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A DG-VEM METHOD FOR THE DISSIPATIVE WAVE EQUATION

PAOLA FRANCESCA ANTONIETTI∗, FRANCESCA BONIZZONI∗, MARCO VERANI∗

Abstract. A novel space-time discretization for the (linear) scalar-valued dissipative
wave equation is presented. It is a structured approach, namely, the discretization space
is obtained tensorizing the Virtual Element (VE) discretization in space with the Dis-
continuous Galerkin (DG) method in time. As such, it combines the advantages of both
the VE and the DG methods. The proposed scheme is implicit and it is proved to be
unconditionally stable and accurate in space and time.
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1. Introduction

In this paper we propose a space-time Virtual Element/Discontinuous Galerkin method
for the (linear) scalar-valued dissipative wave equation in two- and three-dimensions. The
method is based on Virtual Element (VE) for space discretization coupled with discon-
tinuous Galerkin (DG) finite element method for the time integration of the resulting
second-order ordinary differential system. The model problem considered in this paper
serves as a prototype model for the vector-valued (damped) elastic wave equation typically
encountered in geophysical applications.

The Virtual Element method (VEM) has been introduced in [15] for elliptic problems.
VEMs for linear and nonlinear elasticity have been developed in [16, 30, 18], whereas VEMs
for parabolic, plate bending, Cahn-Hilliard, Stokes, Helmholtz and Laplace-Beltrami prob-
lems have been addressed in [48, 20, 6, 5, 42, 29]. VEMs for the space discretization of
wave-type problems have been addressed in [47, 7, 8, 23].

Concerning time-integration of second-order differential systems stemming from space
discretization of wave-type problems, classically, time marching schemes are based on
(either implicit or explicit) finite differences approaches, e.g., we refer to [40, 21] for a a
general overview. On the other hand, space-time finite element methods for second-order
hyperbolic equations have been largely developed, thanks to their ability to achieve high-
order approximations in both space and time, to accurately capture steep fronts, and their
firm mathematical foundation, where stability and convergence can been proved.

Among space-time finite element methods, we can distinguish between “structured” and
“unstructured” numerical approaches. In “structured” approaches, the space-time grid is
obtained as tensor product of space and time meshes; a non-exhaustive list of approaches
includes [46, 44, 27, 13, 10]. For such formulations, h−, p− or hp− adaptive refinement
of the space-time domain can be developed and implemented, see, e.g., [31, 22]. On the
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other hand, “unstructured” techniques, see, e.g., the seminal works [36, 37] make use of
full space-time meshes, where time is treated as an additional dimension, see [51, 2, 25] for
examples, and the recent contribution [32]. Among unstructured methods, we also mention
Trefftz-type techniques [39, 12, 14, 41, 43], in which the numerical solution is looked for in
the Trefftz space, and the tent-pitching paradigm [34], in which the space-time elements
are progressively built on top of each other in order to grant stability of the numerical
scheme. Recently, in [41, 43] a combination of Trefftz and tent-pitching techniques has
been proposed with application to first order hyperbolic problems. A tent-pitching scheme
motivated by Friedrichs’ theory can be found in [33].

The DG approach has been extensively used to approximate initial-value problems,
where the DG paradigm shows certain advantages with respect to other implicit schemes
such as the Johnson’s method, see e.g. [38, 3]. Indeed, thanks to the DG paradigm, the
solution at time-slab [tn, tn+1] depends only on the solution at the time instant t−n . The
use of DG methods in both space and time dimensions leads to a fully DG space-time
formulation such as e.g., [24, 49, 50, 10].

Finally, a typical approach for second order differential equations consists in reformu-
lating them as a system of first order hyperbolic equations. Thus, velocity is considered
as an additional problem’s unknown, yielding to doubling the dimension of the final linear
system, cf. [24, 36, 28, 38, 35, 11].

In this work we present a novel structured VEM/DG formulation that combines the VE
advantages for space discretization together with those of the DG methods for time inte-
gration. The obtained scheme is implicit, unconditionally stable and provides an accurate
approximation with respect to both space and time discretization errors. Throughout the
paper we will use the notation x ≲ y with the meaning x ≤ cy, with c positive constant
independent of the discretization parameters.

The paper is organized as follows. In Section 2 we introduce the problem; its semi-
discrete VEM approximation is discussed in Section 3, and in Section 4 we present DG
discretization in time. Section 5 introduces the fully-discrete VEM-DG formulation and
studies its well-posedness and stability, whereas in Section 6 we prove a priori error esti-
mates in a suitable energy norm. Finally, in Section 7, the method is validated through
several numerical experiments in two dimensions (in space).

2. Problem setting

Let Ω ⊂ Rd, d = 2, 3, be an open bounded convex polygonal domain. The problem we
are interested reads as follows: for T > 0, find u : Ω× (0, T ] → R such that

(2.1)

 utt + νut −∆u = f, in Ω× (0, T ],
u = 0, on ∂Ω× (0, T ],
u(·, 0) = u0, ut(·, 0) = z0, in Ω,

where ν ∈ R+ is the dissipation coefficient, f is the external force, u0 and z0 are the
initial data, and ut, utt denote the first and second order time derivative of the unknown
function u, respectively. Note that, by little modifications, our analysis extends to the case
of (positive) bounded dissipation function ν ∈ L∞(Ω). By standard arguments, we derive
the variational formulation of (2.1): given f ∈ L2(Ω × (0, T )) and u0, z0 ∈ H1

0 (Ω), find
u ∈ C0

(
0, T ;H1

0 (Ω)
)
∩C1

(
0, T ;L2(Ω)

)
such that, for all v ∈ H1

0 (Ω) and for a.e. t ∈ (0, T )

(2.2) (utt(t), v)L2(Ω) + ν (ut(t), v)L2(Ω) + a(u(t), v) = (f(t), v)L2(Ω) ,
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supplemented with the initial conditions u(·, 0) = u0, ut(·, 0) = z0, where (•, •)L2(Ω)

denotes the L2(Ω)-inner product, and a : H1
0 (Ω) × H1

0 (Ω) → R is defined as a(w, v) =
(∇w,∇v)L2(Ω). Following [26] it is possible to prove existance and uniqueness of the

solution to problem (2.2).

3. Space discretization based on the VEM

In this section we apply the VEM to discretize problem (2.2) in space. In particular, we
follow [47], where the VE space discretization of (2.2) with damping ν = 0 is introduced.
We start recalling the ingredients of the VEM that we will need, with focus on the two-
dimensional case (the three-dimensional case being analogous but more technical). For a
complete presentation, we refer to [15, 4, 17].

3.1. VE space. Let Th be a (not necessarily conforming) decomposition of Ω into nP
non-overlapping (open) polygons Eℓ with flat faces, i. e., Ω̄ = ∪nP

ℓ=1Ēℓ with Eℓ ∩ Eℓ′ = ∅
for ℓ ̸= ℓ′. Let hE := diam(E) and h := maxE∈Th hE . In the following, we assume that (i)
each element E ∈ Th is star-shaped with respect to a ball of radius γ hE ; (ii) the distance
between any two vertices of E is larger than c hE , for γ, c > 0 constants independent of h
and E.

Let k ∈ N denote the polynomial degree of the method. For any fixed E ∈ Th, we
introduce the following notations:

(i) Pk(E) is the set of polynomials on E of total degree less or equal to k;
(ii) B(∂E) := {v ∈ C0(∂E) s.t. v|e ∈ Pk(e) for all edge e ⊂ ∂E};
(iii) Π∇,E : H1(E) → Pk(E) is the energy projection operator defined by

(3.1) aE(qk, w −Π∇,Ew) = 0 ∀ qk ∈ Pk(E),

where aE : H1(E) × H1(E) → R is the local counterpart of the bilinear form
a(•, •), namely, aE(v, w) =

´
E ∇v · ∇w dx for all v, w ∈ H1(E), and a(v, w) =∑

E∈Th a
E(v, w) for all v, w ∈ H1(Ω). To fix the constant in the definition (3.1)

of Π∇,Ew, we further require
´
E Π∇,Ew dx = 0;

(iv) Π0,E : L2(E) → Pk(E) is the L2-orthogonal projection operator defined by

(3.2)
(
qk, w −Π0,Ew

)
L2(E)

= 0 ∀ qk ∈ Pk(E).

There exists a positive constant C such that, for all u ∈ Hs+1(E) with 0 ≤ s ≤ k,
there holds ∥∥u−Π0,Eu

∥∥
L2(E)

≤ Chs+1
E |u|Hs+1(E) ,(3.3)

where hE is the diameter of the element E. (See [19]).

We can now introduce the (local) enhanced VE space

(3.4) WE
h :=

{
w ∈ V E

h s.t.
(
w −Π∇,Ew, q

)
L2(E)

= 0 for all q ∈ Pk(E)/Pk−2(E)
}
,

where V E
h denotes the (local) augmented VE space

V E
h :=

{
w ∈ H1(E) s.t. w ∈ Bk(∂E) and ∆w ∈ Pk(E)

}
,

and Pk(E)/Pk−2(E) denotes the set of polynomials of total degree k on E that are L2-
orthogonal to all polynomials of total degree k − 2 on E (with the convention P−1 := ∅).
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Note, in particular, that Pk(E) ⊂ WE
h (E). The space WE

h is equipped with the following
set of (local) degrees of freedom (DOFs):

• nodal values at all nE vertices of the polygon E;
• nodal values at k − 1 Gauss-Lobatto quadrature points of every edge e ∈ ∂E;
• (for k ≥ 2) moments up to order k − 2 in E, namely, for w ∈WE

h ,

(w, qk−2)L2(E) for all qk−2 ∈ Pk−2.

In particular, dim(WE
h ) = nEk + k(k−1)

2 . It is important to notice that both the energy

projection and the L2-orthogonal projection operators are computable only on the basis
of degrees of freedom above.

The global enhanced VE space is given by

(3.5) Wh :=
{
v ∈ H1

0 (Ω) s.t. v|E ∈WE
h for all E ∈ Th

}
.

It is equipped with the following set of (global) DOFs:

• nodal values at all nV vertices of Th;
• nodal values at k − 1 Gauss-Lobatto quadrature points of all ne edges of Th;
• (for k ≥ 2) moments up to order k−2 in all nP polygons of Th, namely, for w ∈Wh,

(w, qk−2)L2(E) for all qk−2 ∈ Pk−2(E);

and it has dimension dim(Wh) = nV + (k − 1)ne + nP
(k−1)(k−2)

2 . In the following, we set
Nh := dim(Wh).

Given a smooth enough function u, we define its VE interpolant uI as the function in
Wh verifying, for all j = 1, . . . , Nh

(3.6) dofj(u) = dofj(uI),

where dofj is the operator associating its argument to the j-th (global) DOF. In [15] it is
shown that there exists a positive constant C such that, for all E ∈ Th, there holds

(3.7) ∥u− uI∥L2(E) + h |u− uI |H1(E) ≤ Chk+1 |u|Hk+1(E) .

3.2. VE bilinear forms. Based on the classical observation that, given an arbitrary
pair of VE functions vh, wh ∈ WE

h , the quantities aE(vh, wh), (vh, wh)L2(E) can not be

computed, we introduce computable approximations aEh , m
E
h : WE

h ×WE
h → R, given by

aEh (vh, wh) := aE(Π∇,Evh,Π
∇,Ewh) + SE

(
(Id−Π∇,E)vh, (Id−Π∇,E)wh

)
,

mE
h (vh, wh) :=

(
Π0,Evh,Π

0,Ewh)
)
L2(E)

+RE
(
(Id−Π0,E)vh, (Id−Π0,E)wh

)
,

(3.8)

where SE , RE : WE
h ×WE

h → R are symmetric stabilizing bilinear forms fulfilling, for all

vhwh ∈WE
h with Π∇,Evh = 0, Π0,Ewh = 0,

aE(wh, wh) ≲R
E(wh, wh) ≲ aE(wh, wh),

(wh, wh)L2(E) ≲S
E(wh, wh) ≲ (wh, wh)L2(E) .

(3.9)

In particular, the local virtual bilinear forms defined in (3.8) fulfill the k-consistency and
stability properties, namely, for all qh ∈ Pk(E) and wh ∈WE

h

aEh (qh, wh) = aE(qh, wh), mE
h (qh, wh) = mE(qh, wh),(3.10)
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and

aE(wh, wh) ≲a
E
h (wh, wh) ≲ aE(wh, wh),

(wh, wh)L2(E) ≲m
E
h (wh, wh) ≲ (wh, wh)L2(E) .

(3.11)

Remark 3.1. In the numerical experiments, we will approximate the stabilizing forms
SE(•, •), RE(•, •) with the computable bilinear forms SE

h (•, •), RE
h (•, •) defined as follows:

SE
h (vh, wh) :=

NE∑
r=1

DOFr

(
(Id−Π∇,E)vh

)
DOFr

(
(Id−Π∇,E)wh

)
,

RE
h (vh, wh) := |E|

NE∑
r=1

DOFr

(
(Id−Π0,E)vh

)
DOFr

(
(Id−Π0,E)wh

)
,

where |E| is the area of the polygon E, NE := dim(WE
h ) and {DOFr}NE

r=1 denotes the set
of local DOFs introduced in Section 3.1.

The global virtual bilinear forms ah, mh : Wh×Wh → R are then defined, for all vhwh ∈
WE

h , as

ah(vh, wh) :=
∑
E∈Th

aEh (vh, wh), mh(vh, wh) :=
∑
E∈Th

mE
h (vh, wh).

From (3.11) it follows that the global virtual bilinear forms are continuous, namely,

ah(v, w) ≲ ∥∇v∥L2(Ω) ∥∇w∥L2(Ω) ,

mh(v, w) ≲ ∥v∥L2(Ω) ∥w∥L2(Ω) .
(3.12)

We define the discrete H1-seminorm and the discrete L2-norm as follows

|•|21,h := ah(•, •), ∥•∥20,h := mh(•, •).(3.13)

Combining (3.11) and (3.12), we find that, for all vh, wh ∈Wh, there holds

mh(v, w) ≲ ∥vh∥0,h ∥wh∥0,h .(3.14)

3.3. VE semi-discrete variational problem. We define the VE approximation to the
loading term f(t) for all t ∈ (0, T ) as

fh(t)|E := Π0,Ef(T ) for all E ∈ Th,
and the VE approximated initial conditions u0,h, z0,h as the VE interpolants of u0, z0,
specifically, uh,0, zh,0 are piecewise polynomials of degree less than or equal to k, with
evaluations of DOFs coinciding with those of u0, z0 (see (3.6)).

The VE semi-discrete approximation to (2.2) reads: find uh ∈ C0 (0, T ;Wh)∩C1 (0, T ;Wh)
such that, for all vh ∈Wh and for a.e. t ∈ (0, T )

(3.15) mh(uh,tt(t), vh) + νmh(uh,t(t), vh) + ah(uh(t), vh) = (fh(t), vh)L2(Ω) ,

supplemented with the initial conditions uh(·, 0) = uh,0, uh,t(·, 0) = zh,0. By classical
arguments, it is possible to show that problem (3.15) admits a unique solution uh(t) (see
Section A.1). Moreover, there holds the following stability result.

Theorem 3.2. Let fh ∈ L2(0, T ;L2(Ω)). Then, the unique solution uh to problem (3.15)
fulfills the following inequality, for all t ∈ (0, T )

(3.16) |uh(t)|21,h + ∥uh,t(t)∥20,h ≲ |uh,0|21,h + ∥zh,0∥20,h + ∥fh∥2L2(0,t;L2(Ω)) .
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Proof. Choosing the test function vh = uh,t(t) in problem (3.15), and integrating in time
between 0 and t, we findˆ t

0
mh(uh,tt(s), uh,t(s)) ds+ ν

ˆ t

0
mh(uh,t(s), uh,t(s)) ds+

ˆ t

0
ah(uh(s), uh,t(s)) ds

=

ˆ t

0
(fh(s), uh,t(s))L2(Ω) ds.

Observe that ˆ t

0
mh(uh,tt(s), uh,t(s)) ds =

1

2

ˆ t

0

d

ds
mh(uh,t(s), uh,t(s)) ds

=
1

2

(
∥uh,t(t)∥20,h − ∥zh,0∥20,h

)
,

and, analogously,ˆ t

0
ah(uh(s), uh,t(s)) ds =

1

2

ˆ t

0

d

ds
ah(uh(s), uh(s)) ds =

1

2

(
|uh(t)|21,h − |uh,0|21,h

)
.

Moreover, using (3.11) we find thatˆ t

0
mh(uh,t(s), uh,t(s)) ds ≳

ˆ t

0
∥uh,t(s)∥2L2(Ω) ds ≳ ∥uh,t∥2L2(0,t;L2(Ω)) .

Finally, using the Cauchy-Schwarz and Young’s inequalities, we findˆ t

0
(fh(s), uh,t(s))L2(Ω) ds ≤ ∥fh(t)∥L2(0,t;L2(Ω)) ∥uh,t∥L2(0,t;L2(Ω))

≤ 1

2ε
∥fh(t)∥2L2(0,t;L2(Ω)) +

ε

2
∥uh,t∥L2(0,t;L2(Ω)) .

Hence, (3.16) follows for ε sufficiently small. □

Remark 3.3. Let the further assumption uh ∈ Hq(0, T ;H1
0 (Ω) for q ≥ 2 hold, and de-

note with ∂qt uh the q-th time derivative of uh (which still fulfills homogeneous Dirichlet
boundary conditions on ∂Ω). Then, wh := ∂qt uh satisfies, for all vh ∈ Wh and for a.e.
t ∈ (0, T ),

mh(wh,tt(t), vh) + νmh(wh,t(t), vh) + ah(wh(t), vh) = (∂qt fh(t), vh)L2(Ω) ,

coupled with initial conditions wh(0) = wh,t(0) = 0. Theorem 3.2 then states that

(3.17) |wh(t)|21,h + ∥wh,t(t)∥20,h ≲
∥∥∥f (q)h

∥∥∥2
L2(0,t;L2(Ω))

.

3.4. Error analysis. To perform the error analysis for the semi-discrete problem, we need
to introduce the modified energy projection P∇ : H1

0 (Ω) →Wh, where, for any u ∈ H1
0 (Ω),

P∇u ∈Wh satisfies, for all vh ∈Wh

ah(P∇u, vh) = ah(u, vh).(3.18)

Similarly, we define the the modified L2-projection P0 : L2(Ω) → Wh, where, for any
u ∈ L2(Ω), P0u ∈Wh satisfies, for all vh ∈Wh

mh(P0u, vh) = mh(u, vh).(3.19)

We recall the following approximation results, whose proofs can be found in [48] and [47],
respectively.



A DG-VEM METHOD FOR THE DISSIPATIVE WAVE EQUATION 7

Lemma 3.4. For all u ∈ H1
0 (Ω) ∩Hk+1(Ω), there holds∣∣u− P∇u

∣∣
H1(Ω)

≲ hk |u|Hk+1(Ω) ,(3.20) ∥∥u− P∇u
∥∥
L2(Ω)

≲ hk+1 |u|Hk+1(Ω) .(3.21)

Lemma 3.5. For all u ∈ Hk+1(Ω), there holds∥∥u− P0u
∥∥
L2(Ω)

≲ hk+1 |u|Hk+1(Ω) .(3.22)

Let us denote

|•|L1(0,t;Hk+1(Ω) :=

ˆ t

0
|•|Hk+1(Ω) ds, |•|L2(0,t;Hk+1(Ω) :=

ˆ t

0
|•|2Hk+1(Ω) ds.

We are now ready to state the following convergence result, which extends [47, Theorem
3.3] to the case ν > 0.

Theorem 3.6. Let u, uh be the unique solutions of problems (2.2) and (3.15), respectively.
Assume that u ∈ C2

(
0, T ;H1

0 (Ω)
)
, u0, z0 ∈ Hk+1(Ω) and ut, utt, f ∈ L2

(
0, T ;Hk+1(Ω)

)
,

with k ≥ 1 integer. Then, there holds

∥uh(t)− u(t)∥H1(Ω) + ∥uh,t(t)− ut(t)∥L2(Ω)

≲ hk
(
|u0|Hk+1(Ω) + h |z0|Hk+1(Ω) + h |f |L2(0,t;Hk+1(Ω))

+ |ut|L1(0,t;Hk+1(Ω)) + h |ut|L2(0,t;Hk+1(Ω)) + h |utt|L1(0,t;Hk+1(Ω)) + h |ut|L2(0,t;Hk+1(Ω))

)
.

(3.23)

Proof. The proof follows the same steps as the proof of [47, Theorem 3.3]. We set

uh(t)− u(t) =
(
uh(t)− P∇u(t)

)
+
(
P∇u(t)− u(t)

)
=: θ(t) + ρ(t).

We bound the ∥ρ(t)∥H1(Ω) by using (3.20)

∥ρ(t)∥H1(Ω) ≲ hk |u(t)|Hk+1(Ω) = hk
(
|u0|Hk+1(Ω) +

ˆ t

0
|ut(s)|Hk+1(Ω) ds

)
= hk

(
|u0|Hk+1(Ω) + |ut|L1(0,t;Hk+1(Ω))

)
.

(3.24)

Similarly, thanks to (3.21), we find

∥ρt(t)∥L2(Ω) ≲ hk+1 |ut(t)|Hk+1(Ω) = hk+1
(
|z0|Hk+1(Ω) + |utt|L1(0,t;Hk+1(Ω))

)
.(3.25)

Note that we can use the estimate (3.21) since we are assuming Ω convex. In order to
bound the norm of θ(t), we note that, for all vh ∈Wh there holds

mh(θtt(t), vh) + νmh(θt(t), vh) + ah(θ(t), vh)

= (fh(t)− f(t), vh)L2(Ω) +
[
(utt(t), vh)L2(Ω) −mh(P∇utt(t), vh)

]
+ ν

[
(ut(t), vh)L2(Ω) −mh(P∇ut(t), vh)

]
=: (φ(t), vh)L2(Ω) + (η1(t), vh)L2(Ω) + (η2(t), vh)L2(Ω) ,
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where η1(t), η2(t) ∈ Wh are the Riesz representation of the operators (utt(t), •)L2(Ω) −
mh(P∇utt(t), •) and (ut(t), •)L2(Ω) −mh(P∇ut(t), •) on the dual space of Wh. Then, θ(t)

is the unique solution of the following weak problem: for all vh ∈Wh there holds
mh(θtt(t), vh) + νmh(θt(t), vh) + ah(θ(t), vh) = (φ(t) + η1(t) + η2(t), vh)L2(Ω)

θ(0) = uh,0 − P∇u0
θt(0) = zh,0 − P∇z0.

By applying Theorem 3.2 we find:

(3.26)
|θ(t)|21,h + ∥θt(t)∥20,h
≲ |θ0|21,h + ∥θt(0)∥20,h + ∥φ∥2L2(0,t;L2(Ω)) + ∥η1∥2L2(0,t;L2(Ω)) + ∥η2∥2L2(0,t;L2(Ω)) .

On the other hand, using (3.3), we find

∥φ∥2L2(0,t;L2(Ω)) =

ˆ t

0
∥φ(s)∥2L2(Ω) ds =

ˆ t

0
∥fh(s)− f(s)∥2L2(Ω) ds

=

ˆ t

0

∑
E∈Th

∥∥Π0,Ef(s)− f(s)
∥∥2
L2(E)

ds

≲ h2(k+1) |f |2L2(0,t;Hk+1(Ω)) .

(3.27)

To bound ∥η1∥2L2(0,t;L2(Ω)), we recall [47, equation (32)]: for all t ∈ (0, T ), there holds

(η1(t), vh)L2(Ω) ≲ hk+1 |utt(t)|Hk+1(Ω) ∥vh∥L2(Ω) ,

yielding

∥η1(t)∥L2(Ω) = sup
0̸=vh∈Wh

(η1(t), vh)L2(Ω)

∥vh∥L2(Ω)

≲ hk+1 |utt(t)|Hk+1(Ω) .

Hence,

∥η1∥2L2(0,t;L2(Ω)) =

ˆ t

0
∥η1(s)∥2L2(Ω) ds ≲ h2(k+1) |utt|2L2(0,t;Hk+1(Ω)) .(3.28)

Finally, to bound |η2|2L2(0,t;L2(Ω)), we observe that, for all vh ∈Wh there holds

(η2(t), vh)L2(Ω) = (ut(t), vh)L2(Ω) −mh(P∇ut(t), vh)

=
∑
E∈Th

[
(ut(t), vh)L2(E) −mE

h (P∇ut(t), vh)
]

=
∑
E∈Th

[(
ut(t)−Π0,Eut(t), vh

)
L2(E)

−mE
h (P∇ut(t)−Π0,Eut(t), vh)

]
≲
∑
E∈Th

(∥∥ut(t)−Π0,Eut(t)
∥∥
L2(E)

+
∥∥P∇ut(t)−Π0,Eut(t)

∥∥
L2(E)

)
∥vh∥L2(E) ,

where in the third equality we used that
(
Π0,Eut(t), vh

)
L2(E)

= mE
h (Π

0,Eut(t), vh), and

the last inequality follows by the Cauchy Schwarz inequality and (3.12). Hence, by using
(3.3) and applying Lemma 3.4, we obtain

∥η2(t)∥L2(Ω) = sup
0̸=vh∈Wh

(η1(t), vh)L2(Ω)

∥vh∥L2(Ω)

≲ hk+1 |ut(t)|Hk+1(Ω) ,
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hence

|η2|2L2(0,t;L2(Ω)) ≲ h2(k+1) |ut|2L2(0,t;Hk+1(Ω)) .(3.29)

The norm of the initial data are derived in [47, equations (33)-(34)]:

|θ0|21,h ≲ h2k |u0|2Hk+1(Ω) ,

∥θt(0)∥20,h ≲ h2(k+1) |z0|2Hk+1(Ω) .
(3.30)

Combining (3.30), (3.27), (3.28) and (3.29), we obtain

|θ(t)|21,h + ∥θt(t)∥20,h ≲ h2k
[
|u0|2Hk+1(Ω) + h2 |z0|2Hk+1(Ω)

+ h2
(
|f |2L2(0,t;Hk+1(Ω)) + |utt|2L2(0,t;Hk+1(Ω)) + |ut|2L2(0,t;Hk+1(Ω))

)]
.

(3.31)

Collecting (3.24), (3.25) and (3.31), we conclude (3.23). □

3.5. Algebraic formulation. Now, we introduce the algebraic formulation of (3.15) that
will be instrumental for the DG discretization in time (see Section 4). To this end, we

denote with Nh : = dim(Wh), and with {φi}Nh
i=1 the set of VE basis functions for Wh. We

write, for all t ∈ (0, T )

uh(t, x) =

Nh∑
j=1

Uj(t)φj(x),(3.32)

where Uj(t) is the j-th global DOF of uh(t). Inserting (3.32) into (3.15) with vh = φi, we
obtain the following system of second-order differential equations

MhÜ(t) + νMhU̇(t) +AhU(t) = Fh(t)(3.33)

where

• U(t) := [U1(t), . . . , UNh
(t)]T ∈ RNh ;

• U̇(t) := [U̇1(t), . . . , U̇Nh
(t)]T ∈ RNh is the vector collecting the DOF of the first

temporal derivative of u, i.e., uh,t(t, x) =
∑Nh

j=1 U̇j(t)φj(x);

• Ü(t) := [Ü1(t), . . . , ÜNh
(t)]T ∈ RNh is the vector collecting the DOF of the second

temporal derivative of u, i.e., uh,tt(t, x) =
∑Nh

j=1 Üj(t)φj(x);

• Fh(t) := [F1(t), . . . , FNh
(t)]T ∈ RNh with Fi(t) := (fh(t), φi)L2(Ω) for all i =

1, . . . , Nh;
• Mh, Ah ∈ RNh×Nh are the mass and stiffness matrices with elements given as

for all i, j = 1, . . . , Nh (Mh)i,j := mh(φj , φi) (Ah)i,j := ah(φj , φi).(3.34)

Equation (3.33) is supplemented with the initial conditions U(0) = Uh,0, U̇(0) = Zh,0,

where the vector Uh,0 ∈ RNh (Zh,0 ∈ RNh , respectively) collects the DOFs of uh,0 (zh,0,
respectively).
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0 T

In−1 In

τn−1

t
+
n−2 t

−

n−1t
+
n−1 t

−

n

Figure 4.1. (Top) Example of time partition Iτ . (Bottom) Zoom on the
time-slabs In−1 ∪ In.

4. DG discretization in time

In this section we first recall the DG (in time) finite dimensional space introduced in
[9, 10], and then we apply the DG time integration scheme to (3.33). Let the time interval

(0, T ] be partitioned into NT time-slabs, i.e., (0, T ] = ∪NT
n=1In, with In := (tn−1, tn] and

0 = t0 < t1 < · · · < tn < · · · < tNT
= T . We denote with τn the length of the n-th

time-slab τn := tn − tn−1, and we collect the elements of the set {τn}NT
n=1 in the vector

τ . Moreover, we denote with Iτ the partition of the time interval. Given a sufficiently
regular function v, we define the time jump operator at tn for any n ≥ 0 as

[v]n := v(t+n )− v(t−n ),(4.1)

where

v(t+n ) = lim
ε→0+

v(tn + ε), v(t−n ) = lim
ε→0−

v(tn + ε).

See Figure 4.1 for an example of time partition as well as the graphical representation of
t−n−1, t

+
n−1.

Given rn ∈ N, we denote the space of polynomials on In of degree less than or equal
to rn as Prn(In), and we define the functional space of piecewise polynomials of degree at
least 2 on Iτ as

Wτ :=
{
v ∈ L2(0, T ) such that v|In ∈ Prn(In) with rn ≥ 2 for all n = 1, . . . , NT

}
.(4.2)

Since the unknown of (3.33) is a vector with length Nh, we need to introduce the multi-
variate version of Wτ . Given the multi-index r = (r1, . . . , rNτ ) ∈ NNT , with components
rn ≥ 2 for all n = 1, . . . , NT , we define

[Wτ ]
Nh :=

{
V = (v1, . . . , vNh

) ∈ [L2(0, T )]Nh : vj ∈Wτ ∀ j = 1, . . . , Nh

}
.

Multiplying (3.33) by a test function V̇ ∈ [Wτ ]
Nh and integrating on In, we get(

MhÜ, V̇
)
L2(In)

+ ν
(
MhU̇, V̇

)
L2(In)

+
(
AhU, V̇

)
L2(In)

+Mh[U̇]n · V̇(t+n ) +Ah[U]n ·V(t+n ) =
(
Fh, V̇

)
L2(In)

(4.3)

where the first two terms in the second row of (4.3) are zero since U(t) ∈ C2(0, T ), hence
they can be added to the equation. Summing over all time-slabs, we find the following
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problem: find Uτ ∈ [Wτ ]
Nh such that, for all V̇ ∈ [Wτ ]

Nh there holds

NT∑
n=1

[(
MhÜτ , V̇

)
L2(In)

+ ν
(
MhU̇τ , V̇

)
L2(In)

+
(
AhUτ , V̇

)
L2(In)

]

+

NT−1∑
n=1

[
Mh[U̇τ ]n · V̇(t+n ) +Ah[Uτ ]n ·V(t+n )

]
+MhU̇τ (0

+) · V̇(0+) +AhUτ (0
+) ·V(0+)

=

NT∑
n=1

[(
Fh, V̇

)
L2(In)

]
+MhZh,0 · V̇(0+) +AhUh,0 ·V(0+),

(4.4)

with the initial conditions Uτ (0) = Uh,0, U̇τ (0) = Zh,0.

Let ∥•∥⋆ : [Wτ ]
Nh → R be defined as

∥V∥2⋆ := ν

NT∑
n=1

∥∥∥M1/2
h V̇

∥∥∥2
L2(In)

+
1

2
(M

1/2
h V̇(0+))2 +

1

2

NT−1∑
n=1

(M
1/2
h [V̇]n)

2 +
1

2
(M

1/2
h V̇(T−))2

+
1

2
(A

1/2
h V(0+))2 +

1

2

NT−1∑
n=1

(A
1/2
h [V]n)

2 +
1

2
(A

1/2
h V(T−))2.

(4.5)

In [10] it is shown that ∥•∥⋆ is a norm on [Wτ ]
Nh that, from now on, will be referred to

as energy norm.
Moreover, in [9, Proposition 3.1] it is proved the following stability result: if F ∈

L2(0, T ), then the unique solution Uτ ∈ [W r
τ ]

Nh of (4.4) satisfies

∥Uτ∥⋆ ≲
(
∥F∥2L2(0,T ) + (A

1/2
h Uh,0)

2 + (M
1/2
h Zh,0)

2
)1/2

.(4.6)

In addition, the DG scheme is proved to be convergent, according to the following result
(see [9, Theorem 3.12]).

Theorem 4.1. If U is such that U|In ∈ (Hqn(In))
Nh with qn ≥ 2 for all n = 1, . . . , NT ,

then

∥U−Uτ∥2⋆ ≲
NT∑
n=1

τ2βn−3
n

r2qn−6
n

∥U∥2(Hqn (In))Nh ,(4.7)

where βn := min{rn + 1, qn} and rn ≥ 2 for all n = 1, . . . , NT .

Corollary 4.2. Let U be such that U|In ∈ (Hq(In))
Nh for all n = 1, . . . , NT , with q ≥ 2.

Moreover, let τn = ∆t > 0 and rn = r ≥ 2 integer, for all n = 1, . . . , NT . Then, the
estimate (4.7) simplifies as follows:

∥U−Uτ∥2⋆ ≲
∆t2β−3

r2q−6

NT∑
n=1

∥U∥2(Hqn (In))Nh ,(4.8)

where β := min{r + 1, q}. In particular, ∥U−Uτ∥⋆ = O(∆tβ−3/2) as ∆t decreases to 0.
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E
In

(a)

In−1

In

Th
(b)

Figure 5.1. (A) Polygon E ∈ Th tensorized with the time-slab In. (B)
Polygonal mesh Th tensorized with In−1 ∪ In, namely, Qn−1 ∪Qn. Darker
color encodes the increasing time instances.

5. VEM-DG discretization

In this section we present a tensor product-based space-time discretization of problem
(2.2) that combines the VEM presented in Section 3 for space discretization, with the
DG scheme presented in Section 4 for time integration. The mesh Q for the space-time
domain Ω×(0, T ] is constructed by tensorizing the polygonal grid Th with the time interval
partition Iτ , namely, Q := Th ⊗ Iτ . Each element of the space-time mesh Q is the tensor
product of the polygonal mesh Th with In, i.e.,

Q = ∪NT
n=1Qn,with Qn := Th ⊗ In for all n = 1, . . . , NT .(5.1)

We refer to Figure 5.1 for an example..
The tensor product of the VE space Wh defined in (3.5) with the DG space Wτ defined

in (4.2) gives the following finite-dimensional space

Wh,τ := {w(x, t) = w1(x)w2(t) : Th × Iτ → R such that w1 ∈Wh and w2 ∈Wτ} .(5.2)

Note that, by definition, each w ∈ Wh,τ is continuous in the spatial domain but might
be discontinuous in the time domain, i.e., discontinuities are allowed along the interfaces
Th ⊗ {tn}, for n = 1, . . . , NT − 1.

To derive the tensor product VEM-DG formulation of the problem of interest, we start
from equation (2.1) in Qn multiplied by a test function ẇ = w1(x)ẇ2(t) ∈ Wh,τ and we
integrate in space and time. Then, we integrate by parts with respect to the space variable
and we replace the L2(Ω)-inner product (•, •)L2(Ω) and the bilinear form a(•, •) with the

VE bilinear forms mh(•, •) and ah(•, •), respectively. Finally, we add the null terms

mh([u̇]n, ẇ(t
+
n )) + ah([u]n, ẇ(t

+
n ))

and we sum up over all time-slabs. As a result, we get the following problem: find
uh,τ ∈ Wh,τ such that, for all w ∈ Wh,τ there holds

A(uh,τ , w) = F(w),(5.3)
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where the bilinear form A : Wh,τ × Wh,τ → R and the linear form F : Wh,τ → R are
respectively given by

A(v, w) :=

NT∑
n=1

[
mh(v1, w1) (v̈2, ẇ2)L2(In)

+ νmh(v1, w1) (v̇2, ẇ2)L2(In)

+ ah(v1, w1) (v2, ẇ2)L2(In)

]
+

NT−1∑
n=1

[
mh(v1, w1)[v̇2]nẇ2(t

+
n ) + ah(v1, w1)[v2]nw2(t

+
n )
]

+mh(v1, w1)v̇2(0
+)ẇ2(0

+) + ah(v1, w1)v2(0
+)w2(0

+),

and

F(w) :=

NT∑
n=1

(fh, w)L2(Ω×In) +mh(zh,0, w1)ẇ2(0
+) + ah(uh,0, w1)w2(0

+),

for any v(x, t) = v1(x)v2(t) and w(x, t) = w1(x)w2(t).
There holds the following results.

Lemma 5.1. The function |||•||| : H2(0, T ;H1
0 (Ω)) → R defined as

|||w|||2 := ν

NT∑
n=1

ˆ
In

∥ẇ∥20,h dt

+
1

2

∥∥ẇ(0+, ·)∥∥2
0,h

+
1

2

NT−1∑
n=1

∥[ẇ]n∥20,h +
1

2

∥∥ẇ(T−, ·)
∥∥2
0,h

+
1

2

∣∣w(0+, ·)∣∣2
1,h

+
1

2

NT−1∑
n=1

|[w]n|21,h +
1

2

∣∣w(T−, ·)
∣∣2
1,h

(5.4)

is a norm on H2(0, T ;H1
0 (Ω)).

Proof. It is clear that the function |||•||| satisfies the homogeneity and subadditivity prop-
erties. Moreover, if w = 0, then it immediately follows that |||w||| = 0. Therefore, |||•||| is a
seminorm on H2(0, T ;H1

0 (Ω)). We show that |||w||| = 0 implies w = 0 following the same
steps as in the proof of [10, Proposition 2].

The fact that |||w||| = 0 implies that all the terms at the right-hand side of (5.4) are
zero. In particular, for all n = 1, . . . , NT , there holdsˆ

In

∥ẇ∥20,h dt = 0,

which, in turns, implies ẇ ≡ 0 in Ω×In, that is, w ≡ Cn in Ω×In for {Cn}NT
n=1 a collection

of constants. For n = 1, we have w ≡ C1 in Ω× I1. In addition, from∥∥w(0+, ·)∥∥
0,h

= 0,

we get w(0+, ·) ≡ 0 in Ω. Hence, we conclude C1 = 0, i.e., w ≡ 0 in Ω× I1.
We proceed now by induction, namely, we assume w ≡ 0 in all Ω × Im for m ≤ n − 1,

and we show that w ≡ 0 in Ω× In. From

|[w]n−1|1,h = 0
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we get [w]n−1 = 0, i.e., w(t+n−1, x) = w(t−n−1, x) for a.e. x ∈ Ω. Since w(t−n−1, ·) ≡ 0 in Ω

by assumption, we get w(t+n−1, ·) ≡ 0 in Ω, which in turns implies Cn = 0. □

Lemma 5.2. For all w(x, t) = w1(x)w2(t) ∈ Wh,τ there holds

|||w|||2 = A(w,w).(5.5)

Proof. Given w(x, t) = w1(x)w2(t) ∈ Wh,τ , we have

A(w,w) :=

NT∑
n=1

[
∥w1∥20,h (ẅ2, ẇ2)L2(In)

+ ν ∥w1∥20,h ∥ẇ2∥2L2(In)
+ |w1|21,h (w2, ẇ2)L2(In)

]

+

NT−1∑
n=1

[
∥w1∥20,h [ẇ2]nẇ2(t

+
n ) + |w1|21,h [v2]nw2(t

+
n )
]

+ ∥w1∥20,h
(
ẇ2(0

+)
)2

+ |w1|21,h
(
w2(0

+)
)2
.

(5.6)

Integrating by parts, we get

(ẅ2, ẇ2)L2(In)
= − (ẇ2, ẅ2)L2(In)

+
(
ẇ2(t

−
n

)2 − (ẇ2(t
+
n−1

)2
,

which implies

(ẅ2, ẇ2)L2(In)
=

1

2

(
ẇ2(t

−
n

)2 − 1

2

(
ẇ2(t

+
n−1

)2
.(5.7)

Analogously, we derive

(ẇ2, w2)L2(In)
=

1

2

(
w2(t

−
n

)2 − 1

2

(
w2(t

+
n−1

)2
.(5.8)

Inserting (5.7) and (5.8) into (5.6), and performing simple computations, we derive

A(w,w) = ν ∥w1∥20,h
NT∑
n=1

∥ẇ2∥2L2(In)

+
1

2
∥w1∥20,h

[(
ẇ2(0

+)
)2

+

NT−1∑
n=1

([ẇ2]n)
2 +

(
ẇ2(T

−)
)2]

+
1

2
|w1|21,h

[(
w2(0

+)
)2

+

NT−1∑
n=1

([w2]n)
2 +

(
w2(T

−)
)2]

and we conclude by observing that

∥w1∥20,h
NT∑
n=1

∥ẇ2∥2L2(In)
=

NT∑
n=1

ˆ
In

mh(ẇ, ẇ) dt =

NT∑
n=1

ˆ
In

∥ẇ∥20,h dt,

and

∥w1∥20,h
(
ẇ2(0

+)
)2

=
∥∥ẇ(0+, ·)∥∥2

0,h

∥w1∥20,h ([ẇ2]n)
2 = ∥[ẇ]n∥20,h

∥w1∥20,h
(
ẇ2(T

−)
)2

=
∥∥ẇ(T−, ·)

∥∥2
0,h
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as well as

|w1|21,h
(
w2(0

+)
)2

=
∥∥w(0+, ·)∥∥2

0,h

|w1|21,h ([w2]n)
2 = ∥[w]n∥20,h

|w1|21,h
(
w2(T

−)
)2

=
∥∥w(T−, ·)

∥∥2
0,h
.

□

Theorem 5.3 (Well-posedness). There exists a unique solution to the VEM-DG prob-
lem (5.3).

Proof. Lemma 5.2 implies that the bilinear form A(•, •) is coercive, with coercivity con-
stant 1. The continuity of F follows from Cauchy-Schwarz inequality and the continuity
of the global virtual bilinear forms (3.12). □

5.1. Algebraic formulation. In this section we derive the algebraic formulation of the
fully discrete problem (5.3). We start noticing that the use of DG in time allow us to
compute the discrete solution separately, one time-slab at a time. In particular, given
1 ≤ n ≤ NT , problem (5.3) restricted to In reads: find unh,τ := uh,τ |In ∈ Wh ⊗ Prn(In)

such that, for all w ∈Wh ⊗ Prn(In) there holds

An(u
n
h,τ , w) = Fn(w),(5.9)

where

An(v, w) := mh(v1, w1) (v̈2, ẇ2)L2(In)
+ νmh(v1, w1) (v̇2, ẇ2)L2(In)

+ ah(v1, w1) (v2, ẇ2)L2(In)
+mh(v1, w1)v̇2(t

+
n−1)ẇ2(t

+
n−1)

+ ah(v1, w1)v2(t
+
n−1)w2(t

+
n−1),

and

Fn(w) := (fh, w)L2(Ω×In) +mh(u̇
n−1
h,τ (t−n−1, ·), ẇ(t

−
n−1, ·) + ah(u

n−1
h,τ (t−n−1, ·), w(t

−
n−1, ·),

for any v(x, t) = v1(x)v2(t) ∈ Wh ⊗ Prn(In) and w(x, t) = w1(x)w2(t) ∈ Wh ⊗ Prn(In).
Note, in particular, that the solution computed for In−1 is used as initial condition for the
current time-slab.

Following the same notation as in Section 3.5, we write Wh = span{φj}Nh
j=1. Moreover,

we denote with {ψm}rnm=1 a basis for Prn(In). Then, the trial function u
n
h,τ can be expressed

as linear combination of the tensor product basis function {φjϕm, j = 1, . . . , Nh, m =
1, . . . , rn + 1}, namely

unh,τ (x, t) =

Nh∑
j=1

rn+1∑
m=1

αn
j,mφj(x)ψm(t),(5.10)

where αn
j,m ∈ R for all j = 1, . . . , Nh, m = 1, . . . , rn + 1. Inserting (5.10) into (5.9) and

taking w(x, t) = φi(x)ψℓ(t), we get

Anαn = Fn,

where

• αn ∈ RNh(rn+1) is the solution vector;
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• An ∈ RNh(rn+1)×Nh(rn+1) has the following structure:

An =Mh ⊗ (N1 + νN2 +N4) +Ah ⊗ (N3 +N5),

whereMh, Ah ∈ RNh×Nh are the mass and stiffness matrices defined in (3.34), and

N1, N2, N3, N4, N5 ∈ R(rn+1)×(rn+1) are defined as

(N1)ℓ,m = (ψ̈m, ψ̇ℓ)L2(In), (N2)ℓ,m = (ψ̇m, ψ̇ℓ)L2(In), (N3)ℓ,m = (ψm, ψ̇ℓ)L2(In),

(N4)ℓ,m = ψ̇m(t+n−1)ψ̇ℓ(t
+
n−1), (N5)ℓ,m = ψm(t+n−1)ψℓ(t

+
n−1);

• Fn ∈ RNh(rn+1) is the known vector with elements

(Fn)i,ℓ = (fh, φiψℓ)L2(Ω×In) + (Mh ⊗N6)α
n−1 + (Ah ⊗N7)α

n−1,

where N6, N7 ∈ R(rn+1)×(rn+1) are defined as

(N6)ℓ,m = ψ̇m(t−n−1)ψ̇ℓ(t
−
n−1), (N7)ℓ,m = ψm(t−n−1)ψℓ(t

−
n−1).

6. Error analysis

Before stating the convergence result for the tensor product VEM-DG method, we
introduce the following auxiliary lemma.

Lemma 6.1. Let uh,τ ∈ Wh,τ and U ∈ [Wτ ]
Nh be the solutions of problems (5.3)

and (4.4), respectively. Then,

|||uh,τ ||| = ∥U∥⋆ .

Proof. We follow the same reasoning as in [10, Proposition 3]. We write uh,τ (x, t) =

u1(x)u2(t), with u2 ∈ Wτ and u1(x) =
∑Nh

j=1 Ujφj(x), {φj}Nh
j=1 being the VE basis func-

tions. We set U(t) = [U1, . . . , UNh
]Tw2(t) ∈ [Wτ ]

Nh . By definition (5.4), we have

|||uh,τ |||2 = ν

NT∑
n=1

ˆ
In

∥ẇ∥20,h dt

+
1

2

∥∥ ˙uh,τ (0
+, ·)

∥∥2
0,h

+
1

2

NT−1∑
n=1

∥[ ˙uh,τ ]n∥20,h +
1

2

∥∥ ˙uh,τ (T
−, ·)

∥∥2
0,h

+
1

2

∣∣uh,τ (0+, ·)∣∣21,h + 1

2

NT−1∑
n=1

|[uh,τ ]n|21,h +
1

2

∣∣uh,τ (T−, ·)
∣∣2
1,h
.

(6.1)

We observe that

ˆ
In

∥ẇ∥20,h dt =

ˆ
In

Nh∑
i,j=1

(Uiu2(t)) (Mh)i,j (Uju2(t)) dt

=

ˆ
In

U(t)TMhU(t) dt =
∥∥∥M1/2

h U
∥∥∥2
L2(In)

.
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Hence,

NT∑
n=1

ˆ
In

∥ẇ∥20,h dt =

NT∑
n=1

∥∥∥M1/2
h U

∥∥∥2
L2(In)

. We now focus on the terms in the second

line of (6.1). We have∥∥ ˙uh,τ (0
+, ·)

∥∥2
0,h

= ∥u1∥20,h (u̇2(0
+))2 =

Nh∑
i,j=1

(
Uiu̇2(0

+)
)
(Mh)i,j

(
Uiu̇2(0

+)
)

=
(
M

1/2
h U̇(0+)

)2
,

and, similarly, we find ∥ ˙uh,τ (T
−, ·)∥20,h =

(
M

1/2
h U̇(T−)

)2
. Moreover,

∥[ ˙uh,τ ]n∥20,h = ∥u1∥20,h ([u̇2]n)
2 =

Nh∑
i,j=1

(Ui[u̇2]n) (Mh)i,j (Ui[u̇2]n) =
(
M

1/2
h [U̇]n

)2
.

We conclude observing that the terms in the third line of (6.1) can be treated analogously.
□

Remark 6.2. Lemma 6.1 extends to eh := uh − uh,τ , uh being the solution to the semi-
discrete problem (3.15).

Theorem 6.3 (Error estimate). Let the assumptions of Theorem 3.6 and Theorem 4.1
hold. Then, there holds

(6.2)

|||u− uh,τ ||| ≲ T

[
NT∑
n=1

τ2βn−3
n

r2qn−6
n

(
|uh,0|21,h + ∥zh,0∥20,h + |fh|2Hqn (0,t;L2(Ω))

)]1/2

+ T hk

[
|u0|2Hk+1(Ω) + h2 |z0|2Hk+1(Ω) + h2 |f |2L2(0,T ;Hk+1(Ω))

+ |ut|2L1(0,T ;Hk+1(Ω)) + h2 |ut|2L2(0,T ;Hk+1(Ω))

+ h2 |utt|2L1(0,T ;Hk+1(Ω)) + h2 |utt|2L2(0,T ;Hk+1(Ω))

]1/2
.

Proof. Let uh(t) ∈ C0 (0, T ;Wh)∩C1 (0, T ;Wh) be the solution to the semi-discrete prob-
lem (3.15). Then, we split the error e := u−uh,τ = (u−uh)+(uh−uh,τ ), where eh := u−uh
is the error due to the space approximation by means of the VEM, and eτ := uh − uh,τ is
the error due to the DG time discretization. By triangular inequality, we have

|||u− uh,τ ||| ≤ |||eh|||+ |||eτ |||.(6.3)

We start bounding the second contribution to the norm of the error. Applying Lemma 6.1
(and Remark 6.2) and Theorem 4.1, we find

|||eτ |||2 ≲
NT∑
n=1

τ2βn−3
n

r2qn−6
n

∥U∥2(Hqn (In))Nh ,

and by definition of the Hqn(In)-norm we get

|||eτ |||2 ≲
NT∑
n=1

τ2βn−3
n

r2qn−6
n

ˆ
In

(
∥uh(t)∥2L2(Ω) + · · ·+ ∥∂qnt uh(t)∥2L2(Ω)

)
dt,
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where ∂qnt uh is the qn-th time derivative of uh. Applying the Poincaré inequality, (3.11)
and Theorem 3.2, we find

∥uh(t)∥2L2(Ω) ≲ |uh(t)|2H1(Ω) ≲ |uh(t)|1,h

≲
(
|uh,0|21,h + ∥zh,0∥20,h + ∥fh∥2L2(0,t,L2(Ω))

)
,

so that ˆ
In

∥uh(t)∥2L2(Ω) dt ≲ T
(
|uh,0|21,h + ∥zh,0∥20,h + ∥fh∥2L2(0,T,L2(Ω))

)
.

Similarly, applying the Poincaré inequality, (3.11) and Remark 3.3, for all 1 ≤ α ≤ qn
integer, we obtain

ˆ
In

∥∂qnt uh(t)∥2L2(Ω) dt ≲ T ∥∂qnt fh∥2L2(0,T,L2(Ω)) .

Hence, we have shown that

|||eτ |||2 ≲ T

NT∑
n=1

τ2βn−3
n

r2qn−6
n

(
|uh,0|21,h + ∥zh,0∥20,h + |fh|2Hqn (0,T ;L2(Ω))

)
.(6.4)

We consider now the error due to the VEM approximation in space. Recalling that
eh ∈ C1(0, T ;Wh), we have

|||eh|||2 =
NT∑
n=1

ˆ
In

∥ėh∥20,h dt+
1

2

∥∥ėh(0+)∥∥20,h + 1

2

∥∥ėh(T−)
∥∥2
0,h

+
1

2

∣∣eh(0+)∣∣21,h + 1

2

∣∣eh(T−)
∣∣2
1,h
.

(6.5)

Since uh,0 is the interpolant of degree k of u0, thanks to (3.7) there holds∣∣eh(0+)∣∣1,h = |u0 − uh,0|1,h ≲ hk |u0|Hk+1(Ω) ,(6.6)

and similarly, since zh,0 is the interpolant of degree k of z0∥∥ėh(0+)∥∥0,h = ∥z0 − zh,0∥0,h ≲ hk+1 |z0|Hk+1(Ω) .(6.7)

Using (3.11) and Theorem 3.6, we find:

∣∣eh(T−)
∣∣2
1,h

+
∥∥ėh(T−)

∥∥2
0,h

=
∣∣u(T−)− uh(T

−)
∣∣2
1,h

+
∥∥ut(T−)− uh,t(T

−)
∥∥2
0,h

≲
∥∥u(T−)− uh(T

−)
∥∥2
H1(Ω)

+
∥∥ut(T−)− uh,t(T

−)
∥∥2
L2(Ω)

≲ h2k
(
|u0|2Hk+1(Ω) + h2 |z0|2Hk+1(Ω) + h2 |f |2L2(0,T ;Hk+1(Ω))

+ |ut|2L1(0,T ;Hk+1(Ω)) + h2 |ut|2L2(0,T ;Hk+1(Ω)) + h2 |utt|2L1(0,T ;Hk+1(Ω)) + h2 |utt|2L2(0,T ;Hk+1(Ω))

)
.

(6.8)
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Finally, thanks to (3.11) and Theorem 3.6, we find:

ˆ
In

∥ėh(s)∥20,h ds =

ˆ
In

∥ut(s)− uh,t(s)∥20,h ds ≲
ˆ
In

∥ut(s)− uh,t(s)∥2L2(Ω) ds

≲ τnh
2k
(
|u0|2Hk+1(Ω) + h2 |z0|2Hk+1(Ω) + h2 |f |2L2(0,T ;Hk+1(Ω))

+ |ut|2L1(0,T ;Hk+1(Ω)) + h2 |ut|2L2(0,T ;Hk+1(Ω)) + h2 |utt|2L1(0,T ;Hk+1(Ω)) + h2 |utt|2L2(0,T ;Hk+1(Ω))

)
.

(6.9)

Inserting (6.6), (6.7), (6.8) and (6.9) into (6.5), and using that
∑NT

n=1 τn = T , we obtain

|||eh|||2 ≲ Th2k
(
|u0|2Hk+1(Ω) + h2 |z0|2Hk+1(Ω) + h2 |f |2L2(0,T ;Hk+1(Ω))

+ |ut|2L1(0,T ;Hk+1(Ω)) + h2 |ut|2L2(0,T ;Hk+1(Ω)) + h2 |utt|2L1(0,T ;Hk+1(Ω)) + h2 |utt|2L2(0,T ;Hk+1(Ω))

)
.

(6.10)

The final result (6.2) follows from (6.4) and (6.10). □

Corollary 6.4. Let u ∈ C2
(
0, T ;H1

0 (Ω)
)
, u0, z0 ∈ Hk+1(Ω) and ut, utt, f ∈ L2

(
0, T ;Hk+1(Ω)

)
,

with k ≥ 1 integer. Moreover, let u ∈ Hq
(
In;H

1
0 (Ω)

)
for all n = 1, . . . , NT , with q ≥ 2,

with τn = ∆t > 0 and rn = r ∈ N for all n = 1, . . . , NT . Then,

|||u− uh,τ ||| = O(∆tβ−3/2 + hk)

as ∆t and h decrease to 0.

7. Numerical tests

All the numerical tests are performed in Matlab, and make use of the VEM code avail-
able at [1] for spatial discretization. For DG in time, we refer to [10]. The meshes are
generated using the code Polymesher [45].

7.1. Verification test. As verification test, we consider equation (2.1) on Ω × (0, T ] =
(0, 1)2 × (0, 1], where ν = 1 and the loading term f as well as the initial conditions u0, z0
are chosen so that

uex(t, x1, x2) := sin(t2) sin(πx1) sin(πx2)(7.1)

is the unique solution of the problem (see Figure 7.1).
First, we verify the convergence of the VEM-DG error as the time discretization re-

fines. We compute the VEM-DG solution uh,τ applying the VEM of degree k = 4 on the
Veronoi mesh represented in Figure 7.2(A), coupled with the DG method in time over
uniform partitions of [0, 1] with decreasing length ∆t of the time-slabs and with varying
polynomial degree r = 1, 2, 3. Note that the case r = 1 is not covered by the theory
of Section 4. In Figure 7.2(B) we observe the expected decay of the error at final time,

namely, |||uex(T )− uh,τ (T )||| = O(∆tr−1/2) (see Corollary 4.2).
In the second experiment, we study the convergence of the VEM-DG error as the space

discretization refines. To this end, we consider the DG approximation of degree r = 6
over the uniform partition of [0, 1] with ∆t = 0.1, coupled with the VEM on different
Veronoi meshes (see Figure 7.3) and with increasing degree k = 1, 2, 3. In Figure 7.4(A)
the expected behavior |||uex(T )− uh,τ (T )||| = O(hk) is observed (see Theorem 3.6).
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(a) (b)

Figure 7.1. (a) uex at final time T = 1; (b) uex,t at final time T = 1.
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(b)

Figure 7.2. (a) Veronoi mesh with 100 polygonal elements; (b)
|||uex(T )− uh,τ (T )|||, where uh,τ is computed using VEM of degree k = 4
and DG of increasing degree r = 1, 2, 3.

Finally, in the last experiment, we take r = k and h ∼ ∆t. The error decay is depicted
in Figure 7.4(B), and it is in agreement with (6.2).

7.2. Validation test. The second experiment deals with a more realistic scenario, and
aims at investigating the performances of the proposed numerical scheme in the non-
dissipative case, which is not covered by the theory here developed. In particular, we
consider problem (2.1) with ν = 0, initial data u0 ≡ 0, z0 ≡ 0 and loading term

(7.2) f(t, x) =

{
0 for t < 0.1

100 e−
(x−x0)

4

s2 else

representing a smooth impulse centered at x0 = (0.05, 0.05), with s = 0.025 (see Figure 7.5
(A)). For such example, there is no analytical solution. Hence, we refer to an overkilled
solution computed by means of the VEM of degree 2 on a spatial mesh with 3200 elements
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Figure 7.3. Veronoi meshes with 50 (top left) 200 (top right) 800 (bottom
left) and 3200 (bottom right) elements.

coupled with DG for time discretization, with polynomial degree 2 and ∆t = 1/320 (see
Figure 7.5 (B)).

In Figure 7.6 we represent the snapshots at final time T = 1 of the approximated
solution obtained by means of the proposed VEM-DG strategy (the parameters for time
integration are ∆t = 1/20 and r = 2), compared with the approximations produced using
the Newmark method for increasing ∆t. Note that the numerical scheme for the space
integration is the same as in the reference solution. We can observe that the discrete
solution computed with Newmark is affected by spurious oscillations. In Figure 7.7 we
report the computed time history of the displacement on a receiver located at (0.5, 0.5).
It is clear that the DG-VEM approximation is more accurate than those computed with
the Newmark method.

Appendix A. Representation formula for the semi-discrete solution

Theorem A.1. The unique solution to problem (3.15) is given by

uh(t) :=

Nh∑
n=1

γn(t)w
(n)
h ,(A.1)
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Figure 7.4. (a) |||uex(T )− uh,τ (T )|||, where uh,τ is computed using DG
of degree r = 6 on a uniform partition of the time interval with ∆t = 0.01
and VEM of increasing degree k = 1, 2, 3. (b) |||uex(T )− uh,τ (T )|||, where
uh,τ is computed using DG on a uniform partition of the time interval with
∆t = 0.1 and VEM on the Veronoi mesh with 200 elements (see Figure 7.3
(B), with equal degree in time and space.

(a) (b)

Figure 7.5. (a) Loading term (7.2). (b) Reference solution.

where {w(n)
h }Nh

n=1 is the basis of Wh orthonormal with respect to mh(•, •) fulfilling, for all
vh ∈Wh and for all n = 1, . . . , Nh

ah(w
(n)
h , vh) = λ

(n)
h mh(w

(n)
h , vh),
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(a) (b)

(c) (d)

Figure 7.6. Fully discrete solution computed by means of the proposed
DG-VEM strategy with ∆t = 1/20 and r = 2 (a) compared with the
numerical approximation obtained by means of VEM in space coupled with
Newmark for time integration, with ∆t = 1/20 (b), ∆t = 1/40 (c) and
∆t = 1/80 (d).

with 0 < λ
(1)
h ≤ · · · ≤ λ

(Nh)
h , and the n-th coefficient in the eigen-expansion of uh(t) (A.1)

is given by

γn(t) := e−ν/2t

[
mh(uh,0, w

(n)
h ) cos(ω

(n)
h t) +

1

ω
(n)
h

mh(zh,0, w
(n)
h ) sin(ω

(n)
h t)

+
1

ω
(n)
h

ˆ t

0
e−ν/2(t−s) sin(ω

(n)
h (t− s)) (fh(s), wh)L2(Ω) ds

](A.2)

where ω
(n)
h :=

√
λ
(n)
h − ν2

4 , with ν being small enough so that λ
(n)
h − ν2

4 > 0 for all n =

1, . . . , Nh. Moreover, for all t ∈ (0, T ), there holds

To prove Theorem A.1 we need two auxiliary results.
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0.2

Figure 7.7. Computed time history of the displacement on a receiver
located at (0.5, 0.5). The black line represents the reference solution. The
red line represents the DG-VEM solution. The dashed blue lines represent
the solutions computed with the Newmark method for increasing ∆.

Lemma A.2. Let

Fn(t) := e−ν/2t
(
cn cos(ω

(n)
h t) +

dn

ω
(n)
h

sin(ω
(n)
h t)

)
,(A.3)

with cn, dn > 0. Then, there holds

F̈n(t) + νḞn(t) + λ
(n)
h Fn(t) = 0,(A.4)

where λ
(n)
h , ω

(n)
h have been defined in Theorem 3.2.

Proof. Equation (A.4) follows by observing that

Ḟ (t) = e−ν/2t

[(
− ν

2
cn + dn

)
cos(ω

(n)
h t) +

(
− ν

2

cn

ω
(n)
h

− cnω
(n)
h

)
sin(ω

(n)
h t)

]
,

F̈ (t) = e−ν/2t

[(ν2
4
cn − νdn − cn(ω

(n)
h )2

)
cos(ω

(n)
h t)

+
(ν2
4

dn

ω
(n)
h

+ νcnω
(n)
h − ω

(n)
h dn

)
sin(ω

(n)
h t)

]
.

□

Lemma A.3. Let

Gn(t) :=

ˆ t

0
gn(t, s) ds,(A.5)

with

gn(t, s) :=
1

ω
(n)
h

e−ν/2(t−s) sin(ω
(n)
h (t− s)) (fh(s), wh)L2(Ω) .(A.6)

Then, there holds

G̈n(t) + νĠn(t) + λ
(n)
h Gn(t) = (fh(t), wh)L2(Ω) ,(A.7)
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where λ
(n)
h , ω

(n)
h have been defined in Theorem 3.2.

Proof. We note that

d

dt

ˆ t

0
g(s, t) ds = g(t, t)− g(0, t) +

ˆ t

0

∂

∂t
g(s, t) ds,

d2

dt2

ˆ t

0
g(s, t) ds =

d

dt

(
g(t, t)− g(0, t)

)
+
∂

∂t
g(s, t)|s=t −

∂

∂t
g(s, 0) +

ˆ t

0

∂2

∂t2
g(s, t) ds.

Equation (A.7) follows by choosing f(0) = 0 and observing that

Ġ(t) =

ˆ t

0
e−ν/2(t−s)

[
− ν

2ω
(n)
h

sin(ω
(n)
h (t− s)) + cos(ω

(n)
h (t− s))

]
(fh(s), wh)L2(Ω) ds,

and

G̈(t) = (fh(t), wh)L2(Ω) +

ˆ t

0
e−ν/2(t−s) (fh(s), wh)L2(Ω)[

− ν cos(ω
(n)
h (t− s)) +

(
ν2

4ω
(n)
h

− ω
(n)
h

)
sin(ω

(n)
h (t− s))

]
ds.

□

Proof of Theorem A.1. Since {w(n)
h }Nh

n=1 is the basis ofWh, it is enough to verify that (A.1)

fulfills problem (3.15) for all test functions vh = w
(n)
h , with n = 1, . . . , Nh. Observe that

ah(uh(t), w
(n)
h ) =

Nh∑
m=1

γn(t)ah(w
(m)
h , w

(n)
h )

=

 0, if n ̸= m,

γn(t)λ
(n)
h

∥∥∥w(n)
h

∥∥∥2
0,h

= λ
(n)
h γn(t), if n = m,

and, analogously, mh(uh(t), w
(n)
h ) = γn(t). Then,

mh(uh,tt(t), w
(n)
h ) + νmh(uh,t(t), w

(n)
h ) + ah(uh(t), w

(n)
h )

=
d2

dt2
mh(uh(t), w

(n)
h ) + ν

d

dt
mh(uh(t), w

(n)
h ) + ah(uh(t), w

(n)
h )

=
d2

dt2
γn(t) + ν

d

dt
γn(t) + λ

(n)
h γn(t).(A.8)

We conclude that (A.8) = (fh(t), wh)L2(Ω) by applying Lemma A.2, since γn(t) = Fn(t) +

Gn(t), where Fn(t) is of the form (A.3) - the constants being fixed so that uh(t) fulfills the
initial conditions uh(0) = uh,0, uh,t(0) = zh,0, namely,

cn = mh(uh,0, w
(n)
h ), dn =

1

ω
(n)
h

mh(zh,0, w
(n)
h ),

and by applying Lemma A.3, since Gn(t) is of the form (A.5)-(A.6). □
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