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Abstract

We introduce a distribution-free procedure for testing a functional-on-
scalar linear model with fixed effects. The procedure does not only test the
global hypothesis on all the domain, but also selects the intervals where
statistically significant effects are detected. We prove that the proposed
tests are provided with an asymptotic interval-wise control of the family-
wise error rate, i.e., the probability of falsely rejecting any interval of true
null hypotheses. The procedure is then applied to one-leg hop data from
a study on anterior cruciate ligament injury. We compare knee kinematics
of three groups of individuals, taking individual-specific covariates into ac-
count.
Keywords: Functional Data, Permutation Test, Interval Testing Proce-
dure, ANCOVA.

1 Introduction

Functional data analysis (FDA) is a relatively new, dynamically developing,
research area within the field of statistics. In recent literature, linear models
for functional data have been widely studied (see, e.g., Fan and Zhang 2000;
Abramovich and Angelini 2006; Cardot et al. 2007; Reiss et al. 2010; Gertheiss
et al. 2013; Abramowicz et al. 2014).
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Motivated by the analysis of the dependence of knee kinematics on subject-
specific covariates, in this paper we consider a functional-on-scalar linear model.
In detail, we model a functional response with a set of covariates multiplied
by functional parameters. Such model finds its application in a wide range of
research fields where modern techniques enable collection of high-resolution data.
In this context, many of the empirically relevant questions do not only address
the effect of covariates on a functional response, but also require identification
of significant domain subsets. In this work, data from a follow-up study after
anterior cruciate ligament injury are analyzed. We study knee kinematics during
one-leg hop, comparing individuals treated with physiotherapy or surgery with
healthy controls. Previous studies suggest a difference in the movement patterns
between the groups (Tengman et al. 2014; Abramowicz et al. 2014). In this
paper, we investigate if this difference is only due to group effect, or if it can
be explained by means of additional individual-specific covariates such as jump
length, gender, age, and body mass index (BMI).

We focus on a distribution-free method and therefore propose to use a least
squares method for parameter estimation. Parameter estimation of the func-
tional model is handled by first representing the functional response and the
functional regression parameters in terms of a suitable functional basis. The
functional estimation problem is thus decomposed into a family of correspond-
ing linear models of univariate response variables, one for each of the coefficients
(components) of the basis expansion. Hence, least squares estimation methods
for linear models with univariate response variables can be used to estimate the
functional linear model (see Section 2).

Forming valid tests of various hypotheses about the functional regression
parameters, with control of the error rate, is not straightforward. One so-
lution adopted in the literature is to develop global tests for the parameters
of the model. Such tests investigate if a covariate has a significant effect on
the response, but does not provide any domain selection (Cuevas et al. 2004;
Abramovich and Angelini 2006; Antoniadis and Sapatinas 2007; Cardot et al.
2007; Schott 2007; Cuesta-Albertos and Febrero-Bande 2010; Zhang and Liang
2014). Another approach, proposed in Fan and Zhang (2000); Reiss et al. (2010);
Ramsay and Silverman (2005), is to provide point-wise confidence bands for the
functional parameters. The results indicate in which parts of the domain the
covariates have an effect, but not at which significance level. As clearly dis-
cussed in Ramsay and Silverman (2005, pp. 243–244), point-wise limits are not
equivalent to confidence regions for the entire estimated curves. Assuming that
data are expressed through a functional basis, inference can be based directly on
the expansion coefficients, as proposed by Spitzner et al. (2003). In the latter
work, single-component tests are performed, and their p-values adjusted with the
Bonferroni-Holm procedure (Holm 1979). In this way, results are compensated
for the many dependent tests performed on the same data set. A drawback with
this procedure is that it is typically too conservative, and needs a relevant di-
mensional reduction of data in order to detect significant functional parameters.
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In our work, we follow the same line of research proposed by Spitzner et al.
(2003), introducing a less conservative p-values adjustment, which rely on the
properties of functional data, and does not require any dimensional reduction of
the functional data set. The continuous nature of functional models expressed in
terms of a basis expansion such as B-splines, typically implies that neighbouring
basis coefficients present a positive dependence. Combinations of neighbouring
component-wise (dependent) tests thus have the potential to more easily detect
parts of the domain where a functional regression parameter is significantly dif-
ferent from zero. Therefore, in our paper we restrict multiple comparisons of
component-wise tests to intervals of neighbouring components and use the In-
terval Testing Procedure (ITP) introduced by Pini and Vantini (2013), which
is based on single- and multiple-component tests. The single-component tests
are based on Freedman and Lane permutation schemes (Freedman and Lane
1983), which do not rely on any distributional assumptions. Further, we use
a Non-Parametric Combination (NPC) procedure to obtain simultaneous tests
on intervals of components. The NPC procedure is a computationally efficient
procedure which preserves the exactness and consistency properties of single-
component tests. For further details, we refer to Pesarin and Salmaso (2010).
Using the ITP, for each basis component we obtain an adjusted p-value, which
is used to select the significant component intervals. Such tests are provided
with an interval-wise control of the Family Wise Error Rate (FWER). In detail,
this control implies that the probability of falsely rejecting any interval of basis
components associated to true null hypotheses is controlled at the desired sig-
nificance level. We prove that the proposed tests are exact or asymptotically
exact.

The paper is outlined as follows: in Section 2, we describe the functional-
on-scalar linear model, discussing the methodology proposed for functional pa-
rameter estimation and inference. Section 3 reports the theoretical properties
of the proposed methodology. The proofs of theorems in Section 3 are reported
in Appendix A. In Section 4, we report the results of the analysis of kinematic
data. Finally, Appendix B reports some details on the Freedman and Lane per-
mutation scheme, while Appendix C briefly describes the NPC procedure. All
computations and plots have been created using R (R Core Team 2014).

2 Methodology

2.1 The functional-on-scalar linear model

Suppose we have observed a sample of n continuous random functions {yi(t)}i=1,...,n,
over time t: t ∈ [a, b]. We want to study the following functional-on-scalar linear
model:

yi(t) = β0(t) +
L
∑

l=1

βl(t)xli + εi(t), ∀i = 1, ..., n, (1)
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where x1i, ..., xLi ∈ R are known scalar covariates and βl(t), l = 0, ..., L, are the
fixed functional regression parameters. The errors εi(t), t ∈ [a, b] are i.i.d. (with
respect to units) zero-mean random functions (not necessarily Gaussian) with
finite total variance, i.e.,

∫ b

a

E [εi(t)]
2 dt <∞, ∀i = 1, ..., n. (2)

We assume that, for each i = 1, . . . , n, yi(t) can be expressed in terms of
basis functions {φ(k)(t)}pk=1, i.e.,

yi(t) =

p
∑

k=1

yi
(k)φ(k)(t).

Whenever functional data are described through a basis expansion, we can per-
form inference directly on the set of coefficients representing the data. Therefore,
we can project the model (1) on the functional space spanned by the basis:

p
∑

k=1

yi
(k)φ(k)(t) =

p
∑

k=1

β0
(k)φ(k)(t) +

L
∑

l=1

p
∑

k=1

βl
(k)φ(k)(t)xli +

p
∑

k=1

εi
(k)φ(k)(t),

for all t ∈ [a, b] and i = 1, . . . , n, which leads to:

p
∑

k=1

[

yi
(k) − β0

(k) −

L
∑

l=1

βl
(k)xli − εi

(k)

]

φ(k)(t) = 0, ∀t ∈ [a, b], ∀i ∈ 1, . . . , n.

(3)
Since {φ(k)(t)}pk=1 is a basis, equation (3) holds if

yi
(k) = β0

(k) +

L
∑

l=1

βl
(k)xli + εi

(k), ∀k = 1, ..., p, ∀i ∈ 1, . . . , n (4)

holds. Therefore, we can express model (1) as a family of p scalar-on-scalar linear
models, with errors pertaining to the same sample unit i possibly dependent.
Moreover, we have that:

0 = E[εi(t)] = E

[

p
∑

k=1

εi
(k)φ(k)(t)

]

=

p
∑

k=1

E[εi
(k)]φ(k)(t) ∀t ∈ [a, b], ∀i ∈ 1, . . . , n,

and hence E[ε
(k)
i ] = 0 for all k = 1, ..., p and i = 1, . . . , n. From (2) and the fact

that {φ(k)(t)}pk=1 is a basis, we also have that for k = 1, . . . , p, E[ε
(k)2

i ] < ∞.
Finally, the independence of the random functions εi(t), t ∈ [a, b], implies inde-
pendence across units of the coefficients εi

(k). Therefore, for fixed k, the error
terms εi

(k), i = 1, . . . , n are i.i.d. zero-mean random variables with finite vari-
ance. Note that we are not making assumptions instead on the auto-covariance
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structure of the εi(t)’s. Hence, for fixed i, the errors ε
(k)
i , k = 1, . . . , p, are not

assumed independent.
In practice, we often can not observe the complete response functions yi(t), i =

1, . . . , n, and need to estimate them based on the finite number of observations.
We refer to Ramsay and Silverman (2005) for a discussion about the choice of
basis used to represent data and methods used to estimate the coefficients.

2.2 Model estimation

The ordinary least squares (OLS) estimators of the functional parameters βl(t),
l = 0, . . . , L, can be found by minimizing the sum over units of the L2 distances
between the functional data yi(t) and the quantity β0(t) +

∑L
l=1 βl(t)xli with

respect to βl(t), l = 0, . . . , L (Ramsay and Silverman 2005):

n
∑

i=1

∫ b

a

(

yi(t)− β0(t)−

L
∑

l=1

βl(t)xli

)2

dt. (5)

The minimization can be done separately for each coefficient of the basis
expansion, even in presence of non-orthonormal basis components. Indeed, when
using a basis expansion, (5) can be written as:

n
∑

i=1

∫ b

a

[

p
∑

k=1

(

y
(k)
i − β(k)′xi

)

φ(k)(t)

]2

dt, (6)

where β(k) = (β
(k)
0 , ..., β

(k)
L )′ and xi is the i-th row of the design matrix Xn ∈

R
(n×(L+1)) ([Xn]i,1 = 1, ∀i = 1, ..., n; [Xn]i,j = xj−1,i, i = 1, ..., n, j = 2, ..., L+1).

Equation (6) is equivalent to:

n
∑

i=1

p
∑

k1=1

p
∑

k2=1

(

y
(k1)
i − β(k1)′xi

)(

y
(k2)
i − β(k2)′xi

)

∫ b

a

φ(k1)(t)φ(k2)(t)dt,

which can be written using matrix notation as

n
∑

i=1

(

yi − β′xi
)′
W
(

yi − β′xi
)

, (7)

where yi = (y
(1)
i , ..., y

(p)
i )′ ∈ R

p, β ∈ R
((L+1)×p) is the matrix of coefficients,

[β]l,k = β
(k)
l , and W ∈ R

p×p is the matrix of inner products between basis

functions [W ]k1k2 =
∫ b

a
φ(t)(k1)φ(t)(k2)dt. As shown by Johnson and Wichern

(2007), for any positive definite matrix W , we have that:

argmin
β

n
∑

i=1

(

yi − β′xi
)′
W
(

yi − β′xi
)

=argmin
β

n
∑

i=1

(

yi − β′xi
)′(

yi − β′xi
)
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that is, in the minimization, W can be replaced with the identity. Note that:

n
∑

i=1

(

yi − β′xi
)′(

yi − β′xi
)

=

p
∑

k=1

n
∑

i=1

(

y
(k)
i − β(k)′xi

)2

and hence the minimization problem on the left hand side with respect to β

is reduced to the family of p independent minimization problems, one for each

component k = 1, . . . , p. For each k,
∑n

i=1

(

y
(k)
i − β(k)′xi

)2
is minimized by the

OLS estimate β̂
(k)

= (β̂
(k)
0 , . . . , β̂

(k)
L ) of β(k). Therefore β̂ = (β̂

(1)
, . . . , β̂

(p)
) is

also the global OLS estimate minimizing (6). Hence, for each l = 0, . . . , L, the
estimate of the functional regression parameters βl(t) is

β̂l(t) =

p
∑

k=1

β̂
(k)
l φ(k)(t). (8)

It is possible to establish asymptotic properties for the OLS estimates on
each basis component k. Consider the following standard conditions:

C1 The matrix X ′
mXm is non-singular for some m ≥ 1 (implying that it is

non-singular for all n ≥ m), and the inverse V = (X ′
nXn)

−1 is s.t. the
elements [V ]ij → 0 as n→ ∞, for all i, j = 1, ..., L+ 1.

C2 For each k = 1, ..., p, the regression errors ε
(k)
i satisfy:

sup
i=1,...,n

E

[

ε
(k)2

i

]

<∞.

Under conditions C1 -C2, we have that for each k = 1, . . . , p, the obtained OLS

estimates β̂
(k)
0 , . . . , β̂

(k)
L are strongly consistent estimates of β

(k)
0 , . . . , β

(k)
L (Lai

et al. 1979). Condition C1 is a sufficient condition for finding an explicit expres-
sion of the OLS estimates, and guarantees convergence in probability. Condition
C2 assures almost sure convergence.

2.3 Model inference

One of the main challenges with inference for functional linear model (1) is per-
forming valid tests of various hypotheses on the functional regression parameters.
Analogously to the classical framework, we are, e.g., interested in testing if none
of the covariates significantly affects the response, i.e., the functional version of
classical F -test:

{

H0,F : βl(t) = 0 ∀l ∈ 1, . . . , L, ∀t ∈ [a, b]
H1,F : βl(t) 6= 0 for some l ∈ {1, . . . , L} and t ∈ [a, b]

(9)
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together with tests of significance for any specific functional parameter l ∈
{0, . . . , L}, i.e., the functional version of classical t-test:

{

H0,l : βl(t) = 0 ∀t ∈ [a, b]

H1,l : βl(t) 6= 0 for some t ∈ [a, b].
(10)

In the most general case we are interested in testing hypotheses on lin-
ear combinations of the functional parameters of the regression, specified by
a combination matrix C. In detail, C ∈ R

(q×(L+1)) is any real-valued full
rank matrix, where q denotes the number of hypotheses on the functional re-
gression parameters to be jointly tested, with 1 ≤ q ≤ L + 1. Moreover, let
c0(t) = (c01(t), ..., c0q(t))

′ be a vector of fixed functions from the space spanned
by the basis functions {φ(k)(t)}k=1,...,p, and let β(t) = (β0(t), ..., βL(t))

′ denote
the vector of functional regression parameters. We are in general interested in
testing hypotheses of the form:

{

H0,C : Cβ(t) = c0(t) ∀t ∈ [a, b]

H1,C : Cβ(t) 6= c0(t) for some t ∈ [a, b].
(11)

where the j-th element of vector Cβ(t) is a function obtained by means of a
linear combination of the functional regression parameters βl(t) with weights
[C]jl: [Cβ(t)]j =

∑L
l=0[C]jlβl(t), j = 1, ..., q. There are two important special

cases of the general functional linear hypotheses (11):

1. When q = L, C = CF = (0
∣

∣IL) ∈ R
L×(L+1), and c0(t) = 0 ∈ R

L, where
IL is the L× L identity matrix. Then, the hypotheses of (11) correspond
to the hypotheses in (9);

2. For a fixed l, let q = 1, C = Cl ∈ R
1×(L+1) with [Cl]r = 1 if r = l and 0

otherwise, and c(t) = 0. Then, the hypotheses in (11) correspond to the
hypotheses in (10).

By using the basis representation of β(t) and c0(t), functional linear hy-
potheses (11) are translated into a family of p linear hypotheses pertaining the
components of the basis expansion k = 1, . . . , p:

{

H0,C =
⋂p
k=1H

(k)
0,C , with H

(k)
0,C : Cβ(k) = c

(k)
0

H1,C =
⋂p
k=1H

(k)
1,C , with H

(k)
1,C : Cβ(k) 6= c

(k)
0 ,

(12)

where c
(k)
0 ∈ R

q is a vector composed by the k-th coefficients of the basis ex-
pansion of vector c0(t) with the basis expansion performed for each element
of the vector. Hence, as opposed to model estimation, the problem of infer-
ence for multiple components is not straightforward, as it involves a, possibly
high-dimensional, family of dependent statistical tests.

7



The hypotheses on the functional parameters of equations (9)-(11) can thus
be tested by performing multiple hypotheses tests on single basis components
β(k), testing:

H
(k)
(0,C) : Cβ

(k) = c
(k)
0 versus H

(k)
(1,C) : Cβ

(k) 6= c
(k)
0 , (13)

for various choices of C and c
(k)
0 . Based on the OLS estimates of the β

(k)
l ’s it

is rather straightforward to form natural test statistics such as F -tests and t-
tests to test (families) of hypotheses (13), see Subsections 2.1-2.2. The challenge
is to have control of the family-wise error rate arising from the many multiple
(dependent) hypotheses tests.

In this paper we use the ITP to control on each interval the probability of
falsely rejecting at least one true null hypothesis of the family, i.e., the interval-
wise control of the FWER. The ITP is a three step procedure involving a basis
expansion of functional data, the testing of each multiple-component hypothesis
pertaining intervals of basis coefficients, and a multiplicity correction providing
an interval-wise control of the FWER. In the following paragraphs we first give
some details on the starting point of the ITP, that is the single-component
testing, and then we describe how we construct the multiple-component tests
and the corresponding p-value correction needed to keep control of the FWER..

2.3.1 Single-component testing

For hypotesis testing of (13) corresponding to a single component k, we use per-
mutation tests based on the Freedman and Lane permutation scheme (Freedman
and Lane 1983), which is briefly described in Appendix B. This permutation
strategy is the most commonly used for linear models, and presents many ad-
vantages compared to other permutation techniques (Davison and Hinkley 1997;
Anderson and Legendre 1999; Anderson and Robinson 2001; Zeng et al. 2011;
Winkler et al. 2014). In particular, it can be shown empirically that its power
is typically higher than the power of tests based on other permutation schemes
(Anderson and Legendre 1999; Winkler et al. 2014). Permutation tests based
on the Freedman and Lane scheme are based on permutations of the estimated
residuals under the reduced model (i.e., the linear model under the null hypoth-
esis of the test).

For the fixed component k, to perform the F -test with hypotheses

{

H
(k)
0,F : β

(k)
l = 0 ∀l ∈ 1, . . . , L

H
(k)
1,F : β

(k)
l 6= 0 for some l ∈ {1, . . . , L}

(14)

we use the F -test statistic:

T
(k)
F =

(n− L)
∑n

i=1(ŷ
(k)
i − ȳ(k))2

L
∑n

i=1(y
(k)
i − ŷ

(k)
i )2

, (15)
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where ŷ
(k)
i = β̂

(k)
0 +

∑L
l=1 β̂

(k)
l xli, β̂

(k)
0 , ..., β̂

(k)
L being the OLS estimates when all

L covariates are in the model, and ȳ(k) =
∑n

i=1 yi
(k)/n is the sample mean of

the response coefficients.
To perform the t-test for the l-th functional regression parameter, i.e., to test

{

H
(k)
0,l : β

(k)
l = 0

H
(k)
1,l : β

(k)
l 6= 0

(16)

we use the absolute value of the t-test statistic:

T
(k)
t,l =

∣

∣

∣

∣

∣

β̂
(k)
l

se(β̂
(k)
l )

∣

∣

∣

∣

∣

, (17)

where se(β̂
(k)
l ) is the standard error of β̂

(k)
l , being β̂

(k)
l the OLS estimate of

β
(k)
l when all covariates are in the model. As shown in Pesarin and Salmaso

(2010), the test statistic (17) is permutationally equivalent to the squared partial
correlation coefficient, commonly used in the literature of permutation tests for
linear models (see, for instance, Anderson and Robinson 2001).

More generally, to perform single-component tests of linear hypotheses in
(13), we can use the statistic:

T
(k)
C =

1

s2

(

Cβ̂
(k)

− c
(k)
0

)′
(

C(X ′
nXn)

−1C ′
)−1

(

Cβ̂
(k)

− c
(k)
0

)

, (18)

where β̂
(k)

is the OLS estimate of β(k), and s2 = (y(k)−Xnβ̂)
′(y(k)−Xnβ̂)/(n−

L + 1) is the estimate of the variance of residuals at component k, with y(k) =

(y
(k)
1 , . . . , y

(k)
n )′.

2.3.2 Multiple tests and p-value correction

The p-values of single-component tests need to be adjusted to provide an interval-
wise control of the FWER, according to the interval testing procedure (Pini
and Vantini 2013). To perform this multiplicity correction, each multivariate
hypothesis on intervals of components I = {k1, k1 + 1, . . . , k2} with 1 ≤ k1 <
k2 ≤ p need to be tested. In detail, we need to test each hypothesis

HI
0,C =

⋂

k∈I

H
(k)
0,C .

Such tests can be approached exploiting the NPC procedure (Pesarin and Salmaso
2010), which is briefly described in Appendix C. The NPC is a procedure that
enables to build multivariate permutation tests by means of combining syn-
chronized univariate permutation tests. The procedure applies in presence of
dependence between univariate tests, which is the case in FDA.
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Let λIC denote the p-value corresponding to the multivariate test on hypothe-

sis HI
0,C . The adjusted p-value λ

(k)
ITP,C for the k-th component is then computed

as the maximum between all p-values of univariate and multivariate tests con-
taining that component, i.e.:

λ
(k)
ITP,C = max

I∋k
λIC .

The adjusted p-values can be used to select only the basis components leading to

the rejection of the null hypothesis H
(k)
0,C , i.e., the ones with associated adjusted

p-value lower than the desired significance level α.
It is important to point out that the ITP takes into account the depen-

dence between the basis coefficients, which in the framework of a functional
linear model means that it does not require to specify their covariance struc-
ture. Moreover, as tests are based on permutations, the procedure does not
require the normality of residuals.

3 Theoretical results

In this section, we present theoretical properties of the inference on functional-
on-scalar linear models performed along the line depicted in Section 2. All proofs
are reported in Appendix A. The results are valid for the ITP, based on the NPC
of tests using the Freedman and Lane scheme.

First, we prove that test of the family of linear hypotheses {H
(k)
0,C}k=1,...,p

is provided with an asymptotic interval-wise control of the FWER. Pini and
Vantini (2013) proved that, if all univariate and multivariate tests used to build
the ITP are exact, the ITP based on the p components of any basis expansion is
provided with an interval-wise control of the FWER. This result can be applied
directly in the case of the F -test on the regression model, but has to be extended
in the more general case of tests on linear hypotheses (including the t-tests on
functional regression parameters), as in the latter the exactness of all tests is
only asymptotical.

Theorem 3.1. Under assumptions (C1-C2), the test of the family of linear

hypotheses (13) based on the statistic T
(k)
C (18) is provided with an asymptotic

interval-wise control of the FWER. Formally, the ITP-adjusted p-values λ
(k)
ITP,C ,

∀k = 1, ..., p, are s.t., for any interval I and any α ∈ (0, 1]:

lim sup
n→∞

PHI
0,C

[

∃k ∈ I s.t. λ
(k)
ITP,C ≤ α

]

≤ α.

Since t-tests are specific cases of linear hypothesis, we obtain directly the follow-
ing corollary.

Corollary 3.1. Under assumptions (C1-C2), the test of the family of hypotheses

(16) for the l-th functional regression parameter based on the statistic T
(k)
t,l (17)

is provided with an asymptotic interval-wise control of the FWER.
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Furthermore, the following proposition provides exact results for ITP-based F -
test.

Proposition 3.1. The test of the family of hypotheses (14) based on the statistic

T
(k)
F (15) is provided with an exact interval-wise control of the FWER. Formally,

the ITP-adjusted p-values λ
(k)
ITP,F , ∀k = 1, ..., p, are s.t., for any interval I and

any α ∈ (0, 1]:

PHI
0,F

[

∃k ∈ I s.t. λ
(k)
ITP,F ≤ α

]

≤ α.

Next, we focus on the property of consistency of the proposed tests. Let A

denote the set of indexes associated to all components whereH
(k)
0,C is false, i.e., let

HA
1,C =

⋂

k∈AH
(k)
1,C hold. Then, the following theorem states that the probability

of detecting every component of the set A converges to 1 as the sample size
increases.

Theorem 3.2. The test of the family of linear hypotheses (13) based on the

test statistic T
(k)
C (18) is consistent. Formally, for any set A ⊆ {1, ..., p}, the

ITP-adjusted p-values λ
(k)
ITP,C are s.t.:

lim
n→∞

PHA
1,C

[

∀k ∈ A, λ
(k)
ITP,C ≤ α

]

= 1.

As a consequence, we obtain also consistency results for ITP-based F -test and
t-tests.

Corollary 3.2. The test of the family of hypotheses (14) based on the F -test

statistic T
(k)
F (15) is consistent.

Corollary 3.3. The test of the family of hypotheses (16) for the l-th functional

regression parameter based on the t-test statistic T
(k)
t,l (17) is consistent.

The ITP used in this paper provides the control of FWER on every interval.
However, it is possible to consider for the multiplicity correction not only all
possible intervals, but also the complementary sets of all intervals. In such way,
the control can be extended over the interval complements as well. For details,
we refer to Pini and Vantini (2013).

4 Analysis of knee kinematics

Anterior cruciate ligament injuries are common worldwide, and are typically
treated either conservatively with physiotherapy (ACLPT) or with surgery to-
gether with physiotherapy (ACLR). We consider knee-joint kinematics data of
knee flexion/extension on the sagital plane during a one-leg hop for distance in
a total of n = 95 individuals. In detail, we compare individuals from the surgery
and physiotherapy groups (ACLR and ACLPT, respectively) with age and gender

11
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Figure 1: Definition of the knee angles in the sagittal plane (left) and flexion/extension curves
of the physiotherapy (blue), surgery (red) and control (green) groups (right).

matched knee-healthy controls (CTRL). We analyse the functional data corre-
sponding to the movement in the sagittal plane, i.e., knee flextion/extension
(see, Figure 1). Traditional analysis of kinematic data typically reports results
for landmarks of the curves, such as maximal knee angle in the sagittal plane
during take-off. Previous results indicate less knee flexion among the individuals
treated with physiotherapy (Tengman et al. 2014). A functional ANOVA com-
paring the three groups reported in Abramowicz et al. (2014) indicates, as well,
that the ACLPT group has different knee-joint kinematics during specific parts
of the jump, detected especially in the flexion/extension angle during take-off
and landing.

In this paper, we investigate if the identified difference from ANOVA anal-
ysis is only due to the treatment method, or if it can be explained by means
individual-specific covariates, summarized in Table 1.

Variable Surgery Physiotherapy Control
(31 subjects) (33 subjects) (31 subjects)

Jump length (m) 1.13 (0.27) 1.00 (0.22) 1.08 (0.23)
BMI (kg/m2) 27 (3) 28 (4) 25 (3)
Gender (male/female) 20/11 21/12 20/11
Age (years) 46 (5) 48 (6) 47 (5)

Table 1: Means and standard deviations for all variables considered as covariates in the pre-
sented analysis. For gender, frequencies are reported.

The analysis is performed individually on three different phases of the one-
leg hop: take-off, flight, and landing. Take-off phase is a 0.7 seconds long time
interval preceding the take-off instant, and landing phase is the 0.7 seconds long
time interval succeeding the landing instant. Flight phase is the time interval
between the take-off and landing instants. The time length of the flight phase
differ between individuals, therefore, this phase is standardized to have the same
take-off and landing instant for all individuals. For each phase, data are rep-
resented by piece-wise linear B-splines with 50 equally distributed knots. Note
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that in the case of a B-splines basis, each basis component has a compact sup-
port. Hence, by looking at the support of the basis components presenting a
rejection of the null hypothesis, it is possible to select intervals of the domain
presenting the rejection.

The model used to describe the functional data of knee kinematics includes
the four covariates displayed in Table 1 and two indicator variables describing
the group membership. In detail the model that we apply to describe functional
data yi(t), i = 1, . . . , 95 is the following:

yi(t) = β0(t) + βJ(t)xJ,i + βBMI(t)xBMI,i + βA(t)xA,i

+ βG(t)xG,i + βCTRL(t)xCTRL,i + βR(t)xR,i,

where covariates xJ,i, xBMI,i, xA,i, xG,i indicate the jump length, BMI, age and
gender of each individual i, and xCTRL,i, xR,i are the two indicators of CTRL
and ACLR groups, respectively. For each phase of the jump, we start with a
full model. Then, we reduce the model by removing the covariates that are non-
significant on all the domain. However, the group indicators are never excluded.

For all phases the final models include only the group indicators and jump
length, and the results are presented in Figure 2. The first row presents the func-
tional responses, together with the F -test results (14). The grey areas indicate
the intervals where we detect significant effects of at least one covariate at 5%
level. The second row present the results of t-tests of the effect of jump length

H
(k)
0,J : β

(k)
J = 0, and rows three to six present the results of group comparisons,

i.e., respectively:

H
(k)
0,CTRL−PT : β

(k)
CTRL = 0, H

(k)
0,R−PT : β

(k)
R = 0, H

(k)
0,CTRL−R : β

(k)
CTRL − β

(k)
R = 0.

The curves correspond to OLS estimates, and grey areas indicate the presence
of a significant effect at 5% significance level. The three columns correspond to
take-off, flight, and landing phases, respectively.

The F -test indicates the presence of at least one significant effect in the
majority of all three phases. The jump length has a significant effect throughout
all three phases, in a large part of the domains. The associated functional
regression parameter is positive during take-off and landing while during flight
it switches the sign. The sign is negative in the two intervals corresponding
to the minimum of flexion and positive sign in an interval corresponding to
the maximum of flexion. The ACLPT group is significantly different from the
other two groups during take-off and significantly different with respect to CTRL
during landing, whereas the three groups do not differ significantly during flight.
The regression parameters associated to the differences indicate a lower flexion in
the ACLPT group during these two phases with respect to individuals in ACLR

and CTRL. Even after having discounted for the jump length, ACLPT group
remains significantly different with respect to the other two groups, which is in
line with the findings presented in Abramowicz et al. (2014).
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Figure 2: Results of the tests on the functional-on-scalar linear model on knee flexion angle
for take-off (left), flight (middle), and landing (right). First row: functional responses and
significant F -test intervals at 5% level (gray areas). Rows two to six: OLS estimates and results
of functional t-tests and group comparisons (grey areas indicate the presence of a significant
effect at 5% level). The three columns correspond to take-off, flight, and landing phases,
respectively.
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5 Discussion

In this work, we introduced a methodology to estimate and test a functional-on-
scalar linear model, i.e., a linear model where the response variable is a function
and the covariates are fixed scalar variables multiplied by fixed functional param-
eters. This type of model can be applied whenever functional data are described
through a suitable basis expansion. We showed how the initial functional linear
model can be decomposed in a family of dependent linear models, one for each
component of the basis expansion.

We provided OLS estimates for the functional regression parameters, as well
as tests on the model. Specifically, we provided: (i) a functional F -test for
testing the regression model; and (ii) functional t-tests for testing the effects of
single covariates. All tests are based on the Interval Testing Procedure (ITP), a
non-parametric procedure for testing functional data. We provided theoretical
properties for the ITP-based F -test on the regression model and the ITP-based
t-tests on the functional regression parameters. In detail, we proved theoretically
that the F -test on the regression model is provided with an interval-wise control
of the Family Wise Error Rate, implying that the probability of falsely rejecting
any interval of true null hypotheses pertaining basis components is controlled.
Furthermore, we proved that the F -test on the regression model is consistent,
in the sense that the probability of rejecting all false null hypothesis converges
to one as the sample size increases. We proved that the t-test on functional
regression parameters are provided with an asymptotic interval-wise control of
the Family Wise Error Rate, and that they are consistent.

Data from a follow-up study after rehabilitation following anterior cruci-
ate ligament injury are analyzed, applying the functional-on-scalar linear model
previously described. Knee kinematics of individuals treated with physiother-
apy or surgery and healthy controls were compared during a one-leg hop. The
comparison between the three groups was carried out by taking into account
individual-specific covariates, such as the jump length, BMI, age and gender.
The analysis of these data showed that the effect of jump length on knee kine-
matics is significantly different from zero, while the effects of BMI and age are
not. In line with previous findings, even after having discounted for the jump
length, physiotherapy group remains significantly different with respect to the
other two groups.
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A Proofs

In this section, we prove the theoretical properties reported in Section 3. We
first report the theoretical properties of single-components tests based on the
Freedman and Lane scheme, i.e., the tests on each component of the basis expan-
sion. Then, we report the theoretical properties of the corresponding multiple-
component tests, i.e., the tests on intervals of basis components obtained by
means of the NPC of single-components tests. Finally, we prove that the ITP-
based tests of linear hypotheses on the functional-on-scalar linear model is pro-
vided with an asymptotic interval-wise control of the FWER and that they are
consistent. Additionally we show that the ITP-based F -test on the regression
model is provided with an exact interval-wise control of the FWER.

A.1 Single-component tests

As mentioned above, we first prove the theoretical properties of single-components
tests, i.e., the tests on each component of the basis expansion. We start by show-
ing asymptotic exactness of single-component tests on linear hypotheses.

Lemma A.1. Under assumptions (C1-C2), and for each component k = 1, ..., p,
the single-component test of linear hypotheses on the regression parameters (13)
is asymptotically exact.

Proof. Let H
(k)
0,C hold, i.e., Cβ(k) = c

(k)
0 . Under the null hypothesis, the model can

be reduced by solving the linear system Cβ(k) = c
(k)
0 . In detail, since C has full rank,

q ≤ L + 1 regression parameters can be removed from the model. Let Q denote the

set of indexes removed. The reduced model is then y
(k)
i =

∑

r 6∈Q βr
(k)a

(k)
r xri + εi

(k),

where x0i = 1, a
(k)
r are fixed known coefficients (depending only on the solution of linear

system Cβ(k) = c
(k)
0 ), and εi

(k) are i.i.d. and zero-mean errors.
The Freedman and Lane permutation scheme is based on the permutations of the

residuals ε̂
(k)
i,C = y

(k)
i −

∑

r 6∈Q β̂
(k)
r,Ca

(k)
r xri, where β̂

(k)
r,C , r 6∈ Q are the OLS estimate of

parameters β
(k)
r under the reduced model. Under conditions (C1-C2 ), we have strong

consistency of the OLS parameter estimates, i.e., in our case: β̂
(k)
r,C

a.s.
−−→ β

(k)
r , ∀r 6∈ Q.

Hence, we also have the strong convergence of the residuals, i.e., ε̂
(k)
i,C

a.s.
−−→ ε

(k)
i , ∀i =

1, ..., n.

The errors εi
(k) of the reduced linear model are exchangeable. Hence, the likeli-

hood of every permutation is invariant, and equal to 1/n!. Therefore, the test based

on the permutations of the errors εi
(k) is exact. As ε̂

(k)
i,C

a.s.
−−→ ε

(k)
i , the residuals are

asymptotically exchangeable, i.e., the likelihood of every permutation is asymptotically

invariant, and converges to 1/n!. Hence, the test based on permutations of the residuals

is asymptotically exact. �

Asymptotical exactness for the t-test (16) is a direct consequence of the above
lemma. As an addition to asymptotic results for single component tests on any
linear hypothesis, we prove exactness of single-component F -test.
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Lemma A.2. For each component k = 1, . . . , p, the single-component F -test of
(14) is exact.

Proof. Under H
(k)
0,F we have yi

(k) = β0
(k) + εi

(k). The estimated residuals of this

model are ε̂
(k)
i,0 = β0

(k) + εi
(k) − β̂

(k)
0 , where β̂

(k)
0 = ȳ(k) is the sample mean of the

responses yi
(k). Note that the quantity β0

(k) + εi
(k) − β̂

(k)
0 is permutationally invariant.

Hence, the independence between the errors implies the exchangeability of the residuals

under H
(k)
0,F . Thus, the test is exact, as it is based on the permutation of exchangeable

quantities (Pesarin and Salmaso 2010). �

In the next step, we verify the consistency of single-component tests on linear
hypotheses.

Lemma A.3. For each component k = 1, . . . , p, the single-component test of
linear hypotheses on the regression parameters (13) based on the test statistic

T
(k)
C (18) is consistent.

Proof. The statement follows directly from the fact that the test statistic T
(k)
C is

stochastically greater under H
(k)
1,F than under H

(k)
0,F (Pesarin and Salmaso 2010). �

As direct implication of Lemma A.3, we get the consistency of single-component

F -test and t-tests based on test statistics T
(k)
F and T

(k)
t,l , respectively.

A.2 Multiple-components tests

Next, we investigate the properties of multiple-component testsHI
0,C =

⋂

k∈I H
(k)
0,C ,

where I = {k1, ..., k2} and 1 ≤ k1 < k2 ≤ p. To construct these tests from the
results of joint single-component tests, we use the NPC methodology. We start
by proving the asymptotic exactness of such tests on linear hypotheses.

Lemma A.4. Under assumptions (C1-C2), for each interval of components I,
the multiple-component test of linear hypotheses on the regression parameters
HI

0,C is asymptotically exact.

Proof. Let HI
0,C hold, i.e., Cβ(k) = c

(k)
0 , for any k ∈ I. Under the null hypothesis,

and for each k ∈ I, the model can be reduced by solving the linear system Cβ(k) = c
(k)
0 .

In detail, since C has full rank, q ≤ L + 1 regression parameters can be removed
from the model. Let Q denote the set of indexes removed. The reduced model is
then y

(k)
i =

∑

r 6∈Q βr
(k)a

(k)
r xri + εi

(k), where x0i = 1, a
(k)
r are fixed known coefficients

(depending only on the solution of linear systems Cβ(k) = c
(k)
0 ), and εi

(k) are i.i.d. and
zero-mean errors.

The NPC applied to the Freedman and Lane permutation scheme is based on the

joint permutations (the same for each k) of the residuals ε̂
(k)
i,C = y

(k)
i −

∑

r 6∈Q β̂
(k)
r,Ca

(k)
r xri,

where β̂
(k)
r,C , r 6∈ Q are the OLS estimate of parameters β

(k)
r under the reduced model.

Under conditions (C1-C2 ), we have strong consistency of the OLS parameters estimates,

i.e., in our case: β̂
(k)
r,C

a.s.
−−→ β

(k)
r , ∀r 6∈ Q, and ∀k ∈ I. Hence, we also have the strong

convergence of the residuals, i.e., ε̂
(k)
i,C

a.s.
−−→ ε

(k)
i , ∀i = 1, ..., n and ∀k ∈ I.
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The errors εi
(k) of the linear model are jointly exchangeable. Hence, the likelihood

of every joint permutation is invariant, and equal to 1/n!. So, the test based on the

joint permutations of the errors εi
(k) is exact. As ε̂

(k)
i,C

a.s.
−−→ ε

(k)
i , ∀k ∈ I, the residuals

are jointly asymptotically exchangeable, i.e., the likelihood of every joint permutation

is asymptotically invariant, and converges to 1/n!. Hence, the test based on joint per-

mutations of the residuals is asymptotically exact. �

Asymptotic exactness of multiple-component t-tests is a direct implication of
the above lemma. As in single-component case, we can also show stronger result
for multiple-component F -test.

Lemma A.5. For each interval of components I, the multiple-component F -test
of the regression model is exact.

Proof. Since all univariate tests are exact and consistent (Corollary A.2 and Lemma

A.3), the combined test is also exact, due to results of Pesarin and Salmaso (2010). �

We proceed by proving consistency of multiple-component tests on linear hy-
potheses.

Lemma A.6. For each interval of components I, the multiple-component test
of linear hypotheses on the regression parameters HI

0,C is consistent.

Proof. The consistency of the multiple-component test follows directly from the

consistency of the corresponding single-component test (Lemma A.3) and results of

Pesarin and Salmaso (2010). �

Once again, since F -test and t-tests are special cases of linear hypothesis tests,
the consistency of the multiple-component F -test and t-tests follows immediately
from Lemma A.6.

A.3 Properties of IPT-based tests

We start by proving Theorem 3.1, establishing asymptotic interval-wise control
of ITP-based tests of linear hypotheses.

Proof of Theorem 3.1. Let I be an interval of components associated to only true
null hypotheses. Consider a component k of the interval, k ∈ I, and let K denote the
set of all intervals containing the component k. The ITP-adjusted p-value associated

to component k is λ
(k)
ITP,C = maxJ∈K λ

J
C , where λJC is the p-value of the permutation

test on the interval J . In particular, as I ∈ K, we have that λ
(k)
ITP,C ≥ λIC , and

PHI
0,C

[λ
(k)
ITP,C ≤ α] ≤ PHI

0,C
[λIC ≤ α]. Since all tests are asymptotically exact (Lemmas

A.1 and A.4), we have:
lim
n→∞

PHI
0,C

[

λIC ≤ α
]

= α,

and therefore,

lim sup
n→∞

PHI
0,C

[

∃k ∈ I : λ
(k)
ITP,C ≤ α

]

≤ α.
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�

Assertion of Proposition 3.1 follows directly from the results of Pini and Vantini
(2013) and the fact that univariate and multivariate tests used to build the
procedure are exact (Lemmas A.2 and A.5). We now prove Theorem 3.2, which
guarantees consistency of ITP-based tests of linear hypothesis.

Proof of Theorem 3.2. Suppose that for a basis component k the alternative

hypothesis H
(k)
1,C is true, i.e. Cβ(k) 6= c

(k)
0 . Let K denote the set of every interval

containing the component k. If H
(k)
1,C is true, also each alternative hypothesis pertaining

intervals in K is true. Since each test is consistent (Lemmas A.3, A.6), it follows that,
for n → ∞, for each I ∈ K, the p-value λIC converges to zero almost surely. The

ITP-adjusted p-value λ
(k)
ITP,C is the maximum among all p-values of the tests containing

k, i.e., λ
(k)
ITP,C = maxI∈K λ

I
C → 0, almost surely. Then, for the ITP-adjusted p-value

associated to the k-th component λ
(k)
ITP,C , we have:

lim
n→∞

P
H

(k)
1,C

[

λ
(k)
ITP,C ≤ α

]

= 1.

The latter holds for any k ∈ A, where A denotes the set of all false null hypotheses.
Hence, we also have:

lim
n→∞

PHA
1,C

[

∀k ∈ A, λ
(k)
ITP,C ≤ α

]

= 1.

�

The Corollary 3.2 and Corollary 3.3 follow immediately from Theorem 3.2, as
special cases.

B The Freedman and Lane permutation scheme

In this section, we give some details of the implementation of the Freedman and
Lane permutation scheme for testing linear hypotheses on the regression model
for each fixed component k (see eq. (4))

y
(k)
i =

L
∑

l=0

βl
(k)xli + εi

(k), ∀i = 1, . . . , n,

with xi0 = 1, ∀i. Further, we present the two specific cases: F -test on the
regression model; and t-tests on the regression parameters.

The Freedman and Lane permutations are based on the following steps:

i the residuals of the reduced model (that is the linear model under the null
hypothesis) are estimated;

ii the residuals of the reduced model are permuted;

iii the permuted responses are computed, through the reduced model and
permuted residuals.

For more details about this method, we refer to Freedman and Lane (1983);
Anderson and Legendre (1999).
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B.1 Tests on linear hypotheses

Under the null hypothesis (13), the model (4) can be reduced by solving the linear

system Cβ(k) = c
(k)
0 . In detail, since C has full rank, q regression parameters

can be removed from the model, by expressing them in terms of the others. Let
Q denote the set of indexes of the removed regression parameters. The reduced
model is then:

y
(k)
i =

∑

r 6∈Q

βr
(k)x̃ri + εi

(k), (19)

i.e., the kth basis coefficients of the responses can be written in terms of a linear

combination of modified covariates x̃ri = a
(k)
r xri, where a

(k)
r are fixed known

coefficients, depending only on the solution of linear system Cβ(k) = c
(k)
0 , and

εi
(k) are i.i.d. and zero-mean errors.
The residuals of the reduced model can then be estimated as ε̂

(k)
i,C = y

(k)
i −

∑

r 6∈Q β̂
(k)
r,C x̃ri, where β̂

(k)
r,C are the OLS estimates of parameters β

(k)
r , r 6∈ Q, of

model (19). Then, the residuals ε̂
(k)
i,C are permuted, and the permuted responses

are evaluated using the permuted residuals ε̂
(k)∗

i,C in the reduced model (19):

y
(k)∗

i =
∑

r 6∈Q

β̂
(k)
r,C x̃ri + ε̂

(k)∗

i,C . (20)

B.2 F -test for the regression model

In the case of the F -test (14), under the null hypothesis all regression parameters
except the intercept are null. So, the reduced model is:

yi
(k) = β0

(k) + εi
(k).

The estimated residuals of the reduced model are ε̂
(k)
i,F = yi

(k)− ȳ(k), where ȳ(k) is

the sample mean of the responses yi
(k). Therefore, using the permuted residuals

ε̂
(k)∗

i,F , we get:

yi
(k)∗ = ȳ(k) + ε̂

(k)∗

i,F .

Note that in this case permuting the residuals ε̂
(k)
i,F is equivalent to permuting

the responses yi
(k).

B.3 t-tests on regression parameters

In the case of t-tests, the model under null hypothesis (16) reduces to:

y
(k)
i = β0

(k) +
∑

r 6=l

βr
(k)xri + εi

(k).
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The estimated residuals of such model are ε̂
(k)
i,l = y

(k)
i −β̂

(k)
0,l +

∑

r 6=l β̂
(k)
r,l xli, where

β̂
(k)
r,l are the OLS estimates of the parameters of the reduced model. Then, the

permuted responses are:

y
(k)∗

i = β̂
(k)
0,l +

∑

r 6=l

β̂
(k)
r,l + ε̂

(k)∗

i,l , (21)

where ε̂
(k)∗

i,l are the permuted residuals.

C The Non Parametric Combination procedure

The NPC methodology (Pesarin and Salmaso 2010) allows to build multivari-
ate permutation tests starting from the results of a family of joint univariate
permutation tests.

Consider a family of null hypotheses {H
(m)
0 }m∈M, with M = {m1, . . . ,md}.

Each hypothesis H
(m)
0 is tested against H

(m)
1 , m ∈ M, by means of a suitable

permutation test, with test statistic T (m). Let λ(m) denote the resulting p-value.

We want to test the multivariate hypothesis H
(M)
0 =

⋂

m∈MH
(m)
0 against the

alternativeH
(M)
1 =

⋃

m∈MH
(m)
1 , using the results of the univariate tests ofH

(m)
0

versus H
(m)
1 , with m ∈ M. The test statistic for such test is the combination of

univariate p-values: ψ(λ(m1), ..., λ(md)), where ψ is any valid combining function,
i.e., any function ψ : [0, 1]d 7→ R satisfying:

(P1) ψ is non-increasing in each argument;

(P2) ψ is invariant with respect to rearrangements of its arguments:

ψ(λ(m1), ..., λ(md)) = ψ(λ(m
∗
1
), ..., λ(m

∗
d
)),

where (λ(m
∗
1
), ..., λ(m

∗
d
)) is any rearrangement of (λ(m1), ..., λ(md));

(P3) ψ attains its supremum value ψ̄ (possibly not finite) even when only one
argument attains zero;

(P4) for α ∈ (0, 1], let ψα denote the critical value of the test statistic, i.e.,
ψα = F−1

ψ (α), where Fψ is the cdf of the test statistic ψ. Then, for a valid

combining function, ψα is finite and strictly smaller than ψ̄.

The following theorem, reported in Pesarin and Salmaso (2010) shows the
properties of combined tests:

Theorem C.1. If permutation tests for respectively H
(m)
0 against H

(m)
1 , m ∈ M

are exact and consistent, then the NPC test based on a combining function ψ
satisfying (P1) to (P4) is an exact and consistent test for HM

0 against HM
1 .
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