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Ionic wind devices or electrostatic fluid accelerators are becoming of increasing inter-

est as tools for thermal management, in particular for semiconductor devices. In this

work, we present a numerical model for predicting the performance of such devices,

whose main benefit is the ability to accurately predict the amount of charge injected

at the corona electrode. Our multiphysics numerical model consists of a highly non-

linear strongly coupled set of PDEs including the Navier-Stokes equations for fluid

flow, Poisson’s equation for electrostatic potential, charge continuity and heat trans-

fer equations. To solve this system we employ a staggered solution algorithm that

generalizes Gummel’s algorithm for charge transport in semiconductors. Predictions

of our simulations are validated by comparison with experimental measurements and

are shown to closely match. Finally, our simulation tool is used to estimate the

effectiveness of the design of an electrohydrodynamic cooling apparatus for power

electronics applications.
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cation DETEC, Office fédéral de la communication OFCOM, CH-2501 Bienne, Switzerland

1

mailto:davide.cagnoni@polimi.it


I. INTRODUCTION AND MOTIVATION

Cooling of electric and electronic devices is a continuous challenge for researchers and

engineers. Power electronics trends indicate a continuous increase of power densities and a

shrink of component dimensions. These conditions make the thermal management a pillar to

guarantee a safe, reliable and affordable operation of electronic components where suitable

cooling schemes must be applied. Forced convection air cooling is probably the oldest

and still one of the most used approaches for electronic systems cooling. Usually, forced

convection is driven by a fan but, for some applications as, for example, the cooling of hot

spots or enclosure-contained devices, alternative methods based on Electro-Hydrodynamic

(EHD) forces have been recently studied and exploited. A representative example of such

methods is that of ionic wind induced by a so called corona discharge.

Figure 1 schematically illustrates the phenomenon of corona discharge occurring between

two electrodes in air. The gas ions formed in the discharge are accelerated by the electric

field and exchange momentum with neutral fluid molecules, initiating a drag of the bulk fluid

which is referred to as ionic wind. The choice of a positive corona is favorable in industrial

applications as it leads to significantly reduced ozone production, and increased durability

of the metal electrodes in comparison to negative corona devices.1 Therefore, in this study,

we focus on the case of DC positive corona wind, where the applied voltage at the electrodes

is stationary, gas ionization occurs at the anode and charge carriers are mainly O+
2 ions, as

described in Fig. 1(a).

Both experimental and numerical studies of EHD phenomena have been presented in

recent literature. For example, Adamiak and others2–5 studied the DC and pulsed corona

discharge between a needle and a plate collector, using different numerical methods (FEM,

BEM, FCT etc.) for the approximation of each equation in the PDE system; Ahmedou and

Havet6–8 used a commercial FEM software to investigate the effect of EHD on turbulent flows;

Moreau and Touchard,9 Huang and others,10 and Kim and others11 experimentally studied

different EHD devices designed for cooling or air pumping purpose; Chang, Tsubone and

others12–14 made extensive experimental study of the forced airflow and the corona discharge

in a converging duct; Jewell-Larsen and others15–21 and Go and others22–26 conducted both

experimental and numerical studies aimed at designing and applying ionic wind cooling

devices to thermal management of electronic devices.
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Figure 1. Schematic representation of positive wire-to-plane corona discharge-induced ionic wind.

In ambient air, X represents primarily O2 or N2 molecules, and the dominant ionization reactions

are of the type e− +X ⇋ 2e− +X+.28

In this paper, we use a numerical approach based on a multiphysics mathematical model

that accounts for all relevant electrostatic, fluid, and thermal aspects of the phenomena

being considered. Particular attention is devoted to correctly modeling the relation between

the electric field at the anode and the amount of charge injected from the anode corona into

the neutral gas region. The accuracy of such relation is crucial for increasing the predictive

capability of numerical simulations. Here, we present a novel approach for modeling charge

injection, which is based on enforcing Kaptsov’s hypothesis27 and is shown to provide good

simulation accuracy using few free model parameters. Our approach to the charge injec-

tion modeling is compared to those existing in the literature on a set of benchmark device

geometries for which experimental data are available.

II. GOVERNING EQUATIONS

Modeling of EHD systems requires accounting for a number of interplaying phenomena

of different physical nature. Figure 2 summarizes such phenomena and their interactions:

electric current due to drifting ions generates bulk fluid flow which, in turn, contributes

to ion drift; thermal energy is transported by the flowing fluid while, at the same time,

temperature gradients give rise to buoyancy forces; finally electric conduction properties of

the gas are influenced by temperature, while electric currents act as heat sources via Joule
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Figure 2. Relations between the variables in the EHD system, with arrows pointing to an influenced

subsystems from the influencing one. Thicker arrows indicate stronger interactions, while thinner

ones indicate minor influence. The chart is adapted from Ref. 29.
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Figure 3. Example domain where all the five possible kinds of boundary are depicted.

effect.

The system of partial differential equations governing the behavior of each subsystem is

introduced below together with most of the constitutive relations for the system coefficients.

The PDEs described below are set in an open bounded domain Ω whose typical geometry is

shown in Fig. 3; the domain Ω represents the region in space occupied by bulk neutral fluid

and drifting positive ions. In our model, the thickness of the ionization layer around the

anode is considered to be negligible with respect to the length scale of the overall system.

Such region is therefore represented as a portion of the boundary, denoted as ΓA in Fig. 3,

and the process of ion injection is modeled by enforcing a suitable set of boundary conditions

on ΓA. Existing and new models for such boundary conditions are discussed in Section III.

Unipolar (positive) electrical discharge in fluid is described by Poisson’s equation

∇ · (ε ~E) = −∇ · (ε∇φ) = qNp, (1a)

coupled with current continuity equation

∂qNp

∂t
+∇ ·~j = 0, (1b)
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where ε is the electrical permittivity, ~E the electric field, φ the electric potential, q the

elementary (proton) charge, Np the number density of (positive) ions. The current density ~j

is given by the sum of three contributions: drift due to electric field, advection, and diffusion:

~j = qNp

(
µ~E + ~v

)
− qD∇Np, (2)

µ being the ion mobility in the fluid and ~v the fluid velocity field. The diffusion rate D is

related to mobility and temperature T through Einstein’s relation

D = µkBTq
−1, (3)

where kB is Boltzmann’s constant. The flow of incompressible Newtonian fluids is described

by the Navier-Stokes equations, which represent the conservation of momentum and mass

density: 



∂~v

∂t
+ (~v · ∇)~v = ν∆~v −∇p̃+

~fEHD + ~fB
ρ

,

∇ · ~v = 0,

(1c)

where ν is the kinematic viscosity, p̃ is the modified (non-hydrostatic) pressure pρ−1− ~g · ~x,

ρ being the gas mass density and ~g the gravity acceleration. The volume force term on the

right hand side of the first equation of (1c) consists of the sum of electrohydrodynamic force

~fEHD and buoyancy force ~fB. As we consider single-phase flows with limited temperature

gradients, ~fEHD can be expressed as:30–32

~fEHD = qNp
~E. (4)

For buoyancy force, due again to the limited temperature gradients, the Boussinesq approx-

imation can be adopted:

~fB = ~g[ρ(T )− ρ] = ~g [ρβexp(Tref)(T − Tref)] , (5)

where βexp is the thermal expansion coefficient, and the dependence of the gas density

ρ(T ) on temperature T is linearized around a certain reference temperature Tref , at which

the reference density ρ is taken. Finally, the temperature equation, which describes heat

transfer, reads

∂T

∂t
+ ~v · ∇T −

k

ρCV

∆T =
Q̇

ρCV

, (1d)
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where k is the heat conductivity and CV the mass specific heat. The thermal power pro-

duction Q̇ on the right hand side of (1d) can be expressed as a balance of terms accounting

for the Joule heating caused by the current density ~j and the mechanical power provided by

the EHD force ~fEHD:

Q̇ = ~j · ~E − ~v · ~fEHD = (qNpµ~E − qD∇Np) · ~E. (6)

In addition to the volume thermal energy generation pertaining to Q̇, thermal energy is

also generally exchanged with an external body; it is worth pointing out that, in general,

the contribution of the injected energy through the system boundary usually outweighs the

volume power production Q̇, for the small electric currents flowing in EHD systems.

The coupled system of PDEs (1a)-(1d) presented in this section needs to be completed

by a suitable set of initial and boundary conditions. An example of computational domain

Ω is shown in Fig. 3; the domain boundary ∂Ω is partitioned into five different subregions

∂Ω = Γin ∪ Γout ∪ ΓI ∪ ΓC ∪ ΓA on which different boundary conditions are enforced. Initial

conditions, which are to be set for ion density, velocity, and temperature, are chosen as

uniform fields, with values based on the expected “device off” state.

The fluid inlet is represented by the boundary region Γin, where Dirichlet conditions are

enforced for the velocity ~v and the temperature T , and homogeneous Neumann condition

is enforced on p̃. Since the inlet is supposed to be far from the electrodes, and thus from

the region where major electrical phenomena are localized, the electrical variables are also

considered to have vanishing gradients along the outward normal direction ~n on the boundary

∂Ω. At the fluid outlet Γout, we require the normal component of the fluid stress tensor and

of the temperature, charge density, and electric potential gradients to vanish, representing

again a region which is far from the major phenomena in the system.

The boundary region denoted as ΓI represents an electrically insulating wall and both

drift and diffusion current densities (qNp(µ~E+~v) and −qD∇Np, respectively) are supposed

to independently vanish. Since ΓI is also a solid wall, the condition of non-penetration

~v · ~n = 0, which we impose on the fluid flow, allows for the drift current to vanish if

~E · ~n = 0. Diffusion currents are instead damped by the homogeneous Neumann condition

for ion density ∇Np · ~n = 0. Additionally, fluid flow is subject to a non-slip condition

‖~v− (~v · ~n)~n‖ = ∇p̃ · ~n = 0. Temperature can either assume an imposed value, or satisfy an

imposed thermal energy flux trough the wall surface, depending on the situation at hand.
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Finally, the regions ΓC and ΓA represent the cathode and anode contacts, respectively.

At both electrodes, we enforce Dirichlet condition for the electrostatic potential and no-slip,

no-penetration conditions for the fluid flow. The cathode ΓC often coincides with the surface

to be cooled, in which case we may impose either fixed heat flux through the surface, or

fixed temperature, as we do on ΓI.

With regard to the ion density, homogeneous Neumann condition is enforced on ΓC.

Physically, this means that the only current allowed through the cathode is due to ion drift:

since mass is not allowed to cross the boundary, though, this results in imposing each one

of the positive ions hitting the cathode to recombine with an extracted electron. Boundary

conditions for ion density on the anode are instead more complicated, and Section III is

entirely devoted to the derivation and comparison of different models for such boundary

conditions.

III. MODELING OF CHARGE INJECTION

To trigger the corona discharge, the voltage drop between anode and cathode must exceed

a threshold( or onset) value which we denote by Von, while the corresponding magnitude

of the electric field at the anode is denoted by Eon. The generally accepted Kaptsov’s

hypothesis27 states that free charge, emitted by the corona for voltages higher than Von,

causes a shielding of the anode that results in “clamping” of the anode electric field at the

onset value Eon. While Von depends very strongly on the whole device geometry, experimen-

tal evidence indicates that Eon is strictly correlated with the curvature radius of the anode

contact.33

At the microscale, corona discharge is generated by the impact ionization of gas molecules

and avalanche multiplication of electrons. According to the avalanche model first developed

by Townsend34,35, cations are generated in an area characterized as the locus of points ~x ∈ Ω

such that:

γ
T
exp

(∫

L(~x)

α
T
(~r) · d~r

)
≥ 1, (7)

where γ
T
and α

T
are parameters depending on the applied electric field, the pressure, and

the chemical composition of the gas and the electrodes, whereas L(~x) is the trajectory of a

negatively charged particle, which leaves from the cathode and drifts to ~x due to the force

exerted on it by the electric field.
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Although not of much practical interest when space charge is not negligible, relation (7)

provides a rough estimate for the thickness of the ionization region, where the gas can

effectively be considered to be in plasma state. Such thickness depends on the geometry of

the anode as well as on the gas pressure and on the electric field; in corona discharge regime,

it is so small in comparison to the length-scale of the neutral fluid region, that it makes

sense to adopt a lumped model for the ionization region and to represent it as a portion of

the anode surface. Under such approximation, the only charge carriers within the bulk fluid

region are cations.36

In this section we discuss several possible options for modeling the rate at which such

cations are injected into the bulk fluid region. In order to ease the comparison of the different

models, we will express all of them in the common form of a Robin-type boundary condition

for equation (1b):

α Np|ΓA
+ β ∂~nNp|ΓA

= κ, (8)

where ∂~nNp = ∇Np · ~n is the component of the ion density gradient normal to ΓA. The

condition (8) will be in general nonlinear as we allow the coefficients α, β, and κ to depend

locally on the normal component En = ~n · ~E|ΓA
and on the density of ions Np|ΓA

.

The most common approach used in numerical studies of positive corona discharge that

appeared in the literature20,37–39 consists in imposing the current at the anode to be equal

to the experimentally measured value im. This leads to the following choice of parameters

in (8) 



α1 Np|ΓA
+ β1 ∂~nNp|ΓA

= κ1,

α1 = −qµEn, β1 = qD, κ1 = im/s.

(9)

Notice that (9) is based on the additional assumption that the component of the ion current

density jn = ~n ·~j|ΓA
normal to the contact be uniformly distributed along ΓA (hence, we

will hereafter refer to this model as uniform). This latter assumption, together with the

fact that knowledge of a measured value of the current corresponding to each value of the

applied bias is required, strongly limits the ability of simulations based on (9) to provide

useful information about the impact of the anode contact geometry on device performance.

One possible approach to overcome the drawbacks of (9) is to enforce a pointwise relation

between jn and the normal component of the electric field on ΓA. Such relation, as proposed

in Ref. 40, accounts for a balance between different contributions that make up the ionic
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current at the microscale:

jn = wNp − jsatH(En − Eon), (10)

where H(x) denotes Heaviside’s step function. The parameters appearing in (10) are the

maximum allowed current density jsat, the threshold field Eon, and the proportionality con-

stant w (which has dimensions of a velocity times an electric charge) between the backscat-

tering current and the amount of ions accumulated in the space charge region at the anode.

This model will be hereon denoted SCCC, as in “space charge controlled current”. Using (10)

to determine the coefficients of the general expression (8) leads to




α2 Np|ΓA
+ β2 ∂~nNp|ΓA

= κ2,

α2 = w − qµEn, β2 = qD, κ2 = jsatH(En − Eon).

(11)

While this model does not require prior knowledge of the current density, thus apparently

solving the main issue of model (9), the quality of its predictions depends critically on the

correct choice of its parameters jsat and w and appears to be, for some relevant practical

situations, quite poor if these parameters are given bias-independent values.

An alternative approach consists of selecting the coefficients of (8) in such a way as to

enforce, pointwise on ΓA the negative feedback relation between normal electric field and

space charge that is at the basis of Kaptsov’s hypotesis. This can be done, for example, by

defining the following model:




α3 Np|ΓA
+ β3 ∂~nNp|ΓA

= κ3,

α3 = qµEon, β3 = 0, κ3 = qµEn Np|ΓA
.

(12)

Model (12) has only one parameter, the onset field Eon, whose typical magnitude can be,

at least roughly, estimated by means of correlations available in literature.33 On the other

hand, (12) presents a further nonlinearity in comparison to (9) and (11), as κ3 depends on

Np, thus its implementation requires a suitable linearization approach. Since in this study

we are mainly interested in the stationary regime device performance, we adopt the simplest

approach and evaluate κ3 in (12) using the latest computed value of Np . This approach will

be shown in numerical examples of Section V to be very effective in terms of accuracy of

the simulation, but to also highly impact the computational time required for the simulated

current to reach its regime value. This model was named ideal diode, since it allows arbitrary

currents over the threshold, and no current under the threshold.
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The alternative method of solving the nonlinearity adopted, e.g., in Ref. 2 or Refs. 15 and

16 does not seem to reduce such numerical problems. We are therefore lead to consider yet

one more type of boundary condition at the anode, where part of the predictive accuracy of

(12) is traded off to achieve better numerical efficiency. This latter model is expressed by

the following choice of the boundary condition coefficients:





α4Np + β4∂~nNp = κ4,

α4 = qµEon, β4 = 0, κ4 = qµEonNref exp
(

En−Eon

Eref

)
,

(13)

where Eref is a reference electric field and Nref is a reference cation density. It can be

easily verified that the set of points in the Np-En plane that satisfy (13) reduces to the set

satisfying (12) as Eref → 0; in such sense, an interpretation of this model as a smoother

version of the ideal diode model is possible; to highlight the analogy with (12), thus, this

model was named exponential diode.

A summary of the kinds of boundary conditions considered in this paper is presented in

Table I where, for each condition, the corresponding models for the coefficients α, β and κ

is reported.

IV. DECOUPLED ITERATIVE SOLUTION ALGORITHM

The algorithm we developed for the solution of system (1a)-(1d) is constructed by analogy

with iterative algorithms used for the solution of similar systems of coupled PDEs that arise

in modeling of semiconductor devices by drift-diffusion or hydrodynamic models41–46 or

in electrochemical models for ionic transport in biological systems.47–49 The algorithm is

constructed by a sequence of four steps:

1. time-semidiscretization by means of Rothe’s method is performed to reduce the ini-

tial/boundary value problem (1a)-(1d) to a sequence of boundary value problems,

where only derivatives with respect to the spatial coordinates appear;

2. the sub-problems composing the whole system are decoupled and a strategy to iterate

among them in order to achieve self consistency is chosen;

3. as the decoupled sub-problems are still nonlinear, inner iterations need be defined to

solve them;
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Table I. Summary of the coefficients for the four boundary models presented

Model

name

Equation α β κ

Uniform (9) −qµEn qD iexp/s

SCCC (11) w − qµEn qD jsatH (En − Eon)

Ideal

diode

(12) qµEon 0 qµNpEn

Exponential

diode

(13) qµEon 0 qµEonNref exp
(
En−Eon

Eref

)

4. finally, as the initial problem has been reduced to a set of scalar linear problems, a

proper spatial discretization scheme is chosen to solve them numerically.

We choose the Backward Euler scheme for time-discretization, as we are mainly interested

in capturing steady state behavior rather than accurately describing transient system dy-

namics, and thus we favor stability over high order accuracy. For the sake of convenience we

summarize below the full system (1a)-(1d) as it appears after applying time-discretization

and enforcing the boundary conditions discussed above.

Poisson equation



−∇ · (ε∇φ) = qNp on Ω

φ = VA on ΓA

φ = 0 on ΓC

∂~nφ = 0 on ΓI ∪ Γin ∪ Γout

(1a′)
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(Time-discretized) Current continuity equation



q(Np −Nold
p )

δt
+

+∇ · (−Dq∇Np + (~v − µ∇φ)qNp) =

= 0 on Ω

αNp + β∂~nNp = κ on ΓA

∂~nNp = 0 on (∂Ω \ ΓA)

(1b′)

(Time-discretized) Navier-Stokes equations




~v − ~vold

δt
−∇ · (ν∇~v)+

+(~v · ∇)~v −∇p̃ =

=
~fEHD+~fb

ρ
on Ω

∇ · ~v = 0 on Ω

~v = 0 on ΓA ∪ ΓC ∪ ΓI

~v = ~vin on Γin

−ν∂~n~v + p̃~n = 0 on Γout

(1c′)

(Time-discretized) Heat equation



ρCV (T − T old)

δt
+

+∇ · (−k∇T + ~vρCV T ) =

= (µ~EqNp −Dq∇Np) · ~E on Ω

k∂~nT = ein on ΓA ∪ ΓC ∪ ΓI

T = Tin on Γin

k∂~nT = 0 on Γout

(1d′)

The outer iteration strategy for decoupling system (1a′)-(1d′) is graphically represented in

Fig. 4. The equations are subdivided into three blocks representing the electrical, fluid and

thermal subsystems, respectively. In Figure 4 each subsystem is identified in terms of its so-

lution map, namely E for the electrical subsystem (1a′)-(1b′), F for the fluid subsystem (1c′)

and T for the thermal subsystem (1d′). Each of such maps operates on a subset of the com-

ponents of the complete system state vector ~w = [φ,Np, ~v, p̃, T ]and iteration is performed

by applying iteratively the fixed point mapM = T ◦ F ◦ Euntil the prescribed tolerance is

12



~wk = [φk, Nk
p , ~v

k, p̃k, T k]

E

[φk+1, Nk+1
p , ~vk, p̃k, T k]

F

[φk+1, Nk+1
p , ~vk+1, p̃k+1, T k]

T

~wk+1 = [φk+1, Nk+1
p , ~vk+1, p̃k+1, T k+1]

~wk+1 ≈ ~wk
k
←

k
+
1

Figure 4. Block diagram representing the composite fixed point iteration used to solve the system

(1a′)–(1d′).

achieved.

The main advantage of decoupling the system according to the physics as outlined above

is that each subproblem can then be treated following a specifically tailored approach, which

is known to be the most appropriate in its respective field. In particular, the map E is based

on the well-known Gummel-map strategy widely used in computational electronics,42,43,46,50

the map F is composed of an incompressibility-enforcing iteration based on the standard

PISO scheme,51 well established for the solution of incompressible Navier-Stokes equations.

Finally, the map T represents the solution of temperature equation, which is treated as a

linear equation, neglecting the gas coefficients variations.

The results presented in the next section have been obtained using the finite volume

method (FVM) for space discretization. A custom solver has been implemented within the

C++ library OpenFOAM.52 However, the algorithm presented in this section is very general

and could be extended to different discretization methods.

V. MODEL VALIDATION

In this section, three different test geometries are presented, and the results obtained in

our simulations are compared to experimental and numerical data. The simulations were

obtained with the help of the library swak4Foam53 for the implementation of the boundary

conditions, while the domain meshes were produced with gmsh54.
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Figure 5. Scheme of the computational domain geometry for the device with open wire to wall-

embedded collecting electrode arrangement discussed in Subsection VA.

A. Open wire to wall-embedded collecting electrode arrangement

In this section, we apply our numerical model to the wire-to-plate geometry studied in

Refs. 23 and 25. Figure 5 depicts the experimental setup: a flat, insulating plate 125mm

long and 50.8mm wide, is placed in a laminar, 0.28m/s air flow, parallel to the plate. In

the plate is embedded a 6.35mm long metal strip, its leading edge 55.25mm away from the

leading edge of the plate, acting as cathode contact. The 0.05mm diameter wire acting as

anode contact is placed 3.15mm far from the plate, and 4mm upstream of the cathode strip

leading edge.

Figure 6 explains the working mechanism of the device. The main conductive channel

is highlighted in Fig. 6(a): electric current flows mainly from the anode to the upstream

part of the cathode, following the field lines depicted in Fig. 6(b). As shown in Fig. 7, the

generated EHD force and the wall reaction combine to reduce the thickness of the boundary

layer in the region adjacent to the cathode strip.

Figure 8 compares the measured data with the results obtained with different models for

the boundary condition. Only three models have been successfully used, since the uniform

model proved especially inappropriate in this very asymmetrical geometry: most of the

charge injected from the anode side opposite to the cathode would stagnate, generating

nonphysical solution as well as numerical misbehaving (due to the reformulation of Poisson’s

equation in Gummel’s map algorithm). The SCCC model does not suffer of those issues,

since no charge is injected from the low electric field side of the anode; nonetheless it fails

to reproduce the correct, convex shape of the current-voltage curve, presenting an excessive

shielding effect.

Both the ideal and exponential diode model provide better predictions, both qualitatively,

with a convex IV curve, and quantitatively, with the maximum prediction error bounded

14



(a) Ion number density distribution (m−3) in a device region near the electrodes.

The ticks on the right show the length scale, each tick is 1mm.

(b) Electric field lines-of-force (grey) and electric potential isolines (black) in a

device region near the electrodes. The scale is the same as in Fig. 6(a).

Figure 6. Electric quantities in the device with open wire to wall-embedded collecting electrode

arrangement discussed in Subsection VA at a 3.6 kV applied voltage. The results shown here were

obtained with the exponential diode condition.

under 33% of the measured current. Additional accuracy could be obtained with a deeper

research for the optimum parameters for both models, but this is beyond the scope of this

work.
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(a) Air velocity streamlines in a device region near the electrodes. The scale is

the same as in Fig. 6(a).

(b) Magnitude of air velocity (m s−1) in the whole computational domain. The

ticks on the right show the length scale, each tick is 10mm.

Figure 7. Air flow in the device with open wire to wall-embedded collecting electrode arrangement

discussed in Subsection VA at a 3.6 kV applied voltage. The results shown here were obtained

with the exponential diode condition.

B. Convergent duct with wire-to-plate electrode arrangement

In this section, we apply our numerical model to the device experimentally studied in

Ref. 12. The experimental setup is schematically represented in Fig. 9: a duct enclosed

between two insulating non-parallel plates, 33mm deep and 117mm long, with the two
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Figure 8. Anode current vs applied voltage in the device with open wire to wall-embedded collecting

electrode arrangement discussed in Subsection VA, computed applying the four boundary condition

models presented in Section III.
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Figure 9. Schematic picture of the computational domain geometry for the device with convergent

duct with wire-to-plate electrode arrangement discussed in Subsection VB.

openings 24 and 12mm wide, respectively. The wire acting as anode is placed 60mm away

from the smaller opening and has a diameter of 0.24mm. Two stripes of conductive material,

acting as cathodes, are embedded on the non-parallel plates, ranging from 6mm away from

the wider opening to 36mm away from the smaller one.

Figure 10 shows the basic working principle of the device. The electric field directed from

the anode wire towards the cathode plates generates vortices, that are made non-symmetric

by the reaction forces of the inclined walls. The non-symmetry produces a net air flow

directed, for the particular electrodes arrangement at hand, from the wider cross-section to

the smaller cross-section end. For high applied voltages, vortex shedding can be observed

(see Fig. 10 again) and the flow becomes non-stationary (quasi-periodic).

Figure 11 shows a comparison of the numerical simulation predictions for the anode

17



current to applied voltage characteristics of the device. Simulations were performed with

different injection models and compared to measurements from Ref. 12. The uniform model

has been useful in this case, thanks to the symmetry of the domain, and matches by con-

struction the experimental current values. The currents predicted by the ideal diode model

appears to be in very good agreement with measurements both qualitatively and quantita-

(a) Electric field lines (grey) and electric potential isolines (black).

(b) Streamlines, sampled every 0.1 s from t = 2.6 s to t = 2.9 s.

Figure 10. Electric field (a) and air velocity (b) in the device with convergent duct with wire-

to-plate electrode arrangement discussed in Subsection VB at an applied voltage of 9 kV, these

results were obtained with the exponential diode boundary condition.
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Figure 11. Anode current vs applied voltage in the device with convergent duct with wire-to-plate

electrode arrangement discussed in Subsection VB, computed applying three of the boundary

condition models presented in Section III

tively, the relative error being consistently bounded under 17% over a wide range of applied

voltages. The exponential diode injection model also correctly captures the qualitative be-

havior of the IV curve, which is approximately parabolic in accordance to approximate

analytic solution for totally axisymmetric geometries. The quantitative error with respect

to the measurements is, as expected, higher.

Such a loss in accuracy, though, is balanced by the better numerical performance. Fig-

ure 12 compares the convergence history of the iterative method when the ideal diode or

the exponential diode injection model is applied. The number of time steps required for the

electric variables to reach a stationary regime is much higher in the case of the ideal diode

condition due to the requirement of a smaller under-relaxation coefficient that is needed to

stabilize the method in this case. It is interesting to observe how the convergence over time

of the current to its stationary value is non-monotonic. Indeed, a possibly high overshoot

in the current is usually observed, if the initial value of the cation density is low. In such

situation, the anode contact electric field is initially much higher than at steady state, and

thus more intense charge injection occurs. An additional abrupt change in the simulated

current may occur, when the charge present in the device, due either to the initial value or

the overshooting, is expelled from the channel as shown in Fig. 13; this abrupt change results

in a variation of the anode charge density value, and leads to the need of a larger number
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(b) Ideal diode model.

Figure 12. Performance of the iterative algorithm in simulating the device with convergent duct

with wire-to-plate electrode arrangement discussed in Subsection VB for an applied voltage of

8 kV. The plots shows anode and cathode currents and the total number of iterations for the

electric subsystem solution map E at each time step.

of fixed point iterations. The above discussion shows that a careful choice of the initial

condition is necessary in order to allow for a good performance of the numerical method.

Finally, Fig. 14 shows a comparison of the experimental and predicted average velocities

on the outlet section, plotted versus the total provided power at the electrical steady state

W = iV . The uniform model only provides an approximation of scale of the total flow

rate; on the other hand, it underestimates both the high increase in efficiency for smaller

applied power and the drop in efficiency at higher power. The ideal diode model, on the

contrary, provides a very good approximation for the efficiency of the device, due to the
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Figure 13. Charge distribution in the device with convergent duct with wire-to-plate electrode

arrangement discussed in Subsection VB, sampled every 5ms from 17ms to 32ms for an applied

voltage of 8 kV.

more realistic space distribution of the volume EHD force, even without a-priori knowledge

of the expected current. As already stated, this additional accuracy comes at the price of

higher computational cost. The real diode approach, in the end, provides a flow rate curve

quite similar to the one from the uniform model, even if the points are biased towards the

low-power region due to the underestimation of the currents. Moreover, the approach is not

dependent on empirical data, since its parameters depend mainly on the electrode radius and

could be estimated from similar cases. This result is in our opinion a fair trade-off between

the need of specific empirical data on currents of the uniform model, and the excessive

computational effort required by the ideal diode model.
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Figure 14. Steady state outlet velocity for the device with convergent duct with wire-to-plate

electrode arrangement discussed in Subsection VB, computed applying three different boundary

models from Section III

Figure 15. Geometry of the thermosyphon, with the mesh of wires acting as anode, and the basic

periodic cell used as computational domain.

VI. INDUSTRIAL APPLICATION EXAMPLE: AN EHD COOLED

CONDENSATION RADIATOR

After the model validation carried out in Section V, we present in this section an exam-

ple of application of our simulation tool to the design of a cooling apparatus of potential
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Figure 16. Cation number density (m−3) isosurfaces, for an applied voltage of 10 kV.

Figure 17. Electric field lines, color scale based on log10 of the magnitude of ~E expressed in Vm−3,

for an applied voltage of 10 kV.
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impact in industrial application. In particular, we consider a combination of EHD forced

air convection and a two-phase thermosyphon.

Two-phase cooling, and in particular two-phase thermosyphons, have been recognized

in being beneficial for thermal management of electronics. The usage of pumpless systems

together with dielectric fluids and high heat transfer coefficients demonstrated to be a perfect

combination for cooling of electronics.

Thermosyphon condensers are commonly automotive type heat exchangers. This tech-

nology uses numerous multiport extruded tubes with capillary sized channels disposed in

parallel and brazed to louvered air fins that meets the required compactness. The heat

removal is obtained by means of a forced air stream of air over the condenser body usually

imposed by a fan element. If fans represent a standard solution, drawbacks are commonly

identified in the reliability (rotating mechanical parts), in the noise and in the occupied

volume.

An EHD cooled condenser can overcome the limits of a common fan system. For a given

condenser size, the EHD cooler will increase the local air speed; for a given temperature of

operation of the cooler, the EHD system can enable a global reduction of the system size

with reduced noise levels. Last but not least, EHD can locally increase the condensing per-

formances due to generated magnetic field enabling a reduction of the operating temperature

of the electric and electronic devices.

The result we show in this section pertain to the simulation of a simplified model of EHD

cooled thermosyphon, similar to the ones presented in Refs. 55–58. Figure 15 depicts the

geometry of the device, where the vertical tubes act as cathode and a mesh of thin wires

acts as anode. The device is inherently modular, so that simulation is required only for

the basic periodic cell, which is in evidence in Fig. 15. On the horizontal boundary planes,

periodic condition are imposed, while on the portions of the vertical boundary planes not

intersecting the solid components, symmetry conditions are enforced.

Figure 16 shows the distribution of the cation density in the domain. The maximum

density is located directly in front of the pipe, and a main conductive region is formed.

Figure 17 shows some electric field lines, which are also parallel to the EHD volume force,

that triggers the fluid motion.
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VII. CONCLUSIONS

In this work, we studied the numerical approximation of the effects of electric discharge on

ambient air flow. First, we proposed an algorithm to deal with the multiphysics mathemat-

ical model describing the system, by the coupling of the different and particular approaches

already used in the fields of electronic device simulation and computational fluid dynamics.

Furthermore, we analyzed the particular phenomenon of corona discharge and proposed a

phenomenological approach, which allows for the removal of the plasma subdomain and the

electron density conservation equation from the computation. Four different models follow-

ing this approach have been considered, discussed, and compared. The conclusion is that

both the ideal and exponential diode models, proposed in this work, are able to reproduce

the correct behavior of the corona discharge EHD system without need of measured data for

the electric current in the actual device at hand. Finally, we showed how our models and

algorithm can be effectively used in a relevant industrial application.
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