,

analysis, and analogies

27/2025 Antonietti P.F.; Artoni, A.; Ciaramella, G.; Mazzieri, I.

A review of discontinuous Galerkin time-stepping methods for wave propagation problems

24/2025 Bartsch, J.; Borzi, A.; Ciaramella, G.; Reichle, J.

Adjoint-based optimal control of jump-diffusion processes

22/2025 Leimer Saglio, C. B.; Pagani, S.; Antonietti P. F.

A p-adaptive polytopal discontinuous Galerkin method for high-order

approximation of brain electrophysiology

23/2025 Antonietti, P. F.; Caldana, M.; Mazzieri, I.; Re Fraschini, A.

MAGNET: an open-source library for mesh agglomeration by Graph Neural Networks

21/2025 Caldera, L., Masci, C., Cappozzo, A., Forlani, M., Antonelli, B., Leoni, O., Ieva, F.

Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel

Multilevel logistic cluster-weighted modeling approach

20/2025 Botti, M.; Prada, D.; Scotti, A.; Visinoni, M.

Fully-Mixed Virtual Element Method for the Biot Problem

19/2025 Bortolotti, T.; Wang, Y. X. R.; Tong, X.; Menafoglio, A.; Vantini, S.; Sesia, M.

Noise-Adaptive Conformal Classification with Marginal Coverage

	qmox31-copertina
	mox-2025522161344
	Introduction
	Preliminaries
	Optimal Control Problems
	From Dynamic Programming to Reinforcement Learning
	Twin-Delayed Deep Deterministic Policy Gradient

	Hypernetworks

	Methodology for HypeRL
	Problem Settings
	HypeRL TD3

	Numerical Experiments
	1D Kuramoto-Sivashinsky equation
	2D Navier-Stokes equations

	Conclusion
	Neural Network Architectures
	HypeRL Architecture
	TD3 Architecture
	Convolutional Encoder 2D Navier-Stokes Equations

	Additional Results
	1D Kuramoto-Sivashinsky PDE
	2D Navier-Stokes Equations

	qmox31-terza_di_copertina

