
MOX–Report No. 31/2013

A mesh simplification strategy for a spatial regression
analysis over the cortical surface of the brain

Dassi, F.; Ettinger, B.; Perotto, S.; Sangalli, L.M.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





A mesh simplification strategy for a spatial regression

analysis over the cortical surface of the brain

Franco Dassi♯, Bree Ettinger♯, Simona Perotto♯, Laura M. Sangalli♯

August 5, 2013

♯ MOX– Modellistica e Calcolo Scientifico

Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano

via Bonardi 9, 20133 Milano, Italy

{franco.dassi, bree.ettinger, simona.perotto, laura.sangalli}@polimi.it

Keywords: Iterative edge contraction, conformal flattening maps, regression anal-

ysis, statistical analysis of complex data.

Abstract

We present a new mesh simplification technique developed for a statistical

analysis of cortical surface data. The aim of this approach is to produce a simpli-

fied mesh which does not distort the original data distribution and such that the

statistical estimates computed over the new mesh exhibit good inferential proper-

ties. To do this, we propose an iterative technique that, for each iteration, contracts

the edge of the mesh with the lowest value of a cost function. This cost function

takes into account both the geometry of the surface and the distribution of the data

on it. After the data are associated with the simplified mesh, they are analyzed

via a spatial regression model for non-planar domains. In particular, we resort to

a penalized regression method that first conformally maps the simplified cortical

surface mesh into a region in R
2. Then, existing planar spatial smoothing tech-

niques are extended to non-planar domains by suitably including the flattening

phase. The effectiveness of the entire process is numerically demonstrated via a

simulation study and an application to cortical surface thickness data.

1 Introduction and motivation

In this paper, we develop a technique to analyze large data sets lying on complicated

two-dimensional manifolds. In particular, we are interested in analyzing data observed

over the cortical surface of the brain, a two-dimensional manifold with many folds

and creases, constituting the outermost part of the brain. The data of interest are the
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hemodynamic signals associated with neural activity on the cerebral cortex, or the mea-

surements of the cerebral cortex thickness (i.e., the thickness of grey matter tissue).

From a medical viewpoint, the study of these data is of relative importance to better un-

derstand brain functions and the underlying mechanics of brain diseases. For instance,

the thickness of the cerebral cortex changes over time and is linked, in the medical lit-

erature, to the pathology of many neurological disorders such as autism, Alzheimer’s

disease and schizophrenia [18]. Cortical surface data are obtained from reconstructions

of the output of various types of magnetic resonance imaging (MRI) (see, e.g., [5]).

Figure 1 shows an example of thickness data studied in [3] and [4]. On the left, a corti-

cal surface mesh is provided, while, on the right, we have the corresponding thickness

measurements at each node of the mesh represented as a color map, obtained by linearly

interpolating the measurements at the mesh nodes. Due to the folded nature of the cere-

bral cortex, the mesh generation process is a complex multistep procedure that results in

a very large data set (often more than 106 nodes). Moreover, these data sets are usually

characterized by noise in both the node locations and the data measurements. Advanced

methods for modeling data spatially distributed over these manifolds are consequently

required.

Figure 1: Example of a cortical thickness data set: a cortical surface mesh with 40962 nodes (left); color

map of the cortical thickness (right). The data and the Matlab code used to build the color map are available

at http://www.stat.wisc.edu/˜mchung/softwares/hk/hk.html

We propose an efficient technique to analyze large noisy data sets associated with

triangular meshes of complicated non-planar geometries. To do this, we couple a mesh

simplification technique with a spatial regression method for analyzing data on non-

planar domains. The motivation for the simplification procedure is to reduce the com-

putational effort associated with the statistical analysis of the large data sets that are

typical in cortical surface applications. The proposed simplification procedure is de-
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signed specifically for producing a mesh that does not distort the original data distri-

bution and is optimal for a statistical analysis of the data. In particular, through an

iterative procedure, we take into account both the geometry of the mesh and the data

distribution over it. The simplified geometry is generated in a way such that the analy-

sis of the data associated with it should have statistical estimates with good inferential

properties. For the data analysis, we resort to the Spatial Regression model for Non-

Planar domains (SR-NP) developed in [8]. The SR-NP approach minimizes a sum of

squared error functional with a roughness penalty term involving the Laplace-Beltrami

operator associated with the non-planar domain. The estimation problem on the sur-

face is then appropriately recast over a planar domain via a conformal map. In the

planar domain, existing spatial smoothing techniques are generalized by suitably tak-

ing into account the flattening of the domain. The original application for the SR-NP

method was modeling hemodynamic forces on the carotid artery (or on any manifold

topologically equivalent to a cylinder). Since the cortical surface can be represented by

a topological sphere, the conformal map has to be modified accordingly. To accomplish

this, we implement a modified version of the conformal map suggested in [1]. The mod-

ification we introduce provides robust results when flattening some of the undesirable

triangulations generated by the segmentation and extraction procedures [5].

Alternative approaches proposed in the literature chose different methods for con-

taining the computational cost associated with the analysis of large cortical surface

data sets. The nearest neighbor averaging technique developed in [11] is an iterative

technique that smooths the variable of interest observed at each vertex of the mesh by

suitably averaging this value with the ones observed at the neighboring vertices. The

averaging process is repeated several times to create a smoothing effect. Although this

technique is practical for smoothing data over the cortical surface, more sophisticated

methods have been developed to build inferential tools that measure the uncertainty of

the resulting estimates. For example, a recent method proposed in [18] identifies the

mesh with a weighted graph. Then, the data associated with the mesh is smoothed by

tuning the local support around each vertex of the graph via a graph Laplacian. An-

other example of a smoothing technique for neuroimaging applications is the Iterative

Heat Kernel (IHK) smoothing introduced in [4]. This geodesic distance based ker-

nel smoothing method solves the Laplace-Beltrami eigenvalue problem directly on the

surface to construct a basis for the heat kernel on the cortical surface. Then, a finite

number of these basis functions are used in the expansion of the heat kernel. In partic-

ular, a smoothing window is defined around each data point. The size of the smoothing

window is identified by a parameter called the bandwidth. Finally, the number of terms

used in the Fourier series expansion of the heat kernel is properly adjusted via an itera-

tive algorithm.

We note that both the SR-NP method and IHK smoothing employ the Laplace-

Beltrami operator of the cortical surface, however in very different ways. In the SR-NP

method, the Laplace-Beltrami operator is used to control the roughness of the solu-

tion, while IHK smoothing resorts to the Laplace-Beltrami operator to create a basis

for the heat kernel directly on the cortical surface. As a second relevant difference,

IHK smoothing is not currently designed to include space varying covariates. On the
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contrary, the method we propose has the desired inferential tools as well as the ability

to include space varying covariates. In Sections 4-5 we numerically demonstrate the

effectiveness of our method to highlight its very good performance and comparative

advantages with respect to alternative methods.

The paper is organized as follows. Section 2 describes the mesh simplification

strategy and explains how the original data points are associated with the simplified

mesh. Section 3 gives the details of the SR-NP method and introduces a new flattening

map for cortical surfaces. Section 4 is devoted to simulation studies, while Section 5

applies the proposed procedure to cortical surface data. Finally, Section 6 draws some

conclusions and states future research directions.

2 The mesh simplification strategy

A cortical surface mesh is usually composed by a large number of vertices resulting in

a high computational cost for the subsequent statistical analysis. The idea is to reduce

this drawback via a surface mesh simplification process.

Consider a triangulated surface Γh embedded in R
3 where a scalar data value z has

been observed at each node of the mesh via the values zj , for j = 1, . . . , n. For exam-

ple, the scalar data in Figure 1 (right), are the values of the cortical surface thickness

measured at each node of the mesh on the left. Hence, the original data locations coin-

cide with the nodes of the original mesh. Our goal is to build a new mesh Γ′
h with m

vertices, where m ≪ n, while properly associating the original scalar data values with

this new mesh. Due to the highly folded nature of the brain, this association is really

involved. The proposed simplification method carefully tracks the origin of the data

and correctly associates it with the new mesh. For instance, in the sulci of the brain, the

data is correctly associated with the side of the sulcus it comes from instead of with the

closest side (see Figure 2).

e1

B
e2

C

A

Figure 2: Cross-section of an original mesh (solid lines); the new mesh (dashed line) replaces the two

segments sharing the vertex A with the segment e1. In the new configuration, the correct projection of the

data point A is B and not C, even though C is closer to A.

Surface mesh simplification has received a lot attention in the literature. Several

different strategies have been presented to achieve this goal. They can be categorized

as follows:
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• VERTEX DECIMATION: this algorithm iteratively removes a vertex of the mesh

and all the adjacent faces by looking at the distance from the vertex to the average

plane identified by its neighborhood; then, the resulting hole is remeshed (see

[27] for more details).

• VERTEX CLUSTERING: in this case a bounding box is placed around the original

mesh and it is divided via an octree algorithm; then, in each cell of the octree, the

vertices are clustered together into a single vertex and the faces of the mesh are

suitably updated (see [25] and [17]).

• SPECTRAL MESH PROCESSING: this approach smoothes the mesh via spectral

methods; in particular, the eigenfunctions of the Laplace-Beltrami operator are

used as basis functions to compute the Fourier transform on the mesh (see [19]).

• ITERATIVE EDGE CONTRACTION: the mesh is iteratively simplified by contract-

ing the edges (see [13, 24] and [14]); an extension of this strategy is proposed

in [9], where an additional contraction is made between any two vertices which

are too close to one another and not necessary connected by an edge.

We propose a mesh simplification process based on this last approach. In more

detail, we develop an iterative technique such that, for each iteration, we contract an

edge of the mesh Γh via a properly defined edge cost function. The strategies currently

available in the literature usually take into account only the geometrical aspects of the

simplification process, i.e., they find a new mesh Γ′
h with fewer elements that approx-

imates the mesh Γh in a best way possible. Here, we aim at enriching the geometrical

criterion with data information. In particular, the novelty of the proposed simplification

strategy is twofold: associating the scalar data values of the original mesh with the new

mesh Γ′
h, and considering their displacement and distribution on the simplified mesh

during the contraction process. To do this, we drive the simplification process via an

edge cost function that takes into account both the geometrical fitting of the domain and

the association of the data points with the new mesh. In particular, for the data asso-

ciation, we analyze the displacement of the data points from their original positions to

their new locations on Γ′
h as well as the evenness of the resulting data distribution over

Γ′
h. Our aim is to control these two data properties to ensure quality statistical estimates

with good inferential properties. The proposed algorithm has been developed for closed

surfaces with genus zero (i.e, with no holes), but it can be extended to high genus or

open surfaces by properly accounting for the edges in the neighborhood of the hole or

boundary during the contraction process.

To describe the simplification process, we introduce the following notation. During

the iterative contraction process, we consider an edge e with endpoints v1 and v2. Then,

we replace the vertices v1 and v2 with a single new vertex v∗, which, a priori, may

coincide with the end points v1 and v2 (see Figure 3). In general, we say that the edge

e is contracted into the vertex v∗. For each contraction, we define the following sets:

• Tedge, the set of triangles connected to edge e, i.e., the set of triangles that have

either v1 or v2 as a vertex (the patch of elements in Figure 3, left).

5



• Tcont, the set of triangles in Tedge after the contraction (the patch of elements in

Figure 3, right).

ev1

v2

v∗

Tedge Tcont

Figure 3: Contraction of the edge e into v∗.

ev1

v2

P

v∗

Pnew

Figure 4: Data point sets during the contraction process.

Finally, we denote by Porig the original location of the data points, while the set of all the

data points projected on the triangles in Tedge is denoted by P . After the contraction, the

data points are projected onto the triangles in Tcont and denoted by Pnew (see Figure 4).

2.1 Preliminary geometrical considerations

The contraction of a generic edge e can lead to undesired topological artifacts. In

particular, the contraction of an edge e can produce inverted triangles, i.e., triangles

with negative area (see Figure ??).

The situation becomes even more complicated on geometries with folds such as

the cortical surface. In certain configurations, the location of v∗ can also create a self-

intersection of the mesh as shown in Figure 6. To overcome these problems, we have

developed a series of specific tests that control the undesired features. In particular, to

prevent

• the inversion of triangles, we check the normals of the triangles constituting Tcont.

After the contraction, these normals may change direction and orientation. The

angle between the corresponding normals before and after the contraction has to

be strictly less than π/2;

• the self-intersection of the newly generated triangles with neighboring elements,

we resort to a series of triangle-triangle intersection tests developed in [21].
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e

v1

v2

v∗

Figure 5: Example of a contraction of an edge that produces an inverted triangle: when the edge e on the

left is contracted, the inverted colored triangle on the right is generated.

ev∗

Figure 6: Example of self-intersection due to the nature of the sulci. The algorithm tries to contract the

edge e into the node v∗ (left), but this operation yields a self intersection (right).

If the contraction of the edge e into the vertex v∗ passes the two tests above, we

refer to the edge e as a valid edge.

2.2 The edge cost function

In order to select the contraction to perform during a given iteration of the mesh sim-

plification procedure, we introduce the notion of contraction cost. This value takes

into account both the geometrical approximation of the mesh and the association of the

original data with the new mesh. Hence, we define the contraction cost function to be

c(e, v∗) := αcgeo(e, v
∗) + βcdata(e, v

∗),

where e is a generic edge of the mesh and v∗ is the node that replaces the edge e,
while cgeo(e, v

∗) and cdata(e, v
∗) represent the geometrical cost function and the data

cost function, respectively. In particular, cgeo(e, v
∗) is a function that associates with

the edge e and the vertex v∗ a positive real number that measures the loss of geometrical

accuracy produced by the contraction of e into v∗. Similarly, cdata(e, v
∗) measures the

loss of good properties for the subsequent statistical analysis in terms of the displace-

ment and distribution of the data points over the new mesh. The weights α, β ∈ R
+

balance each function’s contribution to the overall contraction cost (possible choices for

α and β are given in Section 2.3). The goal of the next two sections is to explain how

to compute cgeo(e, v
∗) and cdata(e, v

∗), respectively.
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2.2.1 The geometrical cost function

In order to approximate the geometry of the mesh, we use the theory provided in [9].

Here, we briefly recall its basic concepts and explain how we exploit them.

Each vertex v of the mesh can be seen as the intersection of a set of planes. The error

of a new vertex v∗ with respect to these planes can be defined as the sum of squared

distances to these planes, i.e., as

∑

̺∈πv

(̺tv∗)2 , (1)

where ̺ = [a b c d]t represents a generic plane in R
3 defined by the equation ax +

by + cz + d = 0, with a2 + b2 + c2 = 1, and πv is the set of planes identified by the

triangles of the mesh sharing the vertex v. Note that, here, the vertex v∗ is assigned to

a vector in R
4 where the last component is zero, in order to properly define the scalar

product ̺tv∗. Definition (1) leads us to introduce, for a generic vertex v, the symmetric

matrix Qv :=
∑

̺∈πv
̺̺t ∈ R

4×4. Consequently, given the edge e with vertices v1
and v2, and the associated matrices Qv1 and Qv2 , we can define the symmetric matrix

Qe := Qv1 +Qv2 . Thus, for a generic vertex v∗, the quantity

v∗tQev
∗ , (2)

can be assumed to estimate the loss of geometrical accuracy due to the contraction of

the edge e into the node v∗. Following [9], during the mesh simplification process, for

each edge e, we consider four possible different locations of the point v∗:

v1 , v2 , (v1 + v2)/2 , and vopt,

where vopt is the optimal position that minimizes the quantity (2). We consider three

different configurations besides vopt since this optimal position does not necessarily

exist or it may produce an undesired configuration (see Section 2.1). Thus, for a valid

edge e and an optimal location for v∗, we define the geometrical cost for contracting

the edge e into the node v∗ by the quantity

cgeo(e, v
∗) := v∗tQev

∗ . (3)

2.2.2 The data cost function

The actual novelty of the proposed algorithm lies in incorporating the data points into

the simplification process. For the statistical analysis that follows the mesh simplifica-

tion, it is crucial to properly take into account the association of the original data with

the new mesh. Thus, to reduce the error with respect to using the original mesh, we

attempt to control the displacement of the data locations when they are projected onto

the new mesh. Another crucial property the new mesh needs to produce quality statisti-

cal estimates with good inferential properties is an equidistribution of the original data

points over Γ′
h, i.e., to produce estimates that are robust and characterized by low bias
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(i.e., low systematic errors) each triangle should contain, a priori, the same quantity of

information, independently of the size of the triangle. In order to evaluate the effec-

tiveness of an edge contraction in the current mesh Γ′
h with respect to the resulting data

associations, we consider

a) the displacement of the data points, i.e., the distance between the projected data

locations and their original locations;

b) the equidistribution of the data points over the triangles of the new mesh Γ′
h, i.e.,

each triangle of Γ′
h should be associated with about the same number of data points.

To take care of both these aspects, we introduce two suitable cost functions, one for

each desired feature. Thus the total data cost function is defined as

cdata(e, v
∗) := β1cdisp(e, v

∗) + β2cequi(e, v
∗),

where β1 and β2 are positive real numbers that properly weight the contributions of the

the data point displacement and distribution, respectively.

Before dealing with these two features of the mesh simplification process, let us

make some further considerations about the data projection phase of the process. Al-

though, the data points are orthogonally projected onto the simplified mesh Γ′
h, this

projection is not straightforward on complicated surfaces such as the highly folded cor-

tical surface. For example, in Figure 2, the correct location for the point A on the new

mesh is the point B on the edge e1 and not the point C on the edge e2. Specifically,

each point of Γh can be projected onto the new mesh Γ′
h in one of the following ways:

- to the face of a triangle of Γ′
h;

- to an edge between two triangles of Γ′
h;

- to a vertex of Γ′
h.

After the projection procedure, the data points are associated with their projection on

Γ′
h.

Data displacement function When the edge e is contracted into the point v∗, we

define the corresponding displacement cost function as

cdisp(e, v
∗) := max

(p,q)∈Pnew×Porig

‖p− q‖, (4)

with ‖ · ‖ the Euclidean norm, which essentially measures the maximum Euclidean

distance between the projected locations of the data points Pnew, and their original

locations Porig. By minimizing the displacement of the data associations during the

contraction process, we are able to reduce the error between the statistical estimates that

use the original data points on Γh and the estimates based on the data points associated

with the simplified mesh Γ′
h. Of course, this minimization step is properly constrained

to avoid any incorrect associations such as the one discussed in Figure 2.
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Data distribution function Our goal at the end of the simplification process is to

obtain a new mesh where each element contains approximately the same number of

data points, i.e., to equidistribute the data points in the new mesh. For this purpose,

during the simplification process, we define the quantity of information associated with

each triangle T via the number

NT := nf +
1

2
ne +

1

#(Tv1)
n1 +

1

#(Tv2)
n2 +

1

#(Tv3)
n3 , (5)

where nf and ne denote the number of data points associated with the face and the

edges of the triangle T , respectively. For j = 1, 2, 3, nj is the number of data points

associated with vj , the j-th vertex of T , Tvj is the patch of elements associated with vj
and #(Tvj ) denotes the cardinality of the patch Tvj .

Moving from (5), we denote byN the mean value ofNT over the entire mesh before

the current iteration of the simplification process takes place. Then, when contracting

the edge e into v∗, we compute the quantity NT for all the triangles in Tcont and we

evaluate the following distribution cost function

cequi(e, v
∗) :=

1

#(Tcont)

(
∑

T∈Tcont

(NT −N)2

)
.

For a contraction of the edge e into the vertex v∗, this value measures the variation in the

distribution of the number of data points associated with triangles in Tcont with respect

to N. Minimizing this variation should yield an even distribution of the data locations

over the triangles in the final mesh. Notice that cequi(e, v
∗) can also be expressed as

cequi(e, v
∗) :=

1

#(Tcont)

(
∑

T∈Tcont

(NT −N cont)
2 + (N cont −N)2

)
, (6)

whereN cont is the mean value ofNT over Tcont. By minimizing (6), we are reducing the

variance of the distribution of the number of data points associated with each triangle

in the patch Tcont, via the first term. While, with the second term, we are lowering the

difference between the mean number of data associated with each triangle in Tcont and

the corresponding mean value computed over the entire mesh before the contraction.

Moreover, after the contraction, we add a further check on each triangle of Tcont to

assure that the contraction does not produce an empty triangle, i.e., a triangle with no

data associations.

The employment of cequi(e, v
∗) during the contraction process, allows us to even

out the uncertainty of the statistical estimates over the entire mesh Γ′
h. This increases

the quality of the inferences provided by the statistical estimates. In more detail, in the

presence of data evenly distributed throughout the mesh, the resulting pointwise con-

fidence intervals for the estimates will all have about the same size. This means that

the quality of the estimates will be uniform over the entire mesh, i.e, no region of the

mesh will have a better estimate to the solution than other regions. The corresponding
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hypothesis tests will all have about the same power, allowing for consistent conclusions

to be drawn over the whole mesh. This is extremely important for cortical surface appli-

cations where the interest lies in finding areas of activation or evidence of disease. The

same level of uncertainty everywhere is necessary to produce clear and interpretable

results.

2.3 Combination of the geometrical and the data cost functions

The cost functions in (3), (4) and (6) may have different ranges depending on the data

and the geometry. So, we normalize these three functions by their respective maxima.

No change in notation is employed in the following for these normalized quantities.

Now, for each valid contraction of the edge e into the vertex v∗, we compute the

cost c(e, v∗) as the linear combination

c(e, v∗) = αcgeo(e, v
∗) + β1cdisp(e, v

∗) + β2cequi(e, v
∗), (7)

applied to the normalized values of the three cost functions, and thus we obtain the

overall contraction cost for the edge e and the vertex v∗. A low value of c(e, v∗) means

that the contraction will yield a good geometrical approximation to the original geom-

etry, where the data points are close to their original locations and evenly distributed

throughout the triangles of the new mesh. On the contrary, a high value of c(e, v∗)
means that the contraction will produce a bad approximation of the original surface, or

the projected data points are too far from their original locations or there might be tri-

angles with too many or too few data points associated with them. As a consequence, if

we iteratively remove the edge of the mesh characterized by the lowest cost, we obtain

a new mesh with all the desired properties.

The algorithm is straightforward. We have implemented a dynamic data structure

that, for each triangle of the current mesh, stores a valid edge of the triangle which

minimizes the value (7). Moving from this data structure, we iteratively contract the

edge with the lowest cost until we reach the desired number of nodes. After each

contraction the data structure is properly updated. For an initial mesh with n nodes

and a fixed threshold of m nodes, where m ≪ n, the simplification algorithm can be

outlined in such a way

Algorithm 1 ITERATIVE MESH SIMPLIFICATION ALGORITHM

read the original mesh

create the data structure

while the number of nodes of Γ′
h > m do

find the cheapest valid edge e
contract the edge e
update the data structure

end while

Throughout the paper, we apply two simplification strategies. We compare the pro-

posed approach that controls both the geometry and data with a more traditional strategy

that only utilizes the geometry. In particular, we denote by
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• Data+Geo the simplification obtained by equally weighting the geometrical, the

displacement and the distribution cost functions (α = β1 = β2 = 1/3 in (7));

• OnlyGeo the simplification driven only by the geometrical information cgeo(e, v
∗)

(α = 1 and β1 = β2 = 0 in (7)).

The choice for the weights in the Data+Geo approach is, of coarse, not unique. We

could make a different choice to give more importance to the geometry or to the data,

depending on the manifold or the application we are dealing with.

Let us exemplify the differences between the Data+Geo and OnlyGeo approaches

on the pawn geometry in Figure 7 (left), which originally consists of 2527 nodes. We

show the simplified meshes obtained with m = 1000, via the Data+Geo (center) and

the OnlyGeo (right) approaches. Both the choices preserve the shape of the pawn.

However, the results are really different in terms of the data distribution. In particular,

the color map shows the quantity (5) for each triangle of the mesh. We see that, by

including the data distribution, we are able to generate a mesh that has an even distribu-

tion of the number of data points throughout the whole mesh while avoiding triangles

with no associated data (compared to the many empty (green) triangles produced by

the OnlyGeo approach on the right). As shown in Sections 4-5, this property ensures

statistical estimates with very good inferential properties.

Original Data+Geo OnlyGeo

No Data

0.14

4

8

12

Figure 7: Simplification of a pawn. Original geometry with n = 2527 nodes (left), mesh simplified to

m = 1000 nodes via the Data+Geo (center) and the OnlyGeo (right) approaches. The color map shows

the quantity (5) for each triangle of the mesh.

3 Spatial regression models for non-planar domains

In this section, we review the SR-NP model proposed in [8] and apply this method

for the first time to domains that are topologically equivalent to a sphere. The SR-NP
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method is a generalization of the penalized least square estimation technique proposed

in [26] for planar domains. This method conformally maps the non-planar domain to

a planar region. Then, the penalty term employed in the planar case is modified to

properly include the original shape of the domain. In this paper, we introduce a new

conformal map to deal with manifolds that are topologically equivalent to a sphere such

as the cortical surface. In particular, we move from the conformal map proposed in [1],

which has been specifically developed for cortical surfaces. We properly modify this

map, realizing that it occasionally fails when applied to configurations characterized

by obtuse triangles. Obtuse triangles are commonly created by the automatic meshing

procedures for cortical surfaces. The proposed modification affects only the obtuse

triangles in the mesh and reduces to the original method proposed in [1] when applied

to acute triangles. Furthermore, in the original application of the SR-NP model, the

data is assumed to occur only at the nodes of the mesh. On the contrary, after the mesh

simplification procedure the data does not necessarily occur at the nodes. Consequently,

we properly adapt the SR-NP approach to include this change.

3.1 The SR-NP model

Consider n data locations {xj = (x1j , x2j , x3j) : j = 1, . . . , n}, lying on a non-planar

domain Γ that is a uniformly regular surface embedded in R
3. At each location a scalar

data value, z, is observed via the value zj . We assume the following model for the data:

zj = f(xj) + ǫj , (8)

for j = 1, . . . , n, where ǫj are independent observational errors with zero mean and

constant variance σ2,while f is a twice continuously differentiable real-valued function

defined on the surface domain Γ. Of course, f is the quantity we aim at approximating.

In practice, Γ will be approximated by a triangular mesh Γh, and successively by the

simplified mesh Γ′
h, while the original data locations will be approximated by their

locations on Γ′
h.

To estimate f, the following penalized sum of squared error functional is mini-

mized:

JΓ,λ(f) =

n∑

j=1

(zj − f(xj))
2 + λ

∫

Γ
(∆Γf(x))

2 dΓ, (9)

where ∆Γ is the Laplace-Beltrami operator associated with the surface Γ (see, e.g.,

[6]). The Laplace-Beltrami operator is a generalization of the standard Laplacian to

the case of functions defined on surfaces in Euclidean spaces. Being related to the local

curvature of f on Γ, the Laplace-Beltrami operator in the penalty controls the roughness

of the solution f . Thus, the functional JΓ,λ balances the fidelity of the estimate to

the data via the sum of the squared errors and the roughness of the solution via the

penalty term. The smoothness parameter λ > 0 adjusts this trade-off. For the planar

model setting, methods for choosing the optimal value of the smoothness parameter

λ have been discussed in the literature and include the Akaikes Information Criterion

(AIC), the Bayesian Information Criterion (BIC) and the Generalized Cross-Validation
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(GCV) criterion (see [10], [23], [12] and references therein). Here, we resort to a GCV

approach.

To solve the estimation problem in (9), we first recast it over a planar domain via a

conformal map. For a non-planar domain Γ that is a Riemannian surface embedded in

R
3, the Riemann Mapping Theorem ensures that there exists a conformal map from Γ

to the unit sphere, the Euclidean plane or the unit disk. Hence, it is possible to define a

uniformly regular and continuously differentiable map

X : Ω → Γ

u = (u1, u2) 7→ x = (x1, x2, x3),
(10)

where Ω is an open, convex and bounded set in R
2 whose boundary ∂Ω is piecewise

C∞. These types of conformal maps are unique up to dilations, rotations and transla-

tions ([16]). In particular, the map X is conformal, if

‖Xu1(u)‖ = ‖Xu2(u)‖ and 〈Xu1(u), Xu2(u)〉 = 0,

for any u ∈ Ω, where Xu1(u) and Xu2(u) are the column vectors of the first order

partial derivatives of X with respect to u1 and u2, respectively while 〈·, ·〉 denotes the

Euclidean scalar product of two vectors with the associated norm ‖ · ‖. The (space-

dependent) metric tensor is defined as

G(u) :=

(
‖Xu1(u)‖

2 〈Xu1(u), Xu2(u)〉
〈Xu2(u), Xu1(u)〉 ‖Xu2(u)‖

2

)
.

Let W(u) :=
√

det(G(u)), and denote by G−1(u) the inverse of G(u). Then, for

f ◦X ∈ C2(Ω), the Γ-gradient of f is given by

∇Γf(x) = ∇X(u) G−1(u)∇f(X(u)), (11)

while the Laplace-Beltrami operator associated with the surface Γ can be written in

terms of the map X as

∆Γf(x) =
1

W(u)
div(K∇f(X(u))) , (12)

for any u ∈ Ω, where K(u) = W(u)G−1(u) is a symmetric positive definite matrix

and the divergence and gradient operators for planar domains are denoted by div and

∇, respectively (see [6] for more details).

The representation of the Laplace-Beltrami operator in (12) highlights that an esti-

mation problem equivalent to (9) can be properly rewritten over the planar domain Ω
via the map X . In more detail, we find a function f ◦X defined on Ω that minimizes

JΩ,λ(f ◦X) =

n∑

j=1

(
zj−f(X(uj))

)2
+λ

∫

Ω

1

W(u)

(
div(K∇f(X(u)))

)2

dΩ, (13)
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where Ω is the domain in R
2 obtained via the flattening of the cortical surface. The ex-

istence and the uniqueness of a solution to the estimation problem in (13), is established

in the functional space

H2
n0,K(Ω) =

{
g ∈ H2(Ω) : K∇g · n = 0 on ∂Ω

}

which consists of functions in H2(Ω) whose co-normal derivative is identically equal

to zero on the boundary of Ω, ∂Ω. We note that H2
n0,K(Ω) ⊂ H2(Ω) is a modification

of the standard Sobolev space H2(Ω) ([20]).

Let z = (z1, . . . , zn)
t be the vector collecting the observed data values in (8). For

any function g defined on Γ, such that g ◦ X is defined on Ω, we denote the column

vector of evaluations of the function g at the n data locations xj by

gn=

(
g(x1), . . . , g(xn)

)t
=

(
g(X(u1)), . . . , g(X(un))

)t
, (14)

with X(uj) = xj . To ease the notation, in the following we omit the dependence on u.

In [8] it is shown that the estimator f̂ ◦X that minimizes (13) over H2
n0,K(Ω) satisfies

the relation

µtnz = µtnf̂n + λ

∫

Ω

1

W

(
div (K∇(µ ◦X))

)(
div
(
K∇(f̂ ◦X)

))
dΩ, (15)

for any µ defined on Γ such that µ ◦X ∈ H2
n0,K(Ω), with µn and f̂n defined according

to (14). Moreover, for a fixed X , the estimator f̂ ◦X is unique.

3.2 The conformal map

The goal of this section is to properly define the map X . The map employed in [8]

to flatten arteries with an aneurysm can not be directly applied for the flattening of the

cortical surface. For this purpose, we propose a modification of the approach developed

in [1]. This method assumes the cortical surface can be approximated by a topological

sphere and then uses a result from complex analysis that identifies a topological sphere

minus a point with the complex plane. When we consider a triangular mesh of the

topological sphere, this corresponds to mapping the mesh minus a fixed triangle into the

image of the fixed triangle in the complex plane. However, this image in the complex

plane is not very good for visualization purposes. For this reason in [1] the flattened

triangulation in the complex plane is subsequently mapped to the unit sphere via the

inverse stereographic projection. For the SR-NP method, we only need to use the first

part of this transformation to map the cortical surface to the complex plane. We note

that this map, as it is proposed, does not work for any triangulation. In particular, it

can produce a triangulation in the plane with overlapping triangles. The map relies

on a cotangent formula that breaks down for certain configurations involving obtuse

triangles. We suggest a modification of this map that only affects the obtuse angles and

can be used to flatten any triangulations without generating overlapping elements.
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First, we introduce the map as proposed in [1]. For a smooth two-dimensional

closed manifold Γ with genus zero embedded in R
3, the conformal coordinates u1 and

u2 of the planar domain Ω in (10) can be defined by a map which depends on a single

point p on Γ. In particular, we can map the surface Γ without the point p to the complex

plane C, i.e., the inverse map of X in (10) is now given by X−1 : Γ\{p} → C. Thus,

after assuming that the cortical surface is topologically equivalent to a sphere, we can

identify the unit sphere without the north pole with the complex plane via stereographic

projection. In particular, we have decided to identify the complex plane with R
2 to get

the planar domain suited for our estimation problem. To this end, we start by finding

the inverse map X−1 = u1 + iu2 by solving the following partial differential equation

∆ΓX
−1 =

(
∂

∂ν1
− i

∂

∂ν2

)
δp, (16)

where δp is the Dirac delta function at the point p, i is the imaginary unit, and ν1 and

ν2 are local coordinates defined in a neighborhood of p. The Laplace-Beltrami problem

(16) on Γ\{p} is completed with full homogeneous Neumann boundary conditions.

3.2.1 Approximation of the conformal flattening map

In practice, we approximate (16) on a discretization of Γ, i.e., on the simplified triangu-

lated surface Γ′
h yielded by the mesh simplification procedure described in Section 2.

For this purpose, we first introduce a suitable functional setting. Let V (Γ′
h) = H1(Γ′

h)
define the Sobolev space of the functions defined on Γ′

h which are in L2(Γ′
h) together

with all their first order partial derivatives ([7]). Let Vh(Γ
′
h) ⊂ V (Γ′

h) be the finite

dimensional discrete space of the piecewise linear functions defined on Γ′
h. We denote

by {ψj} a Lagrangian basis for Vh(Γ
′
h), such that ψj(vl) = δjl for any vertex vl of Γ′

h,

where δjl is the Kronecker delta symbol.

First, let us approximate the right-hand side of (16). Let g be a generic smooth

function in a neighborhood of p. Then, we have
∫∫

Γ′

h

g

(
∂

∂ν1
− i

∂

∂ν2

)
δp dΓ

′
h = −

(
∂g

∂ν1
− i

∂g

∂ν2

)∣∣∣∣
p

. (17)

In particular, if g ∈ Vh(Γ
′
h), we can compute the quantities in (17) by the values of g at

the vertices of the triangle △ABC (i.e., the triangle with verticesA, B, C) that contains

the point p (see [1]). Now, we choose the ν1- and ν2-axes so that A and B lie along the

ν1-axis and the positive ν2-axis points towards C. Then, we can easily compute

∂g

∂ν1
=
g(B)− g(A)

‖B −A‖
and

∂g

∂ν2
=
g(C)− g(C⊥)

‖C − C⊥‖
,

where C⊥ is the orthogonal projection of C on the edgeAB. By exploiting the linearity

of g together with the orthogonality relation 〈C−C⊥, B−A〉 = 0, from (17) we obtain
∫∫

Γ′

h

g

(
∂

∂ν1
− i

∂

∂ν2

)
δp dΓ

′
h =

g(A)− g(B)

‖B −A‖
+i
g(C)− (g(A) + Θ(g(B)− g(A)))

‖C − C⊥‖
,

(18)
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where

Θ =
〈C −A,B −A〉

‖B −A‖2
.

Thus, we have a closed form for the right-hand side of (16) in the discrete setting.

During the mesh simplification process in Section 2, we fix the triangle △ABC con-

taining the point p, i.e., we add the requirement that the simplified mesh must preserve

the triangle △ABC . In particular, this triangle will coincide with the element removed

from the triangulated surface before the flattening, i.e., the image of △ABC via the map

X−1 will identify the domain Ω ⊂ R
2. Since during the flattening phase the interior

of the triangle △ABC is removed, the only data associated with it occurs at the vertices

A, B, and C so that no data is lost. Moreover, fixing the same triangle in the original

mesh for each simplification standardizes the flattening procedure for more appropri-

ate comparisons. Figure 8 shows the fixed triangle for the pawn geometry in Figure 7,

specifically, for the original mesh (left), for the Data+Geo simplification (center) and

for the OnlyGeo simplification (right). For the cortical surface mesh, we fix the tri-

angle whose barycenter is closest to the center of mass of the original vertices of the

mesh.

Figure 8: The fixed triangle selected for the pawn simplifications is located on the bottom of the pawn and

does not change during the simplification process: the original triangulation Γ
′

h (left), the 1000 node mesh

yielded by the Data+Geo (center), and the OnlyGeo (right) simplifications.

Now, let us come back to the approximation of problem (16). It is well-known that

X−1 is the minimizer of the functional

1

2

∫∫

Γ′

h

(
‖∇Γ′

h
X−1‖2 + 2X−1

(
∂

∂ν1
− i

∂

∂ν2

)
δp

)
dΓ′

h, (19)

where ∇Γ′

h
is defined analogously to ∇Γ in (11). Using this definition and by exploiting

(17), it can be shown that X−1 satisfies (16) if and only if, for all smooth test functions

g, we have ∫∫

Γ′

h

∇Γ′

h
X−1 · ∇Γ′

h
g dΓ′

h =

(
∂g

∂ν1
− i

∂g

∂ν2

)∣∣∣∣
p

. (20)

Thus, an approximation to the conformal map is found by finding X−1 ∈ Vh(Γ
′
h) such

that (20) holds for any g ∈ Vh(Γ
′
h). In particular, since (20) is linear in g, it is enough

to guarantee the condition (20) for any basis function ψk ∈ Vh(Γ
′
h) after expanding

17



X−1 in terms of the basis {ψj}. Hence, we are led to solve a linear system that finds a

complex number X−1(vj) = u1j + i u2j for each vertex vj of the simplified mesh Γ′
h,

with j = 1, . . . ,m, and such that

m∑

j=1

X−1(vj)

∫∫

Γ′

h

∇Γ′

h
ψj · ∇Γ′

h
ψk dΓ

′
h =

(
∂ψk
∂ν1

− i
∂ψk
∂ν2

)∣∣∣∣
p

, (21)

for k = 1, . . . ,m. Notice that (u1j , u2j) identifies the location of the vertex vj of Γ′
h in

the corresponding flattened mesh denoted in the following by Ω′
h.

Let D denote the stiffness matrix in (21). The components of the stiffness matrix,

Djk =

∫∫

Γ′

h

∇Γ′

h
ψj · ∇Γ′

h
ψk dΓ

′
h,

can be computed by resorting to a well-known cotangent formula. This formula is based

on the conformal invariance of the energy functional

E(X−1) =
1

2

∫∫

Γ′

h

‖∇Γ′

h
X−1‖2 dΓ′

h, (22)

with respect to conformal changes of domain metric (see [22] for more details). For a

triangle T1 ∈ Γ′
h, the energy reduces to

E(X−1)
∣∣
T1

=
1

4

3∑

j=1

cot θj‖ẽj‖
2
Ω′

h
, (23)

where θj is an angle of T1 while ‖ẽj‖Ω′

h
denotes the length of the edge opposite to θj

in the corresponding triangle T̃1 ∈ Ω′
h (see Figure 9). As a consequence, we can define

the energy associated with the mapX−1 as the sum of the energy of each triangle in the

mesh, i.e.,

E(X−1) =
∑

T∈Γ′

h

E(X−1)
∣∣
T
=

1

4

∑

ẽj∈Ω′

h

(cot θj + cot θk) ‖ẽj‖
2
Ω′

h
(24)

where ẽj is the generic edge of Ω′
h with end points ṽj and ṽk, while θj and θk denote

the angles opposite ej in the two adjacent elements (see Figure 9). The energy thus

coincides with a weighted sum of edge lengths. From (24), a generic component of the

stiffness matrix D can be computed as

Djk = −
1

2
(cot θj + cot θk) , (25)

if vj and vk are connected by an edge and zero otherwise ([15]). Moreover, the diagonal

entries of D are defined by Djj = −
∑

k 6=j Djk, since we have
∑

j Djk = 0. Then,

to find the planar coordinates u1j and u2j for each vertex of the mesh Γ′
h, we define

18



X−1

T1

T2

T̃1

T̃2

θj

θk

ej

x3

x2

x1

u2

u1

ṽk

ṽj

ẽj

Figure 9: Quantities involved in the energy definition.

vectors a, b ∈ R
m with components ak =

(
∂ψk

∂ν1
(p)
)

and bk =
(
∂ψk

∂ν2
(p)
)

, respectively,

for k = 1, . . . ,m. Via (18), we obtain

a− ib :=





0 if vk 6∈ {A, B, C},
−1

‖B−A‖ + i 1−Θ
‖C−C⊥‖ if vk = A,

1
‖B−A‖ + i Θ

‖C−C⊥‖ if vk = B,

i −1
‖C−C⊥‖ if vk = C,

so that the conformal coordinates u1 = (u11, u12, . . . , u1m)
t and u2 = (u21, u22, . . . , u2m)

t

defining X−1 are the solutions to the linear systems

Du1 = a and Du2 = −b, (26)

respectively. We remark that the choice made for the boundary conditions completing

problem (16) yields a singular stiffness matrix D. However, since both a and b belong

to the orthogonal complement, ker(D)⊥, of ker(D), both the linear systems in (26) are

solvable. In particular, since D restricted to ker(D)⊥ is symmetric positive definite, we

solve these systems via the conjugate gradient method.

A critical issue for this formulation is that, for a mesh with obtuse angles like the

ones involved cortical surface applications, the cotangent weights in (25) may be nega-

tive ( [2]). As a consequence, the orientation of the edges around a vertex can change,

resulting in overlapping triangles in the planar domain. Moving from (24), we can

heuristically consider the energy E(X−1) as the amount of tension each triangle places

on the edges or, likewise, the vertices. With this interpretation, a negative cotangent

weight works as a repelling force that pushes the vertex away from the triangle in-

stead of pulling it towards itself. Figure 10 (top) illustrates the problem. In particular,

the vectors h1, h2 and h3 in Figure 10 (top) show the directions that the triangles

T1 = △v1v2v3 , T2 = △v1v3v4 and T3 = △v1v4v5 act on v1, respectively. The cotangent

weight formula applied to the triangle T1 pushes the vertex v1 towards the triangle T3
causing T1 to overlap T2 and T3 in the planar domain.

To alleviate the problems due to the negative cotangent weights, we consider the

absolute value of the cotangents in (25) when computing the off-diagonal elements
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v2

v1

v3

v4

v5

h1

h2

h3

ĥ1

v2

v1

ṽ1

v3 ṽ3h1

Figure 10: In this configuration the obtuse triangle highlighted in orange has a negative weight that flips

the order of the edges when using (25) (top). Using the modification in (27), the stiffness matrix uses the

acute triangle △v1v2ṽ3 (or equivalently △ṽ1v2v3 ) instead of △v1v2v3 (bottom).

Djk, i.e., now

Djk = −
1

2
(| cot θj |+ | cot θk|) , (27)

while the diagonal entries are computed so that the property
∑

j Djk = 0 holds. No-

tice that the new formula (27) only affects the weights related to obtuse angles while

reducing to formula (25) in the presence of acute angles. In such a way, each triangle

is forced to exert an attractive force on its vertices. For the configuration in Figure 10

(top), the modification in (27) produces for the triangle T1 the new direction ĥ1 instead

of h1 and pulls the vertex v1 in the proper direction. Formula (27) effectively substitutes

the obtuse angles with their supplementary angles. Hence, the formula in (27) uses the

triangle T4 = △v1v2ṽ3 instead of using T1 (see Figure 10 (bottom)). Note that T4 and

T1 both force v1 in the direction of h1. However, the components of the corresponding

stiffness matrix depend only on the angles involved and thus similar triangles have the

same elemental stiffness. Now, due to that fact that the edge with vertices v2 and v3 is a

constraint for this configuration, T5 = △ṽ1v2v3 , the triangle similar to T4 that has v2v3
as an edge, will be used instead of T4. Hence, the contribution for v1 from T1 calculated

via (27) pulls the triangle T1 in the direction of ĥ1 as shown in Figure 10 (top). This

preserves the orientation of the triangles around v1 and prevents T1 from overlapping

neighboring triangles in the planar domain.

As a last step of the flattening procedure the map X−1 is evaluated at the data

points wj = X−1(xj) with j = 1, . . . , n, that have been projected from Γh to Γ′
h via

the simplification process to obtain their planar locations in Ω′
h.

3.3 A finite element approximation for the estimation problem

To get a finite element approximation of the estimation problem (15), we properly

reformulate this problem by introducing an auxiliary function. Essentially, we aim
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at reducing the regularity assumption of f̂ ◦ X . The introduction of the unknown

auxiliary function leads us to rewrite (15) as a system of coupled equations: find

(f̂ ◦X, γ ◦X) ∈ (H1
n0,K(Ω) ∩ C0(Ω̄))×H1(Ω) such that

µtnf̂n − λ

∫

Ω
K∇(µ ◦X) · ∇(γ ◦X)dΩ = µtnz

∫

Ω
(ξ ◦X)(γ ◦X)WdΩ+

∫

Ω
∇(ξ ◦X)K∇(f̂ ◦X)dΩ = 0, (28)

for any (µ ◦X, ξ ◦X) ∈ (H1
n0,K(Ω)∩C0(Ω̄))×H1(Ω), where H1

n0,K(Ω) consists of

functions in H1(Ω) whose co-normal derivative is identically equal to zero on ∂Ω. The

regularity of the problem guarantees the solution, f̂ ◦X , still belongs to H2
n0,K(Ω).

Now, analogously to Section 3.2.1, we introduce the linear finite element space

Vh(Ω
′
h) associated with the flattening Ω′

h of the simplified surface Γ′
h. We recall that

the dimension of the space Vh(Ω
′
h) coincides with the number of nodes of the flattened

mesh Ω′
h. Then, we can state the discrete counterpart of the estimation problem (28),

which leads us to find (f̂ ◦X, γ ◦X) ∈ Vh(Ω
′
h)× Vh(Ω

′
h) such that (28) holds for any

(µ ◦ X, ξ ◦ X) ∈ Vh(Ω
′
h) × Vh(Ω

′
h), where the integrals are now computed over Ω′

h.
To provide an algebraic counterpart of the discrete formulation, we introduce the mass

and stiffness finite element matrices given by

R0 =

∫

Ω′

h

ψ̃ψ̃t WdΩ′
h ∈ R

m×m and R1 =

∫

Ω′

h

∇ψ̃tK∇ψ̃ dΩ′
h ∈ R

m×m,

respectively, where ψ̃ = (ψ̃1, . . . , ψ̃m)
t is the column vector of the m finite element

basis functions for Vh(Ω
′
h). That is, for any g ∈ Vh(Ω

′
h)

g(·) =
m∑

j=1

g(ṽj)ψ̃j(·) = gtψ̃(·), where g = (g(ṽ1), . . . , g(ṽm))
t ∈ R

m (29)

is the column vector of evaluations of g at the m nodes ṽj of the mesh Ω′
h. Define

Ψ̃ =



ψ̃t(w1)
...

ψ̃t(wn)


 ∈ R

n×m,

to be the matrix of the m basis functions evaluated at the n data locations. Extending

the arguments detailed in [8] to the case where the data does not necessarily occur

at the vertices of the mesh, the discrete counterpart of the estimation problem (28)

reduces to finding the pair of coefficient vectors (f̂ ,γ) ∈ R
m × R

m such that, for any

(µ, ξ) ∈ R
m × R

m, we have

{
µtΨ̃tΨ̃f̂ − λµtR1γ = µtΨ̃tz

ξtR0γ + ξtR1f̂ = 0,
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with Ψ̃f̂ = f̂n and Ψ̃µ = µn where 0 ∈ R
m denotes the null vector, f̂ , γ, µ, ξ

are defined according to (29) and z is as defined in (28). Then, the estimator f̂ ◦
X ∈ Vh(Ω

′
h) that solves the discrete counterpart of the estimation problem is given by

f̂ ◦X = f̂ tψ̃, where f̂ satisfies

[
−Ψ̃tΨ̃ λR1
λR1 λR0

] [
f̂
γ

]
=

[
−Ψ̃tz
0

]
, (30)

and γ is the component vector associated with the auxiliary function γ employed in

(28). Moreover, for a given X , f̂ ◦X is uniquely determined. From (30) it follows that

f̂ =
(
Ψ̃tΨ̃ + λR1R

−1
0 R1

)−1
Ψ̃tz. (31)

Notice that the estimate f̂ is linear in the observed data and has a typical penalized

regression form (see, e.g., [23]). Thus, classical inferential tools can be applied, such

as approximate confidence bands for f and approximate prediction intervals for new

data locations. Moreover, (31) yields a closed form for a Generalized-Cross-Validation

(GCV) criterion that can be used to select the smoothing parameter λ. We refer to [8]

for more details.

Remark 3.1 In many neuroimaging applications it could be extremely interesting to

include covariate information in the model. For instance, when studying hemodynamic

signals over the cortical surface in response to a stimulus, it would be interesting to

take into account the thickness of the cortical surface at each location as a covariate

since the thickness of the cortical surface may indeed influence the size of the hemo-

dynamic signal. The covariate inclusion leads, in general, to a more in-depth analysis

by preventing the compounding of the results with other information that is varying

along with the quantity of interest. Through a semi-parametric framework, the model

presented in this paper can also be extended to include space-varying covariate infor-

mation following [8].

4 Simulation studies

In this section, we show the good performance of the proposed technique on the pawn

geometry introduced in Figure 7. In particular, our goal is to verify that the mesh

simplification procedure described in Section 2 produces a mesh that can lead to good

statistical estimates, comparable with the ones on the original mesh. For this purpose,

we also compare the proposed approach with the Iterative Heat Kernel (IHK) smoothing

developed specifically for neuroimaging applications in [4].

The IHK method works directly on the mesh without any flattening. To do this, a

Laplace-Beltrami eigenvalue problem is solved directly on the surface Γ, i.e., ordered

eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunctions φ0, φ1,
φ2, . . . are found by solving the eigenvalue problem −∆Γφj = λjφj on Γ. Thus, a
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heat kernel with bandwidth B is constructed from the eigenvalue-eigenfunction pairs

{(λj , φj)} as

KB(p, q) =
∞∑

j=0

e−λjBφj(p)φj(q),

where p and q are two generic points on Γ. The heat kernel smoothing of the quantity

of interest zj in (8), is thus given by KB ∗ zj =
∑∞

l=0 e
−λlBβl(xj)φl(xj), where

βl(xj) = 〈zj , φl(xj)〉. In practice, only k eigenvalue-eigenfunction pairs are selected

via an iterative residual fitting algorithm. For a fixed bandwidth, the level of smoothing

is determined by an optimal number of eigenfunctions selected via the F-test criterium

outlined in [4].

For the simulations based on the IHK method, we use the full mesh of the pawn

constituted by 2527 vertices. Note we cannot use the IHK method on a simplified mesh

since the method is currently devised to only work on data observed at the vertices of

the mesh. The bandwidth B has been heuristically chosen by selecting the one with

the best performance after some test runs. In particular, we set B = 10−2.5. Then, the

optimal number of eigenfunctions is selected via the F-test criterium for each simulation

replicate.

For the SR-NP method, we use the two mesh simplification strategies introduced in

Section 2.3 with several levels of simplification and show how the resulting estimates

compare to the IHK results on the full mesh. The levels of simplification we use are

provided by selecting m = 1000, 1200, 1400, 1600, 1800, 2000 vertices. The results

obtained for the 1000 node simplified meshes, using the Data+Geo and the OnlyGeo

approaches are shown in Figure 7 (center and right, respectively). For the sake of

completeness, we also compare the results to the SR-NP method using the original

mesh seen in Figure 7 (left). For each simulation replicate over each simplified mesh,

the smoothing parameter λ for the SR-NP method is chosen by GCV.

In more detail, first we generate simulated data on the original mesh of the pawn.

To do this, we consider fifty test functions of the form

f(x1, x2, x3) = a1 sin(2πx1) + a2 sin(2πx2) + a3 sin(2πx3) + 1, (32)

with coefficients aj , for j = 1, 2, 3 randomly generated from independent normal dis-

tributions with mean one and standard deviation one, where the data locations xj , for

j = 1, . . . , n, coincide with the nodes of the original three-dimensional mesh. Noisy

data values zj are obtained by adding independent normally distributed errors with

mean zero and a standard deviation 0.5 to f at each of the data locations, i.e., we have

zj = f(x1j , x2j , x3j) + ǫj , for j = 1, . . . , n, with ǫj ∼ N(0, 0.5). Figure 11 shows

a simulation example, specifically, a sample test function generated by (32) in (a), the

corresponding noisy observations zi in (b), the IHK estimate computed on the orig-

inal mesh in (c), the SR-NP estimate obtained on the 1000 node meshes yielded by

the Data+Geo and the OnlyGeo simplifications in (d) and (e), respectively. We see

that, despite using less than half the nodes, the SR-NP method is able to detect more

of the function variation with respect to the IHK approach. This is most evident on

the base of the pawn. Furthermore, via the even data distribution shown in Figure 7
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(a) (b) (c) (d) (e)
Figure 11: Example of a simulation on the pawn geometry: (a) example of the test function (32), (b) the noisy data zi as in (8), (c) the IHK estimate computed on the

original mesh, (d) the SR-NP estimate on the 1000 node mesh yielded by the Data+Geo simplification, (e) the SR-NP estimate on 1000 node mesh provided by the

OnlyGeo simplification. The color maps are obtained by linear interpolation of the data at xj for j=1,. . . ,2527.
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Figure 12: Box-plots of the Mean Square Errors (MSEs) of the estimates over the 50 simulation repetitions over the pawn.

2
4



(center), the Data+Geo simplification maintains an even level of smoothing over the

entire pawn. On the contrary, the estimates computed on the simplified mesh obtained

via the OnlyGeo approach over-smoothes on the top left-hand side of the pawn, as

seen in Figure 11 (e).

Table 1: Median (IQR) of the Mean Square Errors of the estimates obtained in the 50 simulation repetitions

over the pawn and the p-values of pairwise Wilcoxon tests verifying that the MSEs of the SR-NP estimates

are significantly lower than those for IHK estimates.

Method m Simplification MSE SR-NP vs IHK

SR-NP 1000 Data+Geo 0.0662 (0.0281) 0.0447

OnlyGeo 0.0903 (0.0494) 0.7316

SR-NP 1200 Data+Geo 0.0569 (0.0226) 0.0015

OnlyGeo 0.0839 (0.0489) 0.4386

SR-NP 1400 Data+Geo 0.0453 (0.0206) 2.207×10−8

OnlyGeo 0.0698 (0.0483) 0.0963

SR-NP 1600 Data+Geo 0.0443 (0.0198) 3.100×10−9

OnlyGeo 0.0528 (0.0285) 1.801×10−5

SR-NP 1800 Data+Geo 0.0447 (0.0207) 2.762×10−9

OnlyGeo 0.0467 (0.0190) 1.979×10−8

SR-NP 2000 Data+Geo 0.0416 (0.0208) 4.139×10−10

OnlyGeo 0.0378 (0.0163) 3.895×10−10

SR-NP 2527 0.0351 (0.0148) 3.895×10−10

IHK 2527 0.0717 (0.0978)

The superior performance of the SR-NP method combined with the Data+Geo

simplification is more evident in Table 1 and Figure 12, where more quantitative in-

formation can be inferred. In particular, for each mesh simplification and simulation

replicate, we compute the Mean Square Error (MSE) of the estimate, i.e., the mean

square distance between the true function f and its estimate f̂ . A lower MSE means

a more efficient estimate, characterized by lower bias (i.e., lower systematic errors)

and lower variance. In Table 1, we provide the median MSEs computed over the fifty

simulation replicates and, within parentheses, the corresponding Inter Quartile Range

(IQR) which quantifies the variability of the MSEs over the fifty replicates. This infor-

mation can be derived also from the box-plots in Figure 12 which illustrate graphically

the comparison among the different methods. Table 1 and Figure 12 highlight that, as

expected, the SR-NP method with the simplification based on the overall cost function,

Data+Geo, produces better results than the SR-NP method with the simplification

driven only by geometric information, OnlyGeo. In particular, for all levels of mesh

simplification except for the least simplified mesh (m = 2000), both the median MSEs

and the corresponding IQRs associated with the Data+Geo approach are lower than

the OnlyGeo ones, corresponding to more accurate and more precise estimates. In the
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last row of the table, we compare the SR-NP approach with the IHK method on the

original mesh. The SR-NP method combined with the simplification strategy driven

by both data and geometry controls produces better results in terms of estimates with

lower error (the MSEs have a lower median) and more robustness (the MSEs have a

smaller IQR). On the other hand, we observe that if we combine the SR-NP method

with the simplification strategy driven only by the geometric information, we need a

mesh with at least 1400 vertices to get an estimate with a lower median MSE than the

IHK method. This confirms the importance of including the data information in the

mesh simplification procedure. Now, to quantitatively verify these results, we use pair-

wise Wilcoxon tests [28]. The pairwise Wilcoxon test is a non-parametric statistical

hypothesis test that is used here to assess whether the MSEs of SR-NP estimates are

significantly lower than the MSEs of the IHK estimates. In particular, the lower the

p-value for this test the stronger the statistical evidence that the distribution of MSEs

for the SR-NP estimators is stochastically lower than the corresponding distribution

for the IHK estimators. A p-value smaller than 0.05 is considered significant; values

smaller than 0.001 are considered strongly significant. In the last column of Table 1,

we provide the p-values for pairwise Wilcoxon tests. These values verify that the es-

timates obtained via the SR-NP method on the original mesh (m = 2527) and on all

the Data+Geo simplified meshes have significantly lower MSEs than the estimates

obtained via the IHK method. While the OnlyGeo simplified meshes require that at

least m ≥ 1600 vertices to produce significantly lower MSEs with respect to the IHK

method.

Finally, we remark that we are able to produce quality statical estimates (in terms of

MSEs) similar to the ones associated with the original mesh by working, for instance,

on a simplified mesh with 1400 vertices. This leads to a reduction of the computational

time for the analysis (i.e., Section 3) from 156 seconds on the original mesh to 66

seconds on the Data+Geo simplified mesh.

5 Application to cortical surface data

In this section, we apply the proposed approach to the cortical surface geometry in

Figure 1 (left). In this case, we are dealing with an original mesh with 40962 nodes.

First, we apply the proposed method to a simulation study. Then, we apply it to the real

cortical surface thickness data shown in Figure 1 (right) and studied in [3] and [4].

As in the previous section, we simulate noisy data on the cortical surface mesh

by generating fifty test functions via (32) and by adding independent normally dis-

tributed errors with mean zero and a standard deviation 0.5 to the function values at

each of the data locations. We compare the SR-NP method using the two mesh sim-

plification strategies proposed in Section 2.3 with several levels of simplification to the

IHK results on the full mesh. For the IHK method, we set the bandwidth B = 1, as

suggested in [4] for data over this cortical surface mesh, and use the F-test criterium

to determine the level of smoothness as in Section 4. For the SR-NP method, we

consider three levels of mesh simplification, i.e., we generate simplified meshes with

26



m = 10000, 15000, 20000 nodes by applying both the Data+Geo and the OnlyGeo

approaches. For this test case, we do not give the SR-NP estimate over the original

cortical surface mesh because it is computationally expensive.

Table 2 reports the median MSEs and the corresponding IQRs over the fifty simu-

lation replicates. The SR-NP method consistently produces better results than the IHK

method, while using less than half the original nodes. The employment of a more com-

plex surface does not seem to compromise the performances of the proposed procedure.

As in the pawn test case, the SR-NP estimates computed over the Data+Geo simpli-

fied meshes are better than the ones computed over the OnlyGeo meshes. The low

p-values of pairwise Wilcoxon tests verify that the distribution of MSEs for the SR-NP

estimators are stochastically lower than the corresponding distribution for the IHK es-

timators. Figure 14 displays the box plots of the MSE values in Table 2. We recognize

the same trend as in Figure 12 where the Data+Geo simplification produces excel-

lent results (with lower errors and more robust estimates) using fewer nodes. Figure 13

shows a simulation replicate: an example of a test function generated by (32) in (a),

the corresponding level of noise in (b), the IHK estimate obtained on the original mesh

in (c), the SR-NP estimate on the 10000 node mesh yielded by the Data+Geo and

the OnlyGeo simplifications in (d) and (e), respectively. The SR-NP method is better

at detecting variation in the data. This is most evident in the right hemisphere of the

cortical surface.

Concerning the improvement in terms of computational effort, we remark that also

in this case the employment of a simplified mesh greatly reduces the CPU times. We are

able to produce quality statical estimates (in terms of MSEs) by working on a mesh with

less than quarter of the original vertices, i.e., 10000 vertices. This level of simplification

reduces the computational time for the analysis from 3668 seconds on the original mesh

to 544 seconds on the simplified mesh. We note that the IHK method is computationally

cheeper even when considering the SR-NP method with a simplified mesh. However,

with the extra computational time, we are able to produce substantially better estimates

and with the ability to enrich the analysis with the inclusion of covariates.

Now, let us consider real cortical surface thickness data. For the IHK method, we

set the bandwidth B = 1 and the number of iterations selected for smoothing to 200, as

suggested for this data set in [4]. For the SR-NP method, we adjust the smoothing pa-

rameter λ to have about the same amount of smoothing as the IHK method. Essentially,

this level of smoothing is set only to highlight areas of interest, i.e., to identify regions

with high or low areas of thickness. The results are shown in Figure 15. Notice that the

SR-NP method with the Data+Geo simplification is able to identify an additional area

of the low thickness (circled in Figure 15 (bottom-left)) with respect to what is detected

by the IHK approach and by the same SR-NP method combined with the OnlyGeo

simplification. This low thickness area is recognizable in the original thickness data

(see Figure 15 (top-left)).
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(a) (b) (c) (d) (e)

Figure 13: Example of a simulation on the cortical surface mesh with 40962 nodes: (a) the test function, (b) the data with noise, (c) the IHK estimate using the original

mesh, (d) the SR-NP estimate on the 10000 node mesh produced by the Data+Geo simplification, (e) the SR-NP estimate on the 10000 node mesh generated by the

OnlyGeo simplification. The color maps are obtained by linear interpolation of the data at xj for j=1,. . . ,40962.
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Figure 14: Box-plots of the Mean Square Errors (MSEs) of the estimates

over the 50 simulation repetitions over the cortical surface.

Table 2: Median (IQR) of the Mean Square Errors of the estimates obtained in

the 50 simulation repetitions over the cortical surface and p-values of pairwise

Wilcoxon tests verifying that the MSE of the SR-NP estimates are significantly

lower than those for IHK estimates.

Method m Simplification MSE SR-NP vs IHK

SR-NP 10000 Data+Geo 0.0383 (0.0427) 4.399× 10−10

OnlyGeo 0.0501 (0.0614) 4.399× 10−10

SR-NP 15000 Data+Geo 0.0332 (0.0310) 5.275× 10−10

OnlyGeo 0.0473 (0.0540) 4.674× 10−10

SR-NP 20000 Data+Geo 0.0328 (0.0281) 5.951× 10−10

OnlyGeo 0.0432 (0.0476) 5.275× 10−10

IHK 40962 0.1349 (0.2662)
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Figure 15: The thickness data on the original cortical surface mesh (top-left), the IHK estimate computed

on the original mesh (top-right), the SR-NP estimate on the 10000 node mesh provided by Data+Geo

simplification (bottom-left), the SR-NP estimate on the 10000 mesh generated by the OnlyGeo simplifi-

cation (bottom-right). The color map shows the cortical surface thickness.

6 Conclusions

The mesh simplification method based on both geometry and data controls consistently

produces meshes that lead to quality statistical estimates via the SR-NP method and

outperforms the comparison methods. In particular, the proposed simplification method
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effectively builds a mesh that approximates the original geometry and properly (in terms

of displacement and distribution) associates the data with the new geometry allowing

for subsequent statistical estimates with good inferential properties.

The proposed method could be conveniently employed, thanks to its computational

efficiency, for comparison between multiple subjects as is done in [3] and [4]. For

multiple patient studies, the data for each patient is registered to a template surface for

reference coordinates. In this case the proposed method only needs to simplify, flatten

and define a finite element basis for one simplified mesh.

Among our future goals, we aim at providing a more rigorous approach to select

the weights involved in the cost function definition, for instance, by applying some

proper optimization procedure that depends on the application and/or the geometry at

hand. For instance, it would be of interest to explore possible ways to relate the number

of the mesh nodes,m, with the MSEs of the estimates. The goal would be to identify

the minimal number of nodes that would lead to a desired level of MSE for a specific

application. Furthermore, certain computational improvements are planned such as em-

ploying a greedy strategy during the edge contraction step. Finally, we aim at extending

the simplification process to different types of manifolds. For example, by properly ac-

counting for the boundary edges, the contraction process can be adapted to manifolds

with open boundaries or holes such as in the internal carotid artery application consid-

ered in [8].
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