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Abstract

Mathematical models and numerical methods have emerged as fundamental
tools in the investigation of life sciences. In particular, this is the case of medical
devices as cardiovascular drug eluting stents where experimental/clinical evidence
may often be very expensive and extremely variable. Here we present a complete
overview of mathematical models and numerical methods applied to the modelling
of drug eluting stents and of their interaction with the coronary arteries. This is a
challenging task because it involves mechanics, fluid dynamics and mass transfer
processes. In particular, we will focus on the importance of the interplay between
all these factors to determine the efficacy of the device.

Keywords: mechanical wall/stent interaction, hemodynamics, mass transfer, cou-
pled problems, finite elements, medical devices.

1 Introduction
A stent is a small mesh tube that is inserted permanently into a stenotic artery. The stent
restores the original value of the arterial section to ensure the physiological flow rate.
One of the problems caused by stent insertion is re-narrowing of the treated vessel. To
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overcome this phenomenon drug-eluting stents (DES) have been recently introduced.
Referred to as a coated or medicated stent, a DES is a normal metal stent that has been
coated with a pharmacologic agent (drug) that is known to interfere with the process
of restenosis (reblocking). However, the design of such devices is a very complex
task because their performance in widening the arterial lumen and preventing further
restenosis is influenced by many factors such as the geometrical design of the stent,
the mechanical properties of the materials and the chemical properties of the drug that
is released. Mathematical models and numerical simulation techniques are appropriate
to study such phenomena with the aim to be used as a predictive tool for the effective
design of drug eluting stents.

We present in this work a complete review of the mechanics, fluid dynamics and
drug release models developed by the authors for the numerical simulation of drug elut-
ing coronary stents. In particular, we will focus on the importance of the interplay
between several factors, as the mechanical action exerted by the stent on the wall to
determine the final configuration of the artery, as well as the interaction of the blood
flow with the drug release process. Indeed, these topics have been already analyzed
separately, see [1, 2, 3], but the study of their interaction is still rather new in literature.
For example, since the role of the drug is to heal the artery after the implantation of the
stent, most of the computational studies on the efficacy of DES have focused their at-
tention on the transport of the drug into the arterial walls, we refer to [4] and references
therein for some examples. In most cases, the blood flow is assumed to have a minor
influence on the distribution of the drug into the walls. In particular, it is common to
consider that the arterial lumen acts as a perfect sink with respect to drug concentra-
tion, because it is rapidly transported away from the location of the stent. Recently, the
analysis pursued in [5] suggested that this assumption is not really justified. Indeed, the
drug that is apparently lost in the blood stream significantly affects the drug deposition
in the portion of the arterial walls downstream to the stent. In this work, we aim to bet-
ter understand the interaction of the blood flow and the drug deposition into the artery
by means of mathematical models and numerical approximation methods, because ex-
perimental/clinical evidence for the problem at hand is expensive, extremely variable
and provides indirect data difficult to correlate with the phenomena we aim to analyze.
By consequence, we propose and collect here suitable mathematical models for stent
expansion, hemodynamics and drug release and we focus on their interaction in order
to describe the behavior of realistic drug eluting stents.

The outline of the paper is as follows: in section 2 we introduce the mathematical
models for the problem at hand, in particular for stent expansion (section 2.1), fluid
dynamics (section 2.2) and drug release (section 2.3). In section 3 we describe the nu-
merical methods used for the discretization of the proposed models. Finally, in section
4 we present a case study starting from realistic geometry and data.
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2 Mathematical models
The analysis of the stent expansion and the drug elution is made of two consecutive
phases. During the former one, a stent is expanded into a model of coronary artery.
Then, in the latter phase, the configuration of the artery and stent are used for the anal-
ysis of the fluid dynamics and drug release.

2.1 Mechanical analysis of stent expansion into a coronary artery
A previous study [6] showed that the stent expansion modelling techniques influence
the output in terms of arterial wall stresses and strains. Hence, for a more reliable
description of the deformation induced in an artery by stenting, it is necessary to model
the inflation of a polymeric deformable balloon. Nevertheless, the simulation of the
stent-balloon expansion in a coronary artery is not a trivial problem: the balloon is
typically folded around the catheter and blocked by the crimped stent. Accordingly, the
unfolding process requires the solution of a very complex contact problem with large
sliding between the surfaces of the balloon itself, the stent struts, the plaque and the
inner arterial wall. In this work, we use a simplified model constituted by a balloon, a
stent and a coronary artery that are shown in figure 1 (left) in their initial configuration.
The analysis is performed in the frame of classical continuum mechanics under the
hypothesis of large strain conditions.

In particular for the balloon we consider an initial configuration obtained deflat-
ing the full expanded model, developed according to the manufacturer information. In
this way, as shown in section 4.1, it is possible to describe the characteristic behavior
of a semi-compliant balloon and in particular the strong stiffening at higher pressure,
even using an isotropic, linear-elastic material model. Assuming that the elastic strain
is small and that the rate of deformation can be regarded as the total strain rate mea-
sure, namely ε̇ = sym(L) where L is the velocity gradient in the current configuration,
the material constitutive model of the implanted balloon, conveniently written in the
incremental form, reads:

σ̇ = D : ε̇ ,

where σ̇ is the increment of the Cauchy stress tensor with the elastic tensor D depending
only by the Young’s modulus E and the Poisson’s ratio ν . A different approach may be
found in [7].

A realistic geometry is considered for the stent model, which is assumed to be
made of 316L stainless steel. The steel is modelled as a homogeneous, isotropic, elasto-
plastic material through a Von Mises plasticity model. Assuming again the elastic strain
small and the rate of deformation as total strain rate measure, it is possible to describe
the inelastic behavior of the stent using the additive strain rate decomposition:

ε̇ = ε̇el + ε̇ pl,

where ε̇el and ε̇ pl are the elastic and plastic components of the total strain rate ε̇ , respec-
tively. Accordingly with classical plasticity theory, the mathematical description of the
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stent can be given by the following incremental constitutive equation and associative
flow rule:

σ̇ = D : (ε̇ − ε̇ pl), ε̇ pl = λ̇
∂F(σ)

∂σ
.

The limit function is

F(σ) =

√

3
2J′2 −K(α) ≤ 0,

where J ′2 is the second invariant of the deviatoric stress tensor s = σ + pI, with p =
−1/3tr(σ) the equivalent pressure stress and I the second order identity tensor and
K(α) is the linear isotropic hardening function:

K(α) = σy +Kε̄ pl.

The constant σy is the yield stress and K is the hardening modulus. The quantity ε̄ pl is
the equivalent plastic strain given by:

ε̄ pl =

√

2
3ε pl : ε pl .

Finally, the consistency parameter λ̇ has to satisfy the following Kuhn-Tucker comple-
mentary conditions:

λ̇ ≥ 0; F(σ) ≤ 0; λ̇F(σ) = 0,

and the consistency requirement λ̇ Ḟ(σ) = 0.
Concerning the arterial wall, we remind that it is a complex structure mainly con-

sisting in three concentric layers: intima, media and adventitia. These layers are princi-
pally composed of collagen fibers and elastin, which give properties of anisotropy and
incompressibility. We refer to [8] and the reported references for a more detailed de-
scription of the biological aspects and of the advanced computational models available
in literature.

In our simplified model, the coronary artery is described as a hollow cylinder par-
titioned into three layers of equal thickness, representing the intima, the media and the
adventitia. A bond of perfect adhesion exists between each pair of vessel layers. For
describing the mechanical behavior of each layer, we use a hyperelastic isotropic con-
stitutive model based on a reduced polynomial strain energy density function U , of sixth
order:

U = C10(Ī1 −3)+C20(Ī1 −3)2 +C30(Ī1 −3)3

+C40(Ī1 −3)4 +C50(Ī1 −3)5 +C60(Ī1 −3)6, (1)

where Ī1 is the first invariant of the Cauchy-Green tensor

Ī1 = λ̄ 2
1 + λ̄ 2

2 + λ̄ 2
3 , with λ̄i = J−1/3λi,

where λ̄i are the principal stretches and J is the total volume ratio.
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The model is not able to take into account residual stresses present in the load-free
artery configuration and the overstretch of the non-diseased part of the lesion due to
supraphysiological loading induced by balloon expansion: we refer to [7] for a discus-
sion of these aspects. Moreover, in our work the plaque is not considered. This choice
is motivated by the observation that the lack of experimental data about the material
properties as well as the poor knowledge of the atherosclerotic plaque growing pro-
cess makes totally arbitrary any modelling choice. It is clear that the availability of
more information about the mechanical behavior and the use of more refined models
of atherosclerotic tissue could give more precise information about the effects of the
stenting process. However, we believe that even the simplified model herein introduced
does not play down our methodology.

To reduce the computational time we study the expansion of a single stent unit, i.e. a
closed axial stent segment. Previous analyses [6] showed that this choice is sufficient
to represent the mechanical behavior of the stent. Accordingly, we perform the analysis
on a portion of the coronary artery whose length is sufficient to avoid boundary effects.
The dimension of the balloon is coherently set, conserving the stent/balloon length ratio
usually adopted in the practice.

As regards the boundary conditions of the model, the outer cross sections of the
artery indicated with Γn,w in figure 1 (left) are constrained in the longitudinal direction
to simulate the fact that the considered model is not a stand-alone segment but is part
of a whole coronary artery. Furthermore, in an axial section located in the center of
the artery, three nodes forming the vertexes of an equilateral triangle are constrained in
the tangential direction to avoid the rotation of the structure. These conditions allow the
radial expansion of the artery. As regards the stent, we apply boundary conditions which
constrain in the longitudinal and tangential directions three nodes forming the vertexes
of an equilateral triangle in the medial cross section of the stent itself, indicated with
Γn,sc in figure 2. To avoid potential rigid displacements in the balloon, three nodes
forming an equilateral triangle are constrained in axial and circumferential directions
in the central cross section, indicated with Γn,bc in figure 2. In addition, the radial
and tangential displacements of the two nodes located on the heads of the balloon are
restricted to mimic the bond to the catheter. The expansion of the device is simulated
imposing a pressure on the internal surface of the deflated balloon. Denoted with Γ the
internal surface of the artery, with Γs the surface of the stent and with Γb the surface of
the balloon, see figure 1 (left), during the analysis the interaction between these parts is
taken into account introducing a frictionless contact.

2.2 Fluid dynamics models
Thanks to the assumption that coronary arteries treated with cardiovascular stents are
large enough to apply a Newtonian model for blood rheology, we consider the Navier-
Stokes equations for fluid dynamics in the arterial lumen. We denote with Ω f a portion
of a coronary artery where we set up our analysis. This is the cylindric channel de-
formed by the introduction and the expansion of a stent. We denote with Γ in and Γout
the proximal and distal sections since they coincide with the inflow and outflow sections
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of the domain Ω f . The remaining part of the boundary of Ω f can be subdivided in two
parts, the interface with the arterial wall and the stent. The former is denoted with Γ
and the latter with Γs, f . In conclusion we obtain ∂Ω f = Γin ∪Γout ∪Γs, f ∪Γ, as shown
in figure 1 (right). Finally, we denote with n f the outward unit normal vector on ∂Ω f .

ΓbΓs

Γn,w

Γ

Γn,w
Γa

Γ

Γn,w

Γout

ΓinΓs, f

Γs,w

Figure 1: The lumen and the arterial wall with the partition of their boundaries for
the set up of the mechanical model of the expansion of the stent (left) and of the drug
release after the expansion (right).

To analyze the drug release process on a significant time scale we need to consider a
time period containing several thousands of heartbeats. This is a challenging difficulty
for the drug release model, which is common to all ordinary/partial differential equa-
tions with highly oscillating coefficients or forcing terms. To override this difficulty at
a preliminary level, we consider the mean value of the pulsatile blood flow and simul-
taneously we assume that the arterial walls are rigid. Then, blood flow is provided by
the steady Navier-Stokes equations,

−µ∆v f +(v f ·∇)v f +∇p f = 0 and ∇ ·v f = 0, in Ω f , (2)

where v f is the blood flow velocity, p f the corresponding pressure and µ the blood dy-
namic viscosity. Equation (2) is complemented by suitable boundary conditions speci-
fying a parabolic inflow profile, v f = vin on Γin, perfect contact between the blood, the
arterial walls and the stent, v f = 0 on Γ∪Γw, and zero traction force at the outflow,
pn f −µ∇v f n f = 0 on Γout .

We remind that the flow is not restricted to the arterial lumen. Indeed, blood plasma
filtrates with a velocity vw from the inner to the outer part of the arterial walls under
the action of blood pressure. As observed in [9, 10, 3] this phenomenon is extremely
important for the transfer of large molecules (as for instance low density lipoproteins)
from the blood flow to the arterial walls, because the diffusivity of such molecules is
extremely low. For smaller molecules, such as oxygen but also some of the drugs that
are released from stents, the mass transfer from the lumen to the arterial walls is diffu-
sion dominated rather than governed by advection. This is shown in [9] by means of
dimensional analysis. For this reason, in this study we neglect the advective phenomena
into the arterial walls (vw = 0) and we refer to [10, 3] for a detailed description of the
corresponding models.
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2.3 A mathematical model for drug release
We assume that the drug released by the stent behaves as a passive scalar. This statement
holds true under the assumption that the drug does not react with the arterial walls.
This is a zero-level simplification of a number of chemical phenomena that involve the
drug as a ligand and suitable sites of the extracellular matrix as receptors. It is well
known that such phenomena may strongly influence the distribution of the drug into
the arterial walls, as discussed in [11, 12]. However, it is not definitely clarified how
to translate these phenomena into equations and how to feed them with parameters.
By consequence, our drug release model features just one chemical species, the drug,
that is governed by standard advection-diffusion equations. Furthermore, the drug we
will consider in the numerical experiments is heparin, a relatively small molecule with
non negligible diffusive properties. Then, for the interaction of the mass transfer in the
lumen and in the arterial walls we address the model described and analyzed in [13] for
the transport of oxygen. As already mentioned, in this case the advective phenomena
into the arterial walls are neglected.

Concerning the coronary artery, we make here a simplification of the complex mul-
tilayered structure of the wall, more precisely we assume that the arterial wall is a
homogeneous medium, whose physical properties are, for simplicity, the ones corre-
sponding to the intermediate layer, namely the media. This assumption can be easily
removed at the computational level because the deformed configuration of the three
layers of the artery is provided by the mechanical analysis described in section 2.1.
However, this improvement becomes troublesome in practice, because of the lack of
reliable data on the transport properties of each layer with respect to the drug. To our
knowledge, only average values for the complete arterial wall are available, we refer to
[14] for the case of heparin.

In this setting, let Ωw be the truncated portion of the arterial walls corresponding
to Ω f . We denote with Γa the interface of the arterial wall with the outer tissue, with
Γn,w the artificial sections originated by the truncation of the artery and with Γs,w the
interface of the stent with the arterial wall. Moreover, let nw be the outward unit normal
vector relative to Ωw. Furthermore, contrarily to the assumptions adopted for the fluid
dynamics, we consider the time dependent case, because the drug release process is
intrinsically transient and it dies out in a long but finite time. Then, the governing
equations for drug concentrations, namely c f (t,x) and cw(t,x) read as follows,

∂tc∗ +∇ · (−D∗∇c∗ +v∗c∗) = 0 in Ω∗, with ∗ = f ,w, (3)

together with a condition prescribing the initial state of the concentration into blood
stream and arterial walls, c∗(t = 0) = 0 in Ω∗ and suitable boundary conditions. For the
arterial lumen, Ω f , on the inflow boundary we prescribe c f = 0 on Γin since the blood
does not contain drug proximally to the stent. Assuming that the outflow boundary is
far enough to the stent, we can neglect any diffusive effects across this section and set
∇c f ·n f = 0 on Γout . Also for the arterial wall we prescribe ∇cw ·n f = 0 on Γa ∪Γn,w.

According to [13], for the transmission conditions between Ω f and Ωw we take into
account the endothelium, a single layer of cells impermeable to the blood flow. The
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endothelium is modelled as a membrane at the interface between the lumen and the
arterial walls, corresponding to Γ, having a permeability P with respect to the transfer
of drug. This model allows to take into account the possible shear-dependent behavior
of mass flux through the endothelium. This is an interesting problem that has been
addressed in [15] and [16] for oxygen and albumin transport respectively. A similar
discussion can be also addressed for the diffusion parameter in the blood flow, namely
D f . Indeed, according to [17] the rotation of red blood cells due to flow vorticity may
lead to augmented transport properties. However, the intrinsic difficulty of this studies
is to quantify the dependence of the endothelial permeability and blood diffusivity with
respect to the fluid dynamics quantities as shear stresses or shear rates. Since to our
knowledge there are no available data on this dependence in the case of drugs, we do
not include these features in our model and we assume that the permeability P and the
diffusivity D f are constant and uniform. Then, the coupling between equations (3) is
provided by the following conditions,

−D f ∇c f ·n f = −Dw∇cw ·n f and −Dw∇cw ·nw = P(cw − c f ), on Γ.

We observe that these conditions can be rewritten as follows,

−D f ∇c f ·n f = P(c f − cw) and −Dw∇cw ·nw = P(cw − c f ), on Γ. (4)

The latter formulation has the advantage to be symmetric with respect to the lumen and
the arterial walls. As shown in [13] this represents an advantage both for the analysis
and the numerical approximation of the coupled problem.

Finally, particular attention should be dedicated to the condition on the interface
between the stent and the lumen, because it is primarily responsible to determine the
drug release rate. We remind that DES for cardiovascular applications are miniaturized
metal structures that are coated with a micro-film containing the drug that will be locally
released into the arterial walls for healing purposes. The thickness of this film generally
lays within the range of microns. Owing to the fact that stent coating is extremely thin,
we apply the model proposed in [18] where it has been derived the following formula
for the release rate,

J(t,x) = ϕ(t)(c0
s − c∗) on Γs,∗ with ∗ = f ,w, t > 0, for any x ∈ Γ, (5)

being c0
s the initial drug charge of the stent that is equal to the unity in the undimen-

sional setting for the concentration. Given the thickness of the stent coating, ∆l, and its
diffusion parameter, Ds, the scaling function ϕ(t) is defined as follows,

ϕ(t) =
2Ds
∆l

∞

∑
n=0

e−(n+1/2)2kt with k = π2Ds/∆l2. (6)

The derivation of (5) is similar to the procedure that leads to the well known Higuchi
formula [19], that provides the drug concentration cs into a semi-indefinite planar slab
(with axial coordinate z) representing the stent coating, under the assumption that the
external medium acts as a prefect sink,

cs(t,z)
c0

s
= 1− erf

(

z√
4Dst

)

, z ∈ (−∞,0), t > 0, for any x ∈ Γ. (7)
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However, equation (6) has the advantage to avoid the restrictive assumptions of Higuchi
formula (7). Owing to (5), the boundary condition on Γs, f and Γs,w for equation (3) turns
out to be the following Robin type condition,

−D∗∇c∗ ·n∗ +ϕ(t)(c0
s − c∗) = 0 on Γs,∗ with ∗ = f ,w.

The initial/boundary value problems relative to equations (2) and (3) are now ready
to be approximated by means of suitable numerical methods.

3 Numerical methods
3.1 Numerical simulation of stent expansion
The strong nonlinearity of the problem, due to material and contact constraints, sug-
gested the use of an explicit dynamics analysis procedure for its solution in the frame
of the finite element method. In particular, the commercial code ABAQUS/
Explicit v. 6.4 is employed. The space dependence of the mechanical model is dis-
cretized with eight-node iso-parametric brick elements with reduced integration for the
stent and the artery, while we adopt four-nodes or three-nodes membrane elements with
reduced integration to discretize the balloon.

The treatment of the dynamic problem is based upon the implementation of an
explicit integration rule together with the use of lumped element mass matrices. In par-
ticular the explicit central difference integration rule is used for integrating the motion
equation. Let u ∈ R

3 be the displacement of each element node.
The known values of the displacement and acceleration ü from previous increment

(n), of the velocity u̇ from previous mid-increment (n−1/2), as well as of the time in-
crement ∆t at the current (n+1) and the previous (n) increment, are used for calculating
velocity and displacement at the current mid-increment and increment respectively:

u̇n+ 1
2 = u̇n− 1

2 +
∆tn+1 +∆tn

2
ün,

un+1 = un +∆tn+1u̇n+ 1
2 .

If diagonal element mass matrices M are used, it is straightforward to calculate the
acceleration at the beginning of the increment simply inverting the dynamic equilibrium
equation:

ün = M−1(Fn −Pn),

with Fn and Pn the external applied forces and the internal element forces, respectively.
Peculiar attention has to be paid to the initial condition. The central difference operator
is conditionally stable, and the stable time increment ∆t has to satisfy the relation:

∆t ≤ 2
ωmax

,

9



where ωmax is the highest eigenvalue in the system. If small amount of damping is
introduced to control high frequency oscillations, time increments have to satisfy:

∆t ≤ 2
ωmax

(
√

1+ξ 2 −ξ ),

with ξ the fraction of critical damping in the highest mode.
Since the aim of the analysis is to define a stented artery configuration in the steady

state condition, a quasi-static analysis is performed. Hence, we increase the density
of the materials, we smooth the application of loading and set the time step of the
simulations to 3 s, in order to model the process in the shortest time period in which
inertial forces remain insignificant. This hypothesis is verified evaluating that the ratio
between kinetic and internal energies of the model does not exceed the value 5%, as
suggested by the ABAQUS Online Documentation, version 6.5.

To take into account the contact between different parts, we use the contact pair
algorithm proposed in ABAQUS/Explicit and we adopt a kinematic predictor/corrector
contact algorithm to strictly enforce contact constraints (no penetrations are allowed),
coupled with a finite sliding approach to account for the relative motion of the two
surfaces forming the contact pair, and an exponential pressure-overclosure relationships
to specify the interaction behavior.

3.2 Numerical simulation of fluid dynamics and of drug release
As already seen, our drug release model involves the coupling of the blood flow equa-
tions with an advection-diffusion problem, namely equations (2) and (3). In these mod-
els, the advection-diffusion equations depend on the fluid dynamics through the advec-
tive field. Hence the fluid dynamics problem is solved at a first step, and then we solve
the mass transfer problem.

For the space discretization of the space-dependent partial differential operators,
we apply the finite element method. In particular, for what concerns the Navier–Stokes
equations we have adopted a linear approximation based on P

1−P
1 elements that have

been stabilized with respect to pressure/velocity coupling and to a high local Reynolds
number by means of the interior penalty scheme proposed in [20]. Furthermore, we
have adopted the classical Picard’s scheme for the treatment of the nonlinear term.

Concerning the advection-diffusion equations we apply P
1 elements for the space

discretization and implicit Euler scheme for the approximation of the time dependence.
We observe that equation (3) is advection dominated in Ω f . As it is well known, finite
element techniques could be inaccurate when facing such problems and resorting to
a stabilization technique becomes mandatory. Different strategies can be pursued in
this regard, we apply again interior penalty schemes, developed in [21] for advection-
diffusion-reaction problems and also applied to coupled problems in [22].

A further difficulty is related to the fact that we consider phenomena that take place
both into the blood flow and into the arterial tissues. In particular, the coupled problem
given by equations (3) and by the matching conditions (4) can not be reformulated
as a problem governed by a unique differential operator on a single domain. For this
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reason, we focus our attention on suitable iterative methods in order to split (3)-(4) into
a sequence of independent problems. To this purpose, a general theory is discussed for
instance in [23], for the case of linear symmetric problems. However, the presence of a
non negligible advection term makes our case to be governed by a strongly unsymmetric
operator into Ω f . For this reasons, we refer to [13] where a case equivalent to (3)-(4) is
analyzed. The main features of this approach are reported in the following section.

All the aforementioned schemes are implemented into a the finite element library
LIFE V, developed at MOX - Politecnico di Milano, INRIA - Paris and CMCS - EPFL
- Lausanne, see www.lifev.org.

3.2.1 An iterative splitting algorithm for the coupled problem of drug release

To address in detail the iterative splitting method for the drug release problem, we refer
to the time-discrete setting. To this purpose, we subdivide the time interval [0,T ] in
N time steps tn and n = 1, . . . ,N, where ∆tn = tn+1 − tn > 0 is possibly non uniform,
and use backward Euler finite difference schemes. Since all the relevant equations deal
only with unknowns evaluated at the time step tn, for notational convenience we drop
the index n. The time index will be explicitly indicated only when referring to a time
step different than tn. Then, problem (3)-(4) complemented with boundary and initial
conditions can be reformulated as follows: for any time step t n, find a sequence ck

f , ck
w

such that,
1
∆t ck

f +∇ · (−D f ∇ck
f +v f ck

f ) = 1
∆t cn−1

f in Ω f ,

ck
f = 0 on Γin,

∇ck
f ·n f = 0 on Γout ,

−D f ∇ck
f ·n f +ϕ(tn)(cs − ck

f ) = 0 on Γs, f ,

−D f ∇ck
f ·n f = P(ck

f − ck−1
w ) on Γ,

(8)

and
1
∆t ck

w +∇ · (−Dw∇ck
w) = 1

∆t cn−1
w in Ωw,

∇ck
w ·nw = 0 on Γn,w ∪Γa,

−Dw∇ck
w ·nw +ϕ(tn)(cs − ck

w) = 0 on Γs,w,
−Dw∇ck

w ·nw = P(ck
w − ck

f ), on Γ.

(9)

Equations (8) and (9) can be reformulated weakly. It consists of linear second-order
problems whose well-posedness in the classical Sobolev spaces H 1(Ω f ), H1(Ωw) can
be easily proven by means of the Lax-Milgram lemma, which also ensures the existence
and uniqueness of solutions at the discrete level. The well posedness at the discrete
level is maintained also when the Galerkin approximation of problem (8) is stabilized
by means of the interior penalty scheme. We refer to [21] for a complete analysis of
this method. Finally, it is possible to prove the convergence of the sequence ck

f , ck
w to

the solution of the coupled problem, denoted with c f , cw. We remind the main result in
the following proposition.

Proposition 1 (Convergence of the iterative splitting method) The iterative method
defined by equations (8) and (9) is convergent. Let ek

∗ = c∗−ck
∗ be the iterative splitting
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error with ∗= f ,w, where c∗ is the solution of the coupled problem (3)-(4) and ck
∗ is the

sequence generated by (8) and (9). More precisely we have:

lim
k→∞

‖c∗− ck
∗‖H1(Ω∗) = 0 with ∗ = f ,w.

A similar result holds true at the discrete level for both the Galerkin and the interior
penalty stabilized discretizations. The convergence rate may depend on the physical
data but not on the mesh size h.

Proof. By subtracting (8)-(9) from the equations of the coupled problem, namely (3)-
(4), we obtain the governing equations from the splitting error ek

∗. Their weak formula-
tion reads as follows,

a f (ek
f ,v f )+

∫

Γ
Pek

f v f =

∫

Γ
Pek−1

w v f , ∀v f ∈ H1(Ω f ),

aw(ek
w,vw)+

∫

Γ
Pek

wvw =
∫

Γ
Pek

f vw, ∀vw ∈ H1(Ωw),

being a f (·, ·) and aw(·, ·) the bilinear forms associated to problems (8) and (9) without
the contributions of the coupling terms, which have been explicitly reported. It is easily
seen that these bilinear forms are coercive with respect to the standard H 1-norm on Ω∗
with suitable constants α∗ that may depend on the diffusivity parameter D∗. Choosing
v∗ = ek

∗,∗ = f ,w and exploiting the coercivity and the Cauchy-Schwarz inequality we
obtain,

α f ‖ek
f ‖2

H1(Ω f )
+‖P

1
2 ek

f ‖2
L2(Γ) ≤ ‖P

1
2 ek

f ‖L2(Γ)‖P
1
2 ek−1

w ‖L2(Γ),

αw‖ek
w‖2

H1(Ωw) +‖P
1
2 ek

w‖2
L2(Γ) ≤ ‖P

1
2 ek

f ‖L2(Γ)‖P
1
2 ek

w‖L2(Γ).

Owing to the trace theorem there exists a constant C∗ such that ‖v‖2
L2(Γ)

≤C∗‖v∗‖2
H1(Ω∗)

.
The application of this inequality into the equations above, together with the simplifying
assumption that P is a constant parameter, leads to the following results,
(

1+
α f

C∗P

)

‖P
1
2 ek

f ‖L2(Γ) ≤ ‖P
1
2 ek−1

w ‖L2(Γ),
(

1+
αw

C∗P

)

‖P
1
2 ek

w‖L2(Γ) ≤ ‖P
1
2 ek

f ‖L2(Γ),

that can be combined in order to obtain,

‖P
1
2 ek

f ‖L2(Γ) ≤
(

1+
α f

C∗P

)−1(
1+

αw
C∗P

)−1
‖P

1
2 ek−1

f ‖L2(Γ).

Together with the trace inequality, this proves the desired result.
Finally, we observe that the proof can be immediately extended to the case of the

Galerkin discretization method. Since the constants that determine the error reduction
factor in the final inequality do not depend on the discretization method, we conclude
that the convergence rate is always independent on the discretization parameter h. We
also observe that the introduction of the interior penalty stabilization term in the discrete
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equation for c f does not prevent the convergence of the iterations. Indeed, the proof
remains unchanged if we replace to a f (·, ·) the following stabilized bilinear form,

â f (c f ,v f ) = a f (c f ,v f )+ J f (c f ,v f ), with

J f (c f ,v f ) = ∑
e∈F i

h

γiph2
e‖v f ·ne‖L∞(e)

∫

e
[∇c f ·ne][∇v f ·ne],

being F i
h the collection of all the internal edges (d = 2) or faces (d = 3) e of the compu-

tational mesh on Ω f ⊂ R
d , whose normal vector and (d −1)-dimensional measure are

denoted with ne and he respectively. �

Remark 1 (Robustness with respect to singularly perturbed problems) We observe
that the proof of proposition 1 suggests that the iterative method may not converge in
the case of singularly perturbed problems, namely when D∗ → 0. In this case the coer-
civity constants vanish and correspondingly the estimate of the error reduction constant
at each iteration approaches the unity. This is not an intrinsic problem of the iterative
method. In fact, the proof can be easily adapted to the case of singularly perturbed
problems by virtue of the introduction of the energy norm,

|||v∗|||2 = ‖D
1
2∗ v∗‖2

H1(Ω∗)
+‖(∆t)− 1

2 v∗‖2
L2(Ω∗)

.

We notice that the bilinear forms a∗(·, ·) are coercive with respect to this norm, uni-
formly with respect to the diffusivity parameter D∗, namely a∗(v,v) ≥ |||v|||2 for any
v ∈ H1(Ω∗). The proof of proposition 1 can be straightforwardly adapted to this case.
Indeed, starting from the splitting error equations we easily obtain that,

|||ek
f |||2 +‖P

1
2 ek

f ‖2
L2(Γ) ≤

1
2‖P

1
2 ek

f ‖L2(Γ) +
1
2‖P

1
2 ek−1

w ‖L2(Γ),

|||ek
w|||2 +‖P

1
2 ek

w‖2
L2(Γ) ≤

1
2‖P

1
2 ek

f ‖L2(Γ) +
1
2‖P

1
2 ek

w‖L2(Γ).

Combining these inequalities and summing up from k = 1 to k = M we get,

M
∑
k=1

(

|||ek
f |||2 + |||ek

w|||2
)

+
1
2‖P

1
2 eM

w ‖2
L2(Γ) ≤

1
2‖P

1
2 e0

w‖2
L2(Γ).

The convergence of the sequences ck
f and ck

w is obtained passing to the limit for M →
∞. However, in this case the convergence rate of the iterations can not be explicitly
characterized.

3.2.2 A-priori adapted time stepping

The drug release form the stent is a transient process that features a very fast initial
phase that progressively slows down until almost all the drug has been delivered. The
dynamics of the release rate with respect to time can be approximated by means of the
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Higuchi formula, namely equation (7), which provides an explicit estimate for the flux
of drug outgoing the stent,

Jhig(t,x) =

√

Dsc2
s

πt , t ∈ (0,T ], x ∈ Γ.

This formula, which is exact for the limit case t → 0 but inaccurate for long time peri-
ods, provides an effective way to adapt the time advancing step to the transient release
process, as discussed in [18]. For simplicity, we set up an adaptivity strategy based on
the increment of the amount of drug that is released from the stent to the arterial walls.
More precisely, we aim to find a suitable sequence of time steps, t n, such that a constant
fraction of the total amount of drug is released in each time slab. We notice that this
problem can be solved exactly in the framework of the Higuchi model. In particular,
let η be the constant fraction of drug that we aim to release at each time step. Let us
introduce a uniform partition of [0,1] into sub-intervals of length η , such that N := 1/η
is an integer, for simplicity. Correspondingly, we define the sequence f n = nη with
n = 0, . . . ,N. The time steps that we look for, correspond to the mapping of the se-
quence f n into the interval [0, te := (π∆l2)/(4Ds)] by means of the incremental version
of equation (7),

tn =
π∆l2

4Ds
( f n)2, n = 0, . . . ,N,

∆tn =
π∆l2

4Ds

[

( f n)2 − ( f n−1)2] =
π∆l2

4Ds
η2(2n−1), n = 1, . . . ,N.

We notice that ∆tn grows linearly with respect to η . After N steps, this scheme reaches
the time te where all the drug should have been delivered, according to the inexact
Higuchi model. Then the time step can be maintained constant and equal to ∆t N . For
a time interval of 1 day, the numerical experiments presented in [18] show that this
a-priori adapted time stepping ensures that the amount of drug delivered in each time
slab is almost constant also in the case of the release model (6) applied in our case. Re-
minding that our time discretization scheme is only first order accurate, the key point is
to choose a suitably small increment, η , that ensures an effective compromise between
computational efforts and accuracy, in particular mass conservation.

4 A case study: influence of arterial stent positioning on blood
flow and drug release

We aim to study the interaction of the blood flow with the drug released from the stent.
This task is particularly challenging because the complex geometry of the stent highly
perturbs the local flow and this significantly influences the path of the drug released into
the lumen. We split this analysis in three parts. First of all we focus on the structural
mechanics generated by the stent expansion; secondly we analyze the fluid dynamics,
trying to put into evidence the main features of the flow around the stent. Lastly, we
study how this flow influences the drug release.
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4.1 Analysis of stent expansion
The stent used in this study resembles the coronary Cordis BX-Velocity (Johnson &
Johnson, Interventional System, Warren, NJ, USA). The stent geometry, see figure 2
(left), is created using Rhinoceros 3.0 Evaluation CAD program (McNeel & Associates,
Indianapolis, IN, USA), after an acquisition of the Cordis dimensions by the use of a
Nikon SMZ800 stereo microscope (Nikon Corporation, Tokyo, Japan). The length of
the unit of the stent considered in the analysis is 3.62 mm, the inner radius 0.6 mm
and the thickness 0.14 mm. A mesh of 14951 8-node cubic elements is generated.
For the material parameters we refer to [24] where Young’s modulus is E=193 GPa,
Poisson’s coefficient is ν=0.3 and yield stress is σy= 205 MPa; we take into account
the degradation of the hardening modulus, varying from K=1500 MPa and K=97 MPa,
using ABAQUS option of defining a linear piecewise isotropic hardening.

Γn,sc

Γn,bc

Figure 2: Boundary conditions and computational mesh of the balloon-stent model.

The balloon is designed with a radius of 1.5 mm and length of 8 mm. The mesh con-
sists of 11650 4-node membrane elements and 220 3-node membrane elements (thick-
ness = 0.05 mm) in order to obtain the balloon heads. The characteristic parameters
of the material are Young’s modulus E=900 GPa and Poisson’s coefficient ν=0.3. To
obtain the initial deflated configuration of the balloon, a preliminary analysis is run, in
which a negative pressure of 0.01 MPa is applied to the inner surface of the inflated con-
figuration, see figure 2 (top). Once deflated, the folded balloon can be inserted inside
the stent, as shown in figure 2 (bottom). The expansion process of the stent-balloon
system is reported in the pressure vs. diameter diagram of figure 3. We notice that,
once the balloon has reached its nominal diameter, further increases in pressure have
no significant effect on its size. This finding is consistent with the hypothesis of the
semi-compliant balloon used in reality, as shown by the comparison of the numerical
results with the data supplied by the manufacturer reported in figure 3.

The coronary artery is modelled with an internal radius of 1.25 mm, a thickness
of 0.5 mm and a length of 10 mm. The artery is meshed with 87750 8-node cubic
elements. The material parameters used for the strain energy function, see equation 1,
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Figure 3: Pressure-diameter curve of the balloon-stent model compared to the data
available from the manufacturing company.

are defined referring to the mean values of experimental results in the circumferential
direction obtained in [25] and are reported in table 1.

C10 C20 C30 C40 C50 C60
Intima 6.79E-03 0.54 -1.11 10.65 -7.27 1.63
Media 6.52E-03 4.89E-02 9.26E-03 0.76 -0.43 8.69E-02

Adventitia 8.27E-03 1.20E-02 0.52 -5.63 21.44 0.00

Table 1: Coronary artery strain energy function parameters, see equation (1).

In order to verify the adequacy of the mesh density used in the simulations, a mesh
dependency study expanding either the stent and artery to a diameter of 3 mm is per-
formed. The unit stent mesh density is increased from 9969 to 19937 elements. The
percentage difference of Von Mises stresses between the finest and selected meshes is
of 0.3%. The artery mesh density is increased from 7050 to 280098 elements. No ap-
preciable difference in Von Mises stresses between the finest and the selected meshes is
observed.

The expansion of the balloon/stent device is computed following three main steps.
First of all a pressure of 100 mmHg is imposed to the internal surface of the artery
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(a) (d)

(b) (e)

(c) (f)

Figure 4: The sequence of steps describing the expansion of the stent.

to mimic the physiological conditions, see figure 4 (a). Then, the stent is expanded
by applying a linearly increasing pressure up to 1.5 MPa to the internal surface of the
balloon. In particular, at a pressure p=0.135 MPa the balloon enters in contact with the
stent, as shown in figure 4 (b). At a pressure p=0.285 MPa the balloon enters in contact
with the artery showing the well-known dogboning-shape, see panel 4 (c). Increasing
the pressure also the central part of the stent is expanded, as illustrated in panel 4 (d), up
to the maximum expansion reached at p=1.5 MPa, corresponding to figure 4 (e). In this
configuration the artery reaches a maximum internal diameter of 3.47 mm. Finally, the
balloon is deflated, see figure 4 (f). The final artery lumen is of 3.06 mm. The deformed
geometry of artery and stent obtained at the end of the simulation are stored to be used in
the fluid dynamic analysis. Observing figure 4 (f) we notice that the parameters useful
to quantify the interaction between the stent and artery and consequently the efficacy of
drug elution may be:

1. the metal to artery ratio in the expanded configuration that measures the artery
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surface covered by the stent and hence the area prone to a direct diffusion of the
drug. In this case it is equal to 18%.

2. the foreshortening effect that is a measure of the contraction of the stent dur-
ing the expansion and hence it gives an information about the length of the area
interested by the drug release process.

3. the dogboning effect that quantifies the irregular expansion of the stent (grater in
the external part than in the central one) and hence it is related with the irregular-
ity of the artery internal surface that may influence the fluid dynamics.

In figure 5 are also reported radial, circumferential and axial Cauchy stress compo-
nents: even if not directly used in the following analysis, they may be useful to better
understand the effects of stent-balloon expansion on the artery configuration and even-
tually to highlight local conditions particularly unsafe.

Finally, we recall that refinements of the stent expansion geometrical and constitu-
tive models will be useful for a more detailed description of the process and hence for
more precise initial conditions of blood flow and drug deposition problems.

Figure 5: Radial, circumferential and axial Cauchy stresses on the artery.

4.2 Analysis of fluid dynamics around the stent
The lumen and the wall of the artery are subdivided with Gambit (ANSYS Inc., Canons-
burg, PA, USA) into 1,637,336 and 1,118,420 tetrahedra respectively. In order to obtain
an accurate resolution with a reasonable computational cost and memory storage, we
have applied a nonuniform spacing for the mesh generation. In particular, the central
part of the domain has been subdivided by means of variable size elements, particularly
refined around the stent. Concerning the blood physiological data, the fluid density is
ρ = 1 mg/mm3 and the viscosity is µ = 3 mg s−1mm−1. Moreover, at the inflow of the
artery we have imposed a parabolic velocity profile with a peak of 270 mm/s.
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Looking at the Cordis BX-Velocity stent, it is possible to identify two kinds of struc-
tures, the struts and the links. The former are twisted rings that provide the circumfer-
ential strength of the stent, while the latter are tiny connections along the longitudinal
axis between subsequent struts.

An important feature of the struts is to be twisted in the circumferential direction.
For this reason, the blood flow hits the struts with different angles. The preliminary
results obtained in [26] suggest that the flow pattern downstream the struts may be
substantially different from the well-known flow after a backward facing step that cor-
responds to the ideal case of a perfectly circular ring that is orthogonal to the flow.
This conjecture is confirmed by the fluid dynamics simulations. Indeed, in figure 6 we
visualize the streamlines of the blood flow around the stent. This picture shows that
we deal with a fully three dimensional flow with recirculations, vortexes and secondary
motions. For instance, we observe that the vortex induced by the presence of the link
on the top left corner is stretched and absorbed in the main stream on its right side. This
suggests that this vortex is not only characterized by a planar rotating flow but an out of
plane motion is present. This secondary motion generates the displacement of the fluid
form the center of the vortex to the extrema and the fluid is thus cast out the vortex into
the main stream.

In conclusion, there is evidence that the interaction between the stent and the blood
stream generates very complex flow patterns where the recirculation zones downstream
the obstacles interact with the main stream. By this way, the fluid that was at some time
trapped into a recirculation may join the high speed flow. We will see in the next section
that this behavior has important consequences on the drug release process.

4.3 Analysis of drug release
As already mentioned, we simulate the release of heparin. According to the experi-
mental investigations presented in [14], this corresponds to set D f = 1.5 10−4 mm2/s,
Dw = 7.7 10−6 mm2/s and P = 4 10−4 mm/s. The diffusivity of the drug into the
stent coating typically ranges from 10−8 to 10−12 mm2/s, depending on the mechanical
properties of the polymeric substrate. To avoid too stiff parameters we set Ds = 10−8

mm2/s.
The numerical simulation based on equation (3) shows that the drug released into

the lumen is very quickly washed out by the blood flow. Indeed, the peaks of drug
concentration into the lumen are reached about 40 seconds after the beginning of the
process. This corresponds to only 1% of the time necessary to release almost all the
drug form the stent. Conversely, the drug dynamics into the arterial walls is much
slower, but after 1 hour the drug has reached the outer boundary of the arterial walls, as
can be seen in figure 8 (bottom).

The drug concentration into the lumen is reported in figure 7. The highest peaks
of drug concentration appear in the neighborhood of the links. In these regions, the
contour plot of the concentration suggests that the recirculation of the blood flow in-
teracts with the drug accumulation. The smooth and concave shape of the contours
suggests that part of the drug released and accumulated in the neighborhood of the
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Figure 6: The interaction between the stent and the blood flow visualized by means of
streamlines. The proximal section is located on the top while the distal section is on the
bottom.

links is transported away and may affect the arterial walls located downstream. Indeed,
regions related to non negligible concentration levels are clearly visible downstream
the stent in figure 8 (top), where the presence of the drug in the lumen is visualized by
means of the iso-surface of the concentration. This means that a wide portion of the
endothelium, which is often severely injured during the stent implantation, is exposed
to a non negligible drug concentration. When the drug has anti-proliferative properties,
the re-endothelialization process may be slowed down. This seems to be one of the
major drawbacks of DES, and it should be further investigated.

Concerning the struts, the accumulation of drug is unexpectedly prominent up-
stream with respect to the blood flow. High concentration levels take place where the
struts are highly curved and their curvature is convex with respect to the blood flow.
This is in contrast to the results obtained in [5], but can be explained observing that
blood transports the drug downstream to the location where it has been released. The
accumulation of the drug takes place where this effect is hindered by the convex stent
pattern with respect to the blood flow.

The results reported in figure 7 (right) suggest that part of the drug released into
the lumen is absorbed by the wall. However, depending on the sign of the quantity
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Figure 7: The contour plots of the concentration in the arterial lumen at 40 seconds after
the beginning of the process are shown on the left. The color scale ranges linearly from
0 (blue) to 10−3c0

s (red). The mass flux exchanged between the lumen and the arterial
wall is on the right. The red color denotes a positive flux from the lumen to the wall,
the blue color refer to the opposite case.

P(c f − cw) of equation (4), the opposite process is simultaneously happening, because
the drug concentration in the wall is much higher than the one into the lumen in the
surroundings of the interface of contact between the stent and the artery. Indeed, the
interface Γ between the lumen and the walls can be subdivided into a region where the
drug is absorbed into the wall and the complementary region where the drug is released
by the wall and definitely lost into the blood flow.

This balance can be analyzed by means of more quantitative results. After 1 hour
from the stent implantation, almost all the drug has been released. The contact inter-
face between the stent and the walls ensures that 15% of the total amount of drug is
released into the walls. However, more than a half of this fraction is simultaneously
transferred into the lumen because of the negative concentration gradient between the
lumen and the walls. Then, for the case analyzed here, the drug released into the lumen
does not significantly contribute to the permanent drug deposition into the arterial wall.
However, to come up to a general conclusion, further investigations are mandatory.

5 Conclusions
We have analyzed the interactions between the stent shape and positioning, the blood
flow and the drug release from a stent, showing that a 3-dimensional analysis of the
problem accounting for the complex geometry of the stent is mandatory to capture the
phenomena into play. In this setting, we have studied the contribution of the drug re-
leased into the blood flow with respect to the efficacy of drug deposition and penetration
into the arterial walls.
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Figure 8: The iso-surface corresponding to the value 10−5c0
s for the drug concentration

in the arterial lumen and contour plots into the arterial walls, at 40 seconds (top) and 1
hour (bottom) after the beginning of the process. The color scale ranges linearly form
0 (blue) to 10−3c0

s (red). The blood flow is directed from top to bottom, as depicted in
figure 1.
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