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Abstract

We consider an initial-boundary value problem for the classical linear
wave equation, where mixed boundary conditions of Dirichlet and Neu-
mann/Robin type are enforced at the endpoints of a bounded interval.
First, by a careful application of the method of characteristics, we derive
a closed-form representation of the solution for an impulsive Dirichlet data
at the left endpoint, and valid for either a Neumann or a Robin data at the
right endpoint. Then we devise a reconstruction procedure for identifying
both the interval length and the Robin parameter. We provide a corre-
sponding stability result and verify numerically its performance moving
from a finite element discretization.
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1 Introduction

Let us consider the following mixed boundary value problem for the wave equa-
tion 




uxx − utt = 0 0 < x < b, t > 0,
u(x, 0) = 0 0 < x < b,
ut(x, 0) = 0 0 < x < b,
u(0, t) = h(t) t ≥ 0,
ux(b, t) + γu(b, t) = 0 t ≥ 0,

(1)

where b > 0, γ ≥ 0, and h(t) a C1 function in [0, +∞) such that h(0) = 0
are assigned data. The above system, though pretty simple, actually models
some physical problems of interest in engineering applications. For instance, the
unknown function, u(x, t), describes the transverse vibrations of a string of finite
length, with respect to the horizontal rest configuration, with vertical component
of the tension given by ux(x, t). In this context, Dirichlet, Neumann and Robin
boundary conditions have a direct physical interpretation. In particular, a null
Neumann data, ux(b, t) = 0, is associated with a free transverse motion, i.e.,
no external transverse force acts on this end; a homogeneous Robin condition,
ux(b, t) + γu(b, t) = 0, represents a linearly restorative transverse force, that is,
the end is transversally restrained, but elastically rather than rigidly [11]. For
this reason, this last condition is often referred to as elastic.

Another relevant application of the wave equation is in acoustics, where u
is the velocity potential associated with the propagation of a pressure wave in
a carrier medium [1]. The Dirichlet boundary condition on a certain surface,
for a complex amplitude pressure, is applied when the material of the surface
has very low acoustic impedance compared to that of the medium. In this
case the surface is called sound soft. Vice versa, when the surface material has
much higher acoustic impedance than the one of the host medium, a Neumann
boundary condition holds, and the surface is called sound hard. The Robin
(or impedance) boundary condition models finite acoustic impedance, γ being
proportional to the admittance of the surface.

We suppose that the boundary, x = b, is unknown and inaccessible, whereas
x = 0 is accessible for input and output measurements. Then, we deal with
the inverse problem of determining b and γ, provided additional measurements,
ux(0, t), are known, for t in the bounded interval (0, tf ).

An analogous problem was considered in spatial dimension d ≥ 2 by Isakov [7],
assuming that the unknown boundary Γ is a closed polygonal surface. The author
proved that an additional measurement of the normal derivative on the known
part of the boundary for large enough tf uniquely determines Γ and γ. More-
over, inverse problems involving a Robin condition in a parabolic equation was
considered in [2]. The authors prove that two pairs of measurements guarantee
uniqueness and stability of both Γ and γ. In the context of hyperbolic problems,
although addressing a different identification problem, it is worth mentioning
the following works. In [12], the wave equation is considered where the spa-
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tial operator is in conservation form, (K(x)ux)x, and the problem is set on the
half line, x > 0. An inverse problem for the identification of the coefficient
K(x) is proposed, based on the boundary impulse response, i.e., by measuring
the function u(x, 0) = f(t) associated with the Neumann boundary condition,
ux(0, t) = δ(t). A similar problem in addressed in [9], where the inverse medium
problem associated with the reconstruction of the heterogeneous material profile
of a semi-infinite layered soil medium, directly in the time domain, is studied.
The method is based on the complete waveform response of the medium to a forc-
ing Neumann boundary condition on the surface. The inversion process relies on
a partial differential equation constrained optimization approach, supplemented
with a time-dependent regularization scheme. An absorbing boundary condi-
tion is enforced at the bottom of the domain, at a certain depth, to take into
account the artificial truncation of the spatial domain. Moreover, for the case
when there is no homogeneous bottom layer, or its precise location is not a priori
known, the authors propose two iterative schemes to identify the domain depth.
A force identification problem for the wave equation is studied in [8], where the
space-dependent part of the source term is recovered from measurements of the
final or time-average displacement of the wave.

In this paper, we uniquely identify the pair (b, γ) by evaluating the output
flux, ux(0, t), of the solution generated by an impulsive Dirichlet data, h(t), for
a sufficiently large time interval. We also provide a stability estimate. A key
point is the determination of the closed-form solution to (1), at least up to a
definite time, but in principle extendable to any larger time. This is carried out
by a clever usage of the method of characteristics, which we exploit to build the
solution in space-time triangular domains. Clearly, the domain of dependence of
u at a given space-time point, say (x̄, t̄), is the interval [x̄− t̄, x̄+ t̄], whose width
increases with t̄, making the procedure more involved. On the other hand, as
far as we know, for γ 6= 0, a closed-form global-in-time solution is not available.

Then, the performance of the identification procedure is tested numerically.
We devise an algorithm which takes into account the unavoidable approximations
and smoothing effects introduced by the numerical discretization. In particular,
the wave equation is dealt with a Galerkin finite element method with polyno-
mial approximation of arbitrary degree for the spatial variable, and a Newmark
method to advance in time. The impulsive Dirichlet data is approximated by
a Gaussian function of unit area and with a very small variance. The overall
scheme is unconditionally stable (with a proper selection of the parameters in
the Newmark method), and we show that one can obtain a very accurate re-
construction of the physical parameters. Actually, very small space and time
discretization steps are required to describe the sharp Gaussian profile and to
reduce the dispersion error of the method.

The paper is organized as follows. In Section 2, we exploit the method
of characteristics to obtain an explicit representation (for some bounded time
interval) of the solution to (1) with h(t) = δ(t − t0), t0 > 0. In Section 3,
we first define a function g(T ) by a suitable weighted integral on (0, T ) of the
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output flux ux(0, t); then, we show that the study of g allows us to uniquely
determine the pair (b, γ) (see Proposition 3.1). Finally, the stability is discussed
by defining an appropriate notion of distance between a pair of such functions
g. In Section 4, we introduce the numerical algorithm employed to assess the
robusteness and accuracy of the identification procedure. Some conclusions are
drawn in Section 5.

2 A representation formula of the solution

As it is known, problem (1) has a unique classical solution u ∈ C2
(
(0, b) ×

(0, +∞)
)
∩C1

(
[0, b]×(0, +∞)

)
[6]. We provide here a closed-form representation

of the solution on a specific bounded time interval.

Proposition 2.1 A representation of the flux, ux(0, t), valid in the interval
0 < t < 3b, is provided by

ux(0, t) = −h′(t) (2)

+

{
0 0 < t < 2b

2h′(t − 2b) − 4γh(t − 2b) + 4γ2e−γ(t−2b)
∫ t−2b
0 eγsh(s) ds 2b < t < 3b.

Proof. This proof is based on a repeated application of the method of characteristics
[4]. With this aim, it is enough to obtain an explicit expression for the solution in the
triangles T0, and T2 in Fig. 1. As it should be clear from this picture, for the evaluation
of the solution in T2, we need to compute the solution also in T1, where the influence of
the Robin boundary condition first appears. Then, we divide the proof into three steps,
by processing each triangle in turn.

Solution in T0. We observe that the solution u is vanishing for 0 ≤ x ≤ b and 0 ≤ t ≤ x,
while in the triangle T0, defined by

T0 := {0 ≤ x ≤ b, x ≤ t ≤ 2b − x},

we simply have
u(x, t) = h(t − x).

Hence,
ux(0, t) = −h′(t) for 0 ≤ t < 2b.

Solution in T1. We now represent the solution u(x, t) in the triangle

T1 := {b/2 ≤ x ≤ b, 2b − x ≤ t ≤ x + b}.

Then, thanks to the d’Alembert formula, we write the solution in T1 in the form

u(x, t) =
1

2
φ(x − t + b) +

1

2
φ(x + t − b) +

1

2

∫ x+t−b

x−t+b

ψ(s) ds, (3)

where φ, ψ are the Cauchy data at t = b, which depend on the solution at previous
times. Clearly, in the interval 0 ≤ x ≤ b, we have φ(x) = h(b−x), and ψ(x) = h′(b−x).
Additionally, to define (3) for (x, t) ∈ T1, it is necessary to specify the data φ, ψ in the
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Figure 1: Graphic representation of the method of characteristics.

whole interval 0 ≤ x ≤ 2b. This can be accomplished by exploiting the Robin boundary
condition.

For this purpose, we re-write (3) as

u(x, t) =
1

2
h(t − x) +

1

2
φ(x + t − b) +

1

2

∫ b

x−t+b

h′(b − s) ds +
1

2

∫ x+t−b

b

ψ(s) ds.

By explicitly integrating the third term, and since h(0) = 0, we have

u(x, t) = h(t − x) + H(t + x − b), (4)

where

H(ξ) =
1

2
φ(ξ) +

1

2

∫ ξ

b

ψ(s) ds b ≤ ξ ≤ 2b.

We now determine the unknown function H by imposing the boundary condition ux(b, t)+
γu(b, t) = 0. We obtain the Cauchy problem:

{
H ′(t) + γH(t) = h′(t − b) − γh(t − b) t > b,
H(b) = 1

2φ(b) = 1
2h(0) = 0.

The solution to this problem is provided by

H(t) = h(t − b) − 2γe−γ(t−b)

∫ t−b

0

eγsh(s) ds = h(t − b) − 2γh̃(t − b),

where

h̃(ξ) := e−γξ

∫ ξ

0

eγsh(s) ds. (5)
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Note that h̃′ = h − γh̃. By plugging the expression of H into (4), we obtain

u(x, t) = h(t − x) + h(t + x − 2b) − 2γh̃(t + x − 2b), (6)

for (x, t) ∈ T1.
We now determine the functions φ, ψ, in (3). Let us consider the triangle

T := {b ≤ t ≤ 2b, t − b ≤ x ≤ 3b − t},

which includes T1, part of T0, and a part of the half-plane x > b (see Fig. 1). By (6),
and since u(x, t) = h(t − x) in T0, it can be easily checked that u coincides with the
solution (still denoted by u) of the wave equation in T with Cauchy data at t = b given
by

u(x, b) =

{
h(b − x) 0 ≤ x ≤ b,

h(x − b) − 2γh̃(x − b) b ≤ x ≤ 2b,
(7)

and

ut(x, b) =

{
h′(b − x) 0 ≤ x ≤ b,

h′(x − b) − 2γh(x − b) + 2γ2h̃(x − b) b ≤ x ≤ 2b.
(8)

By comparison with (3), it follows that the right-hand side of (7) and of (8) are the
required functions φ, ψ in b ≤ x ≤ 2b.

Solution in T2. We can now go further, by evaluating the solution in the upper triangle

T2 := {0 ≤ x ≤ b/2, 2b + x ≤ t ≤ 3b − x}.

With this aim, we still employ the d’Alembert formula to represent the solution as

u(x, t) =
1

2
φ(x − t + b) +

1

2
φ(x + t − b) +

1

2

∫ x+t−b

x−t+b

ψ(s) ds.

However, since (x, t) ∈ T2, the initial values at t = b have to be defined in the larger
interval −2b ≤ x ≤ 2b. Using (7) and (8), and since, for (x, t) ∈ T2, one has −2b ≤
x − t + b ≤ −b and b ≤ x + t − b ≤ 2b, it holds

u(x, t) = K(x − t + b) +
1

2

[
h(x + t − 2b) − 2γh̃(x + t − 2b)

]

+
1

2

∫ b

0

h′(b − s) ds +
1

2

∫ x+t−b

b

[
h′(s − b) − 2γh(s − b) + 2γ2h̃(s − b)

]
ds,

where

K(ξ) :=
1

2
φ(ξ) +

1

2

∫ 0

ξ

ψ(s) ds − 2b ≤ ξ ≤ 0.

By explicit integration of the terms containing h′, we obtain

u(x, t) = K(x − t + b) +
1

2
h(b) + h(x + t − 2b) − γh̃(x + t − 2b)

− γ

∫ x+t−2b

0

h(s) ds + γ2

∫ x+t−2b

0

h̃(s) ds. (9)

To determine the unknown function K, we enforce the Dirichlet condition u(0, t) = h(t),
for t ≥ b, so that

K(b − t) +
1

2
h(b) + h(t − 2b) − γh̃(t − 2b) − γ

∫ t−2b

0

h(s) ds + γ2

∫ t−2b

0

h̃(s) ds = h(t).
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By solving for K, and by replacing t with t − x, we have

K(x − t + b) = h(t − x) −
1

2
h(b) − h(t − x − 2b) + γh̃(t − x − 2b)

+ γ

∫ t−x−2b

0

h(s) ds − γ2

∫ t−x−2b

0

h̃(s) ds.

Finally, using this expression in (9), we obtain

u(x, t) = h(t − x) + h(x + t − 2b) − h(t − x − 2b)

−γ[h̃(x + t − 2b) − h̃(t − x − 2b)] − γ

∫ t+x−2b

t−x−2b

h(s) ds + γ2

∫ t+x−2b

t−x−2b

h̃(s) ds,

where h̃ is given by (5), with 0 ≤ x ≤ b/2, 2b + x ≤ t ≤ 3b− x. Hence, by recalling that
h̃′ = h − γh̃, we obtain

ux(0, t) = −h′(t) + 2h′(t − 2b) − 4γh(t − 2b) + 4γ2h̃(t − 2b) 2b < t < 3b,

so that (2) is proved. ¤

3 The inverse problem

Suppose 0 < b0 ≤ b, γ ≥ 0. The inverse problem of interest consists in deter-
mining uniquely b and γ, by choosing a suitable input h(t) and by measuring
the output flux, ux(0, t), namely, we aim to recover the unknown pair (b, γ) by
measuring the flux at x = 0 generated by an impulse at time t0.

By inserting in the representation (2) the impulse

h(t) = δ(t − t0), (10)

where t0 > 0 is a suitable small time, we have

ux(0, t) = −δ′(t − t0) + 2δ′
(
t − (2b + t0)

)

−4γδ
(
t − (2b + t0)

)
+ 4γ2e−γ(t−(2b+t0)) 1(2b+t0,3b)(t),

(11)

where 0 < t < 3b and 1(a,b) denotes the indicator function of the interval (a, b).
Clearly, equation (11) holds in the distribution sense, and can be obtained as

the limiting solution to a regularized version of (2), associated with a sequence
{hn(t)} of boundary data, such that hn(t) → δ(t − t0) (e.g., a sequence of
Gaussian functions centered at t0). Then, we will take as output boundary
data some weighted integral of (11) with test function supported in the interval
[0, 3b). The presence of the derivatives of the delta function in (11) leads to using
C1 weight functions (i.e., we can not simply integrate the output flux on some
interval [0, T ] ⊂ [0, 3b)). However, piecewise smooth, continuous functions can
be chosen too. Thus, for every T ≥ b0/2, we consider the continuous, piecewise
linear function

ϕT (t) :=





1 0 ≤ t ≤ T − b0
2

2
b0

(T − t) T − b0
2 ≤ t ≤ T

0 t ≥ T.

(12)
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Assume further that t0 < b0
2 and t0 + b0

2 ≤ T < 3b. Then, we define

g(T ) :=

∫ T

0
ux(0, t)ϕT (t)dt, (13)

with ux(0, t) as in (11). Note that, the integral can be extended to the interval
[0, 3b) by exploiting the bounded support of ϕT .

By the properties of the delta function and of its derivative, we obtain:

g(T ) =





0 for t0 +
b0

2
≤ T < 2b + t0,

4

b0
−

8γ

b0
(T − (2b + t0)) +

8γ2

b0

∫ T

2b+t0

s(t)(T − t) dt

for 2b + t0 < T < 2b + t0 +
b0

2
,

−4γ + 4γ2

∫ T− b0
2

2b+t0

s(t)dt +
8γ2

b0

∫ T

T− b0
2

s(t)(T − t) dt

for 2b + t0 +
b0

2
< T ≤ 3b,

where, to simplify notation, we set s(t) = e−γ(t−(2b+t0)). Then, by explicit
evaluation of the integrals, we get

g(T ) =





0 for t0 +
b0

2
≤ T < 2b + t0

4

b0
(2s(T ) − 1), for 2b + t0 < T < 2b + t0 +

b0

2

−
8

b0
s(T ) (eγ

b0
2 − 1), for 2b + t0 +

b0

2
< T ≤ 3b.

(14)

Function g is not defined at T = 2b + t0 and T = 2b + t0 + b0
2 , where it exhibits

discontinuities, due to the jumps of the (weak) derivative of ϕT . In particular,
at T = 2b + t0 we have

g(2b + t0)
− = 0, g(2b + t0)

+ =
4

b0
.

Then g decreases until reaching the second discontinuity, at T = 2b + t0 + b0
2 ,

where

g
(
2b + t0 +

b0

2

)−
=

4

b0
(2e−γ

b0
2 − 1), g

(
2b + t0 +

b0

2

)+
= −

8

b0
(1− e−γ

b0
2 ) < 0.

Finally, g increases, still remaining negative for larger T (see Fig. 2 for an ex-
ample). Notice that, either the abscissa 2b + t0 or 2b + t0 + b0/2 of the points of
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Figure 2: Plot of g for b0 = 1, b = 1.5, t0 = 0.2, γ = 0.2 (left) and γ = 0.8
(right).

discontinuity uniquely determines the length b.
Now, in order to determine γ, it is convenient to extend g to a right-continuous

function (still denoted by g) for T ∈ [0, 3b), that is

g(2b + t0) = g
(
2b + t0

)+
, g(2b + t0 +

b0

2
) = g

(
2b + t0 +

b0

2

)+
. (15)

Then, g(T ) assumes maximum value g(2b + t0) = 4
b0

and minimum value

g(2b + t0 +
b0

2
) = −

8

b0
(1 − e−γ

b0
2 ) := −∆. (16)

The maximum is independent of the unknowns b and γ (and equals the jump at
both discontinuities, see Fig. 2), while the minimum depends only on γ, so that
γ can be uniquely determined as

γ = −
2

b0
ln

(
1 −

∆b0

8

)
. (17)

Note that ∆ is also equal to the value of the gap

g(2b + t0) − g(2b + t0 +
b0

2
)− =

8

b0

(
1 − e−γb0/2

)
.

We can sum up the previous discussion in the following

Proposition 3.1 Let u(x, t) be the (weak) solution to (1) with Dirichlet data
u(0, t) = δ(t − t0), and assume that the endpoint b and the parameter γ in (1)
satisfy b ≥ b0 > 0, γ ≥ 0 and that 0 < t0 < b0/2. Moreover, let g be the right-
continuous function defined by (13)-(15). Then, denoting by TM the abscissa of
the unique maximum of g, we have

b =
1

2
(TM − t0). (18)

9



Furthermore, the parameter γ is determined by

γ = −
2

b0
ln

(
1 +

gmb0

8

)
. (19)

where gm = g(TM + b0/2) is the minimum value of g.

According to the above proposition, the unknown pair (b, γ) is recovered by
evaluating the weighted integrals (13) of the output flux up to the time TM+b0/2.

Remark 3.1 If an upper bound, b < b̄, is known a priori, the flux could be
evaluated up to a maximum time, T = 2b̄ + t0 + b0/2.

Notice that the value of γ is determined regardless of b. This property could be
exploited to improve the evaluation of b.

For, let us suppose that the points of discontinuity are known to lie in the
interval (T − ǫ, T + ǫ) and (T + b0/2 − ǫ, T + b0/2 + ǫ), respectively, where
0 < ǫ < b0/4 (this means that 1

2(T − t0 − ǫ) < b < 1
2(T − t0 + ǫ)). Then, after

computing γ as in (17), choose

TM ∈ (T + ǫ, T +
b0

2
− ǫ)

and measure the value g(TM ). Since TM lies between the points of discontinuity,
by (14), we readily obtain

b =
1

2
(TM − t0) +

1

2γ
ln

[1

2
+

b0

8
g(TM )

]
.

The above formula could be used to provide a better estimate of b provided that
γ and g(TM ) are determined with sufficient precision (see below).

Remark 3.2 (The case of the Neumann condition) It could be interesting
to consider the case γ = 0 in (1), that is to uniquely determine b when the ho-
mogeneous Neumann condition ux(b, t) = 0 is assigned. By setting γ = 0 in
(14), it turns out that

g(T ) =
4

b0
1(2b+t0, 2b+t0+b0/2),

so that the unknown b is determined by locating the discontinuities of g, which
degenerates to a rectangle function.

Remark 3.3 One could also choose any scaled version mϕT of the test function
in (12), with m > 0. In such a case, function g scales accordingly, while (17)
still holds with ∆ defined by (16).
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3.1 Stability analysis

We have shown that, if u is the solution of (1) with impulsive Dirichlet data at
x = 0, then the function g defined in Proposition 3.1 uniquely determines the
parameters (b, γ). We now discuss the stability of such reconstruction procedure.
Hence, we will estimate the distance between two points in the plane (b, γ) in
terms of some suitably defined distance between two functions g. With this aim,
notice that:

• by (19), the parameter γ is uniquely determined by the minimum value of
g;

• by extending g(T ) to zero outside the interval (t0 + b0/2, 3b), the graphs
of two functions with the same γ and b = b1, b = b2 differ by a shift of
b2 − b1 along the T axis.

Let us now define g{b,γ} : R → R be the extension to zero of g(T ) given
by (14). For any b ≥ b0 > 0 and γ ≥ 0, the function g{b,γ} is bounded and
compactly supported.

Thanks to the two previous remarks, we define the distance:

d
(
g{b1,γ1}, g{b2,γ2}

)
:=

∫

R

∣∣g{b1,γ1}(T ) − g{b2,γ2}(T )
∣∣ dT

+
∣∣ inf

T
g{b1,γ1}(T ) − inf

T
g{b2,γ2}(T )

∣∣, (20)

where the right-hand side is well defined in the set G × G, where

G :=
{

g{b,γ}, (b, γ) ∈ [b0, +∞) × [0, +∞)
}
. (21)

Then, we prove the following stability result.

Theorem 3.1 Let g{b,γ} be defined as above and assume that b ≥ b0 > 0 and
0 ≤ γ ≤ γ̄, for some γ̄ > 0. Then, there exist positive constants, C, η, depending
only on b0, γ̄, such that

d
(
g{b1,γ1}, g{b2,γ2}

)
≥ C

(
|b1 − b2| + |γ1 − γ2|

)
, (22)

whenever |b1 − b2| ≤ η.

Proof. Let ∆1, ∆2 be defined as in (16), for γ = γ1 and γ = γ2, respectively. By
(17) and simple calculus, we have

|γ1 − γ2| =
2

8 − b0 ∆̃
|∆1 − ∆2|,

where ∆1 < ∆̃ < ∆2. By (16) and exploiting the bound on γ, we obtain ∆̃ ≤ ∆̄ < 8/b0,
with ∆̄ as in (16) for γ = γ̄, so that

|γ1 − γ2| ≤
2

8 − b0 ∆̄
|∆1 − ∆2|. (23)
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Figure 3: Degrees of freedom and nodes associated with the space U r
σ, for r = 4.

Suppose now that b1 < b2 ≤ b1 + b0/4, and consider the function g1 − g2, where we set
g1 = g{b1,γ1}, g2 = g{b2,γ2}.
Note that, in the interval 2b1 + t0 ≤ T < 2b2 + t0, one has

g1(T ) =
4

b0
(2e−γ1(T−(2b1+t0)) − 1) and g2(T ) = 0.

Moreover, g1 is decreasing in 2b1 + t0 ≤ T < 2b2 + t0, with

g1(2b2 + t0) =
4

b0
(2e−2γ1(b2−b1) − 1) ≥

4

b0
(2e−2γ̄(b2−b1) − 1).

The last term is positive provided that

b2 − b1 <
1

2γ̄
ln 2.

Hence, by defining

η := min
{b0

4
,

ln 2

2γ̄

}
,

it holds, for |b1 − b2| < η,

∫

R

∣∣g1(T ) − g2(T )
∣∣ dT >

∫ 2b2+t0

2b1+t0

∣∣g1(T )
∣∣ dT ≥

8K

b0
|b1 − b2|, (24)

where the positive constant K depends only on γ̄ and η. Recalling that ∆i = − infT gi(T ),

with i = 1, 2, result (22) follows by estimates (23) and (24), and by choosing C =

min
{
8K/b0, (8 − b0 ∆̄)/2

}
. ¤

4 The discrete problem

We consider the discretization of problem (1). In particular, since we are dealing
with a space-time problem, we first discretize in space via a finite element scheme,
and then in time, by resorting to the Newmark method.
Let us start by subdividing the domain [0, b] into N uniform sub-intervals via
the N + 1 nodes {xi}

N
i=0, with xi+1 = xi + σ, with σ = b/N , x0 = 0 and

xN = b. With a view to the finite element approximation, we introduce the
finite dimensional space U r

σ = {w ∈ C0([0, b]) : w|[xi,xi+1] ∈ P
r}, of piecewise

continuous function of degree r, whose corresponding degrees of freedom are
denoted by ξj , j = 0, . . . , rN , following the ordering described in Fig. 3. Thus,
the semi-discrete finite element approximation is: ∀t > 0, find uσ(t) ∈ U r

σ such
that, ∀vσ ∈ V r

σ ,

∫ b

0
uσ

tt(x, t)vσ(x) dx +

∫ b

0
uσ

x(x, t)vσ
x(x) dx + γuσ(b, t)vσ(b) = 0, (25)
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with uσ(0, t) = h(t), uσ(x, 0) = uσ
t (x, 0) = 0, and where V r

σ = {w ∈ U r
σ :

w(0, t) = 0 ∀t > 0}. Notice also that we adopt the standard convention of
omitting the dependence on x when, at a given time, functions are meant in U r

σ.
The algebraic counterpart of (25) is provided by the following system of ordinary
differential equations:





M̃ ũtt(t) + K̃ũ(t) = 0 t > 0
ũ(0) = 0
ũt(0) = 0,

(26)

with ũ(t) = {uσ(ξi, t)}
rN
i=0 ∈ R

rN+1, M̃ = [m̃ij ]
rN
i,j=0 ∈ R

(rN+1)×(rN+1), K̃ =

[k̃ij ]
rN
i,j=0 ∈ R

(rN+1)×(rN+1), with

m̃ij =

∫ b

0
φi(x)φj(x) dx, k̃ij =

∫ b

0
φi,x(x)φj,x(x) dx + γδi,rNδj,rN ,

the elements of the mass and of the stiffness matrix, respectively, δk,rN being the
Kronecker symbol, uσ(ξ0, t) = h(t), and with {φk}

rN
k=0 the finite element basis

functions, assumed to be Lagrangian, so that uσ(x, t) =
∑rN

k=0 uσ(ξk, t)φk(x).
System (26) can be reduced in dimension in order to highlight the known quan-
tities as





Mutt(t) + Ku(t) = −
(
h(t) f + htt(t)m

)
=: F(t) t > 0

u(0) = 0
ut(0) = 0,

(27)

where1 K = K̃(2 : rN + 1, 2 : rN + 1) ∈ R
rN×rN , M = M̃(2 : rN + 1, 2 :

rN + 1) ∈ R
rN×rN , f = K̃(2 : rN + 1, 1) ∈ R

rN , m = M̃(2 : rN + 1, 1) ∈ R
rN ,

and u(t) = {uσ(ξi, t)}
rN
i=1 ∈ R

rN . Notice that both M and K are symmetric
positive definite.

Concerning the time discretization, we focus on the time window [0, tf ], for
some final time, tf > 0, and divide such interval in Nτ sub-intervals, identified
by the time step τ = tf/Nτ , such that tn+1 = tn + τ , for n = 0, . . . , Nτ −
1. Then, we resort to the Newmark method [10], and in particular to its a-
form implementation. This is a well-known one-step algorithm for a second-
order ordinary differential system in time describing general damped/undamped
structural dynamics applications [5]. In this method, system (27) is reformulated
in terms of three unknowns, a = utt, v = ut, and u, so that it becomes





Ma(t) + Ku(t) = F(t) t ∈ (0, tf ]
u(0) = 0
v(0) = 0.

(28)

Then, equation (28)1 is evaluated at the time level tn+1 as

Man+1 + Kun+1 = Fn+1,

1We adopt a standard Matlab syntax to extract array components.
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where the superscripts indicate the corresponding time level, supplemented with
the following Taylor-like expansions to link the unknowns at tn and at tn+1:





un+1 = un + τvn + τ2
(
(1/2 − β)an

︸ ︷︷ ︸
u

n
p

+βan+1
)

= un
p + τ2β an+1,

vn+1 = vn + τ
(
(1 − α)an

︸ ︷︷ ︸
v

n
p

+αan+1
)

= vn
p + τα an+1.

The variables un
p ,vn

p denote predicted values for the displacement and the ve-
locity, respectively, and can be computed explicitly, since they depend just on
the state at time level n. The Newmark one-step procedure to advance in time
consists of: Given [un,vn,an], we compute [un+1,vn+1,an+1] by the following
steps 




un
p = un + τvn + τ2(1/2 − β)an

vn
p = vn + τ(1 − α)an

(M + τ2βK)an+1 = Fn+1 − Kun
p

un+1 = un
p + τ2β an+1

vn+1 = vn
p + τα an+1,

where the first two and the last two assignments are straightforward vector up-
dates. The third line involves solving an algebraic linear system for the unknown
an+1, with a symmetric positive definite matrix, being a linear combination of
the stiffness and mass matrix.

After dealing with the approximation to the wave equation, we have to ad-
dress the recovery of the model parameters, b, γ, by a suitable identification
procedure. We summarize the overall algorithm, comprising both the approxi-
mation of the wave equation and the estimate of b and γ, in Alogorithm 1.

Some remarks are in order. The function in line 2. (and its corresponding
second-order derivative in time in line 3.) replaces the impulse in (10). This is
a user-defined Gaussian function, centered at t = t0, with variance λ, and with
unit integral over R.
The vector function F in line 4. coincides with definition (27).
In lines 5.-7., according to a standard finite element approach, we introduce the
local degrees of freedom (the r +1 uniform nodes associated with the space P

r),
on the reference unit interval, and form the corresponding global stiffness and
mass matrices, by typical local-to-global assembly procedures [13]. The relation
τ = 0.1σ reduces the dispersion error in the Newmark method.
The time marching process is carried out in lines 11.-16., via the Newmark
method, after the initialization in lines 8.-9.
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Algorithm 1

1. Input : b0, t0, λ, γ, b, r, N, tf , β, α;

2. Define : h(t) = 1√
2πλ

exp
(−(t−t0)2

2 λ2

)
;

3. Define : htt(t) = (t−t0)2−λ2

λ4 h(t);
4. Define : F(t) = −

(
h(t) f + htt(t)m

)
;

5. Define : {x̂k}
r
k=0 : x̂k = k/r;

6. Set : σ = b/N ; τ = 0.1σ; Nτ = tf/τ ;
7. Assemble : M, K as in (27);
8. Set : n = 0; t0 = 0; u0 = v0 = 0; w0 = 0;
9. Solve for a0 : Ma0 = F(0);
10. for n = 0 : Nτ − 1

% Newmark step

11. tn+1 = tn + τ ;
12. Set : un

p = un + τvn + τ2(1/2 − β)an;

13. Set : vn
p = vn + τ(1 − α)an;

14. Solve for an+1 : (M + τ2βK)an+1 = Fn+1 − Kun
p ;

15. Set : un+1 = un
p + τ2β an+1;

16. Set : vn+1 = vn
p + τα an+1;

% Approximation to ux(0, tn+1)
17. Compute : wn+1 by (29);

18. end
% Estimate of b, γ
19. Compute : g(Tn) by (30), for Tn ∈ [b0/2 + t0, 3b − τ ];
20. Compute : b by (31);
21. Compute : ∆ = −minn g(Tn);
22. Compute : γ by (17);

To compute g(T ) in (13), we resort to a numerical integration formula, after
replacing ux(0, t) with a suitable approximation. Concerning this last issue, the
idea is first to interpolate the values {ũn+1

k }r
k=0, at the generic time level n+1, at

the r +1 uniform nodes {ξk}
r
k=0 on the leftmost interval [0, x1], by a polynomial

in P
r. However, for numerical conditioning issues, this approximation is carried

out on the reference element: Given {(x̂k, ũ
n+1
k )}r

k=0, find the coefficients {ck}
r
k=0

such that

pr(x̂j) =

r∑

k=0

ck x̂r−k
k = ũj , j = 0, . . . , r.

The coefficients, {dk}
r
k=0, of the polynomial qr(x) =

r∑

k=0

dk xr−k on the physical

interval [0, x1] are computed by the transformation {dk}
r
k=0 = {ckσ

k−r}r
k=0.

Finally, the approximation, wn+1, to ux(0, tn+1) is computed in line 17. as

wn+1 = qr
x(0) = dr−1, (29)

15
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Figure 4: Test 1: Plot of g(Tn) (left), of a detail (center), and of dg
dT (Tn) (right),

for Tn ∈ [3.16, 3.24].

with

qr
x(x) =

r−1∑

k=0

(r − k)dk xr−k−1.

As for the numerical integration involved in (13), we consider the interval [b0/2+
t0, 3b−τ ] for T , and sample this interval with the same step used for the Newmark
method, i.e., τ and denote by Tn the variable right endpoint in the integral
in (13). Additionally, we resort to a composite quadrature rule based on the
uniform nodes {tn}n≥0. Thus, we divide the interval [0, Tn] in Nn = Tn/τ
sub-intervals, and employ the composite trapezoidal quadrature rule, taking
into account that w0 = 0, due to the initial condition in (1). This yields the
computation in line 19.

g(Tn) ≃ τ

Nn−1∑

k=1

wkϕT n(tk) + 0.5τ wNnϕT n(tNn). (30)

We are now ready to compute the pair (b, γ) in lines 20.-22., inspired by (18)-
(19). In particular, b is derived by computing first TM = arg maxn

dg
dT (Tn) in a

neighborhood of the positive steep gradient of g, and then the quantity

b = 0.5(TM − t0). (31)

As for γ, we exploit (17) after properly approximating ∆ in (16), as the minimum
of g(Tn) over the interval [b0/2 + t0, 3b − τ ], up to the sign.

A numerical assessment. We now carry out two numerical experiments,
corresponding to the data in Fig. 2. Concerning the configuration on the left,
we pick the input parameters to Algorithm 1: b0 = 1, t0 = 0.2, λ = 0.0025,
γ = 0.2, b = 1.5, r = 2, N = 6000, tf = 3b + 2t0 = 4.7, β = 1/4, α = 1/2. For
estimating b, we consider the plot of g in Fig. 4 (left), and zoom in on around
the first discontinuity, in Fig. 4 (center). With high confidence, we can state
that 3.19 < 2b + t0 < 3.21. The derivative of g(T ), represented in this interval
in Fig. 4 (right), predicts TM = 3.200075, from which we can recover the value
b = 1.5000375, which is a very accurate approximation to the exact value.
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Figure 5: Test 2: Plot of g(Tn) (left), of a detail (center), and of dg
dT (Tn) (right),

for Tn ∈ [3.16, 3.24].

The computed value in line 21., based on Fig. 4 (left), is ∆ = 0.759734, which
yields the estimated value γ = 0.199567, very close to the exact value, differing
only by circa 0.2% with respect to a relative error.

Figure 5 collects the results associated with the configuration on the right
in Fig. 2. The same parameters as in the previous case are chosen, except
for γ, set to 0.8. The estimated values of the parameters are TM = 3.200050,
b = 1.5000250, and ∆ = −2.618865, γ = 0.793084, with a relative error on this
latter of about 0.8%.

5 Conclusions

The exact solvability of the linear wave equation in a one-dimensional setting
turns out to be a non-trivial issue when the spatial interval is bounded and
mixed-boundary conditions complete the problem. In particular, the Robin data
makes the problem more challenging with a view to the computation of the
solution in closed form. Indeed, the constructive procedure used in the proof
to Proposition 2.1, although based on the standard method of characteristics,
demands a particular care due to the boundedness of the spatial domain. In
principle, we can extend the solution to larger times, though the technicalities
become more involved.

The reconstruction formulas (18)-(19) provide a practical way to compute
the unknown parameters. This is corroborated by the numerical investigation
in Section 4, which shows that the accuracy of the recovered parameters is
high, thus assessing the reliability of Algorithm 1. The regularization of the
Dirichlet data (i.e., the replacement of the impulsive signal with a Gaussian
function) required by the numerical procedure can be conceived as a possible
physical effect due to measurement errors. Nevertheless, this smoothing does
not spoil the physics of the problem, thanks to both a stable recovery procedure
(as shown in Section 3.1) and a robust numerical scheme (the Newmark finite
element method).
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