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SUMMARY 

Educational systems can be characterized by a complex structure: students, classes and teachers, schools and principals, 

and providers of education. The added value of schools is likely influenced by all these levels and, especially, by 

interactions between them. We illustrate the ability of Machine Learning (ML) methods (Regression Trees, Random 

Forests and Boosting) to model this complex ‘education production function’ using Hungarian data. We find that, in 

contrast to ML methods, classical regression approaches fail to identify relevant nonlinear interactions such as the role of 

school principals to accommodate district size policies. We visualize nonlinear interaction effects in a way that can be 

easily interpreted.  

1. INTRODUCTION 

Machine learning (ML) methods are increasingly being used in different fields of economics, for example in 

predicting worker productivity (Chalfin et al., 2016), poverty alleviation (Blumenstock, 2016), and have 

been put forward as a useful tool in the econometric toolbox (Mullainathan & Spiess, 2017). However, 

applications to education only received little attention (Vanthienen & De Witte, 2017). In education 

economics, student achievement can be seen as the outcome of a production process characterized by many 

interactions between different stakeholders. Analogous to the production function in social policy 

applications, Y=f(L,K), this process has been modelled as the education production function. 1 

Econometricians can offer two contributions to the study of this EPF and its components. The first is causal 

inference for a specific component and the estimation of its net contribution to student achievement. For 

example, Gerritsen, Plug, & Webbink (2017) provide evidence on the importance of teacher quality and 

experience for student achievement using data on twin pairs. The second, and the focus of this paper, is to 

                                                                    
* Correspondence to: Fritz Schiltz, University of Leuven, Naamsestraat 69, 3000 Leuven, Belgium. E-mail: 
fritz.schiltz@kuleuven.be 
1  For a description of the EPF approach, see Hanushek & Woessmann (2010). 
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provide insights into the relative importance of, and interaction between, those components. 2  This is 

particularly interesting in the context of education. Many decisions are taken by different actors at different 

levels of operations (school, class, provider), and as a direct consequence, researchers and policymakers 

that do not acknowledge these interactions will over- or underestimate the anticipated impact of education 

policies. This paper introduces machine learning methods (or rather “supervised” machine learning), and 

illustrates how this approach can be useful when modelling an (education) production function where 

stakeholders interact within and between different levels. 

In the diverse educational landscape, it could for example be the case that some actions of school 

principals and other-level decision makers can be effective in specific school contexts, and have no (or 

negative) effect in others. Moreover, context-dependencies have been put forward as an explanation of 

conflicting results in the literature (Burgess, 2016). Incorporating the “context” in the estimation method will 

likely produce more consistent results 3 . A common approach followed by economists and other social 

scientists (in education and other fields) is to include multiplicative interactions. However, the execution of 

these models is often flawed due to the lack of conditional hypotheses and interpretation errors (Brambor, 

Clark, & Golder, 2006). A conditional hypothesis such as “an increase in X is associated with an increase in Y 

when condition Z holds” implies the need for an a priori specification of this interaction effect. If the 

interaction term is not specified, it will not be estimated in a standard regression approach. In other words, 

some preconception is needed with respect to functional form of the EPF. In addition, interaction effects are 

often included linearly. 

Although this paper is not the first to apply machine learning using education data4, it is the first, to 

the best of our knowledge, to apply machine learning methods to model and visualize interaction effects in 

education. We use machine learning as a piece of the theory. We acknowledge the existence of a relationship 

                                                                    
2  Note that recently, Athey & Imbens (2017) outlined possibilities for ML methods to combine both contributions: 
supplementary analysis using ML in quasi-experimental settings. Although this is not the aim of this study, our approach 
can be easily extended to these types of settings and datasets. 
3 The ‘educational context’ can be interpreted broadly. For example, when estimating the optimal class size, the schools 

where classes are based can be considered the context. As Loveless & Hess (2007) note: “Small classes tend to be clustered 
in small schools, and average class size is larger in large as compared to small schools. In this way school size effects might 
‘work’ indirectly through smaller classes, as intermediary conditions.”  
4  Thomas & Galambos (2004) apply regression and decision trees to investigate how students’ characteristics and 
experiences affect satisfaction. Ma (2005) follows a two-stage approach in which in the first stage, he estimates the rate of 
growth in mathematics achievements of each student, by means of hierarchical linear model (HLM), while in the second 
stage he applies classification and regression trees (CART) to relate them to students’ characteristics. Cortez & Silva 
(2008) apply Data Mining (DM) methods as regression trees and random forest to relate Portuguese students’ scores in 
mathematics and reading to students’ characteristics. 
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between different stakeholders in the ‘production’ of student achievement, but we choose to derive these 

relationships from the data instead of imposing a functional form (James, Witten, Hastie, & Tibshirani, 

2013). While statistical approaches to model-fitting start by assuming a functional form and then estimate 

the parameters from the data, the ML approach uses an algorithm to learn the relationship between the 

outcome and its predictors, avoiding to impose any functional form. Moreover, an ML approach assumes that 

the data-generating process is complex and unknown and it tries to learn the dominant patterns between the 

predictors and outcome variables. The model identifies important interactions thanks to its tree-structure, 

without requiring the researcher to have any preconceptions on this matter.  

We illustrate the approach using Hungarian data. Our data covers the 2008-2010 period and includes 

variables with respect to all organizational levels in primary education (student, class, school, and education 

provider). The data allows estimating a value-added approach since the same students are followed over time. 

Our findings indicate that classical regression approaches are to some extent able to capture the important 

variables but fail to identify interesting nonlinear interactions between and within levels. We introduce 

machine learning methods that capture these nonlinearities and visualize them in order to improve 

interpretability.  

 The remainder of the paper is organized as follows. Section 2 introduces our empirical strategy. A 

brief overview of the Hungarian data is presented in section 3, followed by the discussion of our graphical 

results in section 4. Section 5 concludes, and suggests outlines for further research in econometrics.  
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2. EMPIRICAL STRATEGY 

2.1. The added value of schools 

Explanatory variables at different levels are generally linked to student outcomes using an educational 

production function (EPF) approach. The common approach in the economic literature is to estimate value-

added models. By including measures of prior achievement, these models focus on the change in student 

achievement over the specified time period (i.e. from prior achievement to estimated achievement). To 

overcome the assumption that the functional form of achievement is linear and additively separable (Todd & 

Wolpin, 2003), we construct a measure of school value-added using Data Envelopment Analysis (DEA). DEA 

constructs a frontier based on the data and allows comparison of schools with their reference school, given 

inputs, without any assumption on the functional form.5 Apart from its nonparametric structure, DEA offers 

two additional advantages. First, the ability of DEA to handle multiple inputs and outputs allows us to leave 

out socio-economic background and prior achievement as right-hand-side variables of the EPF model and 

include them as inputs in the linear programming problem. It is well established, and intuitive, that these two 

variables are the most important predictors of student achievement (e.g. Haveman & Wolfe, 1995). If instead, 

prior achievement and socio-economic background are included when building regression trees to model the 

EPF (see below), the relative importance in terms of explained variability of other explanatory variables 

would become very moderate. As we are mainly interested in studying the importance of managerial inputs 

(e.g. class, school and provider size, and principal characteristics), it is better to include the socio-economic 

background and prior achievement in the DEA specification (see Online Appendix A). Second, 

conceptualizing the added value of schools in an efficiency framework allows a clear interpretation in both 

classical regression and ML models. That is, the added value of a school can be defined as its ability to 

transform a set of inputs into outputs. For example, a school with an efficiency score, or added value, of 80%, 

can be evaluated as follows: If this school would be as efficient as its reference group, given prior performance 

and socio-economic background (inputs), it could improve the performance (output) of its students by 20%. 

We are aware that there are other methods to obtain measures of school value-added, but these do not offer 

the aforementioned advantages when machine learning methods are used. 

                                                                    
5 This reference school is not the average school, but a school that is situated on the ‘efficiency frontier’. The frontier for a 
given school consists of schools attaching the same weights to the inputs (prior achievement and socio-economic 
background). 
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An important condition when applying DEA, and a potential flaw, is the accuracy of the data. 

Measurement errors shift the frontier and hence bias the obtained efficiency scores (or, value-added 

measures). Therefore, we generate bias-corrected estimates of the added value of schools, following the 

approach of Simar & Wilson (2007), and set the number of bootstrap replications at 2000. We specify an 

output-orientation and allow for variable returns to scale.6  

2.2. Modelling the EPF using Machine Learning 

The aim of the second stage in our analysis is to identify variables that are associated with a high added value 

of schools. We apply regression trees and random forests (see James, Witten, Hastie, & Tibshirani, 2013) to 

identify the importance of, and relationship between, components of the EPF. 

One issue when modelling the EPF is the selection of its components. In this paper we are interested in 

managerial variables - that can be influenced by policy-makers - and how they (inter)relate to the added 

value of schools.7 In particular, class, school, and provider size, and principal characteristics. All these 

variables have been studied extensively, and although this literature remains unsettled, a recurring notion 

is that results are context-dependent in the multi-governance structure of education (Burns & Köster, 

2016). For example, Bloom et al. (2015) point at the importance of including other levels of governance in 

education when estimating the impact of school principals and management using a (linear) production 

function. They find that principal added value is highly subject to provider strategy and accountability. As a 

result, leaving out the provider level biases coefficients on principal variables.  

Apart from the issue of selecting inputs to be included in the EPF, assumptions need to be made on its 

functional form. As we introduced before, in the (education) economics literature, a linear functional form is 

frequently imposed on the EPF. Regression trees have a very different flavor compared to these more classical 

regression approaches. In particular, a linear regression model assumes the following functional form: 

𝑓(𝑋) = 𝛽0 + ∑ 𝑋𝑗𝛽𝑗
𝑝
𝑗=1       (1) 

with 𝑋𝑗  a matrix of p predictors, or components of the EPF. Regression trees assume a model of the form: 

                                                                    
6 The development of the linear programming problem is further elaborated in Online Appendix A. 
7 Note that prior achievement and socio-economic background are already included when generating the school added 
value (see 2.1.). 
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𝑓(𝑋) = ∑ 𝑐𝑚𝐼(𝑋 ∈ 𝑅𝑚)
𝑀
𝑚=1       (2) 

where 𝑅1,.., 𝑅𝑀 represent a partition of the predictor space. Determining which model is more appropriate 

depends on the problem: if the relationship between the components and the outcome is well approximated 

by a linear model, then an approach such as linear regression will likely work well, and will outperform a 

method such as a regression tree that does not exploit this linear structure (Varian, 2014). If instead there is 

a highly non-linear and complex relationship between the components and the outcome, then decision trees 

may outperform classical approaches. 

Given an outcome variable and a set of predictors, tree-based methods, for regression or classification, 

involve a segmentation of the predictor space into a number of regions. In order to make a prediction for a 

given observation, we typically use the mean or the mode of the observations in the region to which it belongs. 

Roughly speaking, building a regression tree involves two steps: 

1. We divide the predictor space - that is, the set of possible values for components 𝑋1, 𝑋2,.., 𝑋𝑝 into J 

distinct and non-overlapping regions, 𝑅1, 𝑅2,.., 𝑅𝐽. For simplicity, we consider these regions as high-

dimensional rectangles (or boxes); 

2. For every observation that falls into the region 𝑅𝑗, we make the same prediction, which is simply the 

mean of the response values for the observations in 𝑅𝑗. 

The regions are chosen in order to minimize the Residual Sum of Squares (RSS) where �̂�𝑅𝑗
 is the mean of the 

observations within the j-th box and 𝑦𝑖𝑗  is the i-th observation within the j-th box: 

∑ ∑ ( 𝑦𝑖𝑗 −  �̂�𝑅𝑗
)2

𝑖 ∈ 𝑅𝑗

𝐽
𝑗=1       (3) 

In order to explain the idea of regression trees, consider the following example. Imagine we want to 

regress student test scores (a continuous variable taking on values between 0 and 100), on students’ previous 

scores, their socio-economical index (SES – a continuous variable having mean 0 and variance 1) and their 

gender (M/F). Then the regression tree we obtain can be displayed as in Figure 1. The algorithm is able to 

identify the most important variables in explaining the response (previous score and SES) and, in particular, 

the threshold values (previous score = 50 in the first split, SES = 0 in the second one) that, at each split, are 

able to divide the population in two subgroups, minimizing the variability within each group. Looking at the 

tree below, we can conclude that the only two variables that matter are the previous students’ scores and the 
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SES - in this hypothetical example. This implies that gender is not able to catch any variability between student 

test scores – otherwise, it would be included in the regression tree. Moreover, the most important variable 

(on top of the tree) is the previous test score. Hence, when estimating a student’s score, we read the tree in 

this way: if the previous score of a student is less than 50, then the estimated student score is 48, while if the 

previous score of a student is bigger than 50, it depends on the student SES: if the student SES is higher than 

0, the expected student score is 80, while if it is less than 0, the expected score is 60. The values on the leaves 

of the trees are obtained by averaging the mean of the scores of students that fall in the same ‘leaf’.  

There are four main advantages of regression trees in an education context. First, trees can be displayed 

graphically and are very easily interpretable, even in dialogues with non-technical experts and decision 

makers. Second, estimating the EPF using regression trees does not force any type of relationship between 

outcome variables and components of the EPF. Third, regression trees can easily handle qualitative predictors 

without the need to create dummy variables. Fourth, interactions are allowed between variables, by explicitly 

modelling how groups of inputs are associated with different levels of output production. 

 This last point is worth stressing as it is the major strength of regression trees in the context of 

education. As displayed in Figure 1, there is an interaction between (and within) different levels in the 

educational system. Indeed, while in a linear regression interactions between variables need to be specified a 

priori, trees investigate which are the interactions that matter, without forcing any linearity (or other 

functional forms) in their relationship. 

Nevertheless, and despite these advantages, regression trees are also characterized by some 

disadvantages: they generally suffer from high variance and are sensitive to outliers. However, by aggregating 

many decision trees, using methods like bagging, random forests and boosting, the predictive performance of 

trees can be substantially improved (see again James et al., 2013). The following three methods use trees as 

building blocks in order to construct more powerful models. 

Bagging. A natural way to reduce the variance and hence increase the predictive power of a statistical 

learning method is to take bootstrapped samples from the population, build a separate prediction model using 

each training set, and average the resulting predictions. In other words, bagging calculates 

𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝐵(𝑥) using B separate bootstrapped training sets, and averages them in order to obtain a 

single low-variance statistical learning model: 

𝑓𝑎𝑣𝑔(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1      (4) 
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Random forests. This second approach provides an improvement over bagging thanks to a small tweak 

that de-correlates the trees. As in bagging, we build a number of decision trees on bootstrapped training 

samples. But when building these decision trees, each time a split in a tree is considered, a random sample of 

m predictors is chosen as split candidates from the full set of p predictors. A fresh sample of m predictors is 

taken at each split. This approach allows all the predictors to be taken into account and to differentiate the 

trees that will be averaged.  

Boosting. Lastly, boosting works like bagging, except the fact that the trees are grown sequentially: Each 

tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; 

instead each tree is fit on a modified version of the original data set. The idea behind this procedure is that, 

unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and potentially 

overfitting (Varian, 2014), the boosting approach instead learns slowly. Given the current model, a decision 

tree is fitted to the residuals of the model, rather than the outcome variable. Note that in boosting, unlike in 

bagging, the construction of each tree depends strongly on the trees that have already been grown. This new 

decision tree is then added into the fitted function in order to update the residuals (see James et al., 2013).  

These three methods considerably increase the (predictive) power of our model and make it more 

robust to the presence of outliers. However, a price needs to be paid in terms of interpretability, since applying 

them instead of a simple regression tree, it is no longer possible to graphically display the final tree (as in 

Figure 1). Nonetheless, it is possible to analyze the results by looking at the importance of the predictors, and 

to display the relationships between explanatory and outcome variables in an intuitive way (see section 4). 

In other words, we have information on the percentage of variability explained by the model, the importance 

of each predictor, measured as the ability of each predictor to reduce the node purity (measured by Residual 

Sum of Square), and the partial influence of each predictor or the combined influence of two predictors on the 

outcome variable.  

3. DATA 

Our dataset was constructed by integrating information on student, class, and school characteristics from the 

National Assessment of Basic Competencies (NABC) of Hungary. The NABC covers all students in primary 
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schools in Hungary.8 It is a standard based assessment for mathematics and reading that follows the model of 

the Programme for International Student Assessment (PISA), however, it is conducted annually in May. 

Students are tested before grade 6 (age 12) and before graduation from primary school, in grade 8 (age 14). 

In addition to mathematics and literacy test scores, which are common to education datasets, our database 

contains extensive information on the student background, principals, and the school. This study uses data on 

the 6th grade 2008 cohort, graduating primary schools in 2010. Our main analysis is performed on school level 

NABC data. Because of missing values with respect to the outcome and explanatory variables, the final dataset 

contains 2122 schools. All variables used in subsequent analyses are presented in Table 1. A further 

description of the data used here can be found in Kertesi & Kezdi (2011). 

 In order to obtain a measure of the added value of schools, input and output variables were averaged 

for every school. The variable indicating the status of the students is a z-standardized socio-economic status 

(SES) index, with 0 mean 1 standard deviation. This index follows the economic-social and cultural status 

(ESCS) index of the OECD PISA studies.  

To explore the importance of components in the EPF and the interactions that determine its shape, we 

add a set of controls and explanatory variables frequently studied in the literature (Burgess, 2016). To 

illustrate the ability of machine learning methods to model the EPF, we include class, school, and provider 

size.9 In the decentralized Hungarian system, the type and size of education providers varies widely from very 

small local government providers with only one school to large centralized networks of church schools. Also, 

the number of computers in the dedicated computer class, as a proxy for school resources, and the percentage 

of teachers receiving additional training are included as components of the education production function.  

Complementing the administrative data, we also include several variables from a questionnaire in 

NABC completed by the school principal. These additional variables can be used to describe the organisational 

setting of the schools. The school level questionnaire includes variables such as principal experience, age, and 

satisfaction10. Also, the perceived ratio of Roma students is indicated by the principal of each school11. Even 

though it seems that the individual performance of Roma students does not differ significantly from other 

                                                                    
8 A brief introduction to the Hungarian education system is presented in Online Appendix B. 
9 Since our analysis is at school level, ‘class size’ is measured as the average class size in a school. Provider size is measured 
as the number of schools under supervision of the same provider of education. 
10 All principals were asked “If you were to assigned to another school, what percentage of the current teaching staff would 
you take with you to your new place?”. 
11 This question is included in the questionnaire to overcome the stigma in Hungary with respect to Roma self-reporting. 
The question is the following: “In your opinion, what is the percentage ratio on your location of those among the primary 
school students who can be characterized by the following features? […] Of Roma origin …?” 
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(non-Roma) students, once socio-economic background is accounted for (see Kertesi & Kezdi, 2011), the 

inherent discriminatory tendencies in the Hungarian society might cause some families (or even teachers) to 

refrain from enrolling in schools where large Roma ratios are present. On average, 16% of students are 

considered to be from Roma origin. Because of an increasingly segregated educational system where so called 

‘Roma schools’ are being ghettoized (Kertesi & Kezdi, 2011), the median value is much lower at 8%. Finally, 

to capture geographical discrepancies in schools’ performance, we include both regional and school location 

categorical variables (e.g. village, city etc.).   

4. RESULTS 

In this section we graphically display the obtained results. In comparison to classical approaches, 

no coefficients are obtained using the methods presented in section 2. In order to allow comparison, 

we included the output of OLS regressions in Table 2. 

 

Added value of schools. As can be seen from the histograms in Figure 2, the added value of 

schools is higher for reading (0.71 vs 0.53). This can be interpreted as follows; on average, a school 

can improve their students’ reading achievement by 28% if it were to perform as well as its 

reference school. Looking at the min and max values, these range from 0.13 to 0.89 and from 0.18 

to 0.99, for math and reading, respectively. The variation is around 0.11 for both math and reading 

with the latter distribution slightly skewed to the left (see Figure 2).  

In the following sections, we only present the results that were obtained using the added value 

of schools in terms of mathematics as the outcome variable. Also in the partial plots, joint plots, and 

the linear model, we restricted the displayed results to the added value of schools in mathematics. 

The partial and joint plots are similar in reading compared to those in mathematics. Hence, 

presenting all results twice will unnecessarily lengthen this paper, which aims to illustrate the 

intuitive graphical presentation of complex tree-based methods. 
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Variance-Importance plots. Next, to explain the variation in the added value of schools, we 

combine boosting and Random Forests to construct a ‘forest’ made up of 2000 trees. We choose 

𝑚 = √𝑝 ; that is, the number of predictors considered at each split is approximately equal to the 

square root of the total number of predictors. The outcome of the Boosting model12 is displayed in 

Figure 3 where the relative importances (“Node Purity”, see Methdology) of explanatory variables 

(both continuous and categorical) are ranked for the base model and the final model13. In here, we 

can see that common variables such as average class size, school location14, and especially school 

size are important. In both models, the ratio of Roma students in a school is selected as the variable 

most strongly related to the added value of schools. This confirms what we expected, considering 

the social stigma with respect to the Roma ethnic group (see Section 3). At the same time, this 

finding corroborates previous evidence about the role of the composition of student population (i.e. 

their socio-economic background) as a key input for educational production (Haveman & Wolfe, 

1995). 

When we compare the left and right panel of Figure 3, we can state that principal 

characteristics are closely related to the added value of schools. Also, once these variables are 

included, along with provider size (number of schools per provider) and the percentage of teachers 

receiving training, we conclude that the relative importance of class and school size diminishes. It 

might be, for example, that more experienced principals are in charge of larger schools, mitigating 

the explained variance in student performance by schools size, once principal experience is 

accounted for. Also, teachers having received more training might be allocated to relatively large 

classes. Once teacher training is accounted for, the relative importance should then reduce. Without 

including these characteristics, one might overstate the importance of these scale variables. 

Formally, the final model outperforms, the base model in terms of (pseudo) R2 (24.91 vs 18.7) and 

                                                                    
12 Considering 3000 trees, interaction depth equal to 4, shrinkage parameter to 0.001, and 70% of the data used as training 
dataset. 
13 Note that the ranking of importance obtained by random forests and boosting is the same. 
14 ‘School location’ is a categorical variable indicating the geographical area – the ‘site’ – where a school 
operates. Categories include Budapest, city (not Budapest), county center, and villages (by size). 
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MSE (0.01007 vs 0.01031). The relative importance of variables in the education production 

functions roughly corresponds to the size of coefficients obtained from OLS regression and 

presented in Table 2 (Model 0 and Model 1). Clearly, the ratio of Roma students in a school has the 

strongest association with the added value of schools, followed by class size,  school size and 

location, and principal characteristics. 

Now that we know the relative imporance of the variables in our dataset, we want to know 

how  these variables affect the added value of schools. In order to determine the direction and the 

shape of the effects, we will need to generate partial plots.15  

 

Partial plots display the partial influence of a predictor on the outcome, averaging out the 

influence of all other predictors included in the model. In other words, our model isolates the net 

effect. The graphical approach can be compared to plotting the coefficient of a (linear) regression, 

without assuming this coefficient is constant (or varies at given rate) across values of a specified 

variable16. Figure 4 displays partial plots for the four most important variables, as indicated in Figure 

3 (i.e. % Roma students, school size, school location, and class size). OLS regression results are 

included in Table 2, Model 1. 

From this OLS regression we conclude that there is a significant correlation between class- 

and school size, and the added value of schools in Hungary. This is roughly reflected in the partial 

plots for class- and school size. However, if we have a closer look at Figure 4, we can see that the 

school size slope is only positive up to 400-500 students. Once this threshold is surpassed, larger 

schools do not appear to have a large added value. This result could indicate a saturation point of 

school size advantages, although OLS does not allow us to identify this levelling off of the school 

added value. If we were to plot the coefficient obtained in Table 2, it would suggest an ever 

                                                                    
15 All figures in this section (partial and joint) are based on the results obtained from the final model, including 
all explanatory variables (and their possible interactions). For the sake of brevity, we only included a selection 
of graphs, while the remainder are available upon request from the authors. 
16  In this respect, partial plots obtained using Boosting can be seen as an alternative to graphical 
representations of quantile regressions. As we will display in the following paragraph, Boosting models offer 
the advantage to visualize joint partial plots.  
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increasing added value of increasing schools, which does not appear to hold once more flexibility in 

the EPF is allowed17. Hence, when assuming a linear trend a lot of insightful information gets lost, 

motivating the use of more flexible models like Random Forests and Boosting.  

On the other hand, the percentage of Roma students seems to be negatively related to the 

school added value. Also in a simple linear regression model, we find that the share of Roma 

students in a school is significantly related to lower added value of schools (Table 2, Model 1). 

Shifting our attention to the location of the school, we conclude that schools based in 

Budapest and county centers outperform schools in cities and villages. Further disentangling 

villages by population size, we find that schools in small villages (<2k inhabitants) and relatively 

large villages (>5k inhabitants) outperform those in medium-sized villages in Hungary.  

 

Joint plots. In the same way as the partial plots, the joint plots display a net effect, accounting 

for all other control variables in the model. In order to allow an intuitive interpretation, Boosting 

requires us to choose a set of two variables (components of the EPF) and display their joint plot18. 

It is important to note that the choice of this set does not affect the model outcome since ex ante 

specification of these effects is not required. In fact, the structure of the model (see Figure 1) assures 

that interactions within and between levels are included in the tree model anyway. As a result, no 

assumptions will be needed on the existence and functional form of interaction effects, as is the case 

when estimating a parametric education production function. In this vein, we can interpret the 

results illustrated in the joint plots as a data-driven estimation of complex interactions between EPF 

components.  

In Figure 5, we present four examples of variable combinations to illustrate the parsimonious, 

yet intuitive, results obtained by Boosting. Again, we allow comparison between Boosting and OLS 

                                                                    
17 Note that the explanatory power of Boosting is actually above the R2 (24.9 vs 21.9) we obtain when running 
an OLS regression (see Model 3 in Table 2). This presence of model improvement, as measured by R2, might 
be due to the actual relationships not being linear (section 4.2 and Varian, 2014). 
18 Selecting three variables would be possible if a 3D plot is used, despite its lower interpretability. A joint plot 
with more than three variables will become impossible to display. 
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by adding the interaction effects, displayed in Figure 5 (see Table 2, Model 2 - Model 5). Compared 

to Model 1, the extended models should do a better job accounting for the interactions between key 

variables. The results obtained when including multiplicative interactions only indicate one 

significant effect: School size x Roma students. None of the other seven interaction effects seem to 

be related to the added value of schools. The model improvement, in terms of R2, by adding 

interaction effects is also very limited (less than 1%). This finding could be due to interaction effects 

being nonlinear. Estimating a model built on the assumption of linear interactions will then return 

no significant coefficients on these effects.  

We tackle this issue by applying the Boosting approach, outlined in Section 2, to our dataset 

and display the results graphically. In Figure 5, the added value of schools is indicated using a color 

scale and is standardized in order to ease interpretation. The vertical scales range from blue (high) 

to purple (low). The colors correspond to schools characterized by the intersection of two variables 

indicated on the axes.  

In panel (A), we recognize the partial plot on the share of Roma students, as the added values 

of schools decreases with this share. This relationship is especially strong around the 60% level, 

where we observe a difference in added value of around 10% between schools with a minority of 

Roma students compared to ‘Roma schools’, again indicating the severe stigmatization in Hungarian 

schools. Looking at the vertical axis, schools of approximately 200 students appear to be the lowest 

performers (both high and low Roma schools), and increasing school size beyond 400 students does 

not seem to be related to higher added values, as indicated in Figure 4. If we interact both variables, 

we recognize the significant interaction effect School size x Roma students (Table 2, Model 2). We 

can read the gradual color change in Figure 5 in a similar way as we interpret the interaction effect: 

as the share of Roma students increases, the slope of school size becomes less pronounced. However, 

we do not impose this relationship to be linear which allows us to identify local minima and maxima. 

For example, schools with the highest added value in terms of mathematics can be described as 

relatively large schools (400-500 students) and with very low shares of Roma students. This 

relationship is merely correlational and we do not claim to observe a causal effect. Nonetheless, the 
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irregularities of interactions can reveal interesting insights into the complex education production 

function.   

In panel (B), we interact the categorical variable ‘School location’ with school size. The 

difference in intercepts indicates differences across geographical settings while the difference in 

slopes indicates the importance of school size. Although the relationship in all setting looks similar, 

its strength can be seen on the vertical axis, indicating a strong discrepancy across locations. For 

example, the variation in added value related to school size differences appears to be much smaller 

in cities compared to county centers and Budapest. This might indicate that school size reform could 

have a differential impact across schools’ locations, again confirming the need to account for 

context-dependencies when estimating the EPF. Comparing our graphical results to classical 

regression results reveals no significant differences across locations in Model 3, Table 2 when this 

relationship is assumed to be linear.19  

The third joint plot – panel (C) – interacts principal age and experience. When looking at the 

vertical axis, we observe that the added value of schools is lowest for both young (40 years) and old 

(60 years) school principals. Schools with the highest added value appear to be led by relatively 

young (50 years) principals. However, when we interact the age variable with experience, we find 

that the added value of young principals is rather limited when they are inexperienced. Although 

this finding is intuitive, it reveals insights that were not captured by the linear model discussed 

above (Age x Experience is insignificant in Table 2, Model 4). In addition, it reveals two interesting 

points in panel (C). First, there seems to be some cutoff around 10 years, where the added value of 

schools ‘jumps’ to higher values. Consistent with this finding, it has been argued before that school 

principals “take time to realize their full effect at schools” (Coelli & Green, 2012, p.92). Possibly, this 

phenomenon is captured by our model in Figure 5. Also, ‘optimal’ schools can be identified as 

schools led by a 50-year old principal with around 17 years of experience in education. The 

                                                                    
19 In contrast, Table C1 indicates a significantly steeper slope on school size in Budapest when reading is the outcome 
variable. 
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difference between these schools and schools led by old (60 years) and unexperienced principals 

amounts to 15% SD of school added value. 

To illustrate the ability of Boosting to model interactions between levels of governance, we 

included the interaction between provider size (number of schools per provider) and principal 

experience. From panel (D), we find that schools that attain the highest scores can be identified as 

schools belonging to relatively large education providers (more than 10 schools), and led by an 

experienced school principal. This seems to reflect the importance of a well-organized structure, 

which is facilitated by transparent communication (Burns & Köster, 2016), possibly captured by 

principal experience. Generally, the importance of experienced principals appears to be most 

pronounced for schools belonging to small providers. In Table 2, Model 5, the negative, yet 

insignificant, interaction Principal experience x Provider size appears to confirm this pattern. Again, 

we observe some cutoff values, which cannot be identified in a linear regression framework. As in 

panel (C), school added value ‘jumps’ after 10 years of experience. Also, schools belonging to 

providers in charge of more than 7 schools display higher value-added compared to schools in 

smaller districts. Larger districts might benefit from scale economies by cooperation among 

schools, while the added value is most pronounced if this cooperation is coordinated with sufficient 

skill. Interestingly, schools belonging to small providers, led by experienced principals (bottom 

right) do not outperform schools led by unexperienced principals, belonging to large providers (top 

left).  

 

After having illustrated and interpreted the results from VI-, partial- and joint plots, we can 

summarize the answers to our research questions. First, we find a set of EPF components which 

are strongly related to the ‘production’ of educational outcomes in Hungarian upper secondary 

schools: from the socioeconomic composition of schools (as measured by % of Roma students), 

to some variables related to principals’ decisions (school and class size), to key characteristics of 

school principals (age and experience). Second, our empirical approach clearly highlights the 

importance of modelling interactions between these components. While classical regression 
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approaches fail to identify these interactions, our partial and joint plots clearly display substantial 

and nonlinear effects of interactions between key components. In a perspective of policy 

implications, our methodology produces results that are much more informative compared to 

classical approaches, as they are able to reveal more precise insights into the complexity of the 

education production function.    

5. CONCLUSION 

This paper illustrated how Machine Learning methods can be used to model and visualize the 

education production function. Flexibility in estimating the education production function reveals 

insights which cannot be obtained when applying a simple linear model. Models frequently used in 

the literature try to capture the complex, multi-faceted system of education by including 

multiplicative interactions. Machine Learning methods presented here allow for this complex 

structure without the need to make assumptions on the existence and specification of interaction 

effects.  

Applying our model to very detailed Hungarian panel data (2008-2010), reveals two 

interesting findings. First, a simple OLS regression performs relatively well to model direct 

relationships between school added value and its determinants. Second, when the linear model is 

extended to include possible (linear) interactions within and between levels of education, it fails to 

identify the presence of these effects. In contrast, when applying Machine Learning methods, we 

find that school and principal characteristics matter for the added value of schools, though not 

unidimensional, but instead in a context of joint production. For example, cooperation between 

schools can only be linked to improved school performance if this process is accommodated by a 

school principal that possesses the right characteristics. Looking at these characteristics, we found 

that age and experience interact to identify the most effective principal. Illustrating our findings in 

joint plots introduces an intuitive graphical interpretation of interaction effects, indicating the 

policy relevance of this method (Brambor et al., 2006), and appealing to applied econometricians 
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in their quest to identify heterogeneous effects (Mullainathan & Spiess, 2017). Despite the 

complexity of the model, results can be easily read, while at the same time, flexible interactions 

provide a more realistic insight into the (education) production function.  

 

Further research will be needed to fine-tune our results. Other measures of school added-

value can be introduced, offering an alternative to the DEA approach suggested in this paper. Also, 

we do not claim to provide causal evidence on the determinants of school value-added. However, 

despite the limited causal nature of our findings, we illustrated the benefits of ML methods over 

common estimation methods when modelling a complex education production function. In the 

same vein, Machine Learning methods will prove useful when exploiting discontinuities resulting 

from policy shocks to obtain causal inference (Athey & Imbens, 2017). The release of post-reform 

Hungarian data offers leeway for this kind of analyses.  
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Figures and Tables 

 

 

  

Figure 1: A simple regression tree. 

Figure 2: The distribution of school added value for mathematics (left) and reading (right). 

Note: Outcome variable is student test score (continuous, ranging from 0 to 100), and the two predictors 
selected by the regression tree are previous score (continuous, ranging from 0 to 100) and socio-
economic index - SES (continuous with mean = 0 and standard deviation = 1). 
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Figure 3: VI plots of base model (left) and final model (right) for mathematics 

Figure 4: Partial plots of selected variables. 

Note: base and final models differ in the predictors involved. Base model uses 7 predictors (the ones appearing on the 
left panel of the figure), while the final model uses 12 predictors (the ones appearing on the right panel of the figure). 
It is worth to notice that Random Forest identifies the same important variables.  

Note: partial plots represent the marginal impact of the four most important variables of the final model (see Figure 
4) on the standardized response variable (school added value): the three continuous variables “% Roma students”, 
“School size” and “Average class size” and the categorical variable “school location”. 
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Figure 5: Joint plots of selected variable combinations. 
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Note: All the above joint plots can be interpreted in the same way. The lighter the colour, the more pronounced the 
added value of the school at this specific point. Each point in every graph corresponds to an intersection of two values 
of the variables denoted on the horizontal and vertical axes. Additional joint plots and alternative variable 
combinations, together with the R code are available upon request. 
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Table 1: Descriptive statistics. 

Note: School added value (reading and mathematics) are reported before normalization. #: ‘Computers available’ 
measures the total number of computers as counted in the dedicated computer class. *: Principal satisfaction as a 
percentage, representing the answer to the question “If you were to assigned to another school, what percentage of the 
current teaching staff would you take with you to your new place?” 

 

Table 2: Descriptive statistics (ctd). 

Categorical variables (N=2122) 

School 

location 

Budapest City County 

Centre 

Village 

<2k 

Village 

(2k-5k) 

Village 

>5k 

 

 11% 28% 14% 29% 16% 2%  

Region Central H Central T Northern GP Northern H Southern GP Southern T Western T 

 22% 12% 16% 16% 13% 9% 12% 

Education 

Provider 

Settlement 

/ District 

government 

Ecclesiastical Private Other 

government 

Other   

 85% 7% 2% 1% 5%   

  

Variables N Mean SD Min Max 

School size 2,122 21 6 3 37 
Class size (school average) 2,122 292 187 0 2,195 
% Roma students 2,122 16.46 22.43 0 100 
Number of computers# 2,122 17.47 6.617 0 80 
Teacher with training (%) 2,122 32.17 28.49 0 100 
Experience principal (years) 2,122 8.238 6.532 0 55 
Age principal (years) 2,122 56.40 6.507 31 75 
Principal satisfaction (%)* 2,122 71.10 20.87 0 100 
Provider size 2,122 7.48 12.06 1 97 

School added value, Math 2,122 0.53 0.11 0.13 0.89 
School added value, Reading 2,122 0.71 0.11 0.18 0.99 
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Table 3: OLS regression results. 

Variables Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 

School size 0.001*** 0.001*** 0.001*** 0.000 0.001*** 0.001*** 
Average class size 0.011** 0.011** 0.010** 0.0100** 0.011** 0.011** 
Roma students -0.014*** -0.014*** -0.012*** -0.014*** -0.014*** -0.014*** 
Number of computers 0.003 0.003 0.002 0.003 0.003 0.003 
P age  -0.006* -0.006* -0.006* -0.006 -0.006* 
P experience  0.012*** 0.012*** 0.012*** 0.013 0.015*** 
P satisfaction  0.001 0.001 0.001 0.001 0.001 
Provider size  0.004 0.004 0.004 0.004 0.008** 

Interactions       

School size x Roma students   -0.000***    
(Reference=Village<2k)       

Budapest x school size    0.001   
City x school size    -0.001   
County centre x school size    0.001   
Village (2k-5k) x school size    0.000   
Village (>5k) x school size    -0.001   
P experience x Age     0.000  
P experience x Provider size      -0.000 

Controls       

School location       
Education provider       
Region       
Constant 0.631*** 0.844*** 0.778*** 0.423 0.837** 0.829*** 

Observations 2,122 2,122 2,122 2,122 2,122 2,122 
R² 0.213 0.219 0.221 0.227 0.219 0.220 

Note: *, **, *** indicate significance at the 10%, 5% and 1% level, respectively. For conciseness, standard errors are not 
displayed here, although available upon request. The outcome variable is the added value of schools generated by DEA 
and presented in Figure 3. “Provider size” indicates the number of schools affiliated to a district, as in Table 1. 
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Online Appendix A: Estimating the added value of schools using DEA 

 

Assume there are data on N inputs and M outputs for each of I units. For the i-th unit these are 

represented by the column vectors 𝑥𝑖  and 𝑞𝑖  respectively. The NxI input matrix, X, and the Mxl 

output matrix, Q, represent the data for all I units. An intuitive way to introduce DEA is via the ratio 

form. For each unit, we would like to obtain a measure of the ratio of all outputs over all inputs, such 

as 
𝑢′𝑞

𝑣′𝑥
, where u is an Mxl vector of output weights and v is a NxI vector of input weights. The optimal 

weights are obtained by solving the mathematical programming problem: 

max
𝑢,𝑣

(
𝑢′𝑞𝑖

𝑣′𝑥𝑖
), 

s.t. 

𝑢′𝑞𝑖

𝑣′𝑥𝑖
≤ 1 with 𝑖 = 1, … , 𝐼 

𝑢, 𝑣 ≥ 0. 
 

This involves finding values for u and v, such that the efficiency measure for the I-th unit is 

maximized, subject to the constraints that all efficiency measures must be less than or equal to 1. 

One problem with this particular ratio formulation is that it has an infinite number of solutions. To 

avoid this, one can impose the constraint 𝑣′𝑥𝑖 = 1, which can be written as: 

max
𝜇,𝜂

(𝜇′𝑞𝑖), 

s.t. 

𝜂′𝑥𝑖 = 1 , 

𝜇′𝑞𝑖 − 𝜂′𝑥𝑖 ≤ 1 with 𝑖 = 1, … , 𝐼 

𝜇, 𝜂 ≥ 0. 
 

where the change of notation from u and v to 𝜇 and 𝜂 is used to stress that this is a different linear 

programming problem.  

To compute the added value of schools, we apply DEA with output-orientation, using the 

following set of variables:20 

 Inputs: school average test score (math or reading) at grade 6, school average socio-

economic status index; 

 Outputs: school average test score (math or reading) at grade 8. 

                                                                    
20 Note that the NABC dataset has been used at the school level in this study. As a result, all variables are 
defined at the school level, both in the first and second stage. 
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In addition, we release the assumption of constant returns to scale by adding the restriction 

∑ 𝜇 = 1 on the weights. This allows a more realistic representation of school added value, where 

the school average test score in year 6 does not necessarily move in a linear way with the school 

score in year 8. It might for example be the case that schools ‘starting’ at a higher average score 

attract better teachers, resulting in a faster learning process. If this were true, imposing linearity on 

the ‘production function’ will bias our estimates of school added value. 

We run two separate models, one looking at the mathematics test scores and the other at the 

reading scores. Although one key advantage of DEA is to handle multiple inputs and outputs 

simultaneously, we want to check whether the structure of the EPFs (i.e. the factors associated with 

output production) are different across subjects.  
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Online Appendix B: The Hungarian Education System 

 

The dataset we use for explaining the potential of the proposed methodology in an empirical setting 

deals with upper secondary schools in Hungary.21 Following a trend towards decentralization until 

2013, the Hungarian educational system was characterized by a high degree of local autonomy. 

The law of 2011/CXC. on Public Education, effective from September 2013, has centralized the 

system, and introduced several changes. Before the 2013 reform, more powers were attributed to 

school management (principal and provider), emphasizing their responsibility over results. Our 

analysis will refer to the pre-2013 decentralized system due to this fact and the lack of more current 

data. The hierarchical structure is presented in Figure A2.  

In this paper, schools are the unit of our analysis. Schools can consist of different ‘sites’ which 

belong to the same school but are separate administrative units.22 Most schools coincide with their 

site (around 80%). Schools are governed by a principal (and deputy principals if there are multiple 

sites), who manages a team of teachers, and are supervised by an education provider. The provider 

of education (usually the local government23) coordinates the set of schools under its supervision. 

While most of the education funding in Hungary, before 2013, was covered by a per-student lump-

sum grant provided by the central government to each education provider (for private as well as the 

public providers), these grants were insufficient to cover all costs. Hence, the providers of education 

had to subsidize their schools according to their needs or its financial capacities. The providers of 

education were also the official employers of teachers and school principals before 2013. In other 

words, they were crucial players in every aspect of the schools’ life. All in all, the pre-2013 Hungarian 

education system was one of the most decentralized within the OECD (see OECD, 2010), which 

means school providers, and principals could use this autonomy to tailor their school organization 

policies to the specific needs of their students.  

                                                                    
21 This study is part of the Horizon 2020 Twinning project ‘Economics of Education Network (EdEN)’, an 
enhanced cooperation in the field of education economics between three economics of education research 
groups in EU-15 countries – KU Leuven (Belgium), U Maastricht (Netherlands) and Politecnico di Milano 
(Italy) – and the CERSHAS (Hungary). 
22 For example, a school can choose to divide its activities into two separate sites, one providing primary 
schooling and the other providing secondary schooling. 
23 The local government in Hungary is similar to the English Local Education Authority, but deals with several 
other public issues besides education. 
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Figure A 1: Schematic representation of the Hungarian education system. 
 

Table A 1 (Appendix) shows which students are measured within NABC. There are several 

explicit goals of this assessment. First, the major goal is to provide more detailed and more frequent 

feedback for the educational policy relative to international surveys. The second is to offer a tool for 

education providers and schools to improve their performance. The third goal is to set the grounds 

for a future accountability system and provide higher transparency. In addition to all this, it offers 

invaluable data for researchers to address education puzzles. Unfortunately, up until 2008 the 

database could only be analysed on a cross sectional basis, because it did not contain permanent 

Figure A 2: The structure of education in Hungary. 
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student level identification numbers. From 2008 onwards the biannual datasets are linked by 

student IDs, allowing more detailed (value-added) analyses. 

In addition to mathematics and literacy test scores, which are common to education datasets, our 

database contains extensive information on the student background, principals, and the school. This 

paper uses data on the 2008/6th grade cohort. All of the students were observed two years later, in 

8th grade (2010). We purposely selected these two moments in time to minimize possible biased 

results resulting from students changing schools. As can be seen in Figure A2, most students go to 

8 years of primary and lower secondary education (általános iskola). Less than 10% of each cohort 

exit this 8 years of comprehensive training to enter an elite, academic track. The exit points are at 

age 10 (after grade 4) and at age 12 (after grade 6). As there are no exit points between grade 6 and 

8 student mobility between schools is very low between these two points in time. Hence, focusing 

on the 6th and 8th grade student achievement allows us to disentangle the added value of schools. 

Table A 1: The official NABC database 

  6th grade 8th grade 10th grade 

2003 20 students from every school 0 
20 students from each track from each 

school 

2004 20 students from every school 
20 students from every 

school 
20 students from each track from each 

school 

2006 
every student from a sample of 

195 schools full cohort 
30 students from each track from each 

teaching site 

2007 
every student from a sample of 

200 schools full cohort 
30 students from each track from each 

teaching site 

2008* 
 

full cohort 
 

full cohort full cohort 

2009* full cohort full cohort full cohort 

2010* full cohort full cohort full cohort 

2011* full cohort full cohort full cohort 

2012* full cohort full cohort full cohort 

2013* full cohort full cohort full cohort 

2014* full cohort full cohort full cohort 

* Permanent individual identification numbers are available 
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Online Appendix C: Reading results 

 

 

  

 

 

 

  

Figure C1: VI plot of base model (left) and final model (right) for reading 

Note: base and final models differ in the predictors involved. Base model uses 7 predictors (the ones appearing on the 
left panel of the figure), while the final model uses 12 predictors (the ones appearing on the right panel of the figure). 
It is worth to notice that Random Forest identifies the same important variables.  
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Table C1: OLS regression results for reading 

Variables Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 

School size 0.001*** 0.001*** 0.001*** -0.000 0.001*** 0.001*** 
Average class size 0.015*** 0.015*** 0.015*** 0.014*** 0.015*** 0.015*** 
Roma students -0.020*** -0.020*** -0.017*** -0.020*** -0.020*** -0.020*** 
Number of computers 0.003 0.003 0.003 0.003 0.003 0.003 
P age  -0.004 -0.004 -0.004 -0.001 -0.004 
P experience  0.012*** 0.011*** 0.012*** 0.039 0.012*** 
P satisfaction  0.001 0.001 0.001 0.001 0.001 
Provider size  0.004 0.004 0.004 0.004 0.005 

Interactions       

School size x Roma students   -0.000***    
(Reference=Village<2k)       

Budapest x school size    0.002**   
City x school size    0.000   
County centre x school size    0.001*   
Village (2k-5k) x school size    0.001   
Village (>5k) x school size    0.000   
P experience x Age     -0.000  
P experience x Provider size      -0.000 

Controls       

School location       
Education provider       
Region       
Constant 0.495** 0.594** 0.499* 0.234 0.423 0.590** 

Observations 2,122 2,122 2,122 2,122 2,122 2,122 
R² 0.327 0.332 0.336 0.339 0.333 0.332 

Note: *, **, *** indicate significance at the 10%, 5% and 1% level, respectively. For conciseness, standard errors are not 
displayed here, although available upon request. The standardized outcome variable is the added value of schools 
generated by DEA and presented in Figure 3. “Provider size” indicates the number of schools affiliated to a district, as 
in Table 1. ‘P’ is short for Principal. 
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