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Abstract

Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical de-
formation caused by the electromagnetic radiation pressure, a phenomenon known as
Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of
standard Finite Element Methods, is a very complex task due to the poor representation
of the geometry and to the necessity for mesh refinement due to the typical use of low
order basis functions. In this paper, we use Isogeometric Analysis for discretising both
mechanical deformations and electromagnetic fields in a coupled multiphysics simulation
approach. The combined high-order approximation of both leads to high accuracies at a
substantially lower computational cost.

1 Introduction

Controlling the resonant frequency of the cavity eigenmodes in a linear accelerator is crucial in
order to guarantee the synchronization of the electromagnetic wave and the particle bunches.
Such frequency is determined essentially by the geometry of the cavity walls, which is therefore
a critical parameter for the design of the cavity. The high-energy electromagnetic field inside
the cavity exerts a radiation pressure on the walls, which causes a mechanical deformation of
the geometry. Albeit small, this deformation may lead to a significant shift of the resonant
frequency. This effect, known as Lorentz detuning, needs to be predicted with high precision
in order to achieve a robust cavity design.

Standard Finite Element Methods (FEM) may require an extremely high level of mesh
refinement to achieve a sufficient accuracy when evaluating Lorentz detuning, due to inaccura-
cies when approximating the deformed cavity walls in the FEM mesh and due to the limited
accuracy of typical low-order FEM basis functions. In this work, we propose a simulation
strategy based on Isogeometric Analysis (IGA) [4] which allows an exact representation of
the geometry and its deformation and offers the possibility to accurately approximate the
electromagnetic fields using high-order elements [2].
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Figure 1: 2D cut of the 3D computational domain for simulating Lorentz detuning in one cell
of the TESLA cavity [1] and labels for the domains and the boundaries (yz section). The full
cell is the result of a revolution around the z axis.

The outline of this paper is as follows: first we introduce the coupled electromagnetic-
mechanical model describing Lorentz detuning. In the subsequent section Isogeometric Anal-
ysis is introduced along with an overview on the particular discretization used for Maxwell’s
equations. Finally we present the results obtained for the standard cylindrical test case and
for the TESLA cavity geometry [1].

2 Multi-physics Model for Lorentz Detuning

Consider a one cell cavity geometry as the one depicted in Fig. 1. Let the two disjoint
open domains with Lipschitz continuous boundaries ΩW ⊆ R

3 and ΩC ⊆ R
3 represent the

cavity walls and the interior of the cavity, respectively. Let ΓCW = ΩC ∩ ΩW denote the
interface between the two domains. To evaluate the frequency shift, it is necessary to solve
Maxwell’s eigenproblem inside the undeformed and deformed cavity and an elasticity problem
in the cavity walls. We employ linear elasticity theory since the deformations are very small.
The radiation pressure on the common interface ΓCW introduces a coupling between the two
problems. The calculation steps are as follows:

Step 1. Solve Maxwell’s eigenproblem in ΩC :

∇×

(

1

µ0
∇×E

)

= ω2
0ǫ0E in ΩC (1a)

with the boundary conditions











E× nc = 0 on ΓCW

(

1

µ0
∇×E

)

× nc = 0 on ΓC

(1b)
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where µ0 and ǫ0 are the permeability and permittivity of vacuum and nc is the outward
unit normal to ΩC . We assume time-harmonic fields with E a phasor. As cavity walls are
often composed of a superconducting material, e.g. niobium, in order to reduce losses, they are
assumed here to behave as a perfectly conducting boundary. At the two irises ΓC , a Neumann
condition is enforced, which is a common approximation corresponding to assuming the cell to
be one of an infinite chain of cells. The eigenmode solution delivers a number of eigenfunction-
eigenvalue couplets, corresponding to the possible modes within the cavity. The accelerating
mode of interest is the first transverse magnetic mode (TM010). Let E0 be the computed

electric field and ω2
0 the corresponding eigenvalue, then f0 =

ω0

2π
is the resonant frequency for

the accelerating eigenmode in the undeformed geometry.
Step 2. Compute the magnetic field H0 for the first accelerating eigenmode as

H0 =
1

iω0µ0
∇×E0. (2)

The accelerating mode exerts on the cavity walls a radiation pressure with one component
at 0 frequency and one component at frequency 2 f0. In practice, the latter can be neglected
and the radiation pressure on ΓCW may be expressed as

p = −
1

2
ǫ0 (E0 · nc) · (E

∗
0 · nc)

+
1

2
µ0 (H0 × nc) · (H

∗
0 × nc) . (3)

Step 3. Solve the following linear elasticity problem in the walls domain ΩW

∇ ·
(

2η∇(S)u+ λI∇ · u
)

= 0 in ΩW (4a)

with boundary conditions















u = 0 on ΓW
(

2η∇(S)u+ λI∇ · u
)

· nw = p · nw on ΓCW
(

2η∇(S)u+ λI∇ · u
)

· nw = 0 on Γext

(4b)

for the displacement u. In (4) we denote by ∇(S) the symmetric gradient, while η and λ are
the Lamé parameters of the wall constituent material and nw is the outward unit normal to
ΩW . On ΓCW the radiation pressure p is applied, while the pressure on the exterior cavity
boundary is assumed to be negligible.

Step 4. Let the deformed walls domain Ω
′

W be defined as

Ω
′

W ≡ {x+ u (x) , x ∈ ΩW } , (5)

and the deformed cavity boundary Γ
′

CW as

Γ
′

CW ≡ {x+ u (x) , x ∈ ΓCW } . (6)

Furthermore, let Ω
′

C denote the domain enclosed by Γ
′

CW and ΓC .
Step 5. Solve Maxwell’s eigenproblem in Ω

′

C :
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∇×

(

1

µ0
∇×E

′

)

=
(

ω
′

0

)2
ǫ0E

′

in Ω
′

C

with the boundary conditions











E
′

× n
′

c = 0 on Γ
′

CW
(

1

µ0
∇×E

′

)

× n
′

c = 0 on Γ
′

C

and let

(

(

ω
′

0

)2
,E

′

0

)

denote the accelerating eigenmode.

The shifted frequency is finally obtained as

f
′

0 =
ω

′

0

2π

and the frequency shift due to Lorentz detuning as

∆f0 =
∣

∣

∣
f0 − f

′

0

∣

∣

∣
. (7)

This procedure can be carried out iteratively if necessary.

3 Numerical discretization

Isogeometric Analysis (IGA) was born, less than a decade ago [3], with the goal of bridging the
gap between Computer Aided Design (CAD) and Finite Element Method (FEM). The main
distinctive feature of IGA is that CAD geometries, commonly defined in terms of Non-Uniform
Rational B-Splines (NURBS), are represented exactly throughout the analysis, regardless of
the level of mesh refinement, while in standard FEM the computational domain needs to be
remeshed when performing h-refinement and its geometry approaches the exact one only in
the limit of vanishing mesh size h.

Moreover, in addition to h-refinement and p-refinement, k -refinement [4] was introduced
as a combination of degree elevation and mesh refinement, leading approximation spaces with
higher regularity properties. k -refinement has the advantage of not increasing the number of
degrees of freedom of the problem, but produces matrices with larger bandwidth.

The particular IGA scheme adopted in this work takes advantage of the benefits of different
approaches for each of the different physical subproblems being considered. The computa-
tional domains ΩW and ΩC are both defined via geometric mappings constructed in terms
of NURBS basis functions. In solving the mechanical subproblem (4) an isoparametric ap-
proach is adopted so that the computed (discrete) displacement is defined in terms of the same
NURBS basis and therefore the domain deformation (5) is performed in a straight-forward
way by a simple displacement of the control-points. In solving the Maxwell sub-problem
(1), on the other hand, the isoparametric approach is abandoned in favour of the choice of
a solution space comprised of (push-forwards of) suitable B-Spline functions which guaran-
tees an H (curl) conforming, and therefore spectrally accurate, approximation of the field, as
shown in [2]. This concepts are explained in more detail below after introducing the required
notation for NURBS and B-Spline spaces.
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Figure 2: B-spline curves with different knot vectors: the multiplicity of the knot effects the
regularity of the curve.

B-spline and NURBS functions

A B-spline entity is the result of the transformation through an appropriate mapping of a
reference domain. In one dimension, the reference domain is typically the interval [0, 1] which
is then subdivided by a knot vector

Ξ = [ξ0, ξ1, . . . , ξn+p+1]

where ξi ∈ R∩ [0, 1] is the i-th knot, p is the polynomial degree (p+1 is the order) and n is the
number of basis functions used to build the B-spline curve. The knots divide the parameter
space into elements. The element boundaries in the physical space are the images of the knots
under the B-spline mapping.

Knot vectors can be uniform, if the knots are equally spaced, or non-uniform otherwise.
But the main advantage of the knots is that they can be repeated, and this allows to describe
complex domains and, most importantly, to generate important modifications to the property
of the basis. In particular, by changing the multiplicity of a knot we can change the level of
continuity of the curve: basis functions of order p have p − ri continuous derivatives across
each knot ξi , where ri is the multiplicity of the i-th knot. In the particular case of a knot
repeated exactly ri = p + 1 times, the basis is interpolatory at the knot ξi. A knot vector is
said to be open if its first and last knots are repeated p+1 times (i.e. the curve is interpolatory
at its ends). Below, we will always assume to be dealing with open knot vectors.

B-spline basis functions are defined by the Cox-De Boor recurrence formula:

Bi,0 (x̂) =

{

1 if ξ ≤ x̂ ≤ ξi+1

0 otherwise
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Bi,p (x̂) =
ξ − ξi

ξi+p − ξi
Bi,p−1 (x̂)+

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1 (x̂)

(8)

with i = 0, . . . , n − 1. We will denote the space spanned by the n functions B0,p, . . . , Bn−1,p

by Sp
α (Ξ), with α = {α0, . . . , αn+p+1} and αi = p− ri, where ri is the multiplicity of the i -th

knot.
B-spline curves are built taking a linear combination of B-spline basis functions and defin-

ing a set of control points. In particular, given n basis functions Bi,p and n control points
Pi ∈ R

d, i = 0, 1, . . . , n− 1, a piecewise polynomial B-spline curve is defined by the following:

C (x̂) =
n−1
∑

i=0

Bi,p (x̂)Pi. (9)

The concepts presented until now can be easily extended to B-spline surfaces and volumes
using a tensor product approach. For instance in the 3D case, given the knot vectors Ξd, the
degrees pd and the number of basis funtions nd (with d = 1, 2, 3), the B-Spline trivariate basis
functions are defined as

Bp
i (x̂) = Bi1,p1 (x̂)Bi2,p2 (ŷ)Bi3,p3 (ẑ) , (10)

where p = (p1, p2, p3) and i = (i1, i2, i3) is a multi-index in the set

I = {i = (i1, i2, i3) : 0 ≤ id ≤ nd − 1} .

Given the regularities α1, α2, and α3, we will refer to this space of B-Splines as Sp
α1,α2,α3

.
Starting from the Cox-de Boor formula given in (8), we can define the rational basis

functions Np
i (x̂):

Np
i (x̂) =

Bp
i (x̂)wi

∑

j∈I B
p
j (x̂)wj

(11)

where we assume wi > 0 for all i. We will denote the space of NURBS with Np. A NURBS
object is built in an analogous way to (9):

C (x̂) =
∑

i∈I

Np
i (x̂)Pi. (12)

With respect to B-spline, using NURBS, one can utilize both the control points and the
weights to control the local shape: as wi increases, the curve is pulled closer to the control
point Pi, and viceversa. This allow the exact representation of CAD geometries.

Linear elasticity problem

The weak formulation of (4) is:

Find the displacement u ∈
(

H1
0 (ΩW )

)3
such that

∫

ΩW

(2ηε (u) : ε (v) + λ (∇ · u) (∇ · v)) dx =

∫

ΓN

pnw · v dΓ, ∀v ∈
(

H1
0 (ΩW )

)3
(13)
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where ε = 1/2
(

∇u+∇uT
)

is the small deformation strain tensor. In structural mechanics,
it is very useful to invoke the isoparametric concept, such that the undeformed and deformed
geometry belong to the same function spaces. This means that when the problem is solved
using a higher order solution space, the order of the geometrical representation has to be
elevated accordingly, k -refinement ensures that the shape of the domain is not changed.

Let the walls domain ΩW , bounded and Lipschitz, be represented by a NURBS volume

ΩW = FW

(

Ω̂W

)

=
∑

i∈I

Np
i (x̂)Pi (14)

where FW is a 3D mapping of the type introduced in (12) (smooth with an almost everywhere
piecewise smooth inverse). The discrete space is the space Vh obtained by the transformation
through FW of the same space Np that defines the geometry:

Vh =
{

vh ∈ H1
0,ΓD

: vh = v̂h ◦ F
−1
W , v̂h ∈ Np

}

(15)

With this choice, the deformed geometry is elegantly obtained by adding the solution
vector u to the control net of the initial NURBS domain

Ω
′

W = F
′

W

(

Ω̂W

)

=
∑

i∈I

Np
i (x̂) (Pi + ui) . (16)

Electromagnetic cavity eigenproblem

Let ΩC ∈ R
3 be our bounded NURBS cavity domain. Using Green’s integration by parts

formula and the notion of H0,ΓD
(curl; ΩC) of functions with curl well defined in L2 and

vanishing trace on the boundary, a standard variational formulation of problem (1) reads as
follows [2]:

Find ω ∈ R, and E ∈ H0,ΓD
(curl; ΩC), with E 6= 0, such that

∫

ΩC

µ−1
0 ∇×E · ∇ ×w dx = ω2

∫

ΩC

ǫ0E ·w dx

∀w ∈ H0,ΓD
(curl; ΩC) . (17)

It is known that ω = 0 is the essential spectrum, and that its associated eigenspace has
infinite dimension. All other eigenvalues form a diverging sequence with associated eigenspaces
belonging to H0,ΓD

(curl; ΩC)∩H (div0; ΩC), where we denote with H (div0; ΩC) the space of
function in H (div; ΩC) with divergence equal to zero.

The functional spaces used for the variational formulation (17) have some special relations
that are summarized through the well known de Rham diagram. In order to achieve a con-
sistent approximation of Maxwell’s eigenvalue problem, the discrete spaces have to satisfy an
analogous relation.

Following [2], we define on the reference domain a vectorial B-Spline space with differing
degree for each component:

S1 = Sp1−1,p2,p3
α1−1,α2,α3

× Sp1,p2−1,p3
α1,α2−1,α3

× Sp1,p2,p3−1
α1,α2,α3−1. (18)
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Figure 3: Patch subdivision for the pill-box cavity (left) and the TESLA cavity (right).

The final step is to define the finite dimensional spaces in the physical domain ΩC . Let
FC be the parametrization for our domain computed with the same hypothesis given for (14),
then the discrete space on ΩC is defined through a curl conforming mapping [7]:

X1 =
{

(DFC)
−T

(

w ◦ F−1
C

)

,w ∈ S1
}

(19)

where DFC is, the Jacobian matrix of the parametrization. It has been proven [2] that this
space has the approximation properties we need for the discretization of H (curl).

Multipatch formulation

In some situations, using a single patch domain geometry definition as in (14) is impossible or
at least inconvenient. For example, in parametrizing the geometries for both the cylindrical
pill-box cavity and for the TESLA cavity, that are the focus of the present work, we have
chosen to use a multipatch approach in order to avoid singularities in the geometrical mapping
[10]. In other words the walls domain geometry for our problems is partitioned into Nw

subregions as
ΩW ≡ ∪Nw

i=1 ΩW,i

ΩW,i ∩ ΩW,j = ∅ ∀i 6= j
(20)

where each of the patches consists of a smooth mapping with smooth inverse of the reference
domain Ω̂

ΩW,i ≡ FW,i(Ω̂),

each of the mappings ΩW,i being defined in terms of NURBS basis functions as in (14). We
require that two neighbouring patches share one full face and we denote the interface by

ΓW,ij ≡ ΩW,i ∩ ΩW,j .

The resulting overall geometrical mapping is globally continuous but only piecewise smooth.
A similar partitioning and similar notation is used for the multipatch parametrization of the
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cavity domain, i.e.
ΩC ≡ ∪Nc

i=1 ΩC,i

ΩC,i ∩ ΩC,j ∀i 6= j,
(21)

with
ΩC,i ≡ FC,i(Ω̂),

and
ΓC,ij ≡ ΩC,i ∩ ΩC,j .

In Fig. 3 the subdivisions for the two geometries being considered in this paper are de-
picted. To extend the linear elasticity (4) and Maxwell (1) problem to the new geometric
setting, a substructuring approach is used. For the problem (4) a new set of unknowns ui is
introduced, such that u|ΩW,i

= ui and a problem similar to (4a) is set in each patch

∇ ·
(

2η∇(S)ui + λI∇ · ui

)

= 0 in ΩW,i

and the overall problem 4 is recovered by imposing continuity of the displacements and normal
stresses at the patch interfaces

ui = uj on ΓW,ij

(

2η∇(S)ui + λI∇ · ui

)

· nw,i +
(

2η∇(S)uj + λI∇ · uj

)

· nw,j = 0 on ΓW,ij .

Similarly for the Maxwell Eigenproblem the unknowns Ei are introduced and the problem to
be solved in each patch becomes

∇×

(

1

µ0
∇×Ei

)

= ω2
0ǫ0Ei in ΩC,i

with the interface conditions

Ei = Ej on ΓC,ij
(

1

µ0
∇×Ei

)

× nc,i +

(

1

µ0
∇×Ej

)

× nc,j = 0 on ΓC,ij .

With respect to standard FEM, where only the tangential component of the computed
solution is continuous across the elements boundaries, given IGA high regularity properties it
is possible to achieve solutions with higher smoothness (up to Cp−1) within each patch. Only
across the patch interfaces the regularity is reduced to C0. The patches have been created in
such a way that there are no interfaces across the length (z direction) of the cavity and this
is of great interest since it leads to smooth solutions along the z-axis of the cavity, where the
particle bunches travel and thus high precision is required. Classical FEM cavity simulations
on tetrahedra may not achieve a sufficient precision along the axis since the solution is often
affected by undesired oscillations due to the discontinuities across the elements and not aligned
edges. Usually this problem is solved by using a huge number of tetrahedra or by using hybrid
meshes, e.g., with hexahedra along the axis. By using an Isogeometric mesh it is possible to
completely avoid the problem in an easy and computationally inexpensive way.
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Figure 4: Convergence of the eigenfrequency for the undeformed pill-box cavity (left) and
after the steps in Section 2 (right).

Relative error DoFs IGA3D DoFs FEM2D

1e-04 1196 1190

1e-05 5852 22350

1e-06 16430 115260

1e-07 65072 845480

Table 1: Number of DoFs required to compute the first accelerating mode in the pill-box
cavity within a prescribed accuracy. f0 = 3.278357938148927
GHz

4 Results

The implementation of the discretization scheme just introduced has been done in MATLAB
and Octave using GeoPDEs [5]. Its applicability for cavity simulation has been verified by
using a pill-box cavity with known closed form solution [8]. The steps illustrated in Sec-
tion 2 have been applied to the first transverse magnetic (TM010) mode in the cavity and the
corresponding detuning has been computed. The new value of the frequency has been com-
pared with the exact solution given by the theory while increasing the mesh resolution (see
Fig. 4). Of particular relevance is the fact that the multiphysical coupling does not decrease
the optimal convergence rates for the eigenvalue problem.

Moreover, the eigenfrequency of the first accelerating mode was computed with both our
3D IGA method and the 2D FE method proposed in [6] and the simulations were compared
to each other (Table 1). The results show that we were able to achieve a higher order of
accuracy per-degree-of-freedom with respect to the lowest order classical FEM, even with a
3D domain. Moreover, by construction, the 2D FE solver only finds eigenmodes of the form
{

ω2,E,H
}

=
{

ω2, (Er, 0, Ez) , (0, Hθ, 0)
}

, whereas the IGA simulation also finds the modes
without cylindrical symmetry (Fig. 5).

A second more realistic example is the 1-cell TESLA cavity [1] (see Fig. 1). The acceler-
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Figure 5: The first 50 values for the frequencies. In red the first five TM modes that the 2D
FEM code is able to compute.

Figure 6: On the left: undeformed geometry (pink) and deformed geometry (grey, amplified
by a factor 5 · 105) for the 1-cell TESLA cavity. On the right: deformed accelerating cavity
mode.
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Figure 7: The fundamental TM010, π mode for the 9-cell TESLA cavity.

subs Nel Ndof f0 Shift variation

1 120 1864 1.29986350 257.565054 Hz -

2 960 7356 1.30100271 238.189022 Hz 19.37603

3 3240 18768 1.30099274 223.291696 Hz 14.89733

4 7680 38260 1.30100097 218.937003 Hz 4.35469

5 15000 67992 1.30100587 217.083298 Hz 1.85370

6 25920 110124 1.30100827 216.105059 Hz 0.97824

Table 2: Detuning values for the 1-cell TESLA cavity.

Mode Frequency

1 1.276335705889215 GHz

2 1.278421359483793 GHz

3 1.281632725459760 GHz

4 1.285597822640840 GHz

5 1.289849369271624 GHz

6 1.293875642584478 GHz

7 1.297181927064266 GHz

8 1.299363801453597 GHz

9 1.300002415591750 GHz

Table 3: Frequencies for the first passband of the 9-cell TESLA cavity (151888 DoFs).
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ating eigenmode of the TESLA cavity is the TM010 mode at 1.3 GHz. The frequencies for
undeformed and deformed geometry are computed on six meshes with an increasing number
of subdivisions (Table 2). In the last column of Table 2 we report the difference between the
values of the frequency shift computed at two subsequent levels of refinement, which shows
that six subdivisions, corresponding to about 110000 DOFs, are sufficient to achieve an ac-
curacy of about 1 Hz. In Fig. 6, the undeformed and deformed geometry are compared. The
computed displacement is in the order of 1 nm ∼ 10 nm, which is in good accordance to
results reported in literature [1].

Starting from [1], the domain for full 9-cell TESLA cavity has been created. With respect
to the single cavity, one has to take into account that, due to the coupling between the different
cells, the fundamental mode splits itself into 9 different modes with similar frequencies giving
rise to the so-called fundamental passband. The results for these eigenfrequencies are shown in
Table 3: the accelerating mode is the π mode at 1.3 GHz. The z component for the electrical
field of these two modes is depicted in Fig. 7.

5 Conclusions

Low order Finite Element Methods may fail to achieve a sufficient accuracy for calculating
Lorentz detuning in superconducting accelerator cavities. High order Isogeometric Analysis
alleviates this problem, mainly by a better representation of the curved cavity walls and
a natural way for treating mechanical deformations within the electromagnetic eigenvalue
problem. The isogeometric method succeeds in obtaining reliable results for frequency shifts
due to Lorentz detuning.
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