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Abstract

Surface problems play a key role in several theoretical and applied fields.
In this work the main focus is the presentation of a detailed analysis of
the approximation of the classical flow porous media problem: the Darcy
equation, where the domain is a regular surface. The formulation require
the mixed form and the numerical approximation consider the classical
pair of finite element spaces: piecewise constant for the scalar fields and
Raviart-Thomas for vector fields, both written on the tangential space of
the surface. The main result is the proof of the order of convergence where
the discretization error, due to the finite element approximation, is coupled
with a geometrical error. The latter takes into account the approximation
of the real surface with a discretized one. Several examples are presented to
show the correctness of the analysis, including surfaces without boundary.

1 Introduction

In several application, like biology [5] or geophysics, the domains where some or
part of problems have to be solved are surfaces or lines. In this particular frame-
work several works in literature are present, mainly focused on the derivation
and approximation of diffusive processes. Normally the resulting mathemati-
cal equations considered involve the classical Laplace-Beltrami operator [9]. A
numerical approximation of this problems is presented in [3, 8, 10, 1] where
standard Lagrangian finite element spaces are considered.
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With this choice only the primary unknown field is computed directly, while
a possible secondary unknown, like the tangential gradients, should be com-
puted as a post process, often resulting in a poor approximation [4]. In some
applications, e.g. in geophysics, the most important unknowns are often the sec-
ondary ones, that represent the fluxes or a macroscopic velocity, which play as a
transport for advected quantities. Consequently, we are interested in problems
where both the primary and secondary unknowns are computed directly. This
is possible by employing a mixed formulation of the differential problem.
An important example of this choice, which is part of the motivations of the
present paper, are presented in [17, 6, 16, 13, 15]. In this series of papers
a reduced model is considered to approximate the flow and pressure fields in
fractures. The fractures are represented as object of co-dimension one and the
reduced models considered are Darcy-type equations written in the tangential
spaces of each fracture. Assuming that the porous matrix is impervious, like in
[13], the resulting problem is only written for the fractures.
In this work we propose and analyse a mathematical approach to the formulation
of Darcy problems on surfaces embedded in R

3. The main part of the paper is
devoted to the derivation of a proper framework for the numerical approximation
of such problems. The finite element spaces considered are the classical piecewise
constant for scalar fields and Raviart-Thomas for vector fields, but projected on
the approximate surface. Particular attention is devoted to the well posedness
of the resulting discrete problem and to prove the order of convergence including
also the geometrical error in the estimation. We allow the surface to be closed so
no boundary conditions can be imposed and than suitable additional conditions
should taking into consideration, such as zero-mean pressure or fixing the value
of the latter in a point of the mesh.
The paper is organized as follow. Section 2 introduces the notations used in
the paper as well as the physical problem with some assumptions on the data.
The weak formulation of the physical problem and the correct functional setting
is described in Section 3, where also the inf-sup condition is proved. Section
4 introduces, describes and analyses the numerical approximation where the
discrete inf-sup condition is presented. An error estimation, from the chosen
discretization, is derived in Section 5. In Section 6 a collection of examples
highlights the potentiality of the proposed methods and the gives a numerical
validation of the derived theoretical results. Finally, Section 7 is devoted to the
conclusions.

2 The governing equations

We assume that the physical domain Γ is a C2 compact, connected orientable
manifold embedded in R

3 described by a signed distance function d : R3 → R

such that

Γ = {x ∈ U : d(x) = 0},
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where U is an open subset of R3 containing Γ. The outward-pointing normal is
defined as n(x) := ∇d(x)/ |∇d(x)|,where ∇d(x) ̸= 0 almost everywhere on Γ.
An other quantity that will be useful afterwards is the Hessian matrix H of the
distance function d, where Hij :=

∂2d
∂xi∂xj

.

In the sequel, given a function u : Γ → R, we will indicate its lifting, on a given
open set U containing Γ, as ũ such that ũ|Γ = u. The tangential gradient of u
will be then defined as

∇Γu := ∇ũ− (∇ũ · n)n. (1)

Introducing P = I − n⊗ n, where ⊗ is the tensor product (a⊗ b)ij = aibj , we
can rewrite (1) as ∇Γu = P∇ũ. The definition of the tangential divergence is
now straightforward, in fact a smooth given vector field u : Γ → R

3 we have
∇Γ · u := P : ∇ũ.
The problem we are interested to solve is the classical Darcy problem [2] defined
on the regular surface Γ. The two unknowns are the tangential Darcy velocity
u and the pressure p. The problem is defined in the following way





ηu+∇Γp = g in Γ

∇Γ · u = f in Γ

p = p̂ on γD

u · µ = b on γN

, (2)

where µ is the outward unit normal of ∂Γ. The main data in (2) is the inverse
of the permeability, defined as

η ∈ L∞ (Γ) and ∃ηmin ∈ R
+ : η (x) > ηmin ≥ 0 ∀x ∈ Γ. (3)

We set ηmax = supessx∈Γ η(x). Moreover the scalar source term is defined as
f ∈ L2(Γ) and the boundary conditions are imposed on the Darcy velocity u

and on the pressure p. In the former case we consider the function b while for
the latter we have the function p̂. Finally the vector field g may represent a
gravity term and the scalar field f may be viewed as a source or a sink. In the
forthcoming analysis, to ease the presentation, we will assume that some of the
aforementioned data are zero.

3 Weak formulation and functional setting

For simplicity we consider Dirichlet homogeneous boundary conditions, other-
wise a lifting technique should be used to impose the boundary data. We intro-
duce the weak formulation of problem (2), defining a suitable functional setting.
First we introduce the functional space defined on the manifold Γ with its related
norm

Hdiv(Γ) :=
{
v ∈

[
L2(Γ)

]3
, ∇Γ · v ∈ L2(Γ)

}
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and the norm is

∥v∥2div,Γ := ∥v∥20,Γ + ∥∇Γ · v∥20,Γ,

where ∥·∥0,A is the L2 norm on the regular domain A. In the sequel it will

be useful to introduce the standard scalar product in L2(A), with A a regular
domain, as (·, ·)A. We set the functional space and the norm for the velocity as
W , namely

W :=
{
v ∈ Hdiv(Γ), v · n = 0 on Γ,v · µ = 0 on γN

}
with ∥v∥

W
:= ∥v∥div,Γ.

For the pressure field we consider the standard L2 space with its classical norm,
we have

Q := L2(Γ) with ∥q∥Q = ∥q∥0,Γ.

If
∣∣γD

∣∣ = 0 to recover the uniqueness of the solution, we consider the following
space for the pressure field

Q := L2
0(Γ) =

{
v ∈ L2(Γ) : (v, 1)Γ = 0

}
with ∥q∥Q = ∥q∥0,Γ,

otherwise the solution is uniquely defined in the quotient space L2(Γ)/R.
The weak formulation of the problem (2) is quite standard except the integration
by part of the tangential gradient of the pressure. Taking a test function v ∈ W

and considering the boundary conditions, the pressure gradient term becomes

∫

Γ
∇Γp · vdx = −

∫

Γ
p∇Γ · vdx−

∫

Γ
Kpv · nHdx+

∫

∂Γ
p̂v · µdσ,

where K = ∇Γ ·n. The term which involves the matrix HessianH is zero since we
have required that v·n = 0. We introduce the bilinear forms a(·, ·) : W×W → R

and b(·, ·) : W ×Q → R, defined as

a(u,v) := (ηu,v)Γ , and b(v, q) := − (p,∇Γ · v)Γ

The functionals are F (·) : Q → R and G(·) : W → R, defined as

F (q) := − (f, q)Γ . and G(v) := − (p̂,v · µ)∂Γ + (g,v)Γ .

The weak formulation of problem (2) is presented in Problem 1.

Problem 1 (Weak formulation) Given η as in (3), find (u, p) ∈ W×Q such

that
{
a(u,v) + b(v, p) = G(v) ∀v ∈ W

b(u, q) = F (q) ∀q ∈ Q
. (4)
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Theorem 3.1 (Well posedness) Under the given hypotheses on the data, Prob-

lem (1) is well posed.

Proof. To ease the presentation we suppose that p̂ and g are zero. However a similar
result can be obtained with different constants. Since (4) is a saddle-point problem we
have to prove the inf-sup condition [4, 12]. By hypothesis we have two positive constants
ηmin and ηmax such that ηmin ≤ |η| ≤ ηmax almost everywhere in Γ.
We consider the functional space W0 = {v ∈ W , b(v, q) = 0 ∀q ∈ Q} and we introduce
v ∈ W0. Then we have ∇Γ · v = 0 almost everywhere in W0 and for each function
in W0 the relation ∥v∥

W
= ∥v∥L2(Γ) holds true. Using these results we can prove the

coercivity of a(·, ·)

a(u,u) = (ηu,u)Γ ≥ ηmin∥u∥
2
L2(Γ) = ηmin∥u∥

2
W

∀u ∈ W0.

Then, thanks to the hypothesis on η and the Schwarz inequality we have the continuity
of the bilinear form a(·, ·)

|a(u,v)| ≤ ηmax∥u∥W ∥v∥W ∀u,v ∈ W .

Similarly for the bilinear form b(·, ·) we obtain its continuity simply using the Schwarz
inequality

|b(v, q)| ≤ ∥∇Γ · v∥L2(Γ)∥q∥L2(Γ) ≤ ∥v∥
W

∥q∥Q ∀(v, q) ∈ W ×Q.

Finally we need to prove the inf-sup condition, i.e. there exists a positive constant
β ∈ R

+ such that

∀q ∈ Q, ∃v ∈ W b(v, q) ≥ β∥v∥W ∥q∥Q.

Given a function q ∈ Q we consider the following auxiliary problem





−∇Γ · (∇Γϕ) = q in Γ

ϕ = 0 on γD

∇Γϕ · µ = 0 on γN

. (5)

Problem (5) admits a unique solution ϕ ∈ H2(Γ) such that ∥ϕ∥H2(Γ) ≤ C∥q∥L2(Γ).

Choosing v = ∇Γϕ, from Problem (5) we have −∇Γ · v = q. Considering the aforemen-
tioned results, the following inequality holds true

∥v∥
2
W

= ∥v∥
2
L2(Γ) + ∥∇Γ · v∥

2
L2(Γ) = ∥∇Γϕ∥

2
L2(Γ) + ∥q∥

2
L2(Γ) ≤

≤ ∥ϕ∥
2
H2(Γ) + ∥q∥

2
L2(Γ) ≤ (C + 1)∥q∥

2
L2(Γ).

Imposing C∗ = (C + 1)
1

2 we finally obtain the inf-sup condition

b(v, q) = − (q,∇Γ · v)Γ = ∥q∥
2
L2(Γ) ≥

1

C∗
∥v∥

W
∥q∥Q,

providing β = 1/C∗. Thanks to this results we can conclude that (1) is well posed. □
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4 Numerical discretization

To provide a discrete formulation for Problem (1) we have to introduce a suitable
approximation of the surface Γ. Following the approach presented in [9], we
consider a polyhedral surface Γh consisting in the union of non overlapping
triangles K, with vertices lying on Γ. We also require the resulting grid to be
conforming and regular.
Unlike the classical finite elements method, the discrete domain Γh will not in
general be included in Γ, thus adding to the approximation error a component
that accounts for the error introduced by the discretization of the geometry. To
ensure a sufficiently good approximation of the surface Γ we assume Γh ⊂ U ,
where U is a strip of width δ > 0 in which the decomposition

x = a(x) + d(x)n(x) x ∈ U, (6)

is unique, being a : U → Γ a projection function, d the distance of x from Γ
and n its normal. Thanks to the regularity of the surface there exists a δ such
that (6) holds.
We set the finite element spaces accordingly with the previous section. We start
defining the space Hdiv(Γh) as

Hdiv(Γh) := {vh ∈ [L2(Γh)]
3, ∇Γh

· vh ∈ L2(Γh)}.

Then the finite spaces for velocity and pressure are

Wh := {vh ∈ Hdiv(Γh), vh · nh = 0 on Γh, vh · µh = 0 on γNh , vh|K ∈ RT
0(K)}

Qh := {qh ∈ L2(K) : qh|K ∈ P
0(K)},

where RT
0 is the Raviart-Thomas finite elements space of lowest order degree.

If
∣∣γD

∣∣ = 0 to recover the uniqueness of the discrete solution, we consider the
following discrete space for the pressure field

Qh :=
{
qh ∈ L2(K) : qh|K ∈ P

0(K)
}
∩ L2

0(Γ) with ∥q∥Q = ∥q∥0,Γ,

otherwise the pressure is defined up to a constant.
We introduce the bilinear forms for the discrete problem, i.e. ah(·, ·) : Wh ×
Wh → R and bh(·, ·) : Wh ×Qh → R, defined as

ah(uh,vh) := (ηuh, ·vh)Γh
and bh(vh, qh) := −(qh,∇Γh

· vh)Γh
,

and the linear functionals Fh(·) : Qh → R and Gh(·) : Wh → R, given by

Fh(qh) := −(fh, qh)Γh
and Gh(vh) := − (p̂h,vh · µh)∂Γh

+ (gh,vh)Γh
.

where fh, p̂h and gh are an approximation of the data problem on Γh and ∂Γh.
We will see in the next section how to choose this approximation. Given the
previous definitions the discrete problem is presented in Problem (2).
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Problem 2 (Discrete weak formulation) Given η as in (3), find (uh, ph) ∈
Wh ×Qh such that

{
ah(uh,vh) + bh(vh, ph) = Gh(vh) ∀vh ∈ Wh

bh(uh, qh) = Fh(qh) ∀qh ∈ Qh

. (7)

It can be easily proved that for Problem (2) all results presented in the previous
section for the continuous problem are still valid.
In order to compare the exact solution defined on Γ with the discrete one, it is
necessary to project the latter on Γ. As concerns scalar functions we adopt the
choice presented in [9], i.e. to lift the functions qh ∈ Qh as q̃h(a(x)) = qh(x).
This kind of lifting, however, does not work properly for the velocity field, in
fact it does not map a function in Hdiv(Γh) in a function of Hdiv(Γ). In order to
preserve this feature, we have to choose how to deal with the lifting of vectorial
functions more carefully. We use the so called Piola transformation, refer to [19]
for a more detailed presentation.

Definition 4.1 (Piola transformation) Consider Ω0 ⊂ R
n and let F be a

non degenerate map from Ω0 to Ω ⊂ R
n. Let also be J = DF (X), with Jij =

∂Fi/∂Xj, and Ψ ∈ [L2(Ω0)]
n. The Piola transformation F is then defined as

F(Ψ) :=
1

|detJ |
JΨ ◦ F−1.

We now consider a triangle K ∈ Γh and its projection on the surface Γ given by
the curved triangle K̃ = {a(x) ∈ Γ : x ∈ K}. We use a coordinate system local
to the triangle K, so that a generic point x̂ ∈ K has coordinates x̂ = (x̂1, x̂2, 0).
We define a map ϕ : K → K̃ as

ϕ(x̂) := ϕ(x̂1, x̂2) := x̂− d(x̂)n(x̂), (8)

where d and n are the distance function and the normal in the new frame of
reference.

K K̃

ϕ

Figure 1: Maps from K to K̃

We now extend ϕ to R
3 introducing a new map Ψ : R3 → R

3, defined as

Ψ(x̂) := ϕ(x1, x2) + x3n(x̂). (9)
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The map Ψ is the one we consider for the construction of the Piola transforma-
tion.
The lifting of a scalar function qh : K → R to q̃h : K̃ → R is therefore given by

q̃h(Ψ(x̂)) = qh(x̂) x̂ ∈ K. (10)

Given F := ∇Ψ, the lifting of a vectorial function wh : K → R
3 to w̃h : K̃ → R

3

is defined as

w̃h(Ψ(x̂)) =
1

|detF |
Fwh(x̂) x̂ ∈ K. (11)

The matrix F has the following structure

F = [t1 t2 n] , (12)

where ti = ∂ϕ/∂xi, i = 1, 2 has components ti,j = δji−njni−dHji for j = 1, 2, 3
with H the Hessian of the distance function d.

Remark 1 It is immediate to show that ti · n = 0 for i = 1, 2.

Since dσ = |t1 ∧ t2|dσh and detF = (t1 ∧ t2) · n we have dσ = ξhdσh where
ξh = |detF |.

Remark 2 The matrix F is defined element wise. If we glue together all the

local F , we find a global matrix that, to ease the notation, we will still indicate

as F . In the following it will be clear from the domain of integration if we are

referring to the local map or to the global one.

We recall a useful lemma about the properties of the considered geometry. For
a complete proof refer to [10].

Lemma 4.1 Assume Γ and Γh defined as above. Then

∥d∥L∞(Γh) ≤ ch2.

Moreover, the quotient ξh = dσ/dσh previously defined satisfies

∥1− ξh∥L∞(Γh) ≤ ch2.

We now deduce an important relationship between functions defined on K and
their lifting on K̃. We consider a couple of functions (wh, qh) ∈ Wh × Qh and

the corresponding lifting (w̃h, q̃h) ∈ W̃h × Q̃h, where W̃h and Q̃h are defined as

W̃h :=

{
w̃h(x) =

1

ξh
Fwh ◦Ψ

−1(x), wh ∈ Wh, x ∈ Γ

}
,

Q̃h :=
{
q̃h(x) = qh ◦Ψ

−1(x), qh ∈ Qh, x ∈ Γ
}
.

8



For such functions the following relation holds

(∇Γ · w̃h, q̃h)K̃ = − (w̃h,∇Γq̃h)K̃ = − (w̃h, (I − n⊗ n)∇q̃h)K̃

= −
(
Fwh, (I − n⊗ n)F−⊤∇qh

)
K

= −
(
wh, F

⊤ (I − n⊗ n)F−⊤∇qh

)
K
.

In addition we have that

F⊤n⊗ nF−⊤ =



0 0 0
0 0 0
0 0 1


 = e3 ⊗ e3.

In the coordinate system local to K, e3 coincides with the normal nh and so we
have

F⊤n⊗ nF−⊤ = nh ⊗ nh.

Using this last relation we write that

(∇Γ · w̃h, q̃h)K̃ = − (wh, (I − nh ⊗ nh)∇qh)K
= − (wh,∇Γh

qh)K = (∇Γh
·wh, qh)K

=

(
1

ξh
∇Γh

·wh, q̃h

)

K

.

The last equality holds for all q̃h ∈ Q̃h and so we can conclude that

∇Γ · w̃h =
1

ξh
∇Γh

·wh a.e. in K̃. (13)

Now we are able to prove the following

Lemma 4.2 Given (wh, qh) ∈ Wh × Qh and the corresponding lifting onto Γ

(w̃h, q̃h) ∈ W̃h × Q̃h, then exists some constants such that the following inequal-

ities hold

1

C1
∥qh∥L2(K) ≤ ∥q̃h∥L2(K̃)

≤ C1∥qh∥L2(K)

1

C2
∥wh∥L2(K) ≤ ∥w̃h∥L2(K̃)

≤ C2∥wh∥L2(K)

1

C3
∥∇Γh

·wh∥L2(K) ≤ ∥∇Γ · w̃h∥L2(K̃)
≤ C3∥∇Γh

·wh∥L2(K)

Proof. The first inequality is proved in [9]. For the second inequality we have by the
definition of the L2-norm

∥w̃h∥
2
L2(K̃) = (w̃h, w̃h)K̃ =

(
1

ξh
F⊤Fwh,wh

)

K

.
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Matrix F⊤F is given by

F⊤F =



|t1|

2
t1 · t2 0

t1 · t2 |t2|
2

0
0 0 1


 .

From the definition of t1 and t2 it is straightforward that

|ti|
2
= 1 +O(h2) and t1 · t2 ≈ −n1n2 +O(h2).

Following [10] we have that exists c ∈ R
+ such that ∥ni∥L∞(K) ≤ ch, i = 1, 2, 3, then

∥t1 · t2∥L∞(K) ≤ ch2.

In conclusion the following inequality holds

∥∥I − F⊤F
∥∥
L∞(K)

≤ ch2.

Thanks to this last relation and to lemma (4.1) the second estimate immediately follows.
In order to prove the last inequality, using (13), we can write

∥∇Γ · w̃h∥
2
L2(K̃) = (∇Γ · w̃h,∇Γ · w̃h)K̃ =

(
1

ξh
∇Γh

·wh,∇Γ · w̃h

)

K

.

Using this relation and the estimate for ξh we can obtain the last inequality. □

5 Error analysis

In this section, to ease the analysis and the presentation of the forthcoming
results, we consider fully homogeneous boundary conditions and zero vector
source term. Thanks to the results of the previous section we can obtain the
following useful relation

∫

K̃

∇Γ · w̃h q̃h dσ =

∫

K

∇Γh
·wh qh dσh. (14)

Therefore the approximation of the bilinear form b(·, ·) with bh(·, ·) will not bring
any additional error due to the discretization of the geometry. The additional
term is only linked to the approximation of the bilinear form a(·, ·), in particular
from

∫

K

ηuh · vh dσh =

∫

K̃

ηξh

(
F−⊤F−1ũh

)
· ṽh dσ. (15)

If we define Bh := ξhF
−⊤F−1 we can rewrite the discrete Problem 2 as

{
(ηBhũh, ṽh)Γ − (p̃h,∇Γ · ṽh)Γ = 0 ∀ṽh ∈ W̃h,

(q̃h,∇Γ · ũh)Γ = (f, qh)Γ ∀q̃h ∈ Q̃h.
(16)

In this case we have chosen fh(x̂) = ξhf(Ψ(x̂)) in order to have Fh = F on Γ.
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Remark 3 In practice is often simpler to compute the source term as fh(x̂) =
f(Ψ(x̂)), thus adding an extra term of order O(h2) to the error given by the

difference between f and Fh.

Lemma 5.1 If (uh, ph) is solution of (7), then its correspondent lift to Γ, in-
dicated with (ũh, p̃h), is solution of (16) and vice versa.

Proof. Thanks to relations (14) and (15) we immediately get the equivalence between

problems (7) and (16). □

To provide an error estimate for our problem we need to recall some results
on saddle-points problems, see [4, 18] for a detailed analyses. Introducing the

following discrete functional space W̃
f
h := {w̃h ∈ W̃h : (q̃h,∇Γ · w̃h − f)Γ =

0 ∀q̃h ∈ Q̃h}, the Lemma 5.2 holds true [18].

Lemma 5.2 If the spaces W̃h and Q̃h satisfy the inf-sup condition then for each

f ∈ L2(Γ) there exist a unique w̃
f
h ∈ (W̃ 0

h )
⊥ such that:

(q̃h,∇Γ · w̃f
h − f)Γ = 0 ∀q̃h ∈ Q̃h (17)

and
∥∥∥w̃f

h

∥∥∥
W

≤
1

β
sup

q̃h∈Q̃h,q̃h ̸=0

(f, q̃h)Γ
∥q̃h∥Q

. (18)

Furthermore if ũh ∈ W̃h satisfies

(ηBhũh, ṽh)Γ = 0 ∀ṽh ∈ W̃ 0
h ,

then there exists a unique p̃h ∈ Q̃h such that

− (p̃h,∇Γ · ṽh)Γ + (ηBhũh, ṽh)Γ = 0 ∀ṽh ∈ W̃h (19)

and

∥p̃h∥L2 ≤
1

β
sup

ṽh∈W̃h,ṽh ̸=0

(ηBhũh, ṽh)Γ
∥ṽh∥W

. (20)

By setting ũh = ũ0
h + w̃

f
h, with ũ0

h ∈ W̃ 0
h and w̃

f
h ∈ W̃

f
h , we can rewrite (16) as

: find ũ0h ∈ W̃ 0
h such that:

(
ηBhũ

0
h, ṽh

)
Γ
= −

(
ηBhw̃

f
h, ṽh

)
Γ

∀ṽh ∈ W̃ 0
h . (21)

Thanks to the Lax-Milgram Theorem, it exists a unique solution ũ0
h ∈ W̃ 0

h of

(21) which satisfies ∥ũ0
h∥W ≤ C∥w̃f

h∥L2 , for a C > 0. Then, from (18) and (20)
we have:

∥ũh∥W ≤
C

β
∥f∥L2 and ∥p̃h∥L2 ≤

C

β
∥ũh∥L2 .
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To find an estimate for the discretization error we write (16) in the following
form, which highlights the classical saddle point structure:

{
(ηũh, ṽh)Γ − (p̃h,∇Γ · ṽh)Γ = (η(I −Bh)ũh, ṽh)Γ ∀ṽh ∈ W̃h,

(q̃h,∇Γ · ũh)Γ = (f, qh)Γ ∀q̃h ∈ Q̃h.
(22)

By subtracting (1) and (22) and adding and subtracting to the result a vector

w̃∗
h ∈ W̃

f
h , we obtain

(η(ũh − w̃∗
h), ṽh)Γ + (p− p̃h,∇Γ · ṽh)Γ = (η(ũ− w̃∗

h), ṽh)Γ + (η(I −Bh)ũh, ṽh)Γ

By choosing ṽh = ũh − w̃∗
h, with ṽh ∈ W̃h, and using (5), we get:

∥ṽh∥W ≤ C (∥ũ− w̃∗
h∥L2 + ∥I −BH∥L∞∥f∥L2) ,

from which it follows that

∥ũ− ũh∥W ≤ C

(
inf

w̃∗

h
∈W̃

f
h

∥ũ− w̃∗
h∥W + ∥I −BH∥L∞∥f∥L2

)
.

Now we want to show that

inf
w̃∗

h
∈W̃

f
h

∥ũ− w̃∗
h∥W ≤ C inf

ṽh∈W̃h

∥ũ− ṽh∥W . (23)

From Lemma 5.2, for all ṽh ∈ W̃h, there exists a unique z̃h ∈ (W̃ 0
h )

⊥ such that

(q̃h,∇Γ · z̃h)Γ = (q̃h,∇Γ · (u− ṽh))Γ ∀q̃h ∈ Qh,

and ∥z̃h∥W ≤ C∥∇Γ · (u − ṽh)∥L2 . Setting w̃∗
h = z̃h + ṽh, we have w̃∗

h ∈ W̃
f
h

and we obtain ∥u− w̃∗
h∥W ≤ ∥u− ṽh∥W , from which (23) follows.

Repeating a similar analysis for the pressure, we get the final inequality

∥u− ũh∥W + ∥p− p̃h∥Q ≤ C

(
∥I −Bh∥L∞∥f∥L2 +

+ inf
ṽh∈W̃h

∥u− ṽh∥W + inf
q̃h∈Q̃h

∥p− q̃h∥Q

)
.

(24)

In (24) we observe that, as we expected, the error is composed by two different
terms, the first related to the finite element discretization and the second related
to the approximation of the geometry of the problem. In particular, as seen in
the previous section for F⊤F , we can immediately conclude that

∥I −Bh∥L∞(Γ) ≤ ch2.

Thus the contribution of the geometric error in a Darcy problem is of the second
order respect to grid size h.
We prove the main result of this section.
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Theorem 5.1 (Order of convergence) Let (u, p) ∈ W × Q be the solution

of the continuous problem (4), (uh, ph) ∈ Wh × Qh the solution of the discrete

problem (7) and (ũh, p̃h) ∈ W̃h × Q̃h its corresponding lift to Γ. Assuming that

the solution is regular enough and that ξh ∈ H1(K), then the following inequality

holds

∥u− ũh∥W + ∥p− p̃h∥Q ≤ Ch
(
∥∇Γ · u∥H1(Γ) + ∥u∥H1(Γ) + |p|H1(Γ)

)
.

Proof. If we neglect in (24) the geometric contribution to the error, we have

∥u− ũh∥W + ∥p− p̃h∥Q ≤

(
inf

wh∈W̃h

∥u− w̃h∥W + inf
q̃h∈Q̃h

∥p− q̃h∥Q

)

We start considering the estimate for the velocity field and we introduce the function
û : Γh → R

3, defined as follows

û(x̂) := ξh F
−1u(Ψ(x̂)) with x̂ ∈ Γh.

So û is the projection of the exact solution on discrete surface. Thanks to lemma (4.2)
we have

∥u− w̃h∥Hdiv(K̃) ≤ ∥û−wh∥Hdiv(K),

This relation, together with standard results for Hdiv, gives us

∥u− w̃h∥Hdiv(K̃) ≤ Chk

(
|∇Γh

· û|H1(K) + |û|
Hdiv(K)

)
.

We see now how to estimate the right hand side of the inequality. From the definition
of the H1 semi-norm it follows that

|∇Γh
· û|

2
H1(K) = ∥∇Γh

(∇Γh
· û)∥

2
L2(K) = (∇Γh

(∇Γh
· û),∇Γh

(∇Γh
· û))K .

From [11] and (13) we obtain ∇Γh
(∇Γh

· û) = Ph(I − dH)∇Γ(ξh∇Γ · u), that inserted
in the semi-norm definition gives us

|∇Γh
· û|

2
H1(K) = (Ah∇Γ(ξh∇Γ · u),∇Γ(ξh∇Γ · u))K ,

where Ah is defined as Ah := P (I−dH)Ph(I−dH)P/ξh. We know that ξ−1
h is bounded

and moreover, from [9], we have

P (I − dH)Ph(I − dH)P ≈ PPhP +O(h2).

That becomes

PPhP = P − (nh − (nh · n)n)(nh − (nh · n)n)⊤.

Because in the reference system local to the triangle K, we have nh = e3, then

|nh − (nh · n)n| = |e3 − n3n| =
√

1− n2
3 =

√
n2
1 + n2

2 ≈ O(h).

13



Therefore for matrix Ah holds the relation Ah ≈ P + O(h2), Moreover, thanks to the
regularity of the surface P is bounded and so it is Ah. Then we can obtain

|∇Γh
· û|H1(K) ≤ ∥Ah∥

1

2

L∞(K̃)
∥∇Γ(ξh ∇Γ · u)∥

L2(K̃)

Applying triangular and Schwarz’s inequalities

∥∇Γ(ξh ∇Γ · u)∥
L2(K̃) ≤ ∥∇Γξh∥L2(K̃)∥∇Γ · u∥

L2(K̃)+

+∥ξh∥L2(K̃)∥∇Γ(∇Γ · u)∥
L2(K̃) ≤ C∗∥∇Γ · u∥

H1(K̃),

where C∗ = max
{
∥∇Γξh ∥L2(K̃), ∥ξh∥L2(K̃)

}
. Defining C1 = C∗∥Ah∥

1

2

L∞(K̃)
, we have

proved that

|∇Γh
· û|H1(K) ≤ C1∥∇Γ · u∥

H1(K̃). (25)

In analogous way we can show the following inequality for the semi-norm

|û|H1(K) ≤ C2∥u∥H1(K̃). (26)

Summing (25) and (26) over all triangles we obtain the velocity estimate. We consider
now the estimate for pressure and, similarly to what we have done for velocity, we
introduce the lift of the exact solution p to Γh as

p̂(x̂) := p(Ψ(x̂)) with x̂ ∈ Γh.

From lemma (4.2) and from standard interpolation results we have

∥p− q̃h∥L2(K̃) ≤ C∥p̂− qh∥L2(K) ≤ C3hK |p̂|H1(K) .

Finally we exploit the results of [9] and we obtain

∥p− q̃h∥L2(K̃) ≤ CC3hK |p|
H1(K̃) .

Considering the contribution of all the elements we have the desired estimation for the

pressure. □

6 Applicative examples

We present in the following sub-sections some examples to show the goodness
of the proposed approximation. In particular we show the error convergence for
two different geometries: a sphere and a toroid. The choice is driven by the
analytical solutions proposed in the literature for these geometries. The results
are in good agreement with the theory. The simulations we propose in this
paper are performed using the library for finite elements LifeV [14] developed
by École Polytechnique Fédérale de Lausanne (CMCS), Politecnico di Milano
(MOX), INRIA under the projects REO and ESTIME and Emory University
(Math&CS). Finally to ensure that the geometrical error is small enough and to
increase the accurateness of the numerical solution, we have used the software
presented in [7] to increase the grids quality.
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6.1 Order of convergence

We consider problem (2) solved on two different domains Γ1 and Γ2, where
the former is a unit sphere while the latter a spherical cup limited by θ ∈
[−π/2, π/2] and φ ∈ [0, 2π]. A unit permeability is considered and the scalar
source term is taken as f(θ, φ) = 2(2 cos2 θ− sin2 θ) such that the exact solution
is p(θ, φ) = cos2 θ. For Γ1 the problem does not require boundary condition,
hence to have a well-posed problem we impose the solution in one point. While
for Γ2 we consider Dirichlet boundary conditions equal to the exact solution.
The advantage of using a spherical domain, in addition to the use of spherical
coordinate in finding the exact solution, is that we explicitly know the distance
function d(x) = |x| − 1.

0.001

0.01

0.1

1

0.01 0.1

er
ro
r

h

Spherical cup

Sphere

reference O (h)

Figure 2: Error decay for the sphere and the spherical cup compared with a
reference curve of O (h).

In Figure 2 we present the error history, for the two problems, decreasing the
mesh thickness. It is clear that in both cases the error obtained scales at least as
O (h), confirming the theoretical result presented in Theorem 5.1. Observing
the solutions reported in Figure 3, for the sphere, and in Figure 4, for the
spherical cup, we can notice that the velocity field obtained is tangent to the
surface and flows in the opposite direction of the pressure gradient, as we expect
from the Darcy’s law.

6.2 Example 2

In this second example we consider as surface a torus defined by

Γ =

{
(x, y, z) ∈ R

3 :
(√

x2 + y2 − 1
)2

+ z2 − 0.62 = 0

}
.
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0.5

0.75

1

Figure 3: Numerical solution on the unit sphere. Both pressure and velocity
are represented. The arrows for the latter are coloured and sized as the velocity
magnitude. We can notice that the in the two poles of the sphere and in its
equator the pressure change slowly so does the velocity.
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x

(a) Solution for a fine mesh (b) Solution for a coarse mesh
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0.6

0.8

1

Figure 4: Numerical solution on a spherical cup of a unit sphere. Both pressure
and velocity are represented. The arrows for the latter are coloured and sized
as the velocity magnitude. We can see that the solution is more smooth refining
the mesh.
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The exact solution for the pressure, expressed in toroidal coordinates, is given
by p(φ, θ) = sin(3φ) cos(3θ + φ), and the correspondent source term is equal
to f(φ, θ) = 1

r2
(9 sin(3φ) cos(3θ + φ)) − 1

(R−r cos(θ))2
(−10 sin(3φ) cos(3θ + φ) −

6 cos(3φ) sin(3θ + φ)) − 1
r(R−r cos(θ))(3 sin(φ) sin(3φ) sin(3θ + φ)), where r = 0.6

and R = 1. As in the previous case a unique solution is obtained by imposing
the exact solution in one point. In Figure 5 we can observe that, also in this

0.001

0.01

0.1

1

0.01 0.1

er
ro
r

h

Torus

reference O (h)

Figure 5: Error decay for the torus compared with a reference curve of O (h).

example, the decay of the error confirms the results presented in the theory.
Figure 6 shows the obtained solution.

y

z x

p
1

0.8

0.4

-0.4

-0.8
-1

0

Figure 6: Numerical solution on the torus. Both pressure and velocity are
represented. The arrows for the latter are coloured and sized as the velocity
magnitude.

17



7 Conclusions

In this work we have presented a framework to solve Darcy problems on regular
manifolds. The numerical discretization chosen is the classical pair of piece-
wise constant, for the pressure, and lowest order tangential Raviart-Thomas,
for the Darcy velocity, finite element spaces. In this context we have provided
an analysis of the relations between the quantities defined on the real surface
and the ones defined on its discretization. Then we have used this properties in
order to prove some results for the convergence of the approximation error. The
numerical experiments proposed have confirmed the estimate presented in the
theory.
A possible development, following the reduced model proposed in [17, 6, 16, 13,
15], of the work could be the application of the results obtained in more realistic
cases, for example in solving the Darcy problem defined in a whole basin. In
such a case we should introduce suitable coupling conditions between the domain
and the reduced model of the fracture and, in the case of a network of fractures,
we should provide models for the flow along the intersecting curves.
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