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Abstract

Motivated by the analysis of the dependence of knee movement pat-

terns during functional tasks on subject-specific covariates, we introduce a

distribution-free procedure for testing a functional-on-scalar linear model

with fixed effects. The procedure does not only test the global hypoth-

esis on all the domain, but also selects the intervals where statistically

significant effects are detected. We prove that the proposed tests are pro-

vided with an asymptotic control of the interval-wise error rate, i.e., the

probability of falsely rejecting any interval of true null hypotheses. The

procedure is applied to one-leg hop data from a study on anterior cru-

ciate ligament injury. We compare knee kinematics of three groups of

individuals (two injured groups with different treatments, and one group

of healthy controls), taking individual-specific covariates into account.

Keywords: ANCOVA; Functional data; Human movement; Interval-

Wise Testing; Permutation test.
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1 Introduction

Functional data analysis (FDA) is a dynamically developing research area within

the field of statistics. In recent literature, linear models for functional data have

been widely studied (see, e.g., Fan and Zhang 2000; Abramovich and Angelini

2006; Cardot et al. 2007; Reiss et al. 2010; Gertheiss et al. 2013; Fogarty and

Small 2014; Abramowicz et al. 2014).

Motivated by the analysis of the dependence of knee movement patterns

during functional tasks on subject-specific covariates, we consider in the present

paper a functional-on-scalar linear model. Specifically, we model a functional

response with a set of covariates multiplied by functional parameters. Such

models find their applications in a wide range of research fields where modern

techniques enable collection of high-resolution time-continuous data. In this

context, many of the empirically relevant questions address the effect of covari-

ates on a functional response. They may also desire identification of significant

domain subsets, that is, time intervals characterized by significant effects of a

specific covariate. The incitament for this work comes from a follow-up study

after anterior cruciate ligament injury. Anterior cruciate ligament injuries are

common worldwide, especially in sports, and are typically treated either conser-

vatively with physiotherapy or with reconstructive surgery in combination with

physiotherapy. We analyze knee-joint kinematics data of sagittal plane, i.e.,

knee flexion/extension, during a one-leg hop for distance for n = 95 individuals

(see Figure 1). We compare individuals from the surgery and physiotherapy

groups with healthy-knee controls matched on age and sex.

Figure 1 here

Previous studies are indicating differences in the movement patterns between

these groups (Tengman et al., 2015; Hébert-Losier et al., 2015). Tengman et al.

(2015) has a limitation since it is only considering selected landmarks (events)

of the curves. The previous analysis included group effects as well as covariates,

but did not take into account the information coming from the functional na-

ture of the data. In Hébert-Losier et al. (2015), the complete functional data

was considered, but without taking covariates into account. Both these stud-

ies indicate less knee flexion among the individuals treated with physiotherapy

compared to the control group. We here overcome both the above mentioned

limitations by introducing a statistical tool that both exploits the functional na-

ture of the data, and takes into account possible covariates effects. In this paper,

we investigate if these differences are only due to group effects, or if they can

be explained by means of additional individual-specific covariates. Further, the

introduced methodology enables detection of the intervals where the covariates
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have significant effects (domain selection). Such information provides additional

insight into the importance of different time segments of the movement. For in-

stance, the active preparation phase with e.g., knee bending, prior to the actual

take-off of the jump determines much of the performance, but there is no obvi-

ous single event that would necessarily be most representative for comparison

of movement control for individuals or groups. Likewise, the control of the knee

in the landing phase is essential for maintaining balance during the task but it

is not known to a full extent how this is controlled or even how to best assess it.

The present method enables comparisons of the whole movement pattern tai-

lored also to individuals and may in addition help in identifying critical intervals

within the larger phases of the movement execution.

Parameter estimation of the functional model is handled by least squares es-

timation, as suggested, for instance, by Ramsay and Silverman (2005). Forming

valid tests of various hypotheses about the functional regression parameters,

with control of the error rate, is however not straightforward. One solution

adopted in the literature is to develop global tests for the parameters of the

model (Cuevas et al., 2004; Abramovich and Angelini, 2006; Antoniadis and

Sapatinas, 2007; Cardot et al., 2007; Schott, 2007; Cuesta-Albertos and Febrero-

Bande, 2010; Staicu et al., 2014; Zhang and Liang, 2014; Kayano et al., 2015).

Such tests investigate if a covariate has a significant effect on the response, but

does not provide any domain selection. Another approach, proposed in Fan and

Zhang (2000); Reiss et al. (2010); Ramsay and Silverman (2005), is to provide

point-wise confidence bands for the functional parameters. The results indicate

in which parts of the domain that the covariates have an effect, with only a

point-wise control of the type I error rate. As clearly discussed in Ramsay and

Silverman (2005, pp. 243–244), point-wise limits are not equivalent to confi-

dence regions for the entire estimated curves.

Assuming that data are expressed through a functional basis, inference can

be based directly on the expansion coefficients, as proposed, for instance, by

Spitzner et al. (2003) and Pini and Vantini (2016). In the latter work, single-

component tests are performed, and their p-values adjusted with multiple testing

methods. In this way, results are compensated for the many dependent tests

performed on the same data set. A drawback with this type of procedures is

that they rely on the basis expansion. The test conclusions thus depend on the

type of functional basis selected to initialize the methods.

Vsevolozhskaya et al. (2013) and Vsevolozhskaya et al. (2014) proposed an

inferential procedure in the functional ANOVA framework based on partitioning

the domain into pre-selected sub-intervals. The procedure, relying on permuta-

tion tests, results in a selection of sub-intervals where significant differences are

observed between groups. However, the test conclusions depend on the initially
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chosen partition and do not take into account covariates.

In the framework of testing differences between two-populations, Pini and

Vantini (2015) proposed the interval-wise testing (IWT) procedure that tests

functional hypotheses and selects intervals of the domain where the null hy-

pothesis is rejected. The method relies on the definition of an adjusted p-value

function provided with a control of the interval-wise error rate (IWER), i.e.,

control of the probability of wrongly rejecting any interval of the domain. In

our work, we extend this method to the functional-on-scalar linear model to test

various hypotheses on the functional coefficients, and prove that the proposed

tests are exact or asymptotically exact. It is important to point out, as tests

are based on permutations, that the procedure does not require normality of

the residual functions. Moreover, the resulting procedure does not require to

specify the covariance structure of the data.

The paper is outlined as follows: in Section 2, we describe the functional-

on-scalar linear model, discussing the methodology proposed for functional pa-

rameter estimation and inference. Section 3 reports the theoretical properties

of the proposed methodology. The proofs of theorems in Section 3 are reported

Section A of the Appendix. In Section 4 we provide the implementation details

of the proposed procedure. In Section 5, we report the results of the analysis of

the kinematics data. Finally, Section B of the Appendix reports some algorith-

mic details on the permutation scheme used to perform inference, and Section

C of the Appendix reports supplementary results on the kinematics data. All

computations and plots have been created using R (R Core Team, 2014).

2 Methodology

2.1 The functional-on-scalar linear model

Suppose we have observed a sample of n continuous squared-integrable random

functions yi(t), t ∈ [a, b], i = 1, . . . , n, i.e., yi(·) ∈ L2[a, b]∩C0[a, b] ∀i. We want

to study the following functional-on-scalar linear model:

yi(t) = β0(t) +

L∑
l=1

βl(t)xli + εi(t), ∀i = 1, ..., n, t ∈ [a, b], (2.1)

where x1i, ..., xLi ∈ R are known scalar covariates and βl(t), l = 0, ..., L, are

the unknown fixed functional regression parameters. The errors εi(t), t ∈ [a, b]

are independent and identically distributed (with respect to units) zero-mean
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random functions (not necessarily Gaussian) with finite total variance, i.e.,∫ b

a

E [εi(t)]
2
dt <∞, ∀i = 1, ..., n. (2.2)

No further assumption is needed on the covariance structure of the error term.

2.2 Model estimation

The ordinary least squares (OLS) estimators of the functional parameters βl(t),

l = 0, . . . , L, can be found by minimizing the sum over units of the squared L2

distances between the functional data yi(t) and the quantity β0(t)+
∑L
l=1 βl(t)xli

with respect to βl(t), l = 0, . . . , L (Ramsay and Silverman, 2005), hence mini-

mizing
n∑
i=1

∫ b

a

(
yi(t)− β0(t)−

L∑
l=1

βl(t)xli

)2

dt. (2.3)

From the interchangeability of summation and integration in (2.3) it follows

that the minimization can be done separately for each point of the domain,

independently of the covariance structure of the errors εi(t). The OLS estimate

β̂(t) = (β̂0(t), . . . , β̂L(t))′, t ∈ [a, b], minimizing (2.3) can thus be calculated

point-wise for each given t as:

β̂(t) = argmin
β0(t),...,βL(t)

n∑
i=1

(
yi(t)− β0(t)−

L∑
l=1

βl(t)xli

)2

. (2.4)

For each t, β̂(t) is thus the OLS estimator of the corresponding scalar-on-scalar

linear model at point t.

Asymptotic properties for the OLS estimates at each point t can be im-

mediately derived from classical results for scalar-on-scalar linear models. In

detail, let Xn be the design matrix Xn ∈ R(n×(L+1)) ([Xn]i,1 = 1, ∀i = 1, ..., n;

[Xn]i,j = xj−1,i, i = 1, ..., n, j = 2, ..., L + 1). Consider the following standard

conditions:

C1 The matrix X ′nXn is non-singular, and the inverse V = (X ′nXn)−1 is

s.t. the elements [V ]ij → 0 as n→∞, for all i, j = 1, ..., L+ 1.

C2 For each t ∈ [a, b], the regression errors εi(t) satisfy:

sup
i=1,...,n

E
[
εi(t)

2
]
<∞.
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Under conditions C1 -C2, we have that for each t ∈ [a, b], the OLS estimate

β̂(t) = (X ′nXn)−1X ′n(y1(t), . . . , yn(t))′, (2.5)

is a strongly consistent estimate of β(t) = (β0(t), . . . , βL(t))′ (Lai et al., 1979).

Condition C1 is a sufficient condition for finding an explicit expression of the

OLS estimates, and guarantees convergence in probability. Condition C2 en-

sures almost sure convergence.

2.3 Model inference

One of the main challenges with inference for functional linear models (2.1) is

to perform valid tests of various hypotheses on the functional regression param-

eters, and to select significant intervals of the domain. For instance, we are

interested in the overall model test, that none of the covariates have a signif-

icant effect on the response, i.e., the functional version of the classical F -test

hypotheses:{
H0,F : βl(t) = 0 ∀l ∈ 1, . . . , L, ∀t ∈ [a, b]

H1,F : βl(t) 6= 0 for some l ∈ {1, . . . , L} and some t ∈ [a, b],
(2.6)

together with tests on single functional parameters, i.e., the functional version

of the classical t-test hypotheses:H0,l : βl(t) = 0 ∀t ∈ [a, b]

H1,l : βl(t) 6= 0 for some t ∈ [a, b],
(2.7)

where l ∈ {0, . . . , L}.
It may also be of interest to test hypotheses on one or more linear com-

binations of the functional parameters of the regression, specified by a combi-

nation matrix C. In detail, let C ∈ R(q×(L+1)) be any real-valued full rank

matrix, where q denotes the number of hypotheses on the functional regres-

sion parameters to be jointly tested, with 1 ≤ q ≤ L + 1. Moreover, let

c0(t) = (c01(t), ..., c0q(t))
′ be a vector of fixed functions in L2[a, b] ∩ C0[a, b].

The general testing problem can typically then be formulated as follows:H0,C : Cβ(t) = c0(t) ∀t ∈ [a, b]

H1,C : Cβ(t) 6= c0(t) for some t ∈ [a, b],
(2.8)

where the j-th element of vector Cβ(t) is a function obtained by means of a

linear combination of the functional regression parameters βl(t) with weights

[C]jl: [Cβ(t)]j =
∑L
l=0[C]jlβl(t), j = 1, ..., q. There are two important special
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cases of the general functional linear hypotheses (2.8):

1. Let q = L, C = CF = (0
∣∣IL) ∈ RL×(L+1), and c0(t) = 0 ∈ RL, where IL

is the L×L identity matrix. Then, the hypotheses of (2.8) correspond to

the hypotheses in (2.6);

2. For a fixed l, let q = 1, C = Cl ∈ R1×(L+1) with [Cl]r = 1 if r = l and 0

otherwise, and c(t) = 0. Then, the hypotheses in (2.8) correspond to the

hypotheses in (2.7).

For test (2.8), in case of rejection of the null hypothesis H0,C , we want to

select the intervals on [a, b] where significant differences are detected. In theory,

this problem can be addressed by performing an infinite family of tests along

the domain [a, b], of the form:Ht
0,C : Cβ(t) = c0(t)

Ht
1,C : Cβ(t) 6= c0(t).

(2.9)

Based on classical results for scalar-on-scalar linear models, it is rather straight-

forward to test hypotheses (2.9) for each t. The challenge is to control the

family-wise error rate arising from the uncountable infinite number of (depen-

dent) hypotheses tests. In this paper, we extend the domain selection IWT

procedure by Pini and Vantini (2015) to functional-on-scalar linear models to

control the probability of wrongly rejecting each interval characterized by only

true hypotheses, i.e., the control of the interval-wise error rate. The domain

selection procedure we propose is based on three steps, presented in detail in

the following paragraphs.

2.3.1 First step: interval-wise testing

Given any closed interval I ⊆ [a, b], we want to test:HI0,C : Cβ(t) = c0(t) ∀t ∈ I

HI1,C : Cβ(t) 6= c0(t) for some t ∈ I.
(2.10)

To perform tests of linear hypotheses (2.10), we propose to use the statistic:

T IC =

∫
I
TC(t)dt, (2.11)

where

TC(t) =
(
Cβ̂(t)− c0(t)

)′ (
Cβ̂(t)− c0(t)

)
, (2.12)
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and β̂(t) is the OLS estimate (2.5). In particular, for the overall model hypothe-

ses on I HI0,F : βl(t) = 0 ∀l ∈ 1, . . . , L, ∀t ∈ I

HI1,F : βl(t) 6= 0 for some l ∈ {1, . . . , L} and t ∈ I
(2.13)

we use the following statistic:

T IF =

∫
I

L∑
l=1

(β̂l(t))
2dt. (2.14)

For the hypotheses of the lth functional regression parameter on I,HI0,l : βl(t) = 0 ∀t ∈ I

HI1,l : βl(t) 6= 0 for some t ∈ I
(2.15)

we use the test statistic:

T Il =

∫
I

(
β̂l(t)

)2
dt. (2.16)

Note that we have chosen T IF and T Il to be special cases of T IC .

2.3.2 Second step: adjusted p-value functions

Let pIC denote the p-value of test (2.10) obtained using functional permuta-

tion tests based on the Freedman and Lane permutation scheme (Freedman and

Lane, 1983), as defined by Pesarin and Salmaso (2010). It is based on the permu-

tation of the estimated residuals under the reduced model, i.e., the linear model

constrained to the null hypothesis of the test. The p-value of the permutation

test is then obtained by calculating the proportion of permutations leading to a

larger value of the test statistic than the test statistic on the observed data. This

scheme is the most commonly used scheme for linear models, and presents many

advantages compared to other permutation techniques (Davison and Hinkley,

1997; Anderson and Legendre, 1999; Anderson and Robinson, 2001; Zeng et al.,

2011; Winkler et al., 2014). In particular, it can be shown empirically that its

power is typically higher than the power of tests based on other permutation

schemes (Anderson and Legendre, 1999; Winkler et al., 2014). For more details,

see Appendix B.

In order to identify significant sub-domains we make use of adjusted p-value

functions. The adjusted p-value function p̃C(t) at point t for testing general

linear hypotheses with contrast C is defined as the supremum p-value of all

interval-wise tests on intervals containing t:

p̃C(t) = sup
I3t

pIC , t ∈ [a, b]. (2.17)
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Analogously, denoting by pIF , and pIl the p-values from testing (2.13) and (2.15),

respectively, the adjusted p-value functions for testing hypotheses on the overall

model and on the lth functional parameter are defined as

p̃F (t) = sup
I3t

pIF ; p̃l(t) = sup
I3t

pIl , t ∈ [a, b], (2.18)

respectively.

Due to the nature of permutation tests used here, the adjusted p-value func-

tions are quantized continuous functions with step size decreasing as the sample

size n tends to infinity. The continuity of the limiting function is guaranteed

by the continuity of the point-wise test statistics and of the observed functions

yi(t)’s.

2.3.3 Third step: domain selection

The intervals of the domain presenting a rejection of any of the null hypotheses

are obtained by thresholding the corresponding adjusted p-value functions at

level α. For example, we select intervals presenting at least one significant effect

by thresholding p̃F (t) and intervals presenting a significant effect of the lth

covariate by thresholding p̃l(t).

The introduced domain selection procedure is provided with a (asymptotic)

control of the IWER. This type of control implies that the probability of de-

tecting false positive intervals is (asymptotically) controlled at level α. The

supporting theoretical results are presented in the following section.

3 Theoretical results

Here we present theoretical properties of the permutation-based inference on

functional-on-scalar linear models performed along the line depicted in Section

2. All proofs are reported in Appendix A.

First, we prove that the domain selection IWT procedure for testing general

linear hypothesis is provided with an asymptotic control of the IWER. Pini and

Vantini (2015) proved that, if all interval-wise tests used to build IWT are exact,

the IWT is provided with a control of the IWER. This result can be applied

directly in the case of the overall functional model test on the regression model,

but has to be extended in the more general case of tests on linear hypotheses

(including tests on single functional parameters), since in the latter case the

exactness of all tests is only asymptotical.

Theorem 3.1. Under assumptions (C1-C2), the domain selection procedure

for testing general functional linear hypotheses is provided with an asymptotic
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control of the IWER. Formally, the adjusted p-value function p̃C(t) is s.t., ∀α ∈
(0, 1]:

∀I ⊆ [a, b] : HI0,C is true ⇒ lim sup
n→∞

P [∀t ∈ I, p̃C(t) ≤ α] ≤ α.

Since tests on single functional parameters are specific cases of linear hypotheses,

we obtain directly the following corollary.

Corollary 3.2. Under assumptions (C1-C2), the domain selection procedure

for testing hypotheses for single functional regression parameter is provided with

an asymptotic control of the IWER.

Furthermore, the following proposition provides exact results for IWT-based

overall functional model tests.

Proposition 3.3. The domain selection procedure for testing the overall func-

tional model hypotheses is provided with a control of the IWER. Formally, the

adjusted p-value function p̃F (t) is s.t., ∀α ∈ (0, 1]:

∀I ⊆ [a, b] : HI0,F is true ⇒ P [∀t ∈ I, p̃F (t) ≤ α] ≤ α.

Next, we focus on the property of consistency of the proposed tests. The follow-

ing theorem states that the probability of detecting every interval I s.t. Ht
0,C is

false ∀t ∈ I, converges to 1 as the sample size increases. This property implies

that the probability of truly detecting any point where the null hypothesis is

false converges to 1.

Theorem 3.4. The domain selection procedure for testing general functional

linear hypotheses is consistent. Formally, ∀α ∈ (0, 1]:

∀I ⊆ [a, b] s.t. Ht
0,C is false ∀t ∈ I ⇒ lim

n→∞
P [∀t ∈ I, p̃C(t) ≤ α] = 1.

As a consequence, we also obtain consistency results for the IWT-based tests of

the overall functional model and on single functional parameters.

Corollary 3.5. The domain selection procedure for the overall functional model

hypotheses is consistent.

Corollary 3.6. The domain selection procedure for single functional parameter

hypotheses is consistent.

4 Details on the implementation

In practice, evaluations of the adjusted p-value functions, even at one fixed

point t ∈ [a, b], is practically unfeasible, since it involves taking supremum over
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uncountably many sub-intervals covering point t. We therefore propose a nu-

merical procedure resulting in point-wise constant approximation of the p-value

functions and the significance regions chosen accordingly. The approximation

error of the procedure is dependent on two parameters. The first parameter,

K ∈ N, defines the size of the initial partition of interval [a, b]. The second

parameter, B ∈ N, determines the number of random permutations used in the

conditional Monte Carlo algorithm (Pesarin and Salmaso, 2010) to approximate

the interval-wise permutation tests p-values.

The following steps describe the procedure for linear hypotheses of the func-

tional parameters with combination matrix C.

Step 1 Partition the domain [a, b] into K equally sized atomic sub-intervals of

length ∆t = (b− a)/K, i.e.,

Pi = [a+ (i− 1)∆t, a+ i∆t] i = 1, . . . ,K.

Let S be the family (of size K(K + 1)/2) of all possible intervals con-

structed from the K atomic sub-intervals.

Step 2 For i = 1, . . . ,K approximate the value of the integrated test statistics

TPi

C by

T̂Pi

C = TC (a+ (i− 1)∆t) ∆t.

Step 3 For all intervals J ∈ S approximate the value of the integrated test

statistics by

T̂JC =
∑
Pi⊂J

T̂Pi

C .

The approximations of the integrated test statistics correspond to a rectan-

gle quadrature with step ∆t applied to the point-wise test statistic TC(·).

Step 4 Estimate the p-values p̂JC of the tests on each J ∈ S using the Freedman

and Lane permutation scheme (see Appendix B) with B randomly chosen

permutations.

Step 5 The adjusted p-value function at point t is estimated by the maximum

of the corresponding p-values of all intervals J in S containing t, i.e.,

̂̃pC(t) = max
{
p̂JC : J ∈ S s.t. J 3 t

}
.

Further, by construction, ̂̃pC(t) is constant at each atomic sub-interval and

therefore, the estimate of p̃C(t) for all t ∈ [a, b] is obtained by evaluating

the above maximum K times (one time per each P1, . . . ,PK).
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Step 6 Select the significant domain subset by thresholding the obtained ap-

proximated adjusted p-value function.

Observe that as K tends to infinity the error arising due to discretization

of the domain becomes negligible. This is guaranteed by the integrability of

the point-wise test statistic TC(t) and resulting continuity of the integrated

test statistic with respect to the integration limits. Further, as the number of

simulated permutations B increases, the Monte Carlo error tends to zero. It

is worth to notice that in Step 4, we use the same B permutations for each

sub-interval, which decreases the computational complexity of the algorithm.

5 Analysis of knee kinematics

We will now report the results of the analysis of the knee kinematics data briefly

presented in the introduction. To investigate potential long term differences in

movement patterns following ACL injury, individuals treated either with re-

constructive surgery in combination with physiotherapy or physiotherapy alone

were tested in a motion laboratory. The resulting functional data consist of the

joint angle motion in different movement planes during a one-leg hop, sampled

at 240 Hz.

The functional data set that we analyze here corresponds to the knee move-

ment in the sagittal plane, i.e., knee flexion/extension, see Figure 1, during a

one-leg hop for distance. Our primary focus is to compare individuals treated

either with reconstructive surgery in combination with physiotherapy (ACLR)

or physiotherapy alone (ACLPT) with healthy-knee controls (CTRL) matched

on age and sex, taking individual-specific covariates into account. The three

groups are only matched on group level (Hébert-Losier et al., 2015), and hence

age and sex are included as possible covariates together with available data

about jump length and body mass index (BMI). The knee movement in the

sagittal plane for the hop of maximal length (out of three attempts) on the

injured leg for the two ACL groups was compared to the non-dominant leg for

controls. In the case of group differences, it is of clinical interest to find out in

which time intervals of the jump these differences occur. The functional data

are represented through B-splines and aligned by means of four landmarks: the

event of maximal knee flexion before take-off; the take-off event (the instant at

which the foot leaves the ground); the touch-down event (the time instant at

which the foot touches the ground); and the event of maximal knee flexion after

landing. The aligned data and the landmarks are displayed in the right panel

of Figure 1. For more details on data collection and preprocessing we refer to

Hébert-Losier et al. (2015). The hop consist of three phases; time preceding the
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Table 1: Global p-values of the initial model for the overall test (2.6) and for each single
functional parameter test (2.7) obtained by performing permutation tests with B=1000 based
on test statistics (2.14) and (2.16), respectively.

Test Overall β0 βJump βBMI βSex βAge βCTRL βR
p-value 0.000 0.000 0.000 0.302 0.277 0.327 0.000 0.037

Table 2: Global p-values of the reduced final model for the overall test (2.6) and for each
single functional parameter test (2.7) obtained by performing permutation tests with B=1000
based on test statistics (2.14) and (2.16), respectively.

Test Overall β0 βJump βCTRL βR
p-value 0.000 0.000 0.000 0.000 0.029

take-off event (take-off phase); time between the take-off event and the landing

event (flight phase); time succeeding the landing event (landing phase).

The initial model we use to describe the knee joint angle motion in the

sagittal plane, yi(t), is the following:

yi(t) = β0(t) + βJump(t)xJump,i + βBMI(t)xBMI,i + βAge(t)xAge,i

+ βSex(t)xSex,i + βCTRL(t)xCTRL,i + βR(t)xR,i + εi(t), i = 1, ..., 95,

where the covariates xJump,i, xBMI,i, and xAge,i indicate the jump length, BMI,

and age, respectively of individual i. Furthermore, xSex,i, xCTRL,i and xR,i, are

indicator functions attaining the value 1 if individual i is a man, in the control

group and in the reconstructive surgery group, respectively, otherwise 0.

As in classical multiple regression, we start with the initial model using all

available covariates, and then use backward elimination to reduce it to a final

model which includes only the significant covariates. We start by performing a

global overall significance test, that simultaneously tests if at least one of the

coefficients is significant somewhere on the domain, c.f. (2.6). Separate global

tests are then performed for each coefficient as in eq. (2.7). Table 1 presents

the p-values obtained by performing permutation tests with B = 1000 and test

statistics (2.14) and (2.16), where the interval I corresponds to the whole do-

main. Starting from these results, we apply the backward elimination procedure

and stepwise remove the covariates with the largest p-value (one at a time, and

reestimate the reduced model) until only the significant coefficients remain in

the model. We use 5% significance level at all steps of the procedure. The final

model includes the continuous covariate Jump and the group indicators. The

corresponding p-values are presented in Table 2.

After assessing the overall significance of the covariates on the whole do-
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main, we apply the introduced IWT-based procedure, to study in which parts

of the domain the coefficients are significant. To illuminate all between-group

differences, we use suitable combination matrices and introduce an additional

hypothesis comparing the performance of the control and reconstructive surgery

groups, see below. The adjusted p-value functions are computed according to

Section 4 with K = 300, and B = 1000.

Functional parameter estimates together with estimated adjusted p-value

functions for the overall functional model and single functional parameter tests

are given for the final model in Figure 2. For illustrative purposes, we also

present the results of the ITW-based procedure for the full model in Appendix

C.

Figure 2 here

The first row in Figure 2 shows the individual knee joint angle kinematics

curves (left) and the estimated adjusted p-value functions for the overall func-

tional tests (right), indicating the presence of at least one significant effect in the

majority of the jump. The grey shaded parts of the domain (left) correspond

to significant effects at the 5% level (i.e., the points t with associated adjusted

p-values ≤ 0.05).

As expected, the jump length has a significant effect throughout all three

jump phases, in the majority of the domain (Figure 2, row 3). The functional

parameter estimate β̂Jump(t) is positive in intervals containing the maximal

flexion during both take-off and landing, and negative directly after take-off

and just before touch-down, confirming that the movement is more pronounced

for longer jumps. The parts of the domain where the effect is non significant is

expected, since βJump(·) is anticipated to change sign.

The last three rows of Figure 2 present results of group comparisons, testing

respectively,

H0,CTRL−PT : βCTRL(t) = 0, H1,CTRL−PT : βCTRL(t) 6= 0,

H0,R−PT : βR(t) = 0, H1,R−PT : βR(t) 6= 0,

H0,CTRL−R : βCTRL(t)− βR(t) = 0, H1,CTRL−R : βCTRL(t)− βR(t) 6= 0,

with parameter estimates to the left and corresponding adjusted p-value func-

tions to the right. The ACLPT group is significantly different with respect to the

control group during both take-off and landing (Figure 2, row 4). The functional

parameter estimate β̂CTRL(·) associated to the differences indicates less flexion

in the ACLPT group during these two phases compared to individuals in the

control group, because there β̂CTRL(t) is positive. These results are in line with

previously reported results (Tengman et al., 2015; Hébert-Losier et al., 2015),
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indicating significant differences between physiotherapy treated individuals and

controls. We do not detect any significant differences between the reconstruc-

tive surgery group and the controls (Figure 2, row 6). The overall test of βR(·)
indicates that the reconstructive surgery group is significantly different from the

ACLPT group (Table 2). However, there is not sufficient evidence to identify in

which parts of the domain significant differences between the two groups occur

(the corresponding adjusted p-value function never goes below the 5% level), cf.

Figure 2, row 5.

We observe significant group-differences between 0% and 56% of the take-off

phase and between 36% and 100% of the landing phase. We thus validate the

clinical hypotheses that the preparation of the jump in the take-off phase and

the stabilization in the landing phase are of particular interest in relation to

movement control after injury. Our analysis confirms that the events of maxi-

mal flexion, analyzed e.g., in Tengman et al. (2015), provides some insight into

how the groups may differ. However, to only base analyses on comparisons of

movement data taken at one particular point in time, provides limited informa-

tion, and with the present method we are able to detect significant differences

in large parts of the take-off and landing phases.

6 Discussion and conclusions

In this work, we introduce a non-parametric methodology to test the functional

parameters of a functional-on-scalar linear model with fixed effects. We provide

interval-wise testing procedures based on permutations, to test hypotheses on

the functional regression parameters, including domain selection. We show that

our proposed IWT-based procedure is asymptotically exact and consistent.

Due to the non-parametric nature of the testing procedures that we propose,

the test statistics (2.11), (2.14) and (2.16) can be replaced by the integrated

versions of other feasible point-wise test statistics, given that they are continuous

functions on [a, b]. The continuity of the point-wise test statistics with respect

to t is required to guarantee that the numerical procedure described in Section 4

provides a proper estimate of the adjusted p-value functions. If integrable point-

wise test statistics are to be used, more sophisticated numerical algorithms that

can deal with improper integration need to be used to estimate the adjusted

p-value functions.

The IWT procedure used in this paper provides control of the IWER. As

shown by Pini and Vantini (2015) the control can also be extended to the com-

plementary sets of all intervals.

The analysis of the knee kinematics data set showed that the effect of jump

length on knee kinematics is significantly different from zero, while the effects
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of BMI, sex, and age are not. In line with previous findings, even after having

discounted for the jump length, the physiotherapy group remains significantly

different with respect to the control group during take-off and landing. Our

detected significant domain segments confirm the importance of the landmarks

analysed earlier by Tengman et al. (2015), in the problem of identifying group

differences, simultaneously indicating statistical differences on wider segments

of time domain.

Estimation and interval-wise testing of functional-on-scalar linear models

are of interest in many recent applications. For instance, it could be applied for

comparing pulmonary volume over time of different individuals, like the data

analyzed by Fogarty and Small (2014); for comparing hemolysis curves - the

percent hemolysis as a function of time - at various treatment levels (Vsevolozh-

skaya et al., 2014); or for modeling the functional connectivity between brain

regions as a function of distance between the regions, as in Reiss et al. (2010). In

all mentioned cases, the methodology proposed in this work would additionally

allow the selection of the intervals of the domain (i.e., time or space intervals)

presenting significant effects of the covariates.

It would be of interest to extend the domain-selective inference described

here to functional-on-functional linear models. In such a framework, the func-

tional regression coefficients βl(t) can be replaced by functional linear operators,

and the concept of interval-wise inference has to be extended accordingly. Such

a model would allow to introduce the effects of time-varying covariates on the

functional responses, and could be of interest in applications where also the

covariates change in time. Another possible extension of the methodology pro-

posed in this paper would be to incorporate random effects in the model.
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lin, L. and Häger, C. K. (2015), ‘One-leg hop kinematics 20 years following

anterior cruciate ligament ruptures: data revisited using functional data anal-

ysis’, Clinical Biomechanics .

Kayano, M., Matsui, H., Yamaguchi, R., Imoto, S. and Miyano, S. (2015),

‘Gene set differential analysis of time course expression profiles via sparse

estimation in functional logistic model with application to time-dependent

biomarker detection’, Biostatistics .

Lai, T. L., Robbins, H. and Wei, C. Z. (1979), ‘Strong consistency of least

squares estimates in multiple regression’, J. Multivariate Anal. 9(3), 343–361.

17



Inference for functional linear models

Pesarin, F. and Salmaso, L. (2010), Permutation tests for complex data: theory,

applications and software, John Wiley & Sons Inc.

Pini, A. and Vantini, S. (2015), Interval-wise testing for functional data, Tech-

nical Report 30/2015, MOX, Politecnico di Milano.

Pini, A. and Vantini, S. (2016), ‘The interval testing procedure: a general frame-

work for inference in functional data analysis.’, Biometrics .

R Core Team (2014), R: A Language and Environment for Statistical Comput-

ing, R Foundation for Statistical Computing, Vienna, Austria.

URL: http://www.R-project.org/

Ramsay, J. O. and Silverman, B. W. (2005), Functional data analysis, Springer,

New York.

Reiss, P. T., Huang, L. and Mennes, M. (2010), ‘Fast function-on-scalar regres-

sion with penalized basis expansions’, Int. J. Biostat. 6(1).

Schott, J. R. (2007), ‘Some high-dimensional tests for a one-way MANOVA’, J.

Multivariate Anal. 98(9), 1825–1839.

Spitzner, D. J., Marron, J. S. and Essick, G. K. (2003), ‘Mixed-model func-

tional ANOVA for studying human tactile perception’, J. Amer. Statist. As-

soc. 98(462), 263–272.

Staicu, A.-M., Li, Y., Crainiceanu, C. M. and Ruppert, D. (2014), ‘Likelihood

ratio tests for dependent data with applications to longitudinal and functional

data analysis’, Scand. J. Stat. 41(4), 932–949.

Tengman, E., Grip, H., Stensdotter, A. K. and Häger, C. K. (2015), ‘Anterior
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A Proofs

We here provide the proofs of the theorems stated in Section 3. We first report

the theoretical properties of the functional interval-wise tests (2.10), (2.13) and

(2.15) based on the Freedman and Lane scheme and on integrated test statistics

(2.12), (2.14) and (2.16). Then, we prove that the IWT-based tests of linear

hypotheses on the functional-on-scalar linear model is provided with an asymp-

totic control of the IWER and that they are consistent. Additionally we show

that the IWT-based F -test on the regression model is provided with an exact

control of the IWER.

A.1 Interval-wise tests

We start by showing asymptotic exactness of functional tests on linear hypothe-

ses for a given interval I.

Lemma A.1. Under assumptions (C1-C2), and for each interval I ⊆ [a, b], the

functional test of linear hypotheses on the regression parameters (2.10) based on

statistic T IC (2.11) is asymptotically exact.

Proof. Let HI
0,C hold, i.e., Cβ(t) = c0(t), ∀t ∈ I. Under the null hypothesis, and

for any t ∈ I, the model can be reduced by solving the linear system Cβ(t) = c0(t).

In particular, since C has full rank, q ≤ L + 1 regression parameters can be removed

from the model. Let Q denote the set of indexes removed. The reduced model is then

yi(t) =
∑

r 6∈Q βr(t)ar(t)xri + εi(t), where x0i = 1, ar(t) is a fixed known function

(depending only on the solution of linear systems Cβ(t) = c0(t)), and εi(t) are i.i.d.

and zero-mean random functions.

The generalization to the functional case of the Freedman and Lane permutation

scheme is based on the joint permutations (the same for each t ∈ I) of the residuals

ε̂i,C(t) = yi(t) −
∑

r 6∈Q β̂r,C(t)ar(t)xri, where β̂r,C(t), r 6∈ Q are the OLS estimates

of the parameters βr(t), r 6∈ Q under the reduced model. Under conditions (C1-

C2 ), we have strong consistency of the OLS parameters estimates, i.e., in our case:

β̂r,C(t)
a.s.−−→ βr(t), ∀r 6∈ Q, and ∀t ∈ I. Hence, we also have the strong convergence of

the residuals, i.e., ε̂i,C(t)
a.s.−−→ εi(t), ∀i = 1, ..., n and ∀t ∈ I.

The errors εi(t) of the linear model are jointly exchangeable. Hence, the likelihood

of every joint permutation is invariant, and equal to 1/n!. So, the test based on the

joint permutations of the errors εi(t) is exact. As ε̂i,C(t)
a.s.−−→ εi(t), ∀t ∈ I, the

residuals are jointly asymptotically exchangeable, i.e., the likelihood of every joint

permutation is asymptotically invariant, and converges to 1/n!. Hence, the test based

on joint permutations of the residuals is asymptotically exact.

�

Asymptotical exactness for the test of hypothesis (2.15) for the lth functional

parameter, based on statistic T Il (2.16), is a direct consequence of the above
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lemma. In addition to asymptotic results for functional tests on any linear

hypothesis, we prove exactness for the overall functional model test of hypothesis

(2.13):

Lemma A.2. For each interval I ⊆ [a, b], the functional overall model test of

hypothesis (2.13) based on statistic T IF (2.14) is exact.

Proof. Under HI
0,F , we have yi(t) = β0(t) + εi(t), ∀t ∈ I. The estimated residuals

of this model are ε̂i,0(t) = β0(t) + εi(t)− β̂0(t), where β̂0(t) = ȳ(t) is the sample mean

of the responses yi(t). Note that the quantity β0(t) + εi(t)− β̂0(t) is permutationally

invariant. Hence, the independence between the random functions εi(t) implies the

exchangeability with respect to units of the residual functions ε̂i,0(t) underHI
0,F . Thus,

the test is exact, as it is based on the permutation of exchangeable quantities (Pesarin

and Salmaso, 2010). �

In the next step, we verify the consistency of functional tests on linear hypothe-

ses.

Lemma A.3. For each interval I ⊆ [a, b], the functional test of linear hypothe-

ses on the regression parameters (2.10) based on the test statistic T IC (2.11) is

consistent.

Proof. The statement follows directly from the fact that the test statistic T I
C is

stochastically greater under HI
1,C than under HI

0,C (Pesarin and Salmaso, 2010). �

As a direct implication of Lemma A.3, we get consistency for the overall

functional model test of hypothesis (2.13) and the l:th functional parameter

test of hypothesis (2.15) based on test statistics T IF and T Il , respectively.

A.2 Properties of domain selection IWT procedures

We start by proving Theorem 3.1, establishing asymptotic interval-wise control

of the domain selection IWT procedure for tests of linear hypotheses.

Proof of Theorem 3.1. Let I ⊆ [a, b] be an interval associated to a true null

hypothesis, i.e., let HI0,C hold. Consider a point t ∈ I, and let St denote the set

of all intervals containing the point t. The IWT-adjusted p-value associated to

point t is p̃C(t) = maxJ∈It p
J
C , where pJC is the p-value of the permutation test

on interval J . In particular, since I ∈ St, we have that ∀t ∈ I, p̃C(t) ≥ pIC .

Therefore, PHI
0,C

[∀t ∈ I : p̃C(t) ≤ α] ≤ PHI
0,C

[pIC ≤ α]. Since all tests are

asymptotically exact (Lemma A.1), we have:

lim
n→∞

PHI
0,C

[
pIC ≤ α

]
= α,
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and therefore,

lim sup
n→∞

PHI
0,C

[∀t ∈ I : p̃C(t) ≤ α] ≤ α.

�

Assertion of Proposition 3.3 follows directly from the results of Pini and Vantini

(2016) and the fact that interval-wise tests used to build the procedure are exact

(Lemma A.2).

Further, since all functional interval-wise tests are consistent (Lemma A.3),

the IWT procedure is also consistent, due to the result of Pini and Vantini (2015)

(Theorem 3). As special cases of Theorem 3.4, Corollary 3.5 and Corollary 3.6

follow immediately.

B The Freedman and Lane permutation scheme

In this section, we give some details of the implementation of the Freedman and

Lane permutation scheme for testing linear hypotheses on the regression model

for each interval I ⊆ [a, b]. In detail, we start from the restriction of functional

linear model (2.1) to interval I

yi(t) =

L∑
l=0

βl(t)xli + εi(t), ∀i = 1, . . . , n; t ∈ I (B.1)

with x0i = 1, ∀i, and describe the extention of the Freedman and Lane per-

mutation scheme to the functional case, for implementing the functional test

(2.10).

The Freedman and Lane permutations are based on the following steps:

(i) the residuals of the reduced model (that is the linear model under the null

hypothesis) are estimated;

(ii) the residuals of the reduced model are permuted;

(iii) the permuted responses are computed, through the reduced model and

permuted residuals.

For more details about this method, we refer to Freedman and Lane (1983);

Anderson and Legendre (1999). In the following subsections we present the

details of the scheme for the hypotheses introduced in our paper.

B.1 Tests on general linear hypotheses

Under the null hypothesis (2.10), the model (B.1) can be reduced by solving the

linear system Cβ(t) = c0(t). In particular, since C has full rank, q regression
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parameters can be removed from the model, by expressing them in terms of the

others. Let Q denote the set of indexes of the removed regression parameters.

The reduced model is then:

yi(t) =
∑
r 6∈Q

βr(t)x̃ri + εi(t), (B.2)

i.e., responses can be written in terms of a linear combination of modified co-

variates x̃ri = ar(t)xri, where ar(t) are fixed known coefficients, depending only

on the solution of the linear system Cβ(t) = c0(t), and εi(t) are i.i.d. and

zero-mean errors.

The residuals of the reduced model can then be estimated as ε̂i,C(t) = yi(t)−∑
r 6∈Q β̂r,C(t)x̃ri, where β̂r,C(t) are the OLS estimates of parameters βr(t), r 6∈

Q, of model (B.2). Then, the residuals ε̂i,C(t) are permuted, and the permuted

responses are computed using the permuted residuals ε̂∗i,C(t) in the reduced

model (B.2):

y∗i (t) =
∑
r 6∈Q

β̂r,C(t)x̃ri + ε̂∗i,C(t). (B.3)

B.2 Overall model tests

In the case of tests on the overall functional model hypothesis (2.13), under the

null hypothesis HI0,F all regression parameters except the intercept are null. So,

the reduced model is:

yi(t) = β0(t) + εi(t).

The estimated residuals of the reduced model are ε̂i,F (t) = yi(t) − ȳ(t), where

ȳ(t) is the sample mean of the responses yi(t). Therefore, using the permuted

residuals ε̂∗i,F (t), we get:

yi
∗(t) = ȳ(t) + ε̂∗i,F (t).

Note that in this case permuting the estimated residuals ε̂i,F (t) is equivalent

to permuting the responses yi(t), i = 1, . . . , n.

B.3 Single parameter tests

In the case of tests of hypothesis on the l:th functional parameter (2.15), the

model under the null hypothesis HI0,l reduces to:

yi(t) = β0(t) +
∑
r 6=l

βr(t)xri + εi(t).
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The estimated residuals of such model are ε̂i,l(t) = yi(t)−β̂0,l(t)−
∑
r 6=l β̂r,l(t)xli,

where β̂r,l(t) are the OLS estimates of the parameters of the reduced model.

Then, the permuted responses are:

y∗i (t) = β̂0,l(t) +
∑
r 6=l

β̂r,l(t) + ε̂∗i,l(t), (B.4)

where ε̂∗i,l(t) are the permuted residuals.

C Full model results

Figure 3 presents the results for the full model initially estimated for the knee

data.

Figure 3 here
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Figure 1: Knee flexion and extension in the sagittal plane (left) and flexion/extension angle
curves of the physiotherapy (blue), reconstructive surgery (red) and control (green) groups
(right).

25



Inference for functional linear models

0
20

40
60

80

Data

O
ve

ra
ll m

od
el

Take−off phase Flight phase Landing phase

Max. flexion Take−off Touch−down Max. flexion

0
20

40
60

Estimate of β0(t)

In
te

rc
ep

t

Max. flexion Take−off Touch−down Max. flexion

−1
0

0
10

20

Estimate of βJump(t)

Ju
m

p 
le

ng
th

Max. flexion Take−off Touch−down Max. flexion

−5
0

5

Estimate of βR(t)

Su
rg

er
y−

Ph
ys

io
th

er
ap

y

Max. flexion Take−off Touch−down Max. flexion

−5
0

5

Estimate of βCTRL(t)

Co
nt

ro
l−

Ph
ys

io
th

er
ap

y

Max. flexion Take−off Touch−down Max. flexion

−5
0

5

Estimate of βCTRL(t) − βR(t)

Co
nt

ro
l−

Su
rg

er
y

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adjusted p−value function

O
ve

ra
ll m

od
el

Take−off phase Flight phase Landing phase

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
4

0.
8

Adjusted p−value function

In
te

rc
ep

t

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
4

0.
8

Adjusted p−value function

Ju
m

p 
le

ng
th

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
4

0.
8

Adjusted p−value function

Su
rg

er
y−

Ph
ys

io
th

er
ap

y

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
4

0.
8

Adjusted p−value function

Co
nt

ro
l−

Ph
ys

io
th

er
ap

y

Max. flexion Take−off Touch−down Max. flexion

0.
0

0.
4

0.
8

Adjusted p−value function

Co
nt

ro
l−

Su
rg

er
y

Max. flexion Take−off Touch−down Max. flexion

Overall model

Intercept

Jump Length

Groups

Figure 2: Functional parameter estimates and estimated adjusted p-value functions for the
final (reduced) functional-on-scalar model. Top panel: Knee joint angle kinematics data (func-
tional response variable) for the 95 individuals (left) and estimated adjusted p-value function
for the overall functional model tests (right). Bottom panel: Functional parameter estimates
(left) and corresponding estimated adjusted p-value functions (right) for the intercept, jump
length, and group effects, respectively. Grey-shaded parts (left) correspond to significant
effects at the 5% level, i.e. the points t with associated adjusted p-values less or equal to 0.05.
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Figure 3: Functional parameter estimates and estimated adjusted p-value functions for the
initial (full) functional-on-scalar model. Top panel: Knee joint angle kinematics data (func-
tional response variable) for the 95 individuals (left) and estimated adjusted p-value function
for the overall functional model tests (right). Bottom panel: Functional parameter estimates
(left) and corresponding estimated adjusted p-value functions (right) for the intercept, jump
length, BMI, sex, age and group effects, respectively. Grey-shaded parts (left) correspond to
significant effects at the 5% level, i.e. the points t with associated adjusted p-values less or
equal to 0.05.
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