
MOX–Report No. 31/2011

A modular lattice Boltzmann solver for GPU
computing processors

Astorino, M.; Becerra Sagredo, J.; Quarteroni, A.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it

A modular lattice Boltzmann solver for GPU computing processors

M. Astorino∗ J. Becerra Sagredo∗ A. Quarteroni∗†‡

Abstract

During the last decade, the lattice Boltzmann method (LBM) has been increasingly ac-
knowledged as a valuable alternative to classical numerical techniques (e.g. finite elements,
finite volumes, etc.) in fluid dynamics. A distinguishing feature of LBM is undoubtedly its
highly parallelizable data structure. In this work we present a general parallel LBM framework
for graphic processing units (GPUs). After recalling the essential programming principles of the
CUDA C language for GPUs, the details of the implementation will be provided. The modular
and generic framework here devised guarantees a flexible use of the code both in two- and three-
dimensional problems. In addition, a careful implementation of a memory efficient formulation
of the LBM algorithm has allowed to limit the high memory consumption that typically affects
this computational method. Numerical examples in two and three dimensions illustrate the
reliability and the performance of the code.

Keywords: lattice Boltzmann method, GPU programming, CUDA, parallel computing, Navier-
Stokes equations

1 Introduction

The lattice Boltzmann method (LBM) is a kinetic-based approach for the numerical simulation
of fluid dynamics problems [34]. In the last two decades, this method has proven to be quite
efficient in the simulation of various transport phenomena (see [1] for a review) and can now
be considered a valuable complementary approach to more classical and consolidated techniques
(e.g. finite differences, finite elements or finite volumes) [8, 26, 33, 18, 21]. Differently from these
techniques, that directly stem from a continuum mechanics formulation of flow problems, LBM
adopts a bottom-up approach in which the macroscopic behavior is described by modeling the
interactions of moving particles at a mesoscopic level and then retrieving the macroscopic quantities
as weighted sums of the corresponding particle distribution functions. Depending on the way the
particles propagate (or stream) and interact (or collide), different macroscopic behaviors can be
described.

From the computational point of view, LBM is recognized to be both computational expensive
and memory demanding [23]. However the explicit nature of the method and its noteworthy spatial

∗CMCS, Chair of Modelling and Scientific Computing, MATHICSE, Mathematics Institute of Computational
Science and Engineering, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland

†MOX, Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Via Bonardi 9,
20133 Milano, Italy

‡Corresponding author: Alfio.Quarteroni@epfl.ch

1

locality of data access (in fact, for each lattice node only nearest neighbor information are needed)
make LBM an excellent candidate for parallel implementations.

With the recent advances in parallel computing capabilities of the contemporary graphics
processing units (GPUs), there has been a growing interest of computational scientists in using
this hardware to accelerate computationally demanding numerical simulations. Nowadays two
different programming languages for GPUs are available: the Compute Unified Device Architec-
ture (CUDA C) developed and supported by NVIDIA [10] and the Open Computing Language
(OpenCL) [28].

In the framework of LBM, efficient CUDA C implementations have been recently proposed
in various works, see e.g. [16, 35] and [36, 3, 4, 27] respectively for two- and three-dimensional
fluid problems. In order to fully benefit of the computational capabilities of GPU devices, most
of the mentioned works describe implementations that are highly optimized for a given type of
macroscopic problem and lattice structure. As a consequence, they are characterized by a limited
flexibility.

In this work a modular and efficient implementation of the LBM for GPU is presented. The
implementation is based on the CUDA C programming language and offers a modular structure
that allows for easy modification. A new memory layout based on three Structure-of-Arrays (SoA)
is used to store the unknown particle distribution functions and their access is controlled by an
ad hoc semi-indirect addressing scheme. The resulting code is also optimized in terms of memory
requirements adopting the swapping technique proposed in [22]. The proposed implementation
exploits very well the characteristics of the GPU architecture still preserving a general formulation.
As a matter of fact, even though the focus is given on the simulation of fluid flows, our general
formulation allows the (re-)use of the same code for different kind of macroscopic problems at the
expense of a slight reduction in performance.

The remainder of the paper is organized as follows. In Section 2 we briefly review the LBM and
the corresponding discretization, focusing in particular on the model for fluid flows. In Section 3
we provide the basic notions of GPU architectures as well as the essential features of the CUDA C
programming language. We present the implementation details and the optimization strategy of
our lattice Boltzmann framework in Section 4. Test cases in two and three dimensions are reported
in Section 5 in order to validate the code and discuss its performance. Finally, some concluding
remarks are given in Section 6.

2 The lattice Boltzmann method

Historically the lattice Boltzmann method has been derived from the lattice gas automata (LGA) [24].
The fundamental idea behind LGA is that the physics of macroscopic phenomena can be retrieved
by defining suitable interactions among microscopic particles, which essentially consist in the prop-
agation and the collision of particles lying on a discrete regular grid (the lattice).

Although relying on the same idea, differently from LGA, the LBM has its roots in the kinetic
theory of the Boltzmann-Maxwell equation [6]. Because of the strengthened mathematical founda-
tions of kinetic theory, LBM remedies to some of the shortcomings of LGA, while preserving the
same local nature and simplicity.

The lattice Boltzmann equation provides a minimal discrete form of the Boltzmann-Maxwell
equation

(

∂t + e · ∇x + F · ∇e

)

f(e,x, t) = J(f)(x, t), (1)

a conservation equation for the particle distribution function f(e,x, t), so that f(e,x, t)dedx gives
the total mass of particles inside the infinitesimal volume element dedx at a fixed time t, position x

2

and velocity e. The quantity F represents the external force while the term J , also called collision
operator, takes into account the effects of inter-particle collisions.

The classical form of lattice Boltzmann equation (see [24]) can be retrieved from (1) upon
discretization of the time and the phase space (position and velocity). Following [33], first the
velocity space is approximated by projecting the distribution function f onto a Hilbert subspace
HN spanned by the first N Hermite polynomials, where the order N is dictated by the macroscopic
behavior one wants to recover (e.g. N = 2 for the Navier-Stokes equations). Then the resulting
discrete velocity equation is integrated along the characteristics. An approximation with finite
differences leads to the following lattice Boltzmann equation

fi(x+ eiδx, t+ δt)− fi(x, t) = Ji(f)(x, t) + δtFi ∀i = 0, ..., Q, (2)

where δx and δt are respectively the space- and time-step, while E = {e0, ..., eQ} denotes the
discrete velocity set obtained by the projection onto HN .

Remark 1 Note that in Equation (2) the evolution of the particle distributions fi is restricted to
velocities that belong to the pre-assigned discrete set E. In other words the particles move always
on the lattice nodes and only along the links defined by the discrete set of velocities {e0, ..., eQ}. For
this reason the set of velocities is also commonly addressed as the lattice structure of the model.

On the right hand side, the quantity Fi is a discrete forcing term, approximating the external
force F. The form of Fi depends on the particular macroscopic behavior we want to simulate, or
equivalently on the choice of the lattice structure. The term Ji(f) defines a general collision operator
and represents a discrete approximation for J . The most common choice for Ji(f) is undoubtedly
the well known single relaxation time Bhatnagar-Gross-Krook (BGK) model [30], where

Ji(f) ≈ JBGK
i (f) = −

1

τ
(fi − f

eq
i) ∀i = 0, ..., Q, (3)

τ being the so-called relaxation time and f
eq
i an appropriate discrete approximation of the Maxwell-

Boltzmann equilibrium distribution [33]. The BGK model has been considered throughout this
work, nonetheless other collisional operators have been proposed in literature. For instance, Equa-
tion (3) can be considered a particular approximation of the quasilinear form

Ji(f) ≈ J
QL
i (f) = −Aij(fj − f

eq
j) ∀i = 0, ..., Q, (4)

where summation convention over repeated indices is implied [13]. In the last equation, Aij is the
quasilinear scatter matrix defined as

Aij =
∂Ji(f)

∂fj
|feq .

Other choices for Ji(f) are the multiple relaxation times (MRT) model [11], the entropic model [2]
and the regularized model [19].

Depending on the choice of the discrete velocity set E and on the collision operator Ji(f)
different macroscopic behaviors can be modeled [18]. Let us consider for example the BGK model
for isothermal low Mach number fluid flows in two and three dimensions. In these cases the
equilibrium distribution function in JBGK(f) and the forcing term Fi take respectively the forms

f
eq
i = ρwi

(

1 +
1

c2s
ei · u+

1

2c4s
(eiei − c2sI) : uu

)

∀i = 0, ..., Q, (5)

Fi =

(

1−
1

2τ

)

wi

(

ei − u

c2s
+

ei · u

c4s
ei

)

· F ∀i = 0, ..., Q, (6)

3

From a computational point of view, one can think of Equation (2) being split into two parts:

collision step : f̃i(x, t) = fi(x, t) + Ji(f)(x, t) + δtFi ∀i = 0, ..., Q, (10)

streaming step : fi(x+ eiδx, t+ δt) = f̃i(x, t) ∀i = 0, ..., Q. (11)

The collision step is a local update of the distribution functions on each lattice node, while the
streaming step moves the data across the lattice. This set of equations is eventually supplemented
with appropriate initial and boundary conditions for the distribution functions, for which multiple
formulations exist (see [25, 15, 20] and references therein). The treatment and implementation of
complex initial and boundary conditions goes beyond the scope of this work. For this reason in
the numerical experiments of Section 5, we simply initialize the computations with the equilibrium
distribution f eq and we adopt the full-way bounce back rule for solid fixed walls:

fi(x, t+ δt) = fî(x, t− δt), ∀i = 0, ..., Q, (12)

fî denoting the distribution anti-parallel to fi. Equilibrium distribution boundaries, zero-gradient
boundaries and periodic boundaries have also been implemented. An accurate description and
analysis of these and other boundary conditions for LBM can be found in [7].

3 An overview on GPUs and NVIDIA CUDA

This section briefly introduces the basics of GPU architecture and CUDA programming in order
to provide the reader with the essential understanding of this particular computational framework.
The focus is given on NVIDIA cards since we adopted the CUDA C programming language.

3.1 NVIDIA GPU architecture

In Figure 2 we illustrate the most important architectural elements of a GPU device. NVIDIA GPUs
are made of several Streaming Multiprocessors (SMs), each of which consists of a certain number
of Scalar Processors (SPs). There are also an instruction unit and three fast access memories: the
shared memory, the constant memory and the texture memory. All these memories have streaming
multiprocessor scope however the last two are read-only. The GPU device has also a fourth memory,
the device (or global) memory, and it is common to all the SMs. Differently from the others this
memory can be accessed by the CPU and it is characterized by a higher capacity but slower access.

From a practical point of view, the parallel computing capabilities of a device are often identified
with the number of GPU cores, which is given by the total number of SPs on the device. The number
of scalar processors per SM as well as the number of streaming multiprocessors depend on the series
and model of the device.

Each multiprocessor runs in parallel with the others and it is responsible for creating, managing,
and dispatching concurrent group of threads on the associated scalar processors. These groups of
threads are named blocks and are actually executed on a multiprocessor in subgroups of 32 threads
(what NVIDIA calls a warp). Depending on the number of cores per SM, a different number of
clock cycles may be required to complete the operations on the warp. As soon as all the threads
in a block terminate, a new block is launched on the vacated multiprocessors until all the blocks
have been executed.

5

Figure 2: NVIDIA GPU architecture. Source [10].

3.2 CUDA programming

The CUDA programming model is built around the multithreaded structure presented above. A
CUDA code consists in functions that can be mainly classified in two groups: functions run by the
CPU –the host– and functions run by the GPU –the device. Functions running on the device are
also called kernels. When a CUDA program on the host CPU invokes a kernel, a grid of threads is
generated. This grid is made of blocks and each block is made of threads; a sketch of it is given in
Figure 3.

The layout of the grid (i.e. the number of blocks and the number of threads) is specified at run
time during the kernel execution. The syntax adopted in the CUDA C programming language for
the kernel is the following

kernelName <<< gridSize , blockSize >>> (inputParameters);

where gridSize and blockSize prescribe respectively the dimensions of the grid and of the block.
The blocks in the grid can be organized in a one or two-dimensional layout while the threads in the
block may have up to three dimensions. Considering for example the grid in Figure 3 we have six
blocks organized in a two-dimensional layout and within each block a two-dimensional arrangement
of twelve threads. The number of blocks per grid and of threads per block may vary according
to the kernel and/or the application of interest. It is however recommended to set the number
of threads per block as a multiple of the half-warp size in order to avoid scalar processors being
idle [10]. The maximum number of blocks per grid is 65535 in each dimension, while the maximum
number of threads vary according to the compute capability of the GPU device.

6

Figure 3: Threads, blocks and grids in CUDA. Source [10].

It is worth to notice that the development of a performant CUDA code depends strongly on
threads communications and memory access pattern. Threads can efficiently communicate within a
block by passing data through the shared memory. However inter-blocks communications are much
slower, since they are based on global memory. It is therefore important to limit them whenever
possible. Optimal memory access patterns are also critical, as a matter of fact memory bandwidth
may degrade up to one order of magnitude if they aren’t properly optimized. In order to avoid
these dramatic effects on GPU performance various programming rules are recommended in [10].
Here we summarize a few of them:

• Concurrent reading/writing of threads on the same memory address has to be avoided in
order to prevent code serialization.

• Threads should be organized in groups of 16 (half-warp size) so that all the threads within the
group perform the very same operations. In this way, reading/writing operations on the group
are done into a single memory access. When threads perform different operations within the
same group, the so-called thread divergence, a reduction of performance is experienced.

• Data should be aligned in such a way that their reading/writing can be coalesced into a
continuous aligned memory access: the N-th thread of a block should access the N-th element
at address BaseAddress+N (see Figure 4.a). Index N starts from zero and it is local within a
block, BaseAddress is the memory address of the zero-th thread. Two examples where this
is not respected are given in Figure 4.b and Figure 4.c.

Remark 2 As it will be described in the next section, a naive implementation of the streaming
step on GPUs may lead to misaligned accesses (Figure 4.c).

7

!

"

#

$

%

&

'

!""

!"#

!"$

!"%

!"&

!"'

!"(

!")

(a) Coalesced

!

"

#

$

%

&

'

!""

!"#

!"$

!"%

!"&

!"'

!"(

!")

(b) Uncoalesced: non-sequential

!

"

#

$

%

&

'

!""

!"#

!"$

!"%

!"&

!"'

!"(

!")

(c) Uncoalesced: misaligned

Figure 4: Different accesses to GPU memory. The BaseAddress corresponding to the zero-th
thread is 122.

4 A modular and memory efficient GPU framework for LBM

In this section we describe the main features of our GPU framework for the lattice Boltzmann
method. Differently from other works (e.g. [36, 16, 27, 35]) which provide a very specific and
performant GPU implementation of the method, here we present a memory saving framework that
offers a high level of generality with good computational performances. The code, based on a set
of GPU procedures written in CUDA C language, adopts a modular structure that allows for easy
modification.

The presentation of the framework is divided in three parts. First the basic LBM algorithm is
illustrated. Then the data layout and the corresponding CUDA grid structure are described. Finally
a description of the optimizations made on the routines follows. Comments on the algorithmic
similarities and differences respect to other GPU implementations are also pointed out through the
section.

LBM algorithm. In a classical LBM algorithm at least six milestones routines can be identified:

• initProblem for problem initialization,

• computeMacro for computation of macroscopic quantities from the particle distributions,

• collideParticles for particle collision,

• streamParticles for particle streaming,

• applyBCs for the enforcement of boundary conditions,

• exportResults to export results.

In our code these procedures have been implemented according to Algorithm 1.
In the routine initProblem the initialization procedure is implemented. As already mentioned,

in this work we consider for the sake of simplicity an initialization based on the values of the
equilibrium distribution f eq, nonetheless other approaches exists in literature (see [5] for a review).
The functions computeMacro and collideParticles are implemented within the same routine
computeMacroAndCollideParticles since the macroscopic quantities are locally needed for the

8

evaluation of the equilibrium distribution (5). For each node, first the density and velocity compu-
tations are carried out according to Equations (8)-(9), then the collision step (10) follows. Eventu-
ally, the procedure streamParticles implements step (11) and the routine applyBCs enforces the
various boundary conditions (e.g. Equation (12)).

Algorithm 1: Basic LBM algorithm

1 geoData = input(GeometryData);
2 physicsData = input(PhysicsData);

3 initProblem(geoData, physicsData);

4 for time ← 0 to finalTime do

5 computeMacroAndCollideParticles();
6 streamParticles();
7 applyBCs();
8 if time = postprocessTime then

9 exportResults();

10 end

11 end

Each one of the routines reported in Algorithm 1 has been implemented in independent CUDA
kernels and wrapped in C++ functions. Algorithm 2 provides an example of the C++ wrapper
for the streamParticlesKernel routine. Note that in literature other implementations propose
a unique GPU kernel containing all the different routines (e.g. collision, streaming and boundary
treatment). This approach exploits at best the memory resources in the GPU limiting communi-
cations across global memory, nonetheless it remains constraint in terms of modularity.

Remark 3 As we will notice in the following, higher modularity is not the only advantage of
our approach. As a matter of fact, the use of separate kernels for different routines allows us to
independently select for each one the grid layout which offers the best performance.

Algorithm 2: streamParticles wrapper

1 void streamParticles(){
2 ... // code executed on the host ;
3 streamParticlesKernel <<<gridSize, blockSize>>> (inputParameter1,

inputParameter2); // code executed on the device ;
4 ... // code executed on the host ;
5 }

Data layout and CUDA grid organization. The data layout of the particle distributions and
the grid structure of the kernels have substantial impact on the performance in GPU codes. Even
though the two are intrinsically related, the data layout remains in general unique in the whole
code, while the grid structure may be different among the kernel functions.

In literature two main data layouts can be identified [37]. The first, conventionally called “Array-
of-Structures” (AoS) arrangement, stores contiguously the Q+1 particle distribution functions for
each lattice node (Figure 5.a). The second arrangement, named “Structure-of-Arrays” (SoA),

9

for each lattice node. The need of this huge amount of unknowns per node may become critical
in GPU devices, as a consequence in our current framework we adopted the swapping technique
proposed in [22, 17] which allows to perform lattice Boltzmann simulations storing only qNxNyNz

variables (i.e. only the fi for each lattice node). We finally remark that in [3] a different memory
access technique with a similar characteristics in terms of memory saving has been proposed and
implemented on GPU devices.

5 Numerical experiments

In this section we present two numerical experiments respectively based on a two- and a three-
dimensional lid driven cavity. The former has the aim of validating our code, the latter of evaluating
its performance. Note that the validation of the code is limited to the two-dimensional case because
of the generality of the implementation. As a matter of fact the routines used are the same for all
the dimensions, the only difference is related to the lattice structure adopted.

All the simulations are performed on the graphic device Nvidia GeForce GTX 480 using the
CUDA Toolkit 4.0 RC2. It has 480 CUDA cores (15 SMs with 32 SPs per multiprocessor) and its
main features are: memory clock rate of 1848 Mhz, total amount of global memory of 1.6 GBytes
and 32768 registers per block. Even though the compute capabilities of this card (= 2.0) allow for
computations in single- and double-precision floating-point, here we will present only the single-
precision computations, which are more significant for comparison with previous works.

5.1 Two-dimensional lid driven cavity

The two-dimensional lid driven cavity test is one of the most popular validation problems for
fluid flow simulations. In this test, the fluid is contained in a unitary squared domain and it has
Dirichlet boundary conditions on all sides: three stationary sides and one (at the top) moving side,
characterized by a unitary tangent velocity (Figure 9).

Figure 9: Two-dimensional sketch of the lid driven cavity problem.

Two different flow conditions have been simulated, the first for a Reynolds number of Re = 100,

13

0 128 256 384 512 640 768 896 1024

Number of nodes x-direction

400

420

440

460

480

500

M
L

U
P

S

64 threads per block

128 threads per block

256 threads per block

(a) D3Q15

128 256 384 512

Number of nodes x-direction

320

330

340

350

360

370

M
L

U
P

S

64 threads per block

128 threads per block

256 threads per block

(b) D3Q19

Figure 14: Performance of the code for different lattice discretizations of the x-direction.

the solution both on fluid and boundary nodes. Moreover, the swapping technique proposed in [22]
has been adopted to save up to the 50% of the memory required by a standard LBM implementation.
The performance of the code is very good, achieving on a NVIDIA GeForce GTX 480 more than
490 MLUPS and 370 MLUPS respectively for the D3Q15 and the D3Q19 lattice structures. Future
work will include the extension of the code to multiple GPUs and hybrid CPU-GPU clusters.

Acknowledgments

The authors would like to acknowledge the financial support of the Swiss Platform for High-
Performance and High-Productivity Computing (HP2C) and of the European Research Council
through the Advanced Grant Mathcard, Mathematical Modelling and Simulation of the Cardiovas-
cular System, Project ERC-2008-AdG 227058.

References

[1] C.K. Aidun and J.R. Clausen. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid
Mech., 42:439–472, 2010.

[2] S Ansumali. Minimal kinetic modeling of hydrodynamics. PhD thesis, ETH Zürich, 2004.

[3] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar. Accelerating lattice Boltzmann
fluid flow simulations using graphics processors. In 2009 International Conference on Parallel
Processing, pages 550–557. IEEE, 2009.

[4] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras. A flexible high-performance
lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries. Con-
currency Computat.: Pract. Exper., 22(1):1–14, 2010.

[5] A. Caiazzo. Analysis of lattice Boltzmann initialization routines. Journal of statistical physics,
121(1):37–48, 2005.

[6] C. Cercignani. Mathematical methods in kinetic theory. Plenum Press New York, 1969.

17

[7] P. Chen. The lattice Boltzmann method for fluid dynamics: theory and applications. Master’s
thesis, EPFL, 2011.

[8] S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech.,
30:329–364, 1998.

[9] B. Chopard and M. Droz. Cellular automata modeling of physical systems. Cambridge Uni-
versity Press Cambridge, UK, 1998.

[10] NVIDIA CUDA. Programming Guide, Version 3.2, 2010.

[11] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.S. Luo. Multiple-relaxation-
time lattice Boltzmann models in three-dimensions. Trans. R. Soc. Lond. A, 360(1792):437–
451, 2002.

[12] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method. J. Comput. Phys., 48(3):387–411, 1982.

[13] F.J. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations. EPL (Europhysics
Letters), 9:663–668, 1989.

[14] J. Hoberock and N. Bell. Thrust: A parallel template library, 2010. Version 1.3.0.

[15] P.H. Kao and R.J. Yang. An investigation into curved and moving boundary treatments in
the lattice Boltzmann method. J. Comput. Phys., 227(11):5671–5690, 2008.

[16] F. Kuznik, C. Obrecht, G. Rusaouen, and J.J. Roux. LBM based flow simulation using GPU
computing processor. Comput. Math. Appl., 59(7):2380–2392, 2010.

[17] J. Lätt. How to implement your ddqq dynamics with only q variables per node (instead of
2q). Technical report, Tufts University, June 2007.

[18] J. Lätt. Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, Geneva University,
2007.

[19] J. Lätt and B. Chopard. Lattice Boltzmann method with regularized non-equilibrium distri-
bution functions. Math. Comp. Sim., 72:165–168, 2006.

[20] J. Lätt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler. Straight velocity boundaries
in the lattice Boltzmann method. Phys. Rev. E, 77:056703, 2008.

[21] O. Malaspinas. Lattice Boltzmann method for the simulation of viscoelastic fluid flows. PhD
thesis, EPFL, 2009.

[22] K. Mattila, J. Hyväluoma, T. Rossi, M. Aspnäs, and J. Westerholm. An efficient swap algo-
rithm for the lattice Boltzmann method. Comput. Phys. Commun., 176(3):200–210, 2007.

[23] K. Mattila, J. Hyväluoma, J. Timonen, and T. Rossi. Comparison of implementations of the
lattice-Boltzmann method. Comput. Math. Appl., 55(7):1514–1524, 2008.

[24] G.R. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas au-
tomata. Phys. Rev. Lett., 61(20):2332–2335, Nov 1988.

[25] R. Mei, L.-S. Luo, P. Lallemand, and D. d’Humières. Consistent initial conditions for lattice
Boltzmann simulations. Comp. Fluids, 35:855–862, 2006.

18

[26] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, and D. Joseph. The lattice Boltzmann equa-
tion method: theoretical interpretation, numerics and implications. Int. J. Multiphase Flow,
29(1):117 – 169, 2003.

[27] C. Obrecht, F. Kuznik, B. Tourancheau, and J.J. Roux. A new approach to the lattice Boltz-
mann method for graphics processing units. Comput. Math. Appl., 2010.

[28] openCL. http://www.khronos.org/opencl/.

[29] B. Palmer and J. Nieplocha. Efficient algorithms for ghost cell updates on two classes of
mpp architectures. In S.G. Akl and T. Gonzalez, editors, PDCS International Conference
on Parallel and Distributed Computing Systems, pages 197–202. ACTA Press, Anaheim, CA,
United States(US), 2002.

[30] Y.H. Qian, D. d’Humieres, and P. Lallemand. Lattice BGK models for Navier-Stokes equation.
EPL (Europhysics Letters), 17:479, 1992.

[31] S. Ryoo, C.I. Rodrigues, S.S. Baghsorkhi, S.S. Stone, David B. Kirk, and W.W. Hwu. Op-
timization principles and application performance evaluation of a multithreaded GPU using
CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP ’08, pages 73–82, New York, NY, USA, 2008. ACM.

[32] M. Schulz, M. Krafczyk, J. Tölke, and E. Rank. Parallelization strategies and efficiency of CFD
computations in complex geometries using lattice Boltzmann methods on high-performance
computers. In High performance scientific and engineering computing: proceedings of the 3rd
International FORTWIHR Conference on HPSEC, Erlangen, March 12-14, 2001, page 115.
Springer Verlag, 2002.

[33] X. Shan, X.-F. Yuan, and H. Chen. Kinetic theory representation of hydrodynamics: a way
beyond the Navier-Stokes equation. J. Fluid Mech., 550:413–441, 2006.

[34] S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University
Press, USA, 2001.

[35] J. Tölke. Implementation of a Lattice Boltzmann kernel using the Compute Unified Device
Architecture developed by nVIDIA. Comput. Visual. Sci., 13(1):29–39, 2010.

[36] J. Tölke and M. Krafczyk. TeraFLOP computing on a desktop PC with GPUs for 3D CFD.
Int. J. Comput. Fluid. Dynam., 22(7):443–456, 2008.

[37] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single processor performance of simple
lattice Boltzmann kernels. Computers & Fluids, 35(8-9):910–919, 2006.

[38] D.A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an introduc-
tion, volume 1725 of Lecture Notes in Mathematics. Springer, 2000.

A Lattice structures

Below we provide the various lattice structures implemented in our lattice Boltzmann code. For
the sake of simplicity these are given in lattice units, i.e. assuming a unitary dimensionless space
and time discretizations (δt = 1 and δx = 1). For each lattice structure we provide the speed of

19

sound cs, the lattice weights wi and the lattice velocities ei. The weights are grouped according to
their euclidean norm. Different subscripts identifies different groups: 0 for the weight associated to
the rest distribution, s for small, m for medium and l for long.

D2Q5

c2s =
1

2

w0 = 0 ws =
1

4

e0 = (0, 0)
e1 = (−1, 0) e2 = (0,−1) e3 = (1, 0) e4 = (0, 1)

D2Q9

c2s =
1

3

w0 =
4

9
ws =

1

9
wl =

1

36

e0 = (0, 0)
e1 = (−1, 1) e2 = (−1, 0) e3 = (−1,−1) e4 = (0,−1)
e5 = (1,−1) e6 = (1, 0) e7 = (1, 1) e8 = (0, 1)

D3Q15

c2s =
1

3

w0 =
2

9
ws =

1

9
wl =

1

72

e0 = (0, 0, 0)
e1 = (−1, 0, 0) e2 = (0,−1, 0) e3 = (0, 0,−1)
e4 = (−1,−1,−1) e5 = (−1,−1, 1) e6 = (−1, 1,−1) e7 = (−1, 1, 1)
e8 = (1, 0, 0) e9 = (0, 1, 0) e10 = (0, 0, 1)
e11 = (1, 1, 1) e12 = (1, 1,−1) e13 = (1,−1, 1) e14 = (1,−1,−1)

20

D3Q19

c2s =
1

3

w0 =
1

3
ws =

1

18
wl =

1

36

e0 = (0, 0, 0)
e1 = (−1, 0, 0) e2 = (0,−1, 0) e3 = (0, 0,−1)
e4 = (−1,−1, 0) e5 = (−1, 1, 0) e6 = (−1, 0,−1)
e7 = (−1, 0, 1) e8 = (0,−1,−1) e9 = (0,−1, 1)
e10 = (1, 0, 0) e11 = (0, 1, 0) e12 = (0, 0, 1)
e13 = (1, 1, 0) e14 = (1,−1, 0) e15 = (1, 0, 1)
e16 = (1, 0,−1) e17 = (0, 1, 1) e18 = (0, 1,−1)

D3Q27

c2s =
1

3

w0 =
8

27
ws =

2

27
wl =

1

216

e0 = (0, 0, 0)
e1 = (−1, 0, 0) e2 = (0,−1, 0) e3 = (0, 0,−1)
e4 = (−1,−1, 0) e5 = (−1, 1, 0) e6 = (−1, 0,−1)
e7 = (−1, 0, 1) e8 = (0,−1,−1) e9 = (0,−1, 1)
e10 = (1, 0, 0) e11 = (0, 1, 0) e12 = (0, 0, 1) e13 = (−1, 1, 1)
e14 = (1, 0, 0) e15 = (0, 1, 0) e16 = (0, 0, 1)
e17 = (1, 1, 0) e18 = (1,−1, 0) e19 = (1, 0, 1)
e20 = (1, 0,−1) e21 = (0, 1, 1) e22 = (0, 1,−1)
e23 = (1, 1, 1) e24 = (1, 1,−1) e25 = (1,−1, 1) e26 = (1,−1,−1)

21

MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

31/2011 Astorino, M.; Becerra Sagredo, J.; Quarteroni, A.

A modular lattice Boltzmann solver for GPU computing processors

30/2011 Nobile, F.; Pozzoli, M.; Vergara, C.

Time accurate partitioned algorithms for the solution of fluid-structure

interaction problems in haemodynamics

29/2011 Morin, P.; Nochetto, R.H.; Pauletti, S.; Verani, M.

AFEM for Shape Optimization

28/2011 Pischiutta, M.; Formaggia, L.; Nobile, F.

Mathematical modelling for the evolution of aeolian dunes formed by a

mixture of sands: entrainment-deposition formulation

27/2011 Antonietti, P.F.; Bigoni, N.; Verani, M.

A Mimetic Discretization of Elliptic Control Problems

26/2011 Secchi, P.; Vantini, S.; Vitelli, V.

Bagging Voronoi classifiers for clustering spatial functional data

25/2011 de Luca, M.; Ambrosi, D.; Robertson, A.M.; Veneziani, A.;

Quarteroni, A.

Finite element analysis for a multi-mechanism damage model of cere-

bral arterial tissue

24/2011 Manzoni, A.; Quarteroni, A.; Rozza, G.

Model reduction techniques for fast blood flow simulation in parametrized

geometries

23/2011 Beck, J.; Nobile, F.; Tamellini, L.; Tempone, R.

On the optimal polynomial approximation of stochastic PDEs by Galerkin

and Collocation methods

22/2011 Azzimonti, L.; Ieva, F.; Paganoni, A.M.

Nonlinear nonparametric mixed-effects models for unsupervised classi-

fication

