
MOX-Report No. 29/2025

Learning cardiac activation and repolarization times with operator

learning

Centofanti, E.; Ziarelli, G.; Parolini, N.; Scacchi, S.; Verani, M. ; Pavarino, L.

F.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Learning cardiac activation and repolarization times with

operator learning

Edoardo Centofanti*1, Giovanni Ziarelli*2, Nicola Parolini3, Simone Scacchi2, Marco
Verani3, and Luca F. Pavarino1

1Dipartimento di Matematica, Università di Pavia, Via Adolfo Ferrata, 5, Pavia, 27100, Italy
2Dipartimento di Matematica, Università di Milano, Via Cesare Saldini, 50, Milano, 20133, Italy

3MOX Laboratory, Dipartimento di Matematica, Politecnico di Milano, Via Edoardo Bonardi, 9, Milano,
20133, Italy

Abstract

Solving partial or ordinary differential equation models in cardiac electrophysiology is a com-
putationally demanding task, particularly when high-resolution meshes are required to capture
the complex dynamics of the heart. Moreover, in clinical applications, it is essential to employ
computational tools that provide only relevant information, ensuring clarity and ease of inter-
pretation. In this work, we exploit two recently proposed operator learning approaches, namely
Fourier Neural Operators (FNO) and Kernel Operator Learning (KOL), to learn the operator
mapping the applied stimulus in the physical domain into the activation and repolarization time
distributions. These data-driven methods are evaluated on synthetic 2D and 3D domains, as well
as on a physiologically realistic left ventricle geometry. Notably, while the learned map between
the applied current and activation time has its modelling counterpart in the Eikonal model, no
equivalent partial differential equation (PDE) model is known for the map between the applied
current and repolarization time. Our results demonstrate that both FNO and KOL approaches
are robust to hyperparameter choices and computationally efficient compared to traditional PDE-
based Monodomain models. These findings highlight the potential use of these surrogate operators
to accelerate cardiac simulations and facilitate their clinical integration.

1 Introduction

Computational modeling of cardiac electrophysiology has become a fundamental tool for understand-
ing heart function, diagnosing cardiac conditions, and developing therapeutic interventions. Recent
years have witnessed significant advances in both mathematical modeling, numerical techniques and
computational capabilities, enabling increasingly sophisticated simulations of cardiac electrical activ-
ity. Despite these advances, the computational complexity of high-fidelity cardiac models remains
a substantial challenge, particularly for large-scale simulations, real-time applications, and clinical
decision support systems. The Bidomain model [8, 9, 18, 39, 35] serves as the gold standard for
describing the propagation of extra- and intracellular potentials in cardiac tissue, though its com-
putational complexity presents significant challenges for large-scale simulations. In several works, in
particular involving electromechanical coupling or interactions with fluid dynamics models of the hu-
man heart, researchers often turn to the more computationally efficient Monodomain model [9, 18] as
an alternative. The latter emerges as a simplified version of the Bidomain model where the intra- and
extracellular conductivities are proportional. This simplification results in a model that maintains

*
The first two authors have contributed equally.

1

Figure 1: Schematic representation of the EP problem to address. In particular, we aim at recon-
structing the activation/repolarization times of the cardiac tissue given the initial stimulus applied
for 1 ms.

reasonable accuracy while significantly reducing the computational demand. The Monodomain model
is constituted by a system of partial differential equations that describe the spatiotemporal evolution
of the transmembrane potential and associated gating or recovery variables, which either represent
the probability of ionic species flowing through the membrane or serve as recovery variables designed
to reproduce observed phenomenological potentials (see, e.g., the two-variable models derived from
the FitzHugh-Nagumo model [13]). A more computationally efficient approach is provided by Eikonal
models [9, 18], which focus on the evolution of cellular excitation wavefronts rather than the complete
spatial and temporal reconstruction of ionic action potentials: these models are extremely computa-
tionally cheap, though they provide less details regarding the upstroke thin layer of propagation.
Despite the extensive range of mathematical models and numerical schemes available for address-
ing electrophysiological (EP) problems, their computational burden remains a significant concern.
Furthermore, the primary interest in solving these models often lies in extracting key informative
quantities that can significantly assist clinicians, such as activation and repolarization times within
the cardiac domain. The activation and repolarization times serve as critical markers in cardiac elec-
trophysiology, providing essential information about the heart’s electrical function: the activation
time refers to the time when cardiac cells begin their depolarization process, whilst repolarization
time denotes the time when cells return to their resting state. These markers are fundamental for
understanding cardiac conduction patterns, identifying arrhythmogenic substrates [11], and evaluat-
ing the effects of drugs or interventions [41, 2]. Traditional approaches for computing these times

2

typically require solving the full Monodomain or Bidomain models and extracting the times from the
resulting action potential waveforms, a process that is computationally intensive. Moreover, while
activation times can be evaluated more efficiently through the Eikonal model, repolarization times
lack of a classical Eikonal-like counterpart.
The emergence of scientific machine learning offers new opportunities to address these computational
challenges [7, 14, 20, 29, 38, 37, 30]. In particular one of its main branches, operator learning, aims to
approximate unknown operators that map between potentially infinite-dimensional functional spaces.
Given pairs of input/output functional data (u, f), where u ∈ U and f ∈ V are functions defined on
domains Ω and Ω′ respectively, the goal is to learn an approximation of an operator G : U → V using
machine learning architectures. Among the various recently-proposed operator learning architectures
(see, e.g, [25, 15, 40]), Fourier Neural Operators (FNOs) [23] have emerged as a powerful approach
based on the Neural Operator paradigm [22], parameterizing the integral kernel layers within the
architecture in the Fourier space and allowing efficient learning of mappings between function spaces
with resolution independence. FNOs have shown comparable performances for equispaced domains
with respect to the vanilla Deep Operator Networks [26]. Another promising approach is Kernel
Operator Learning (KOL) [4], which builds on standard kernel regression arguments to approximate
the mapping between function spaces. Compared to other neural operator methodologies, the key
advantage of the Kernel Operator Learning (KOL) approach lies in its non-iterative formulation; the
operator is obtained by solving a (potentially large) symmetric and positive definite linear system,
thereby eliminating the need for iterative training procedures typically required in neural network-
based frameworks.
Using operator learning techniques to predict activation and repolarization times based on inputs
such as tissue conductivity, fiber orientation, and stimulus location can help reduce computational
bottlenecks in traditional cardiac modeling. These approaches will also improve efficiency, making
computational tools more accessible for research and clinical practice. In this work, we take a step in
this direction by learning the mapping between an initially applied current stimulus and the activa-
tion/repolarization times at each physical point in the considered 2D or 3D domains, as schematically
represented in Figure 1. Specifically, we compare the performances of FNO e KOL in terms of training
time, testing time, memory usage and accuracy in testing, and we assess the potentialities of both
strategies for retrieving fast and accurate simulations.
This paper is structured as follows. In Section 2 we review the mathematical models (Section 2.1)
and we introduce and formalize FNO and KOL for the problem at stake and used in the numerical
experiments (Sections 2.2-2.4). In Section 3 we detail the dataset generation (Section 3.1) and presents
numerical results for both 2D and 3D cases, where we discuss the computational performance of the
trained models (Sections 3.2-3.4). Finally, in Section 4 we draw some concluding remarks.

2 Methods

2.1 PDE models

Mathematical models of electrophysiology (EP) play a crucial role in understanding and simulating
the electrical activity of cardiac tissue. These models describe the evolution of the transmembrane
potential and ionic currents, catching the fundamental mechanisms of excitation and propagation.
There is a plethora of EP models that may be used depending on the required level of detail (see,
e.g., [9]), ranging from ionic models, based on systems of ODEs, to other macroscopic formulations.
The Bidomain model [6] describes the propagation of the extra- and intracellular potentials and it
is widely used in order to model the electrical activation in the myocardium. However, as already
mentioned, its computational complexity makes it challenging for large-scale simulations [1, 5] and
the Monodomain model [42] is often preferred as a more efficient alternative.
The Monodomain model is derived from the cardiac Bidomain model when the intra- and the extra-
cellular conductivities, Di and De respectively, satisfy the following relationship [9]:

3

De = λDi (1)

where λ ∈ R is a constant. The model reads as follows:

χCm
∂v

∂t
− λ

1 + λ
div(Di∇v) + Iion(v,w) = Iapp in Ω× (0, T),

∂w

∂t
−R(v,w) = 0 in Ω× (0, T),

∂c

∂t
−C(v,w, c) = 0 in Ω× (0, T),

n⊤Di∇v = 0 on ∂Ω× (0, T),

v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω.

(2)

where v is the transmembrane potential, which represents the difference between the intra- and extra-
cellular potentials, Cm and χ are the membrane capacitance per unit area and the membrane surface
area per unit volume respectively, λ is the constant in (1), Iion is a ionic current density represent-
ing the flow of ionic species through the cellular membrane and Iapp is an applied stimulus in time.
This latter term depends on v, as well as on the gating or recovery variables of the ionic model,
w. These variables either describe the probability of ionic species flowing through the membrane or
serve as recovery variables designed to reproduce an observed phenomenological potential, as seen in
two-variable models derived from the FitzHugh-Nagumo [16] model. They are coupled to the reaction
diffusion PDE through a system of differential equations describing their evolution in time as well as
the dynamics of the ionic concentrations c, which are ruled by often nonlinear functions R(v,w) and
C(v,w, c). If there is no injection of current in the extracellular space, (2) can be considered as a
good approximation of the Bidomain model.
An alternative approach for modelling the evolution of the cellular excitation wavefront is based on
Eikonal models. Starting from the Bidomain model combined with a simplified representation of the
ionic currents, where we exclude any gating variables and we focus solely on the depolarization phase,
the Eikonal-diffusion equation is (see, e.g., [10]):

c0
√

∇ψ · M∇ψ − ∇ · (M∇ψ) = 1, inΩ,

M∇ψ · n = 0, on ∂Ωn,

ψ = ψD, on ∂ΩD,

(3)

where ψ is the unknown activation time of cardiac cells, i.e. the instant when the transmembrane
potential first crosses a predefined threshold during an action potential, marking the onset of electrical
excitation. Moreover, c0 represents the estimated velocity of the depolarization wave along the fiber
direction of the cardiac tissue for planar wavefronts, and M = 1

χCm

λ
1+λDi. Well-posedness is ensured

by imposing the Dirichlet boundary condition on a non-trivial portion of the domain boundary. An
alternative model, known as Eikonal-curvature, has been proposed in [19], and reads as

c0
√
∇ψ · M∇ψ −

√
∇ψ · M∇ψ∇ ·

(
M∇ψ√∇ψ · M∇ψ

)
= 1, (4)

endowed with the same boundary conditions of (3). In this model the diffusion term is proportional
to the anisotropic generalized mean curvature [9, 18]. In both equations, contour levels of ψ display
the activation times at each prescribed location. Eikonal models are particularly attractive from a
computational perspective, since they involve a single steady-state PDE that, despite being nonlinear,
does not require coupling with ODE systems. More importantly, unlike the transmembrane potential,
the activation time lacks internal or boundary layers, eliminating the need for special mesh restrictions.
Finally, we remark that activation and repolarization times can be both derived by post-processing

4

the solution of the Monodomain model. However, while activation times can be obtained by solving
Eikonal equations, no Eikonal-based formulation has been proposed in the literature to directly extract
repolarization times.
In the next section we are going to introduce the operator learning tools that will enable us to construct
surrogate models for both activation and repolarization times.

2.2 Operator Learning: Basic Principles

Operator Learning (OL) aims to approximate an unknown operator

G : A → U ,
which maps between two infinite-dimensional functional spaces A and U . Given data pairs (a, u),
where a ∈ A and u ∈ U are functions defined on bounded domains Ω ⊂ Rn, Ω′ ⊂ Rm and sampled
over Rn and Rm respectively, the goal is to learn an approximation of G by mean of machine learning
surrogate model. The problem can be formalized as follows:

Problem 1. Let us consider {ai, ui}Ni=1 samples in A× U , such that

G(ai) = ui, with i = 1, 2, . . . , N. (5)

We define the observation operators ϕ : A → Rn and φ : U → Rm acting on the input and the output
functions, respectively. The aim of operator learning is approximating the operator G through the
observation of input/output pairs {ϕ(ai), φ(ui)}.
In this work we consider a natural choice for the observation operators ϕ and φ, namely the pointwise
evaluation at specific collocation points {xk}nk=1 ∈ Ω and {x̃k}mk=1 ∈ Ω′ respectively, which in general
can be different, i.e.

ϕ : a→ A := (a(x1), a(x2) . . . a(xn))
T ∈ Rn·da ,

φ : u→ U := (u(x̃1), u(x̃2) . . . u(x̃m))T ∈ Rm·du .
(6)

However, for simplicity, in this work we consider the same collocation points, namely n = m and
{xk}nk=1 = {x̃k}nk=1. We work in a supervised learning framework assuming we are given the training
dataset {Ai, Ui}Ni=1 where, consistently with our notation,

Ai := (ai(x1), ai(x2) . . . ai(xn))
T ∈ Rn·da and Ui := (ui(x1), ui(x2) . . . ui(xn))

T ∈ Rn·du .

Among all the possible operators ranging between A and U we aim at finding the one which mini-
mizes the error in a prescribed suitable norm and assuming tailored paradigms for the approximated
operator, e.g. machine learning architectures. In the following, we briefly expand on the two meth-
ods employed for the reconstruction of activation and repolarization times, namely Fourier Neural
Operators and Kernel Operator Learning.

2.3 Fourier Neural Operators

Fourier Neural Operators (FNOs) [23] are operator learning schemes based on the Neural Operator
paradigm [22].

Definition 1 (Neural Operator). Assuming the setting introduced in Problem 1, we define the Neural
Operator as the architecture Ĝθ : Rn → Rm with the following structure:

Ĝθ := Q ◦ σT (WT−1 +KT−1 + bT−1) ◦ · · · ◦ σ1 (W0 +K0 + b0) ◦ P (7)

where each inner operator represents a layer which maps the t-th hidden representation at to the next
one at+1, for t = 0 . . . T − 1, following the scheme reported in Figure 2. More in detail, a Neural
Operator is composed as follows:

5

• P : Rn → Rda0 , a lifting operator, namely a pointwise function mapping the observed input
to its first hidden representation, i.e. {ϕ(u) : U → Rn} 7→ {a0 : Ω0 ⊂ Rd0 → Rda0 }, with
da0 > d0. This operation is performed by a fully local operator, and its action is pointwise,
namely (P (u))(x) = P (u(x)) for x ∈ Ω;

• A composition of operators {at : Ωt → Rdat} → {at+1 : Ωt+1 → Rdat+1}, for t = 0, . . . , T − 1,
each one defined as the sum of a local linear operator Wt ∈ Rdat+1

×dat , a non-local integral
kernel operator Kt, and a bias function bt : Ωt+1 → Rdat+1 . This sum is then composed with
a fixed pointwise nonlinearity σt, called activation function, namely (σt(at+1))(x) = σ(at+1(x))
for any x ∈ Ωt+1. We set Ω0 = Ω and ΩT = Ω′, and assume that each Ωt ⊂ Rdt is a bounded
domain.

• Q : RdaT → Rm, a projection operator, namely a pointwise function, mapping the last hidden
representation {aT : Ω′ → RdaT } 7→ {φ(u) : U → Rm} to the observed output function. Since
dat > m, this is a projection step performed by a fully local operator, namely (Q(aT))(x) =
Q(aT (x)) for every x ∈ Ω′.

Input and output dimensions da0 , · · · , daT
as well as the domains of definition Ω1, · · · ,ΩT−1 are

hyperparameters of the architecture.
In this work, we follow the first definition for the integral kernel operators proposed in [22]. As a
technical remark, we denote as C(Ωt+1 × Ωt, Rdat+1

×dat) the Banach space of continuous functions
from Ωt+1 × Ωt to Rdat+1

×dat equipped with the sup-norm ||g||∞ := sup{|g(τ)| : τ ∈ Ωt+1 × Ωt},
g ∈ C(Ωt+1 × Ωt, Rdat+1

×dat).
In this context, given κ(t) ∈ C(Ωt+1 × Ωt;Rdat+1

×dat) such that κ(t)(x, y) = κ(t)(x − y), for all
(x, y) ∈ Ωt+1 × Ωt, the integral kernel operator Kt is defined as

(Kt(at))(x) =

∫
Ωt

κ(t)(x− y)at(y) dy ∀x ∈ Ω. (8)

At this point, we can thus make precise the single hidden layer update rule as

at+1(x) = σt+1

(
Wtat (x) +

∫
Ωt

κ(t)(x, y)at(y) dνt(y) + bt(x)

)
∀x ∈ Ωt+1. (9)

From this general structure for the Neural Operator, one can derive the FNO by discretizing the
integral kernel (8) in the Fourier space. The key feature of the FNO is that the integral kernel
is parameterized in the Fourier space. Therefore, in the following we recall the Fourier transform
F : L2(Ω,Cn) → ℓ2(Zd,Cn) and anti-transform F−1. Given a ∈ L2(Ω,Cn) and â ∈ ℓ2(Zd,Cn), we
define

(Fa)j (k) = âj(k) = ⟨aj , φk⟩L2(Ω,Cn), j ∈ {1, · · · , n}, k ∈ Zd,(
F−1â

)
j
(x) =

∑
k∈Zd

âj(k)φ
−1
k (x), j ∈ {1, · · · , n}, x ∈ Ω

φk(x) := e−2πik·x, x ∈ Ω.

(10)

For the FNO, the domain considered for each layer is the periodic torus Ωt = Td = [0, 2π]d, although
for a general input it is sufficient to take its periodic extension rescaled in [0, 2π]d.
The integral kernel κ(t) in (8) is a function parameterized by some parameters θt belonging to a

suitable space Θt ⊂ Rdat+1
×dat . Thus we write κ(t) = κ

(t)
θt
. From (8), we set κ

(t)
θt
(x, y) = κ

(t)
θt
(x − y)

and we apply the convolution theorem for the Fourier transform,

(Kt(at))(x) =

∫
Ω

κ
(t)
θt
(x− y)at(y) dy = F−1

(
F
(
κ
(t)
θt

)
· F(at)

)
(x), ∀x ∈ Ωt, (11)

6

<latexit sha1_base64="xEKK04cdA7gulMC3T9cMWC/nuQM=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWYKPpZFN7qrYB/QjiWTZtrQTGZIMkoZ+h9uXCji1n9x59+YaWehrQcCJ+fcy733+LHg2jjONyqsrK6tbxQ3S1vbO7t75f2Dlo4SRVmTRiJSHZ9oJrhkTcONYJ1YMRL6grX98XXmtx+Z0jyS92YSMy8kQ8kDTomx0sOtjBODg0TS7NsvV5yqMwNeJm5OKpCj0S9/9QYRTUImDRVE667rxMZLiTKcCjYt9RLNYkLHZMi6lkoSMu2ls62n+MQqAxxEyj5p8Ez93ZGSUOtJ6NvKkJiRXvQy8T+vm5jg0kt5dhqTdD4oSAQ2Ec4iwAOuGDViYgmhittdMR0RRaixQZVsCO7iycukVau659Wzu1qlfpXHUYQjOIZTcOEC6nADDWgCBQXP8Apv6Am9oHf0MS8toLznEP4Aff4ArkGSpA==</latexit>

Input function

<latexit sha1_base64="ekhMJacf1XZ0PXan5tGTg5CcekU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKewGfByDXjx4iGAekCxhdjKbDJmdXWZ6hbDkI7x4UMSr3+PNv3GS7EETCxqKqm66u4JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6d+e0nro2I1SNOEu5HdKhEKBhFK7XvRYhCDfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5JWrepdVi8eapX6TR5HEU7gFM7Bgyuowx00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4AV3ePlQ==</latexit>

Lifting

<latexit sha1_base64="51lIP1uHxZOwXrxOicVbH4cdHfo=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZmCj2VREBcuKtgHtGPJpHfa0MyDJKMMQ//DjQtF3Pov7vwb03YW2nogcDjn3OTmeLHgStv2t7W0vLK6tl7YKG5ube/slvb2mypKJMMGi0Qk2x5VKHiIDc21wHYskQaewJY3upr4rUeUikfhvU5jdAM6CLnPGdVGerg293CU5JamJtQrle2KPQVZJE5OypCj3it9dfsRSwIMNRNUqY5jx9rNqNScCRwXu4nCmLIRHWDH0JAGqNxsuvWYHBulT/xImhNqMlV/T2Q0UCoNPJMMqB6qeW8i/ud1Eu1fuBkP40RjyGYP+YkgOiKTCkifS2RapIZQJrnZlbAhlZRp00HRlODMf3mRNKsV56xyelct1y7zOgpwCEdwAg6cQw1uoA4NYCDhGV7hzXqyXqx362MWXbLymQP4A+vzB24Kkno=</latexit>

Fourier Layers

<latexit sha1_base64="eRrxfxvicHSKWewpcc0JKJaQYY8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUrC6LblxWsA9sh5JJM21sJhmSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7yT0niDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5koQltEcqm6AdaUM0FbhhlOu7GiOAo47QSTm8zvPFGlmRT3ZhpTP8IjwUJGsLHSQ1PJR0oyOihX3Ko7B1olXk4qkKM5KH/1h5IkERWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LBY6o9tP5xTN0ZpUhCqWyTxg0V39vpDjSehoFdjLCZqyXvUz8z+slJrzyUybixFBBFh+FCUdGoiw+GjJl8/KpJZgoZm9FZIwVJsaWVLIleMuRV0m7VvXq1Yu7WqVxnddRhBM4hXPw4BIacAtNaAEBAc/wCm+Odl6cd+djMVpw8p1j+APn8wfNqZED</latexit>

Projection

<latexit sha1_base64="S/mbO5ZTLezohQ2tOUDOlhsL4UM=">AAAB+HicbVDJSgNBEK2JW4xLoh69NAbBU5gJuByDXrwZwSyQhNDT6Uma9PQM3dVCDPkSLx4U8eqnePNv7CwHTXxQ8Hiviqp6YSqFQd//9jJr6xubW9nt3M7u3n6+cHBYN4nVjNdYIhPdDKnhUiheQ4GSN1PNaRxK3giHN1O/8ci1EYl6wFHKOzHtKxEJRtFJ3UL+zmJqkURWsblS9Ev+DGSVBAtShAWq3cJXu5cwG3OFTFJjWoGfYmdMNQom+STXtoanlA1pn7ccVTTmpjOeHT4hp07pkSjRrhSSmfp7YkxjY0Zx6DpjigOz7E3F/7yWxeiqMxbKvcYVmy+KrCSYkGkKpCc0ZyhHjlCmhbuVsAHVlKHLKudCCJZfXiX1cim4KJ3fl4uV60UcWTiGEziDAC6hArdQhRowsPAMr/DmPXkv3rv3MW/NeIuZI/gD7/MHFWyTYA==</latexit>

Output function

<latexit sha1_base64="U5NgBVzIfpRXf++zdbcOGRje1VE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kUxGUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7Syura+Ud6sbG3v7O5V9w/aRqWashZVQuluSAwTXLIWcBCsm2hG4lCwTji+zf3OE9OGK/kIk4QFMRlKHnFKwEp+LyYwokRkd9N+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBZtWeqlhCaFjMmS+pZLEzATZLPIUn1hlgCOl7ZOAZ+rvjYzExkzi0E7mEc2il4v/eX4K0XWQcZmkwCSdfxSlAoPC+f14wDWjICaWEKq5zYrpiGhCwbZUsSV4iycvk/ZZ3busXzyc1xo3RR1ldISO0Sny0BVqoHvURC1EkULP6BW9OeC8OO/Ox3y05BQ7h+gPnM8feyeRZg==</latexit>F
<latexit sha1_base64="HOqEWEuUyQDclFYBagEiiAWbrFw=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBLxtSwK4rKCfUAby2Q6aYdOJmFmUighf+LGhSJu/RN3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tLyyuraemmjvLm1vbNr7+03VZRIQhsk4pFs+1hRzgRtaKY5bceS4tDntOWPbnO/NaZSsUg86klMvRAPBAsYwdpIPdvuhlgPCebpXfaUnrpZz644VWcKtEjcglSgQL1nf3X7EUlCKjThWKmO68TaS7HUjHCalbuJojEmIzygHUMFDqny0mnyDB0bpY+CSJonNJqqvzdSHCo1CX0zmedU814u/ud1Eh1ceykTcaKpILNDQcKRjlBeA+ozSYnmE0MwkcxkRWSIJSbalFU2JbjzX14kzbOqe1m9eDiv1G6KOkpwCEdwAi5cQQ3uoQ4NIDCGZ3iFNyu1Xqx362M2umQVOwfwB9bnD1qrk30=</latexit>

F�1

<latexit sha1_base64="ySSPbiSfO6xTloTer7GyNK4O508=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjBLJAMoafTk7TpZejuEcKQf/DiQRGv/o83/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1knNrmEDgXvlil/1Z0DLJMhJBXLUe+Wvbl+RVFBpCcfGdAI/sWGGtWWE00mpmxqaYDLCA9pxVGJBTZjNrp2gE6f0Uay0K2nRTP09kWFhzFhErlNgOzSL3lT8z+ukNr4OMyaT1FJJ5ovilCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUMmFECy+vEyaZ9Xgsnpxf16p3eRxFOEIjuEUAriCGtxBHRpA4BGe4RXePOW9eO/ex7y14OUzh/AH3ucPn5+PLQ==</latexit>�

<latexit sha1_base64="OP31zeVVMU2OL078Cu5LB6zepec=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9IljA7mU2GzMwuM7NiWPILXjwo4tUf8ubfOJvsQRMLGoqqbrq7gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Dbz249UaRbJBzOJqS/wULKQEWwyKak+nfbLFbfmzoCWiZeTCuRo9MtfvUFEEkGlIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUokF1X46u3WKTqwyQGGkbEmDZurviRQLrScisJ0Cm5Fe9DLxP6+bmPDaT5mME0MlmS8KE45MhLLH0YApSgyfWIKJYvZWREZYYWJsPCUbgrf48jJpndW8y9rF/XmlfpPHUYQjOIYqeHAFdbiDBjSBwAie4RXeHOG8OO/Ox7y14OQzh/AHzucPhoiN6g==</latexit>

u(x)

<latexit sha1_base64="zZ87EpB21XDsO2O9V9f4Va1Ov2s=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcKu+DoGvXiMYLKBZFlmJ7PJkNkHM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSqFRtv+tkorq2vrG+XNytb2zu5edf+grZNMMd5iiUxUJ6CaSxHzFgqUvJMqTqNAcjcY3U1994krLZL4Eccp9yI6iEUoGEUjua6PZ4GPfrVm1+0ZyDJxClKDAk2/+tXrJyyLeIxMUq27jp2il1OFgkk+qfQyzVPKRnTAu4bGNOLay2fnTsiJUfokTJSpGMlM/T2R00jrcRSYzojiUC96U/E/r5theOPlIk4z5DGbLwozSTAh099JXyjOUI4NoUwJcythQ6ooQ5NQxYTgLL68TNrndeeqfvlwUWvcFnGU4QiO4RQcuIYG3EMTWsBgBM/wCm9War1Y79bHvLVkFTOH8AfW5w/zU49V</latexit>

Wt, bt

<latexit sha1_base64="L+23H7K8uUl2boU026H7TCaNGIA=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMV+wFNCJvtpF262YTdiVBC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXpoJrdJxvq7Syura+Ud6sbG3v7O5V9w/aOskUgxZLRKK6IdUguIQWchTQTRXQOBTQCUe3U7/zBErzRD7iOAU/pgPJI84oGsl7CHIPh4A0wElQrTl1ZwZ7mbgFqZECzaD65fUTlsUgkQmqdc91UvRzqpAzAZOKl2lIKRvRAfQMlTQG7eezmyf2iVH6dpQoUxLtmfp7Iqex1uM4NJ0xxaFe9Kbif14vw+jaz7lMMwTJ5ouiTNiY2NMA7D5XwFCMDaFMcXOrzYZUUYYmpooJwV18eZm0z+ruZf3i/rzWuCniKJMjckxOiUuuSIPckSZpEUZS8kxeyZuVWS/Wu/Uxby1Zxcwh+QPr8wddO5Hq</latexit>

R✓t

<latexit sha1_base64="yn72uj8s/DTU/8kMNFSQDJp4LEM=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsW7APaQTLpnTY2kxmSjFCGfoEbF4q49ZPc+Tem7Sy09UDgcM655N4TJIJr47rfTmFldW19o7hZ2tre2d0r7x+0dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC6nfrtJ1Sax/LejBP0IzqQPOSMGis16g/lilt1ZyDLxMtJBXLY/FevH7M0QmmYoFp3PTcxfkaV4UzgpNRLNSaUjegAu5ZKGqH2s9miE3JilT4JY2WfNGSm/p7IaKT1OApsMqJmqBe9qfif101NeO1nXCapQcnmH4WpICYm06tJnytkRowtoUxxuythQ6ooM7abki3BWzx5mbTOqt5l9aJxXqnd5HUU4QiO4RQ8uIIa3EEdmsAA4Rle4c15dF6cd+djHi04+cwh/IHz+QOs2Yze</latexit>

P
<latexit sha1_base64="Y1hJizHldN0mHgwN50bchS+3n+E=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV671S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHrl2M3w==</latexit>

Q
<latexit sha1_base64="2jLOXV95U8Nq6tRPWp8G61M0Ygk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQiwcPEc0DkiXMTnqTIbOzy8ysEJZ8ghcPinj1i7z5N06SPWi0oKGo6qa7K0gE18Z1v5zC0vLK6lpxvbSxubW9U97da+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD31W4+oNI/lgxkn6Ed0IHnIGTVWur/teb1yxa26M5C/xMtJBXLUe+XPbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkyCp9EsbKljRkpv6cyGik9TgKbGdEzVAvelPxP6+TmvDSz7hMUoOSzReFqSAmJtO/SZ8rZEaMLaFMcXsrYUOqKDM2nZINwVt8+S9pnlS98+rZ3WmldpXHUYQDOIRj8OACanADdWgAgwE8wQu8OsJ5dt6c93lrwcln9uEXnI9vy9mNfg==</latexit>

L1
<latexit sha1_base64="/bhHNsEAjvzFpoQOHKYtfa/m3nE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQiwcPEfOCZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWV1b38hvFra2d3b3ivsHDRMlmvE6i2SkWwE1XArF6yhQ8lasOQ0DyZvB6HbqN5+4NiJSNRzH3A/pQIm+YBSt9HjfrXWLJbfszkCWiZeREmSodotfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv1rPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpnJW9y/LFw3mpcpPFkYcjOIZT8OAKKnAHVagDgwE8wyu8OdJ5cd6dj3lrzslmDuEPnM8fAPSNoQ==</latexit>

LT

<latexit sha1_base64="7wIkR6/wF7TMpolqCGY+cB4m4T0=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9IljA7mU2GzMwuM7NiWPILXjwo4tUf8ubfOJvsQRMLGoqqbrq7gpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Dbz249UaRbJBzOJqS/wULKQEWwyCVefTvvliltzZ0DLxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcSCaj+d3TpFJ1YZoDBStqRBM/X3RIqF1hMR2E6BzUgvepn4n9dNTHjtp0zGiaGSzBeFCUcmQtnjaMAUJYZPLMFEMXsrIiOsMDE2npINwVt8eZm0zmreZe3i/rxSv8njKMIRHEMVPLiCOtxBA5pAYATP8ApvjnBenHfnY95acPKZQ/gD5/MHZ/yN1g==</latexit>

a(x)

<latexit sha1_base64="5ZkpZXaTPGH4FQu/ARd+jnTEjYY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9IljA7mSRjZmeXmV4xLPkHLx4U8er/ePNvnCR70GhBQ1HVTXdXEEth0HW/nNzS8srqWn69sLG5tb1T3N1rmCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxG11O/+cC1EZG6w3HM/ZAOlOgLRtFKDdrF8uNxt1hyK+4M5C/xMlKCDLVu8bPTi1gScoVMUmPanhujn1KNgkk+KXQSw2PKRnTA25YqGnLjp7NrJ+TIKj3Sj7QthWSm/pxIaWjMOAxsZ0hxaBa9qfif106wf+mnQsUJcsXmi/qJJBiR6eukJzRnKMeWUKaFvZWwIdWUoQ2oYEPwFl/+SxonFe+8cnZ7WqpeZXHk4QAOoQweXEAVbqAGdWBwD0/wAq9O5Dw7b877vDXnZDP78AvOxzf1R469</latexit>

at(x)

Figure 2: Schematic architecture of Fourier Neural Operators (FNO).

where the dot operation is defined as

F
(
κ
(t)
θt

)
· F(at) :=

∑
k∈Z

F
(
κ
(t)
θt

)
(k) · F(at)(k) =

∑
k∈Z

κ̂
(t)
θt
(k) · v̂t(k). (12)

Considering k ∈ Zd fixed as frequency mode, we have that F
(
κ
(t)
θt

)
(k) ∈ Cdat+1

×dat and F(at)(k) ∈
Cdat . Hence, κ

(t)
θt

can be parameterized directly by its Fourier coefficients and (11) reads as:

(Kt(at))(x) = F−1 (Rθt · F(at)) (x), ∀x ∈ Ωt, (13)

where Rθt = κ̂
(t)
θt
(k) for k fixed. Fig. 2 represents the schematic FNO architecture considered in this

work.
Numerically, the FNO needs to be approximated from continuous space to discrete ones for dealing
with finite-dimensional parameterizations. We call pseudo(Ψ)-Fourier Neural Operator (Ψ-FNO) the
approximated architecture, following [21]. In this case, the domain Ωt is discretized with J ∈ N points,
and therefore at can be treated as a tensor in CJ×dat . Since integrals cannot be calculated exactly,
this leads to considering the Fourier series truncated at a maximal mode kmax, such that

kmax =
∣∣{k ∈ Zd : |kj | ≤ kmax,j , for j = 1, . . . , d}

∣∣.
In practical implementations, the Fourier transform is replaced by the Fast Fourier Transform (FFT),
and the weight tensor Rθt is parameterized as a complex-valued tensor Rθt ∈ Ckmax×dat+1

×dat for
i = 1, . . . , L. For simplicity, we denote Rθt with R. Finally, we note that if at is real-valued, we
can enforce conjugate symmetry in tensor R for imposing at+1 to be real-valued, namely R(−k)j,l =
R(k)j,l.

7

Figure 3: Kernel Operator Learning (KOL) diagram. Starting from the input function a, A collects
observations of the function at different collocation points through ϕ. Then, the vector-valued f† pro-
cesses observations of the input into observations of the output A = ϕ(a). Finally, the reconstruction
operator is applied to determine the output function u = χ(U).

2.4 Kernel Operator Learning

Kernel Operator Learning (KOL) is a recently formalized operator learning technique [4], based on
standard kernel regression arguments. Following the diagram in Figure 3, retrieving the approximated
operator Ḡ is equivalent to determining a vector-valued function f† : Rn·da → Rn·du such that Ḡ =
χ ◦ f† ◦ ϕ, where χ : Rn·du → U is a reconstruction operator and ϕ has been defined in Problem 1.
In the following, we formalize KOL in the scalar-function case, i.e. assuming da = du = 1. More
specifically, analogously to [44], endowing A and U with a Reproducing Kernel Hilbert Space (RKHS)
structure and using kernel regression to identify the maps γ and χ, the approximated operator can
be written explicitly in closed form as

Ḡ(a)(x) = K(x,X)K(X ,X)−1

 N∑
j=1

S(ϕ(a), Aj)αj

 , (14)

where K is the kernel function induced by the RKHS structure of U , the vector

X = [x1,x2 . . .xn]
T ∈ Rn·d

contains the collocation points, and S : Rn × Rn → R is a properly chosen vector-valued kernel.
Moreover, K(·,X) : Ω → Rn is a row vector such that K(x,X)i = K(x,xi), and K(X ,X) is an n× n
matrix such that K(X ,X)ij = K(xi,xj). Since we deal with pointwise observation functions ϕ and φ,

K(x,X) computes the evaluation of the linear interpolant of points in X at x, whilst K(xi,xj) = δji .
Parameters {αj}Nj=1 ∈ Rn are the kernel regression parameters over the input/output training pairs.
From a computational standpoint, after selecting the scalar kernel S(·, ·) for the discrete vector spaces,
the problem reduces to solving n linear systems of size N in order to determine the different compo-
nents of each {αj}j : with a slight abuse of notation we call this matrix S(A,A) ∈ RN×N where each
entry is [S(A,A)]ij = S(Ai, Aj). To achieve this, we employ the Cholesky factorization of the matrix
and solve the resulting systems using standard substitution methods. Moreover, a regularization term
is introduced in the regression formulation, with a penalty parameter set to 10−10.
A key factor influencing the approximation and generalization properties of KOL methods is the
selection of the scalar kernel S. The optimal kernel function for kernel regression remains a subject
of ongoing debate and is application-dependent. For example, some novel approaches involve learning
kernels by simulating data-driven dynamical systems, enhancing the scalability of Kernel Regression
[28]. In this context, we present a few choices for S used in this study, with additional options available
in [44]. We note that the proposed kernel functions are specifically tailored for input functions that
represent stimuli, such as indicator functions. When working with smoother functions, it is necessary
to appropriately adjust the kernel functions based on the specific case at hand.

8

• Radial Basis Functions (RBF) kernel: S(A1, A2) = e−
∥cA1

− cA2
∥22

2σ2 , where cA∗ represents
the vector of coordinates of the centroid of non-zero elements of discrete observations in A∗. It
has the interpretation of a similarity measure and it decreases as long as the distance between
points increases. In the case of RBF kernel, Kernel Operator Learning has an explicit connection
with Gaussian Processes (GP) for regression tasks (see, e.g., [34]).

• Neural Tangent Kernel (NTK): Given a neural network regressor f(x; θ) of depth dnn, width
lnn and activation function σnn, with θnn denoting the vector collecting all weights and biases,
we define the family of finite-width Neural Tangent Kernels {S}τ>0 : Rn × Rn → R as

Sτ (Ai, Aj) := ⟨∂θnnf(Aj ; θnn(τ)), ∂θnnf(Ai; θnn(τ))⟩, (15)

where τ represents a fictitious iteration time. It has been proven that, if the initialization of the
weights follows the so-called NTK initialization [17], in the infinite-width limit each element in
the sequence {Sτ}τ converges in probability to a stationary kernel independently on τ , i.e.

Sτ (Ai, Aj) →
P
S(Ai, Aj), ∀ τ > 0, ∀Ai, Aj . (16)

Hence, the family of NTKs strictly depends on two parameters: activation function and depth
of the associated neural network. In this paper, with NTK we refer to the infinite-width limit
kernel function.

• Euclidean distance between centroids (IQ): S(A1, A2) =
1√

σ1∥cA1
− cA2

∥+σ2

, where, even

in this case, cA∗ is the vector of coordinates of the centroid of non-zero elements of discrete
observations in A∗. This kernel function is driven by the physics of the problem at stake,
estimating the distance between centroids of the activation region in Euclidean metrics.

Each of the kernel functions considered depends on specific hyperparameters that need to be tuned
for the given physical application, e.g. the variance for RBF kernels, the width and depth of NTK,
and the constants σ1, σ2 for the IQ kernel. A table summarizing the tuned hyperparameters for each
KOL scheme used in the 2D sensitivity analysis (see Section 3.2) is provided in Appendix B.

3 Numerical results

In this section we report the results of the numerical tests performed with FNO and KOL on three
different test cases for our problem: a 2D squared domain (Section 3.2), a 3D slab (Section 3.3) and
a realistic ventricle unstructured mesh (Section 3.4).

3.1 Dataset generation details

To construct the dataset for training operator learning models, we generate input excitations and the
corresponding solutions of the Monodomain model (2) discretized by Q1 finite elements, on quadri-
lateral grids for the 2D case and hexahedral grids for the 3D case (see Figure 4). The Monodomain
model is coupled with either the Rogers-McCulloch ionic model [31] for the 2D case or the Ten Tuss-
cher ionic model [36] for the 3D cases, in order to describe the transmembrane potential between the
intra- and extracellular domains. Activation and repolarization times are computed as postprocessing
of the Monodomain solutions. The applied excitation is defined as a fixed intensity pulse applied for
1ms over a random region of the domain. Regarding the diffusion parameters, we have considered
χ = Cm = 1, and Di = σ1n1n

T
1 + σ2n2n

T
2 + σ3n3n

T
3 , where the triplet {n1,n2,n3} represents the

fiber orientation. The conductivities employed in the various scenarios are chosen according to the
test cases outlined in [9]. For each training we consider an input dataset collecting electrical stimuli

9

Figure 4: Grids adopted for the numerical simulations: (a) 2D grid, (b) 3D slab and (c) 3D unstructed
ventricle.

(named iapps) and the corresponding output maps of activation times (named acti) and repolariza-
tion times (named repo). The name of each dataset is followed by the number of samples it contains,
where the repartition between training and testing dataset is 80%/20%. The datasets’ structure varies
depending on the spatial dimension, as detailed below:

• 2D case: we consider N different current stimuli in iapps in the form of N × 2 matrices,
collecting the (x, y) coordinates where each pulse is applied. For the basic case, activation and
repolarization times are two matrices named of size N × n2no, where nno is the number of dis-
cretization points per dimension (100 in our case). In this scenario, we have also considered
the case where the cardiac fibers modeled are rotated by 45° counterclockwise, and the corre-
sponding output maps of activation and repolarization times are called acti rot and repo rot,
respectively. The sizes of these datasets are the same of the basic case. In this case we assume
n1 = nx and n2 = ny, and a counterclockwise rotation of each direction for the rotated case.

• 3D slab: each stimulus is an N × nx × ny × nz binary tensor, where ones indicate pulse
application points. We consider nx = ny = 49 nodes in the x and y directions, nz = 9 nodes
in the z direction. The activation and repolarization outputs have the same shape of the pulse.
For the fiber direction we assume n1 = nx, n2 = ny and n3 = nz.

• 3D unstructured ventricle: the input stimuli areN×N×3 matrices, whereN is the number of
nonzero nodes in the unstructured mesh of the ventricle. Similarly, activation and repolarization
outputs are N × Nn × 3 tensors, with Nn being the total number of unstructured mesh nodes
(about 35k degrees of freedom). In this case we consider the fiber orientation extracted by the
physiological ventricle.

These structured and unstructured datasets provide diverse inputs for training operator learning
architectures. In order to evaluate accuracy performance of the trained OL schemes we compute the

10

generalization error as the discrete L2 relative error, namely,

L2
err =

1

Np

Np∑
n=1

∥yn
p − yn∥2
∥yn∥2

, (17)

where yn is the vector containing the ground truth evaluations of activation/repolarization maps at
the different points of the domain whilst yn

p is the corresponding vector of predictions. For the 3D
case representing a 3D ventricle, we remind that the Pearson dissimilarity coefficient P is defined as
P = 1−R, with

R =
Cov(Y, Yp)

σY σYp

. (18)

Here, Cov(Y, Yp) is the covariance between the ground truth of the tested samples and the predictions
as flattened vectors (respectively Y and Yp) and σY,Yp

is the standard deviation relative to the test
dataset or the predictions.

3.2 2D case

The experiments conducted on the 2D domain Ω = (0, 1)2 using both architectures provide insightful
observations on the model’s performance across different datasets, hyperparameters setup, and fiber
configurations. Figures 5 and 6 depict test samples reconstructed with FNO (top) and KOL (bottom)
for activation and repolarization times.
The FNO architecture employed comprises four Fourier layers with 16 Fourier modes along the x-axis
and 4 modes along the y-axis, with a total number of approximately 532k trainable parameters. In
Tables 1 and A1, results indicate that the use of a tailored learning rate reduction policy (reduce-
OnPlateau), where the learning rate is reduced by a factor of 0.95 whenever the test loss is not
decreasing, consistently outperforms training without such a policy. For instance, in the activation
dataset acti with 3000 samples, the test error is reduced from 2.82× 10−3 (no policy) to 2.66× 10−3

when the policy is applied. In the FNO results the uncertainty bands arise from considering different
trained architectures with various Kaiming normal initializations [12] of the trainable parameters.
The rotated fiber tests, where a 45° rotation of the myocytes is applied on the domain, generally show
larger test errors compared to their non-rotated counterparts with the same number of training samples
(cfr. Table A1 and A2). This observation suggests that the FNO architecture might be sensitive to the
structural alignment of input features. Moreover, we notice that increasing the dataset size improves
the performance, as evident in both activation and repolarization datasets. For activation tests with
2000 and 3000 samples, the test error drops, highlighting the benefit of having more training data
for learning the spatial features of the solution. In terms of computational efficiency, for FNO the
GPU memory consumption remained stable at approximately 5.6GB for 2000-sample datasets and
increased slightly to 5.79GB for 3000-sample datasets. Training times scaled proportionally with
dataset size, from 48 minutes for 2000 samples to 72 minutes for 3000 samples. We notice a general
low absolute error, with some areas for the activation case propagating orthogonally with respect to
level curves. This error distribution was observed also for the KOL case in Figure 5 (bottom, right),
but a theoretical explanation of such a pattern remains unknown. A more uniform pattern is observed
instead for the repolarization case.
We conducted a large number of numerical simulations using the same training and testing datasets
employed for FNO architectures to evaluate the performance of KOL (cfr. Tables 1, A2, and A3).
The primary objective of this sensitivity analysis was to assess the impact of kernel selection, a critical
factor that is highly problem-dependent and can significantly affect prediction quality.
From Tables A2 and A3, we observe that IQ kernel-based strategies yield generalization errors at
least two orders of magnitude lower than those using NTK or RBF. This improved performance
is attributed to the IQ kernel’s efficiency in computing correlations of compact support indicator
functions, which accurately represent activation regions. Notably, this advantage persists even when

11

FNO
with lr policy

reduceOnPlateau

Test Error Dataset (size) GPU
Memory

Training
Time

2.66E-03 ± 2.27E-04 acti (3000) 5.79GB 72 min

3.33E-03 ± 3.13E-04 acti rot (2000) 5.62GB 48 min

3.13E-03 ± 2.33E-04 repo (3000) 5.79GB 72 min

3.53E-03 ± 3.63E-04 repo rot (2000) 5.62GB 48 min

KOL
with iq4 kernel

Test Error Dataset (size) CPU
Memory

Training
Time

9.52E-04 acti (3000) 1.15GB 10 min

9.34E-04 acti rot (2000) 0.91GB 8 min

4.74E-04 repo (3000) 1.15GB 10 min

4.69E-04 repo rot (2000) 0.91GB 6 min

Table 1: Performance comparison of FNO (reduce-on-plateau learning rate policy) and KOL (iq4
kernel) methods on 2D datasets.

increasing the training set size for both activation and repolarization reconstructions. Additionally,
KOL exhibits sensitivity to structural alignments of input features. Specifically, tests with rotated
fibers achieve higher accuracy than unrotated counterparts. We observe that KOL significantly reduces
training times with respect to FNO, decreasing from thousands of seconds to just few hundreds, as it
requires solving a single symmetric, positive definite linear system rather than an iterative optimization
process. However, as training size increases, the system’s condition number rises which may impact
on testing performances. Therefore, in this case, the use of tailored preconditioning strategies is
crucial (cfr. [27, 33]). Regarding computational efficiency, CPU memory consumption scales with
training size but remains close to 1 GB. It is important to note that the accuracy and training time
improvements offered by KOL must be considered in light of the non-negligible time required for kernel
selection. Furthermore, we note that KOL, equipped with the chosen deterministic kernels, produces
fully deterministic predictions: therefore, unlike FNO, it does not exhibit uncertainty bands due to
hyperparameter initialization.

12

Test data

5

10

15

20

25

30

Prediction

5

10

15

20

25

30

Absolute error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Activation time

Test data

5

10

15

20

25

30

Prediction

5

10

15

20

25

30

Absolute error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Activation time

FNO

Test data

5

10

15

20

25

30

Prediction

5

10

15

20

25

30

Absolute error

0.05

0.10

0.15

0.20

0.25

Activation time

KOL

Figure 5: Comparison of FNO (top) and KOL (bottom) activation time predictions for the 2D case
(acti with 2000 samples).

Test data

105

110

115

120

125

Prediction

100

105

110

115

120

125

Absolute error

0.2

0.4

0.6

0.8

1.0

Repolarization time

Test data

105

110

115

120

125

Prediction

100

105

110

115

120

125

Absolute error

0.2

0.4

0.6

0.8

1.0

Repolarization time

FNO

Test data

105

110

115

120

125

Prediction

105

110

115

120

125

Absolute error

0.02

0.04

0.06

0.08

Repolarization time

KOL

Figure 6: Comparison of FNO (top) and KOL (bottom) repolarization time predictions for the 2D
case (repo with 2000 samples).

13

3.3 3D slab

Additional experiments conducted on a 3D slab in (0, 1)3 have been conducted using the two operator
learning approaches discussed. As will be shown, the performance of FNO and KOL remained robust
despite the increased dimensionality of this test case. The architecture employed for FNO comprises
four Fourier layers with 16 Fourier modes along the x-axis, 8 along the y-axis and 4 along the z-
axis, resulting in approximately 8.4 million trainable parameters. Given the improved performance
observed for the 2D case, all experiments used the reduceOnPlateau learning rate policy, where
the learning rate decreases upon stagnation of the validation loss. Instead, we endow KOL with
iq4 kernel (cfr. Table B5) following the sensitivity analysis of the 2D case. In Table 2, the results
indicate that increasing the dataset size significantly enhances prediction accuracy for both models.
For the activation dataset, the FNO test error decreased from 4.15 × 10−2 to 3.27 × 10−2 when the
sample size increased from 1000 to 2000. A similar trend is observed for repolarization, where the test
error dropped from 8.46 × 10−3 to 6.91 × 10−3. Conversely, KOL exhibits the opposite behavior: as
the dataset size grows, the conditioning number of the SDP system increases, and, therefore testing
error increases (e.g. from 5.33 × 10−3 at 1000 dataset size to 6.19 × 10−3 at 2000 dataset size for
repolarization). Nonetheless, test errors for KOL remain consistently lower than those of FNO in
both activation and repolarization cases. However, as reported in Figure 12, most of the test data
predictions for the acti 2000 dataset are distributed under 1% of the relative L2 error, despite
having around 3.5% of the data as outliers for the FNO case. Similar results are obtained for KOL
in Figure 13. For the repo 2000 dataset the reader can refer to Figures 16-17. In Figure 11 we have
also reported the training and test loss decaying plot for FNO.
Compared to 2D tests, computational costs rise substantially in 3D. For FNO, GPU memory con-
sumption increased from 13.66GB (1000 samples) to 14.09GB (2000 samples), whereas KOL required
1.67GB and 2.56GB, respectively. Training times scaled linearly for both models, with FNO requiring
94 minutes for 1000 samples and 188 minutes for 2000, while KOL completed training in 211 seconds
and 427 seconds for the same dataset sizes. Figures 7, 8, 9 and 10 illustrate activation and repo-
larization time predictions for both models, along with the corresponding high fidelity solutions and
absolute errors across three slices of the slab domain representing the endocardium, epicardium and
the intermediate slice. The applied stimulus belongs to the epicardium surface for the reconstruc-
tion of activation times, whilst it belongs to an intermediate sheet between the endocardium and the
middle of the slab for the repolarization case. In both cases, prediction error increases as far as the
distance from applied stimuli increase. While FNO exhibits a nearly uniform absolute error distri-
bution slightly higher than in the 2D case, KOL’s errors tend to be concentrated near the activation
region and propagate orthogonally to the level curves of the activation (or repolarization) times.

3.4 3D unstructured ventricle

In the last test case considered, we solved our problem on an unstructured mesh representing a
human ventricle, which consists of approximately 35k degrees of freedom. In this case, the FNO
was adapted to handle irregular domains. In particular, we implemented a Non-Uniform Discrete
Fourier Transform (NUDFT) following the approach presented in [24]. On the other hand, KOL
did not require any specific modifications to operate in this unstructured setting. Since the input is
defined on an unstructured grid, we modified its representation accordingly. Specifically, each dataset
consists of N samples, where each sample corresponds to a vector of size Nnodes with binary values:
a value of 1 at a given node indicates the presence of an external stimulus, while 0 represents the
absence of stimulation. Given that all stimuli have the same pulse intensity and duration, the input
applied current was reformulated as a matrix of dimension N ×Nstim × 3, where Nstim represents the
maximum number of stimulated nodes across all samples, with padding applied where necessary. The
numerical solutions for the activation and the repolarization times were structured as tensors of size
N ×Nnodes × 3, capturing the time evolution of the solution on the unstructured mesh.
The results in Table 3 provide insights into the performance of FNO and KOL on this complex domain.

14

FNO
with lr policy

reduceOnPlateau

Test Error Dataset (size) GPU
Memory

Training
Time

4.15E-02 ± 2.02E-03 acti (1000) 13.66GB 94 min

3.27E-02 ± 5.86E-04 acti (2000) 14.09GB 188 min

8.46E-03 ± 6.51E-04 repo (1000) 13.66GB 94 min

6.91E-03 ± 3.44E-04 repo (2000) 14.09GB 188 min

KOL
with iq4 kernel

Test Error Dataset (size) CPU
Memory

Training
Time

1.67E-02 acti (1000) 1.67GB 3 min

1.82E-02 acti (2000) 2.56GB 7 min

5.33E-03 repo (1000) 1.67GB 3 min

6.19E-03 repo (2000) 2.56GB 7 min

Table 2: Performance comparison of FNO and KOL methods on 3D datasets.

Ep
i

Test Data Prediction Absolute Error

M
id

En
do

20

40

60

80

20

40

60

80

0.5

1.0

1.5

20

40

60

80

20

40

60

80

0.5

1.0

1.5

2.0

20

40

60

20

40

60

0.5

1.0

Activation time

Figure 7: Example of FNO activation time prediction for the 3D case (acti with 2000 samples). The
picture represents three slices of tissue: epicardium (top), middle (center) and endocardium (bottom).

15

Ep
i

Test Data Prediction Absolute Error

M
id

En
do

300

320

340

360

300

320

340

360

0.5

1.0

1.5

300

320

340

360

300

320

340

360

0.5

1.0

300

320

340

300

320

340

0.5

1.0

1.5

Repolarization time

Figure 8: Example of FNO repolarization time prediction for the 3D case (repo with 2000 samples).
The picture represents three slices of tissue: epicardium (top), middle (center) and endocardium
(bottom).

16

Ep
i

Test Data Prediction Absolute Error

M
id

En
do

20

40

60

80

20

40

60

80

0.2

0.4

0.6

0.8

20

40

60

80

20

40

60

80

0.25

0.50

0.75

1.00

20

40

60

20

40

60

0.2

0.4

0.6

0.8

Activation time

Figure 9: Example of KOL activation time prediction for the 3D case (acti with 2000 samples). The
picture represents three slices of tissue: epicardium (top), middle (center) and endocardium (bottom).

17

Ep
i

Test Data Prediction Absolute Error

M
id

En
do

300

320

340

360

300

320

340

360

0.25

0.50

0.75

1.00

300

320

340

360

300

320

340

360

0.25

0.50

0.75

1.00

300

320

340

300

320

340

0.25

0.50

0.75

1.00

Repolarization time

Figure 10: Example of KOL repolarization time prediction for the 3D case (repo with 2000 samples).
The picture represents three slices of tissue: epicardium (top), middle (center) and endocardium
(bottom).

0 1000 2000 3000 4000
Epoch

10−2

10−1

100

Train Loss mean
Test Loss mean

Figure 11: FNO loss plot for the 3D case (acti 2000 dataset). Mean train and test loss of three
different randomly initialized models (dashed line). Standard deviation over the three models for each
epoch is also reported (light shadow).

18

Train Test

0.005

0.010

0.015

0.020

0.025

Re
la

tiv
e

L2
 E

rro
r

(a) FNO box plot.

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Relative L2 Error

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

3.0% train data > 4%
3.5% test data > 4%
Train Median = 0.011
Test Median = 0.011

(b) FNO histogram.

Figure 12: FNO box plot and histogram for the 3D dataset acti2000 relative to the best model
trained (outliers not shown). For the training set, 3% of the data have a relative L2 error greater than
4%, while for the test set, 3.5% of the data exceed this threshold.

Test
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e

L2
 E

rro
r

(a) KOL box plot.

0.00 0.02 0.04 0.06 0.08
Relative L2 Error

0

20

40

60

80

100

Fr
eq

ue
nc

y

1.5% test data > 10%
Test Median = 0.027

(b) KOL histogram.

Figure 13: KOL box plot and histogram for 3D dataset acti 2000 relative to the best model trained
(outliers not shown). Training results are not shown since we achieve machine precision. For the test
set, 1.5% of the data have a relative L2 error greater than 10%.

19

FNO
with lr policy

reduceOnPlateau

Test Error Dataset (size) GPU
Memory

Training
Time

Testing
Time

Pearson
(test)

7.15E-02 ± 9.84E-03 acti (2000) 6.13GB 80 min 8.5E-03 sec 4.3E-03

4.86E-02 ± 1.26E-02 repo (2000) 6.15GB 84 min 9.7E-03 sec 3.6E-03

KOL
with iq4 kernel

Test Error Dataset (size) CPU
Memory

Training
Time

Testing
Time

Pearson
(test)

1.22E-02 acti (2000) 1.33GB 5 min 5.6E-02 sec 7.63E-05

5.29E-03 repo (2000) 1.34GB 5 min 6.0E-02 sec 7.64E-05

Table 3: Performance comparison of KOL on 3D unstructured datasets. Time single prediction test
performed on a machine equipped with chip Apple M1 Pro.

The FNO architecture employed consisted of Fourier layers with four Fourier modes in each spatial
direction (x, y, and z), leading to trainable parameters ranging between 10.8M and 11.3M. We applied
a reduceOnPlateau learning rate policy, as it consistently yielded better predictions in previous tests
by dynamically adjusting the learning rate when the test loss plateaued. The architecture’s depth and
width also influenced performance. Notably, for N = 2000, increasing the model width from 2 to 16
substantially improved accuracy, reducing the test error from 1.44 × 10−1 to 7.18 × 10−2. However,
beyond a certain point, further increases in width did not yield significant improvements, with test
errors fluctuating for widths above 32. Similarly, deeper architectures (L > 1) did not always lead
to better performance, indicating that an optimal hyperparameters selection is crucial for balancing
expressivity and generalization. In Table 2 we reported the most accurate performances of FNOs
obtained considering L = 3.
Also in this case, KOL (endowed with iq4 kernel) significantly outperforms FNO in terms of test error,
achieving a test error as low as 5.29× 10−3 on the repolarization dataset for N = 2000, compared to
FNO’s 4.86 × 10−2. The difference is even more pronounced for the activation dataset, where KOL
attains a test error of 1.22 × 10−2, while FNO’s best result remains at 7.15 × 10−2. Additionally,
KOL exhibits lower Pearson dissimilarity values, indicating a better linear correlation between the
ground truth test data and the corresponding predictions. Solutions for a specific test case, for both
activation and repolarization, are shown in Figures 14 and 15. The absolute error plots highlight the
lower error achieved by KOL, with a maximum absolute error of 4 ms, compared to larger regions
reaching approximately 8.6 ms in the FNO case. However, both architectures successfully captured
the qualitative distribution of activation and repolarization times.
Computationally, FNO has an advantage in terms of inference time. A single prediction with FNO
on the larger dataset, consisting of 2000 samples with 1600 for training and 400 for testing, takes
approximately 8.5 ms, whereas KOL requires 56 ms for the same task. Both methods outperform the
solution of a single Monodomain model implemented using the PETSc library [3] on a node equipped
with an Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz and two Nvidia H100 GPUs, which requires
about 4 minutes on 2 cores with GPU acceleration. In order to have a fair comparison from a user’s
point of view, we have performed the single prediction timing tests on an laptop equipped with an
Apple M1 Pro chip, while the trainings have been performed on a machine equipped with an NVIDIA
Quadro RTX 5000 GPU for FNO, while on an Intel i7 machine for KOL.
Furthermore, in this case training KOL is significantly faster than FNO, requiring only a few minutes
compared to FNO’s training time, which ranges from 58 to 84 minutes depending on the configuration.
KOL is also much more memory efficient, using just over 1GB of CPU memory, compared to FNO’s
GPU memory consumption of around 6.1GB. These results suggest that KOL is lighter, faster and
more accurate than FNO, even though we expect the latter to be more time-efficient when predicting
a large number of occurrences is required.

20

(a) Activation

(b) Repolarization

Figure 14: Example of FNO predictions for the 3D unstructured case: (a) Activation times (acti
2000), (b) Repolarization times (repo 2000).

21

(a) Activation

(b) Repolarization

Figure 15: Example of KOL predictions for the 3D unstructured case: (a) Activation times (acti
2000), (b) Repolarization times (repo 2000).

4 Conclusions

In this study, we developed and formalized operator learning approaches to reconstruct activation and
repolarization times in cardiac tissue, given an input activation region corresponding to electrically
stimulated cells. This problem is particularly significant for clinicians, as utilizing computational archi-
tectures for patient-specific simulations can improve clinical decision-making. Although activation and
repolarization times can be derived from PDE-based models, simulating these processes entails solving
large-scale systems, resulting in high computational costs. For this purpose, we adapted and evaluated
two operator learning strategies: Fourier Neural Operators (FNO), based on the convolution theorem
for the Fourier transform, and Kernel Operator Learning (KOL), based on kernel regression. These

22

trained operator learning techniques yield accurate and computationally efficient approximations of
the target maps when evaluated on new samples. Notably, in the repolarization case, we successfully
approximated an operator map for which no corresponding PDE model is currently available. Training
data were generated by solving the monodomain model with spatial randomly distributed pulses with
different ionic models using finite element method on 2D and 3D structured meshes, as well as on a
physiologically realistic left ventricle. Both methods demonstrated robust and accurate performance
(with errors generally below 1%) while significantly reducing computational costs compared to clas-
sical FEM-based simulations in a high number of evaluations. Additionally, a systematic sensitivity
analysis was conducted for the 2D case to assess hyperparameter dependence of both architectures.
Our numerical experiments demonstrate that KOL outperforms FNO in terms of accuracy and training
time, even in the challenging case of 3D unstructured meshes. However, the computational gains of
KOL are partially offset by the significant cost associated with kernel selection, which may pose a
limitation. This latter problem may be mitigated by choosing the kernel adaptively, e.g. relying on
the so called parametric Kernel Flows approaches [28]. Additionally, our results validate the feasibility
of applying FNO to unstructured cardiac meshes, provided that suitable architectural modifications
are implemented to accommodate non-uniform data structures. Finally, while KOL offers superior
accuracy, it comes at the expense of an increased inference time compared to the FNO counterpart.
Hence, FNO can be the eligible choice for very high number of validation data.

Acknowledgments

EC, NP, LP, SS, MV and GZ are members of INdAM-GNCS. EC and LFP have been supported
by MUR (PRIN 202232A8AN 002 and PRIN P2022B38NR 001) funded by European Union - Next
Generation EU. SS and GZ have been supported by MUR (PRIN 202232A8AN 003 and PRIN
P2022B38NR 002) funded by European Union - Next Generation EU.

23

A Extended Tables

In this section we report the extended version of the tables presented in Sec. 3.

F
N
O

Test Error Dataset (size) lr policy GPU
Memory

Training
Time

3.33E-03 ± 8.41E-05 acti (2000)

reduceOnPlateau

5.62GB 48 min

2.66E-03 ± 2.27E-04 acti (3000) 5.79GB 72 min

3.33E-03 ± 3.13E-04 acti rot (2000) 5.62GB 48 min

3.64E-03 ± 9.13E-04 repo (2000) 5.62GB 48 min

3.13E-03 ± 2.33E-04 repo (3000) 5.79GB 72 min

3.53E-03 ± 3.63E-04 repo rot (2000) 5.62GB 48 min

3.80E-03 ± 1.45E-04 acti (2000)

None

5.69GB 48 min

2.82E-03 ± 2.28E-04 acti (3000) 5.79GB 72 min

3.77E-03 ± 9.65E-04 acti rot (2000) 5.62GB 48 min

3.40E-03 ± 5.77E-05 repo (2000) 5.62GB 48 min

3.53E-03 ± 3.32E-04 repo (3000) 5.79GB 72 min

4.16E-03 ± 4.04E-05 repo rot (2000) 5.62GB 48 min

Table A1: Performance comparison of FNO on 2D datasets.

24

K
O
L

Test Error Dataset (size) Kernel (iq) CPU
Memory

Training
Time

9.33E-04 acti rot (2000) iq-1 0.91GB 476 sec

9.35E-04 acti rot (2000) iq-2 0.92GB 517 sec

9.39E-04 acti rot (2000) iq-3 0.91GB 517 sec

9.34E-04 acti rot (2000) iq-4 0.91GB 459 sec

1.15E-03 acti rot (2000) iq-5 0.97GB 477 sec

1.19E-01 acti rot (2000) ntk-1 0.97GB 660 sec

1.41E-01 acti rot (2000) ntk-2 0.97GB 691 sec

1.42E-01 acti rot (2000) ntk-3 0.97GB 687 sec

1.73E-01 acti rot (2000) rbf-1 0.92GB 93 sec

1.19E-01 acti rot (2000) rbf-2 0.92GB 92 sec

1.18E-01 acti rot (2000) rbf-3 0.92GB 89 sec

1.07E-03 acti (2000) iq-1 0.91GB 444 sec

1.08E-03 acti (2000) iq-2 0.91GB 451 sec

1.09E-03 acti (2000) iq-3 0.92GB 442 sec

1.08E-03 acti (2000) iq-4 0.92GB 448 sec

1.38E-03 acti (2000) iq-5 0.91GB 448 sec

1.31E-01 acti (2000) ntk-1 0.97GB 656 sec

1.54E-01 acti (2000) ntk-2 0.97GB 652 sec

1.55E-01 acti (2000) ntk-3 0.97GB 636 sec

1.86E-01 acti (2000) rbf-1 0.92GB 82 sec

1.31E-01 acti (2000) rbf-2 0.92GB 80 sec

1.30E-01 acti (2000) rbf-3 0.92GB 80 sec

9.51E-04 acti (3000) iq-1 1.15GB 613 sec

9.53E-04 acti (3000) iq-2 1.15GB 609 sec

9.54E-04 acti (3000) iq-3 1.15GB 616 sec

9.52E-04 acti (3000) iq-4 1.15GB 611 sec

1.11E-03 acti (3000) iq-5 1.15GB 611 sec

1.28E-01 acti (3000) ntk-1 1.20GB 979 sec

1.52E-01 acti (3000) ntk-2 1.20GB 980 sec

1.51E-01 acti (3000) ntk-3 1.20GB 1007 sec

1.83E-01 acti (3000) rbf-1 1.18GB 117 sec

1.28E-01 acti (3000) rbf-2 1.15GB 125 sec

1.27E-01 acti (3000) rbf-3 1.15GB 127 sec

Table A2: Performance comparison of KOL on 2D datasets for reconstructing activation maps.

25

K
O
L

Test Error Dataset (size) Kernel (iq) CPU
Memory

Training
Time

4.69E-04 repo rot (2000) iq-1 0.91GB 418 sec

4.67E-04 repo rot (2000) iq-2 0.91GB 389 sec

4.69E-04 repo rot (2000) iq-3 0.92GB 389 sec

4.69E-04 repo rot (2000) iq-4 0.91GB 393 sec

6.72E-04 repo rot (2000) iq-5 0.91GB 397 sec

5.95E-02 repo rot (2000) ntk-1 0.97GB 575 sec

7.02E-02 repo rot (2000) ntk-2 0.97GB 571 sec

6.98E-02 repo rot (2000) ntk-3 0.97GB 565 sec

8.33E-02 repo rot (2000) rbf-1 0.92GB 72 sec

5.93E-02 repo rot (2000) rbf-2 0.92GB 71 sec

5.91E-02 repo rot (2000) rbf-3 0.92GB 72 sec

4.93E-04 repo (2000) iq-1 0.91GB 408 sec

4.92E-04 repo (2000) iq-2 0.91GB 450 sec

5.19E-04 repo (2000) iq-3 0.91GB 473 sec

4.93E-04 repo (2000) iq-4 0.91GB 473 sec

7.82E-04 repo (2000) iq-5 0.92GB 414 sec

6.49E-02 repo (2000) ntk-1 0.97GB 595 sec

7.64E-02 repo (2000) ntk-2 0.97GB 632 sec

7.61E-02 repo (2000) ntk-3 0.97GB 622 sec

9.01E-02 repo (2000) rbf-1 0.92GB 74 sec

6.47E-02 repo (2000) rbf-2 0.92GB 76 sec

6.44E-02 repo (2000) rbf-3 0.92GB 90 sec

4.74E-04 repo (3000) iq-1 1.15GB 592 sec

4.72E-04 repo (3000) iq-2 1.15GB 576 sec

4.97E-04 repo (3000) iq-3 1.15GB 574 sec

4.74E-04 repo (3000) iq-4 1.15GB 582 sec

7.19E-04 repo (3000) iq-5 1.15GB 573 sec

6.20E-02 repo (3000) ntk-1 1.20GB 1064 sec

7.39E-02 repo (3000) ntk-2 1.20GB 1007 sec

7.34E-02 repo (3000) ntk-3 1.20GB 987 sec

8.77E-02 repo (3000) rbf-1 1.15GB 120 sec

6.19E-02 repo (3000) rbf-2 1.15GB 117 sec

6.16E-02 repo (3000) rbf-3 1.15GB 117 sec

Table A3: Performance comparison of KOL on 2D datasets for reconstructing repolarization maps.

26

Test Error Dataset (size) L width parameters GPU
Memory

Training
Time

Testing
Time

Pearson
(test)

1.49E-01 ± 3.43E-02
acti (1000)

3 32 10.9M 6.06GB 58 min 9.4E-03 sec 2.3E-02

1.27E-01 ± 1.46E-03 4 32 10.9M 6.07GB 59 min 1.0E-02 sec 2.6E-02

1.44E-01 ± 2.30E-02

acti (2000)

1 2 10.8M 6.12GB 81 min 8.6E-03 sec 2.6E-02

7.93E-02 ± 6.44E-03 1 4 10.8M 6.12GB 80 min 8.3E-03 sec 9.7E-03

7.63E-02 ± 1.97E-03 1 8 10.8M 6.12GB 81 min 8.3E-03 sec 9.2E-03

7.18E-02 ± 4.03E-03 1 16 10.9M 6.13GB 79 min 8.4E-03 sec 6.8E-03

8.81E-02 ± 2.56E-02 3 32 11.0M 6.15GB 83 min 9.5E-03 sec 2.3E-02

1.14E-01 ± 1.72E-02 2 32 10.9M 6.14GB 82 min 8.9E-03 sec 1.1E-02

7.15E-02 ± 9.84E-03 1 32 10.9M 6.13GB 80 min 8.5E-03 sec 4.3E-03

1.07E-01 ± 2.57E-02 1 64 11.0M 6.14GB 80 min 8.5E-03 sec 2.8E-02

1.49E-01 ± 1.12E-02 1 128 11.3M 6.17GB 81 min 9.4E-03 sec 3.3E-02

4.86E-02 ± 1.26E-02 repo (2000) 3 32 10.9M 6.15GB 84 min 9.7E-03 sec 3.6E-03

Table A4: Performance comparison of FNO on 3D unstructured datasets. Time single prediction test
performed on a machine equipped with chip Apple M1 Pro.

B Nomenclature of kernels for KOL

Name Kernel
Type

σ dnn Activation
Function

σ1 σ2

iq1 IQ / / / 1E-5 1E-2

iq2 IQ / / / 1E-5 1E-1

iq3 IQ / / / 1E-4 1E-2

iq4 IQ / / / 1E-4 1E-1

iq5 IQ / / / 1E-3 1E-2

rbf1 RBF 1 / / / /

rbf2 RBF 10 / / / /

rbf3 RBF 100 / / / /

ntk1 NTK / 3 Sigmoid / /

ntk2 NTK / 4 Sigmoid / /

ntk3 NTK / 3 ReLu / /

Table B5: Nomenclature of kernel functions tested for KOL.

References

[1] Africa, Pasquale Claudio. lifex: A flexible, high performance library for the numerical solution of
complex finite element problems. SoftwareX 20 (2022): 101252.

[2] Anderson, Mark E., Sana M. Al-Khatib, Dan M. Roden, Robert M. Califf, and Duke Clinical
Research Institute. Cardiac repolarization: current knowledge, critical gaps, and new approaches
to drug development and patient management. American heart journal 144, no. 5 (2002): 769-781.

27

Train Test
0.001

0.002

0.003

0.004

0.005

0.006

0.007
Re

la
tiv

e
L2

 E
rro

r

(a) FNO box plot.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Relative L2 Error

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

0.1% train data > 4%
0.0% test data > 4%
Train Median = 0.004
Test Median = 0.004

(b) FNO histogram.

Figure 16: FNO box plot and histogram for 3D dataset repo 2000 relative to the best model trained
(outliers not shown). For the training set, 0.1% of the data have a relative L2 error greater than 4%,
while for the test set no data exceed this threshold.

Test
0.000

0.005

0.010

0.015

0.020

0.025

Re
la

tiv
e

L2
 E

rro
r

(a) KOL box plot.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Relative L2 Error

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

8.0% test data > 4%
Test Median = 0.008

(b) KOL histogram.

Figure 17: KOL box plot and histogram for 3D dataset repo 2000 relative to the best model trained
(outliers not shown). Training results are not shown since we achieve machine precision. For the test
set, 8% of the data have a relative L2 error greater than 4%.

28

[3] Balay, Satish, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin et al. PETSc users manual. (2019).

[4] Batlle, Pau, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are com-
petitive for operator learning. Journal of Computational Physics 496 (2024): 112549.

[5] Bucelli, Michele. The lifex library version 2.0. arXiv preprint arXiv:2411.19624 (2024).

[6] Centofanti, Edoardo, and Simone Scacchi. A comparison of Algebraic Multigrid Bidomain solvers
on hybrid CPU–GPU architectures. Computer Methods in Applied Mechanics and Engineering
423 (2024): 116875.

[7] Centofanti, Edoardo, Massimiliano Ghiotto, and Luca F. Pavarino. Learning the Hodgkin–Huxley
model with operator learning techniques. Computer Methods in Applied Mechanics and Engineer-
ing 432 (2024): 117381.

[8] Clayton, R. H., Olivier Bernus, E. M. Cherry, Hans Dierckx, Flavio H. Fenton, Lucia Mirabella,
Alexander V. Panfilov, Frank B. Sachse, Gunnar Seemann, and H. Zhang. Models of cardiac tissue
electrophysiology: progress, challenges and open questions. Progress in biophysics and molecular
biology 104, no. 1-3 (2011): 22-48.

[9] Colli Franzone, Piero, Luca F. Pavarino, and Simone Scacchi. Mathematical Cardiac Electro-
physiology. Vol. 13. Springer, 2014.

[10] Colli Franzone, P., Luciano Guerri, and Sergio Rovida. Wavefront propagation in an activation
model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. Journal
of mathematical biology 28 (1990): 121-176.

[11] Coronel, Ruben, Francien JG Wilms-Schopman, Tobias Opthof, and Michiel J. Janse. Dispersion
of repolarization and arrhythmogenesis. Heart Rhythm 6, no. 4 (2009): 537-543.

[12] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034. 2015.

[13] FitzHugh, Richard. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical journal 1, no. 6 (1961): 445-466.

[14] Fresca, Stefania, Andrea Manzoni, Luca Dedè, and Alfio Quarteroni. Deep learning-based reduced
order models in cardiac electrophysiology. PloS one 15, no. 10 (2020): e0239416.

[15] Goswami, Somdatta, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods in
Applied Mechanics and Engineering 391 (2022): 114587.

[16] Izhikevich, Eugene M., and Richard FitzHugh. Fitzhugh-nagumo model. Scholarpedia 1, no. 9
(2006): 1349.

[17] Jacot, Arthur, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems 31 (2018).

[18] Keener, J. P., and James Sneyd. Mathematical physiology 1: Cellular physiology. (2009).

[19] Keener, James P. An eikonal-curvature equation for action potential propagation in myocardium.
Journal of mathematical biology 29.7 (1991): 629-651.

29

[20] Kissas, Georgios, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John A. Detre, and Paris
Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure
from non-invasive 4D flow MRI data using physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering 358 (2020): 112623.

[21] Kovachki, Nikola, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and
error bounds for Fourier neural operators. The Journal of Machine Learning Research 22, no. 1
(2021): 13237-13312.

[22] Kovachki, Nikola, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to PDEs. Journal of Machine Learning Research 24, no. 89 (2023):
1-97.

[23] Li, Zongyi, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar, Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895 (2020).

[24] Lingsch, Levi, Mike Y. Michelis, Emmanuel de Bezenac, Sirani M. Perera, Robert K.
Katzschmann, and Siddhartha Mishra. Beyond Regular Grids: Fourier-Based Neural Operators
on Arbitrary Domains. arXiv preprint arXiv:2305.19663 (2023).

[25] Lu, Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature machine intelligence 3, no. 3 (2021): 218-229.

[26] Lu, Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering
393 (2022): 114778.

[27] Meanti, Giacomo, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi. Kernel methods
through the roof: handling billions of points efficiently. Advances in Neural Information Pro-
cessing Systems 33 (2020): 14410-14422.

[28] Owhadi, Houman, and Gene Ryan Yoo. Kernel flows: From learning kernels from data into the
abyss. Journal of Computational Physics 389 (2019): 22-47.

[29] Regazzoni, Francesco, Luca Dedè, and Alfio Quarteroni. Machine learning of multiscale active
force generation models for the efficient simulation of cardiac electromechanics. Computer Meth-
ods in Applied Mechanics and Engineering 370 (2020): 113268.

[30] Regazzoni, Francesco, Stefano Pagani, Matteo Salvador, Luca Dedè, and Alfio Quarteroni. Learn-
ing the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks. Na-
ture Communications 15, no. 1 (2024): 1834.

[31] Rogers, Jack M., and Andrew D. McCulloch. A collocation-Galerkin finite element model of
cardiac action potential propagation. IEEE Transactions on Biomedical Engineering 41, no. 8
(1994): 743-757.

[32] Santiago, Alfonso, Jazmı́n Aguado-Sierra, Miguel Zavala-Aké, Ruben Doste-Beltran, Samuel
Gómez, Ruth Aŕıs, Juan C. Cajas, Eva Casoni, and Mariano Vázquez. Fully coupled fluid-electro-
mechanical model of the human heart for supercomputers. International journal for numerical
methods in biomedical engineering 34, no. 12 (2018): e3140.

[33] Shi, Lei, and Zihan Zhang. Iterative kernel regression with preconditioning. Analysis and Appli-
cations 22, no. 06 (2024): 1095-1131.

30

[34] Smola, Alex J., Bernhard Schölkopf, and Klaus-Robert Müller. The connection between regular-
ization operators and support vector kernels. Neural networks 11.4 (1998): 637-649.

[35] Sundnes, Joakim, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-Andre Mardal, and
Aslak Tveito. Computing the electrical activity in the heart. Springer Science & Business Media
1. (2007).

[36] Ten Tusscher, Kirsten HWJ, Denis Noble, Peter-John Noble, and Alexander V. Panfilov. A model
for human ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology
286, no. 4 (2004): H1573-H1589.

[37] Tenderini, Riccardo, Stefano Pagani, Alfio Quarteroni, and Simone Deparis. PDE-aware deep
learning for inverse problems in cardiac electrophysiology. SIAM Journal on Scientific Computing
44, no. 3 (2022): B605-B639.

[38] Trayanova, Natalia A., Dan M. Popescu, and Julie K. Shade. Machine learning in arrhythmia
and electrophysiology. Circulation research 128, no. 4 (2021): 544-566.

[39] Trayanova, N. A., Lyon, A., Shade, J., and Heijman, J. Computational modeling of cardiac elec-
trophysiology and arrhythmogenesis: toward clinical translation. Physiological reviews, 104(3),
1265-1333 (2024).

[40] Tripura, Tapas, and Souvik Chakraborty. Wavelet neural operator for solving parametric par-
tial differential equations in computational mechanics problems. Computer Methods in Applied
Mechanics and Engineering 404 (2023): 115783.

[41] Varró, András, and István Baczkó. Cardiac ventricular repolarization reserve: a principle for
understanding drug-related proarrhythmic risk. British journal of pharmacology 164, no. 1 (2011):
14-36.

[42] Vergara, Christian, Matthias Lange, Simone Palamara, Toni Lassila, Alejandro F. Frangi, and
Alfio Quarteroni. A coupled 3D–1D numerical monodomain solver for cardiac electrical activation
in the myocardium with detailed Purkinje network. Journal of Computational Physics 308 (2016):
218-238.

[43] Vergara, Christian, Simone Stella, Massimiliano Maines, Pasquale Claudio Africa, Domenico
Catanzariti, Cristina Demattè, Maurizio Centonze, Fabio Nobile, Alfio Quarteroni, and Maurizio
Del Greco. Computational electrophysiology of the coronary sinus branches based on electro-
anatomical mapping for the prediction of the latest activated region. Medical & Biological Engi-
neering & Computing 60, no. 8 (2022): 2307-2319.

[44] Ziarelli, Giovanni, Nicola Parolini and Marco Verani. Learning epidemic trajectories through
Kernel Operator Learning: from modelling to optimal control. Numerical Mathematics: Theory,
Methods and Applications (2025): 104208.

31

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

27/2025 Antonietti P.F.; Artoni, A.; Ciaramella, G.; Mazzieri, I.

A review of discontinuous Galerkin time-stepping methods for wave propagation problems

28/2025 Ciaramella, G.; Gander, M.J.; Mazzieri, I.

Discontinuous Galerkin time integration for second-order differential problems: formulations,

analysis, and analogies

24/2025 Bartsch, J.; Borzi, A.; Ciaramella, G.; Reichle, J.

Adjoint-based optimal control of jump-diffusion processes

22/2025 Leimer Saglio, C. B.; Pagani, S.; Antonietti P. F.

A p-adaptive polytopal discontinuous Galerkin method for high-order

approximation of brain electrophysiology

23/2025 Antonietti, P. F.; Caldana, M.; Mazzieri, I.; Re Fraschini, A.

MAGNET: an open-source library for mesh agglomeration by Graph Neural Networks

21/2025 Caldera, L., Masci, C., Cappozzo, A., Forlani, M., Antonelli, B., Leoni, O., Ieva, F.

Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel

Multilevel logistic cluster-weighted modeling approach

20/2025 Botti, M.; Prada, D.; Scotti, A.; Visinoni, M.

Fully-Mixed Virtual Element Method for the Biot Problem

19/2025 Bortolotti, T.; Wang, Y. X. R.; Tong, X.; Menafoglio, A.; Vantini, S.; Sesia, M.

Noise-Adaptive Conformal Classification with Marginal Coverage

Bortolotti, T.; Wang, Y. X. R.; Tong X.; Menafoglio, A.; Vantini, S.; Sesia, M.

Noise-Adaptive Conformal Classification with Marginal Coverage

18/2025 Antonietti, P.F.; Corti, M.; Gómez, S.; Perugia, I.

A structure-preserving LDG discretization of the Fisher-Kolmogorov equation for modeling

neurodegenerative diseases

	qmox29-copertina
	mox-2025518115919
	qmox29-terza_di_copertina

