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*Corresponding author(s). E-mail(s): laura.sangalli@polimi.it;
Contributing authors: alessandro.palummo@polimi.it;
eleonora.arnone@unito.it; luca.formaggia@polimi.it;

Abstract

Environmental signals, acquired, e.g., by remote sensing, often present large gaps
of missing observations in space and time. In this work, we present an innovative
approach to identify the main variability patterns, in space-time data, when data
may be affected by complex missing data structures. We formalise the problem in
the framework of Functional Data Analysis, proposing an innovative method of
functional Principal Component Analysis (fPCA) for incomplete space-time data.
The functional nature of the proposed method permits to borrow information
from measurements observed at nearby spatio-temporal locations. The resulting
functional principal components are smooth fields over the considered spatio-
temporal domain, and can lead to interesting insights in the spatio-temporal
dynamic of the phenomenon under study. Moreover, they can be used to provide a
reconstruction of the missing entries, also under severe missing data patterns. The
proposed model combines a weighted rank-one approximation of the data matrix
with a roughness penalty. We show that the estimation problem can be solved
using a Majorize-Minimization approach, and we provide a numerically efficient
algorithm for its solution. Thanks to a discretization based on finite elements in
space and B-splines in time, the proposed method can handle multidimensional
spatial domains with complex shapes, such as water bodies with complicated
shorelines, or curved spatial regions with complex orography. As shown by simu-
lation studies, the proposed space-time fPCA is superior to alternative techniques
for Principal Component Analysis with missing data. We further highlight the
potentiality of the proposed method for environmental problems, by applying
space-time fPCA to the study of the Lake Water Surface Temperature (LWST)
of Lake Victoria, in Central Africa, starting from satellite measurements with
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large gaps. LWST is considered one of the fundamental indicators of how climate
change is affecting the environment, and is recognized as an Essential Climate
Variable.

Keywords: Functional Data Analysis, Majorization-Minimization, Missing data,
Roughness Penalties

1 Introduction

In environmental and ecological sciences, it is of fundamental interest to analyze sig-
nals acquired across space and time, using remote sensing or other measuring devices.
However, such signals are often only partially observed, over the spatio-temporal
domain, and may present complex missing data patterns. Air pollution datasets, for
instance, often display a high percentage of missing values, due to faults in the mea-
suring devices. Satellite remote sensing data, that can be used to explore vegetation
indices or surface temperature over lands, seas or lakes, are often affected by large
gaps, in space and time, which might be caused, e.g., by ice coverage, presence of
clouds or other meteorological conditions. Figure 1 offers an example in this sense.
We here display the spatio-temporal profile of the water surface temperature of Lake
Victoria, in Central Africa. These data, analyzed, for example, by Gong et al. (2018)
and Gong et al. (2021), are provided by the ARC-Lake database (see, e.g., MacCallum
and Merchant, 2011). Although the data consist of monthly averaged measurements,
data may be missing for many consecutive months, on large portions of the lake.

In this work, we are interested in investigating the main patterns of variability in
spatio-temporal signals, which may be affected by complex missing data structures,
such as those highlighted above. We do so in the framework of Principal Compo-
nent Analysis (PCA). In this respect, it should be noted that the presence of missing
data may challenge or invalidate standard approaches to PCA. For this reason, alter-
native strategies have been explored in the literature, to perform PCA with missing
data, relying on iterative procedures, which combine PCA with missing data impu-
tation. These iterative PCA techniques are motivated by the results of, e.g. Gabriel
and Zamir (1979) and Kiers (1997), in the context of a weighted low-rank approxima-
tion. For example, the Data INterpolating Empirical Orthogonal Function (DINEOF)
method (Beckers and Rixen, 2003) updates its reconstruction of the missing entries
by Singular Value Decomposition on the imputed data, until convergence. An analo-
gous technique is proposed by Josse et al. (2011) and Josse and Husson (2012), who
describe a regularized iterative PCA algorithm, which reduces the possibility of overfit.
These approaches are extensively employed in environmental and ecological applica-
tions, where satellite remote sensing data are of interest (see, e.g., Hilborn and Costa,
2018; Wang and Liu, 2014; Alvera-Azcárate et al., 2007, 2005). DINEOF is arguably
the most popular approach in these fields. However, these techniques work on a mul-
tivariate assumption, and do not take advantage of the spatio-temporal nature of the
phenomena under study.
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Fig. 1: Monthly averaged satellite measurements of Lake Water Surface Temperature
(LWST), Lake Victoria, Central Africa. Top left: map of Lake Victoria. Top right and
center: LWST in the months of August 1996, May 2003, and March 2011. Bottom:
LWST at the 5 spatial locations in the lake, indicated by color markers in the map in
the top-left panel.
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Here, we propose an innovative PCA method for incomplete spatio-temporal sig-
nals. To appropriately borrow information from measurements observed at nearby
spatio-temporal locations, we formalize the problem of PCA in a Functional Data
Analysis framework (Ramsay and Silverman, 2005; Ferraty, 2006; Kokoszka and
Reimherr, 2017). Functional PCA approaches for space-time data are considered,
for instance, in Li and Guan (2014), where a method based on Poisson maxi-
mum likelihood is proposed to provide an estimation of the covariance function for
the spatio-temporal data generation process, from which principal components are
extracted by means of an eigenvalue decomposition. In Liu et al. (2017) the authors
develop a technique for the functional principal component analysis of spatially cor-
related functional data, which is then used as curve reconstruction method in the
context of partially observed functional data.

Our proposal of functional Principal Component Analysis (fPCA) originates from
a different literature, based on penalized rank-one approximations of the data matrix
(see, e.g., Huang et al., 2008). In particular, we consider an estimation functional
that combines a weighted rank-one approximation of the data matrix with roughness
penalties based on partial differential operators over space and time. The obtained
functional principal components are smooth fields over the considered spatio-temporal
domain. They are easy to interpret and can lead to interesting insights in the spatio-
temporal dynamic of the phenomenon under study. Moreover, they can be used to
provide a reconstruction of the missing entries, also under severe missing data patterns.

To minimize the considered fPCA estimation functional, we develop an appropriate
Majorization-Minimization algorithm (see, e.g., Lange, 2016). This approach is used
in a variety of statistical methods, such as multidimensional scaling (Heiser, 1987a)
and correspondence analysis (Heiser, 1987b). In particular, the popular Expectation-
Maximization method, widely used in all areas of statistics, is a special case of the
Majorization-Minimization approach (Lange and Zhou, 2022). An interesting prop-
erty of these optimization approaches is that they guarantee convergence to a local
optimum (Wu, 1983). For the proposed fPCA problem, we show that the estimation
functional of fPCA with incomplete space-time data can be majorized by the esti-
mation functional of fPCA with fully observed space-time data. Moreover, the latter
estimation problem can be seen as an extension to space-time settings of the fPCA
approaches considered by Lila et al. (2016) and Arnone et al. (2023) over space-
only domains. We discretize the estimation problem using B-splines over the temporal
domain, and finite elements defined over a triangulation of the spatial domain. This
enables the methodology to deal with data observed over spatial domains with complex
shapes, such as water bodies with complicated shorelines, or curved spatial regions
with complex orography. The proposed fPCA is a new addition to the class of Physics-
Informed Spatial and Functional Data Analysis methods, reviewed in Sangalli (2021),
and is implemented in the R/C++ library fdaPDE (Arnone et al., 2023).

Simulation studies demonstrate the good performances of the proposed fPCA for
incomplete space-time data, and its advantages over state-of-the-art techniques for
PCA with missing data. These simulation studies consider different incomplete data
settings, including sparse data and data with large gaps in space and time, as in the
case of the considered application to the study of water surface temperature of Lake
Victoria.
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The paper is organized as follow. Section 2 introduces the proposed fPCA for
incomplete spatio-temporal data. Section 3 describes the discretization of the esti-
mation problem. Section 4 details the Majorize-Minimization algorithm for the
minimization of the proposed estimation functional. Section 5 reports the simulation
studies, that compare the proposal to popular approaches for PCA with missing data.
Section 6 illustrates the application to the study of the surface water temperature of
Lake Victoria. Some concluding remarks are drawn in Section 7. All proofs are deferred
to A and B.

2 Mathematical framework

In this section we introduce the fPCA problem for incomplete space-time data. In
Section 2.1 we give the theoretical definition of functional principal component anal-
ysis, for a random field defined over a spatio-temporal domain. In Section 2.2 we
introduce the fPCA estimation problem for incomplete space-time data.

2.1 Functional Principal Component Analysis of a random
field on a spatio-temporal domain

Let D be a bounded and possibly non-convex subset of Rd, with d = 2, 3, and let
T ⊂ R be a time interval. Introduce the space of square-integrable functions on the
spatio-temporal domain D × T

L2(D × T ) =

{
f : D × T → R :

(∫
D×T

f(p, t)2
) 1

2

<∞

}

with inner product ⟨f, g⟩D×T =
∫
D×T

f(p, t)g(p, t)dpdt. Consider a random field X
taking values in L2(D × T ), with mean µ = E[X ], and assume it has a finite sec-
ond moment, i.e.,

∫
D×T

E[X 2] < ∞, and a square integrable covariance function

K
(
(p1, t1), (p2, t2)

)
. Define the covariance operator V : L2(D × T ) → L2(D × T )

as V f =
∫
D
∫
T
K(·, (p, t))f(p, t)dpdt. Thanks to Mercer’s Lemma (Riesz and Nagy,

2012), there exists an orthonormal sequence {fk}k of eigenfunctions and a non-
increasing sequence {ξk}k of eigenvalues such that the following eigenvalue problem
holds

(V fk)(p, t) = ξkfk(p, t) ∀(p, t) ∈ D × T, k ∈ N.
Moreover we can express K((p1, t1), (p2, t2)) =

∑∞
k=1 ξkfk(p1, t1)fk(p2, t2) and

X (p, t) = µ(p, t)+
∑∞

k=1 s
[k]fk(p, t), where {s[k]}k is a sequence of zero-mean uncorre-

lated random variables, with s[k] =
∫
D×T

(X −µ)(p, t)fk(p, t). The functions {fk}k are

named Principal Component (PC) functions, whereas the random variables {s[k]}k are
named Principal Component scores. PC functions {fk}k identify the strongest modes
of variation in the random field X . In fact, it can be shown that f1 is such that

f1 = argmax
f :∥f∥L2(D×T )=1

Var
[
⟨X − µ, f⟩L2(D×T )

]
,
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and subsequent PCs fk, with k > 1, solve the same problem with the additional
constraint ⟨fk, fh⟩L2(D×T ) = 0, for h = 1, . . . , k − 1, i.e., fk must be orthogonal to all
the previous PCs.

Another characterization of the PCs goes under the name of best M -basis
approximation property: for any positive integer M , the first M PCs satisfy

{fk}Mk=1 = argmin
⟨fk,fh⟩L2(D×T )=δkh,

h=1,...,k

E

[∫
D×T

(
X − µ−

M∑
r=1

(∫
D×T

Xfr

)
fk

)2]
(1)

where δkh denotes the Kronecker delta, i.e., δkh = 1 if and only if k = h, and δkh = 0
otherwise.

2.2 fPCA estimation problem for incomplete space-time data

Assume L realizations x1, x2, . . . , xL of the random field X were available, observed
continuously over the spatio-temporal domain D × T , and without noise. We could
then compute the sample covariance operator V̂ and obtain the first M PCs from its
(numerical) spectral decomposition.

In real-world applications, however, we never observe realizations of the random
field X continuously over D×T and without noise, but only their noisy measurements,
at some spatio-temporal locations. Specifically, let p1, . . . ,pn, be n locations in the
spatial domain D, and t1, . . . , tm, be m time instants in T . Denote by xlij the noisy
measurement of the l-th statistical unit xl at the spatio-temporal location (pi, tj).
In the Functional Data Analysis community, a common approach to solve the fPCA
problem, starting from the noisy and discrete measurements of the statistical units,
consists in first obtaining smooth representatives of x1, x2, . . . , xL, by appropriate
smoothing procedures, and then computing the resulting sample covariance operator,
with its spectral decomposition. However, such a pre-smoothing approach may fail
in the context of missing data, especially in the presence of complex missing data
patterns, as highlighted in Palummo et al. (2023).

We here follow a different approach that starts from the characterization of the
PCs given in Equation (1). Specifically, for l = 1, . . . , L, let Ol be the set of all index
pairs (i, j) where xlij is not missing. Assume, for simplicity of exposition, that the data
have already been centered around the mean, at each spatio-temporal location. Then,
the sample version of the objective functional in Equation (1), for M = 1, is given by

L∑
l=1

∑
(i,j)∈Ol

[
xlij − slf(pi, tj)

]2
. (2)

The estimation of the infinite-dimensional PC function f , starting from the discrete
measurements xlij , through minimization of (2), is though an ill-posed problem, unless
a proper regularization is introduced. To this end, we add to the objective functional
(2) a proper regularizing term, which seeks smoothness in the PC function f . In
particular, following the approach presented by Bernardi et al. (2017) in the context
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of spatio-temporal smoothing, we consider the space-time roughness penalty

PλD,λT
(f) = λD

∫
T

∫
D
(∆f)2 + λT

∫
D

∫
T

(∂2f
∂t2

)2
, (3)

where ∆f =
∑d

h=1
∂2f
∂p2

h
denotes the Laplacian of f , while λD > 0 and λT > 0 are two

smoothness parameters, which control the roughness of the PC function in space and
time. Therefore, we propose to estimate the first PC function f1 : D × T → R and
the corresponding PC scores vector s1 ∈ RL by solving the following minimization
problem

argmin
s∈RL,f∈H

L∑
l=1

∑
(i,j)∈Ol

[
xlij − slf(pi, tj)

]2
+ s⊤sPλD,λT (f)

Subject to ∥s∥2 = 1

(4)

where H ⊂ L2(D× T ) is a proper space of functions where the objective functional is
well-posed (see, e.g., Arnone, 2018). As discussed in Section 4.1, the first term of the
objective functional in Equation (4) corresponds to a weighted rank-one approxima-
tion of the data matrix, and encourages the PC function f to capture the strongest
mode of variation in the observed data. The second term controls the smoothness of
f in space and time. Moreover, the term s⊤s is justified by invariance considerations
on the objective functional, similar to what was done in Huang et al. (2008), while the
normalization constraint ∥s∥2 = 1 is set to make the representation unique. Subse-
quent PCs are estimated by solving the same estimation problem, but where missing
entries have been imputed, as detailed in Section 4.2.

The estimation problem (4) presents various challenging aspects. First of all, it is an
infinite-dimensional estimation problem, involving the infinite-dimensional unknown
f , and it does not enjoy a closed form solution. This calls for an appropriate numerical
discretization that will be presented in Section 3. Second, it is non-convex in (s, f).
This requires the development of an appropriate iterative scheme, that will be detailed
in Section 4. In this respect, the presence of missing data raises another complication.
Indeed, the iterative approaches formerly considered for fPCA for fully observed data
by, e.g., Zou et al. (2006); Huang et al. (2008); Lila et al. (2016); Arnone et al. (2023),
and explored in Stefanucci et al. (2018) in the context of partially observed functional
data, may instead be inadequate in the presence of complex missing data patterns,
which requires the more complex iterative scheme proposed in Section 4.

3 Discretization of the infinite dimensional problem

We here present a numerical discretization of the functional in Equation (4) which
allow us to consider spatial domains with complex shapes, such as water bodies
with complicated shorelines or curved spatial regions with complex orography. This
discretisation is based on finite elements in space and splines in time.

7



0 1
0 1

0.00

0.25

0.50

0.75

1.00

T

Fig. 2: Left: linear finite element basis function ψ(p) defined over a triangulation of
the Lake Victoria. Right: cubic B-spline basis functions {ϕk(t)}k over a time interval
T .

3.1 Spatio-temporal basis system

Let T be a triangulation of the spatial domain of interest D, i.e., a finite union of non-
overlapping triangles approximating D (Hjelle and Dæhlen, 2006). The left panel of
Figure 2 shows an example. We define, on such triangulation, the space of finite element
functions V r

T (D) as the space of continuous functions which are polynomials of degree
r, once restricted to any triangle in T ; see, e.g. Ciarlet (2002); Quarteroni (2017). For
simplicity, in this work, we consider the case of linear finite elements (r = 1). Let
ξ1, ξ2, . . . , ξND

be the nodes of the triangulation that, for linear elements, coincide
with the vertices of the triangles in T . Therefore, we can introduce a basis system
ψ1(p), ψ2(p), . . . , ψND (p) for V

r
T (D), where each basis function is Lagrangian, that is,

ψk(ξh) = 1 if and only if k = h, and ψk(ξh) = 0 otherwise. The left panel of Figure 2
shows a linear finite element basis, defined over a triangulation of Lake Victoria. Let
ψ = (ψ1, ψ2, . . . , ψND )

⊤ be the ND-vector of finite element basis. Any function v ∈
V r
T (D) can be written as a finite linear combination of these basis, i.e., v(p) = v⊤ψ(p).

An interesting property of Lagrangian elements is v = (v(ξ1), v(ξ2), . . . , v(ξND
))⊤.

For the time dimension, we adopt a set of NT cubic B-spline basis functions
ϕ1(t), ϕ2(t), . . . , ϕNT

(t), defined over the time interval T ; see, e.g. De Boor (1978). The
right panel of Figure 2 shows such a basis system.

Finally, we represent the spatio-temporal PC function f(p, t) over D × T as

f(p, t) =

ND∑
k=1

NT∑
h=1

ckhψk(p)ϕh(t). (5)

where {ckh}kh are the coefficients of the expansion of f with respect to the considered
spatio-temporal basis.
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3.2 Discretization of the differential penalty

Define the n × ND matrix Ψ = [Ψ]ik = ψk(pi) of the evaluation of the ND finite
element basis at the n spatial locations, and the ND ×ND matrices

R0 = [R0]kh =

∫
D
ψkψh R1 = [R1]kh =

∫
D
∇ψ⊤

k ∇ψh.

Moreover, define the m × NT matrix Φ = [Φ]jk = ϕk(tj) of the evaluation of the
NT spline basis functions at the m temporal locations, and the NT ×NT matrices

Rt = [Rt]kh =

∫
T

ϕkϕh Pt = [Pt]kh =

∫
T

d2ϕk
dt2

d2ϕh
dt2

.

Let ⊗ be the Kronecker tensor product between matrices, and set Ψ̃ = Ψ ⊗ Φ.
Moreover, introduce the vector c = (c11, c12, . . . , cNDNT

)⊤ of the expansion coefficients
of f in (5). Set P = λD(R

⊤
1 R

−1
0 R1 ⊗ Rt) + λT (Pt ⊗ R0). Following the approach in

Bernardi et al. (2017), we can discretize the differential penalty in Equation (3) by

λD

∫
T

∫
D
(∆f)2 + λT

∫
D

∫
T

(∂2f
∂t2

)2
≈ c⊤Pc. (6)

4 Iterative solution of the estimation problem

In this section, we propose an iterative procedure, in the family of Majorize-
Minimization (MM) algorithms (see, e.g., Lange, 2004; Lange and Zhou, 2022), which
permits the efficient numerical solution of the estimation problem (4), and hence the
identification of the principal component, and corresponding scores, from a set of
partially observed space-time data.

4.1 Data loss

Before introducing the MM algorithm that solves Equation (4), we highlight that the
first term in (4), i.e., the data loss term, can be interpreted as a weighted rank-one
approximation of the data matrix. To this end, let X be the L × nm data matrix,
whose l-th row contains the noisy measurements of the l-th statistical units, at the nm
spatio-temporal locations, i.e., (xl11, xl12, . . . , xlnm). Denote by W the binary matrix
L × nm, whose l-th row (wl11, wl12, . . . , wlnm) has wlij = 1 if and only if (i, j) ∈ Ol,
that is, when the datum xlij is observed and wlij = 0 otherwise. Denote instead
by WC the binary matrix L × nm with zeros indicating observed values and ones
indicating missing observations. Finally, let ∥ · ∥F be the Frobenious norm, and ∗ be
the Hadamard (or element-wise) product between matrices. Then, the data loss term
in Equation (4) can be written as

L∑
l=1

∑
(i,j)∈Ol

[
xlij − slf(pi, tj)

]2
= ∥W ∗ (X − sf⊤

nm)∥2F , (7)
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where s = (s1, s2, . . . , sL) ∈ RL is the scores vector, and fnm = (f(p1, t1), f(p2, t1),
. . ., f(pn, tm))⊤ ∈ Rnm is the vector of the evaluations of the PC function f at the nm
spatio-temporal data locations, i.e., fnm = Ψ̃c. The formulation on the right-hand side
of (7) is not uncommon in multivariate analysis, where the associated minimization
problem is usually formalized as an approximation problem of the data matrix X by
another matrix of lower rank (see, e.g., Gabriel and Zamir, 1979). For the unweighted
case, i.e., in the special case where the data are fully observed andW is a matrix of all
ones, the Eckart–Young–Mirsky theorem (Eckart and Young, 1936) guarantees that
the best rank-M matrix, with M ≥ 1, approximating X is provided by its Singular
Value Decomposition (SVD). For a general weight matrix W , even if binary, there is
no analytic solution, and the problem is solved resorting to iterative methods, such
as, for instance, Non-linear Iterative Partial Least Squares (NIPALS) (Wold, 1966) or
Criss-Cross regression (Gabriel and Zamir, 1979).

4.2 Majorize-Minimization scheme

Thanks to Equations (6) and (7), we can rewrite the objective functional in (4) as

∥W ∗ (X − sf⊤
nm)∥2F + s⊤sc⊤Pc = ∥W ∗ (X − s(Ψ̃c)⊤)∥2F +Tr[sc⊤Pcs⊤] (8)

where Tr[·] denotes the matrix trace operator. Now, define the L × NDNT matrix
U = sc⊤. Noting that sf⊤

nm = UΨ̃⊤, we can further rewrite (8) as a functional of U as

h(U) = ∥W ∗ (X − UΨ̃⊤)∥2F +Tr[UPU⊤]. (9)

At this point, we show that (9) can be minimized in U by an appropriate Majorize-
Minimization (MM) scheme. An MM procedure seeks to minimize an objective
function h : U → R, where U denotes some parameter space, by iterative minimiza-
tion of a simpler function, whose optimization is more computationally tractable. In
particular, starting from an initial guess U0, an MM algorithm builds a sequence
U1, U2, . . . Us in U, which converges to a local optimum of the objective functional
h(·) (see, e.g. Wu, 1983). For each iteration index s ≥ 0, Us+1 is selected as the
minimizer of a function g(U |Us), which is taken to be a majorization of h(·) at Us,
that is, such that g(U |Us) ≥ h(U) for all U ̸= Us, with the additional condition
h(Us) = g(Us|Us). Under this update rule, an MM procedure forces h(U) to decrease,
as we have

h(Us+1) ≤ g(Us+1|Us) ≤ g(Us|Us) = h(Us).

The next result shows that a majorizing functional for the objective h(U) in (9)
corresponds to the estimation functional of a fPCA on completely observed space-time
data.
Proposition 1. The functional in Equation (9) is majorized by

g(U |Us) = ∥(W ∗X +WC ∗ UsΨ̃⊤)− UΨ̃⊤∥2F + Tr[UPU⊤] + ζ (10)
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where ζ ∈ R is a constant not depending on U , and Y s =W ∗X +WC ∗UsΨ̃⊤ is the
data matrix obtained by imputing the missing observations in X with the reconstructed
signal Us, provided by the PCs estimated at the s-th iteration.

The proof is reported in Appendix A. According to Proposition 1, at each iteration
of the MM procedure, we have to solve the following minimization problem.

argmin
s∈Rℓ,c∈RNDNT

∥Y s − s(Ψ̃c)⊤∥2F +Tr[sc⊤Pcs⊤]

subject to ∥s∥2 = 1
(11)

This is an fPCA problem for completely observed spatio-temporal functional data,
which extends, to the space-time setting, the models presented in Lila et al. (2016)
and Arnone et al. (2023). Section 4.3 details the numerical algorithm to solve (11)
and extract the first M functional principal components from the imputed data Y s.
Once the PCs of Y s are estimated, the reconstructed signal Us is updated, and the
minimization problem (11) is repeated in Y s+1, until convergence.

In the fPCA approaches for fully observed data, described in Lila et al. (2016);
Arnone et al. (2023); Huang et al. (2008), the first M principal components are com-
puted one at a time, solving problems similar to (11), on residualized data matrices, as
detailed in Section 4.3, without any need for the MM algorithm proposed here. How-
ever, the missing data scenario here considered is much more challenging. Indeed, in
this setting, we have to recursively apply the MM procedure, and repeat the estimation
of all the first M PCs, at each iteration of the MM algorithm, from the imputed data
Y s, using as a starting point U0 the reconstructed signal Us, obtained at convergence
of the previous M − 1 PCs. This recursive procedure permits to improve the quality
of the M -th estimated PC, and the overall signal reconstruction, while preserving the
same quality of estimation on the first M − 1 PCs.

4.3 Minimization of the majorizing functional

We solve the estimation problem (11) by an iterative two-step algorithm, where we
alternate the estimation of s given c, and the estimation of c given s. This iterative
scheme is based on the following results.
Proposition 2. (Estimation of s given c). Given c ∈ RNDNT , there exists a unique
estimator ŝ ∈ RL, with ∥ŝ∥2 = 1, which solves (11). Moreover,

ŝ =
Y sΨ̃c

∥Y sΨ̃c∥2
. (12)

Proposition 3. (Estimation of c given s). Given s ∈ RL, with ∥s∥2 = 1, there exists
a unique estimator ĉ ∈ RNDNT which solves (11). Moreover,

ĉ = (Ψ̃⊤Ψ̃ + P )−1Ψ̃⊤Y s⊤s.

The proofs of Propositions 2 and 3 are reported in Appendix B. Proposition 2
highlights that the problem of estimating the scoring vector ŝ is equivalent to that of
finding the scores, given the loadings, in multivariate PCA. Proposition 3 shows that
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the problem of estimating ĉ, given the scores, corresponds to the problem of estimating
a smooth field, starting from noisy observations at the spatio-temporal data locations
(pi, tj).

It is worth noting that the problem (11) is nonconvex in (s, f). However, Propo-
sition 2 states the uniqueness of the minimizer ŝ, given c, while Proposition 3
guarantees the uniqueness of the minimizer ĉ, given s. This implies that the objective
in Equation (11) is non-decreasing under the update rule of the proposed algorithm.

Subsequent principal components of the complete data matrix Y s are computed
by solving the estimation problem in Equation (11) on the residual matrix Y s−sf⊤

nm.

4.4 Selection of the optimal smoothing parameters

The presence of the pair of smoothing parameters, λD and λT , in the penalty term,
allows for a further degree of flexibility of the modeling, as we can select the optimal
level of smoothing, in space and time, of the PC functions. The accurate selection
of these smoothing parameters is crucial to achieve optimal results. Too high values
of the smoothing parameters can lead to oversmoothed solutions, leaving meaningful
patterns in the residuals. In contrast, a too low value causes the estimated PCs to also
fit the noise.

We select the optimal pair of smoothing parameters by K-fold cross validation.
Specifically, let O be the set {(i, j, l) : (i, j) ∈ Ol, l = 1, . . . , L}, i.e., the set of all
index triplets for which xlij is observed. We random permute the set O, and partition
it in K non-overlapping folds. For each k = 1, . . . ,K, let Ok be the k-th fold, and
define the L×nm binary matrix W−k as the matrix having, on the l-th row, wlij = 1
if and only if (i, j, l) ∈ O \ Ok, and wlij = 0 otherwise. Therefore, we define the
training set X−k as the matrix W−k ∗X. Similarly, letting W k be the L×nm binary
matrix having, on the l-th row, wlij = 1 if and only if (i, j, l) ∈ Ok, and wlij = 0
otherwise, we define the validation setXk asW k∗X. Finally, for each pair of smoothing
parameters, we calculate the scores matrix Sk = [sk1 , . . . , s

k
M ] and the loadings matrix

F k
nm = [(fk

1)nm, . . . , (f
k
M )nm] on the training set X−k, and we select the pair of

parameters (λD, λT ) that minimizes the reconstruction error over the validation set
Xk, averaged over the K folds:

CV(λD, λT ) =
1

K

K∑
k=1

[
1

|Ok|
∥W k ∗ (Xk − Sk(F k

nm)⊤)∥2F

]
. (13)

As commented by Hastie et al. (2009) in more classical settings, a too high value
of the number of folds K might lead to an approximately unbiased estimate for the
reconstruction error, having high variance. On the contrary, a too low value of K
might lead to an estimated error with low variance, but high bias. To avoid these
two opposite suboptimal solutions, in this work we set K = 10, following the general
recommendation in Hastie et al. (2009).

12



4.5 Selection of the optimal number of principal components

Determining the appropriate number of principal components that characterize the
data is a critical aspect of Principal Component Analysis, when used for dimensionality
reduction. In this work, we select the number of principal components on the basis of
the total explained variance, following a standard elbow approach. Specifically, we use
the notion of adjusted total variance of the computed principal components, proposed
by Zou et al. (2006), and detailed in Lila et al. (2016) for the modeling framework
here considered.

5 Simulation studies

In this section, we assess the performances of the proposed fPCA approach for incom-
plete functional data, compared to other methods for PCA in presence of missing
observations, and under different missing data settings.

5.1 Data generation

We consider the spatio-temporal domain D × T , with D = [0, 1]2, and T = [0, 1]. We
consider 3 orthonormal cosinusoidal functions f1(p, t), f2(p, t), f3(p, t) on D×T of the
form cos(απp1) cos(βπp2) cos(γπt), for p = (p1, p2)

⊤ ∈ D and t ∈ T , where (α, β, γ)
are set to (1, 1, 2), (1, 3, 2) and (4, 2, 3) for f1, f2 and f3, respectively. Based on these
functions, which shall play the role of the principal components, we generate L = 50
fields as

xl(p, t) = s1l f1(p, t) + s2l f2(p, t) + s3l f3(p, t) l = 1, . . . , L

with scores sil ∼ N (0, σ2
i ) and σ1 > σ2 > σ3, setting σ1 = 0.4, σ2 = 0.3 and σ3 = 0.2.

The L functions are evaluated on a regular grid of 15×15 points over the spatial domain
[0, 1]2 and at 15 equidistant time points over the temporal domain [0, 1]. Finally, data
are obtained adding to each xl(pi, tj) uncorrelated Gaussian errors ϵl(pi, tj) with zero
mean and standard deviation equal to 10% of the range of the data, obtaining the
following noisy and discrete measurements of the L statistical units,

xlij = s1l f1(pi, tj) + s2l f2(pi, tj) + s3l f3(pi, tj) + ϵl(pi, tj),

for l = 1, . . . , L, i = 1, . . . , n, and j = 1, . . . ,m. This leads to the L×nm complete data
matrix X. To simulate the presence of missing observations, we consider two differ-
ent missing data settings: an independent censoring in space and time, obtained as in
the censoring scheme (a) of Arnone et al. (2022); a dependent censoring in space and
time, in which data might be missing for large regions of the spatio-temporal domain,
obtained as in the censoring scheme (d) of Arnone et al. (2022). Figures 3 shows the
profile of a sparsely observed space-time signal, resulting from an independent censor-
ing in space and time. Figure 4 instead depicts the same data subject to dependent
censoring in space and time.

Data generation is repeated 100 times, sampling different scores and errors, and
simulating different missing data profiles. The proportion of missing observation is set
to 50% for both the considered missing data scenarios.
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t = 0.03 t = 0.31

−2

0

2

0.00 0.25 0.50 0.75 1.00
T

t = 0.58 t = 0.91

Fig. 3: Independent censoring in space and time. Left: visualization in space of one
sampled signal, at 4 time instants. Right: visualization in time of the same signal, at
5 spatial locations. Data are sparsely observed over the spatio-temporal domain.

5.2 Competing methods

We compare the following competing methods for the Principal Component Analysis
of incomplete data.

• PPCA: the Probabilistic PCA approach (Tipping and Bishop, 1999), as imple-
mented by the R package pcaMethods (Stacklies et al., 2007), followed by a
multivariate PCA.

• DINEOF: the Data INterpolating Empirical Orthogonal Function (DINEOF)
method (Beckers and Rixen, 2003), as implemented in the R package sinkr (Taylor,
2022), followed by a multivariate PCA.

• IPPCA: the multivariate Iterative Penalized PCA approach (Josse and Husson,
2012), provided by the R package missMDA (Josse and Husson, 2016), followed by a
multivariate PCA.

• fPCA: the proposed fPCA approach for incomplete functional data, implemented
in the R package fdaPDE (Arnone et al., 2023). We use as nodes of the triangulation
the 15 × 15 grid of observations, and consider 15 equidistant nodes over the time
domain [0, 1]. The optimal pair of smoothing parameters is selected using the K-fold
cross validation approach detailed in Section 4.4.

5.3 Performance measures

Let (f̂nm)k and ŝk be the estimates of the k-th PC and corresponding scores. To
compare the quality of the estimates produced by the considered methods, we consider
the Root Mean Square Error (RMSE) of the PCs, evaluated at the spatio-temporal

14



t = 0.03 t = 0.31
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0.00 0.25 0.50 0.75 1.00
T

t = 0.58 t = 0.91

Fig. 4: Dependent censoring in space and time. Left: visualization in space of one
sampled signal, at 4 time instants. Right: visualization in time of the same signal, at
5 spatial locations. Data display large gaps in space and time.

data locations, i.e.,

RMSE((f̂nm)k) =

√√√√ n∑
i=1

m∑
j=1

(fk(pi, tj)− f̂kij)2

nm
(14)

where f̂kij denotes the evaluation of the estimated k-th PC (f̂nm)k, at the spatio-
temporal location (pi, tj). Moreover, we compute the RMSE on the scores as 1√

L
∥sk−

ŝk∥2.
We also evaluate the performances of the methods in reconstructing the orig-

inal data. Let Ŝ = [ŝ1, ŝ2, . . . , ŝM ] and F̂nm = [(f̂nm)1, (f̂nm)2, . . . , (f̂nm)M ] be
the computed scores and loadings matrices, and define the reconstructed signal as
X̂ = X̄ + ŜF̂⊤

nm. We define the signal reconstruction error as 1√
Lnm

∥X − X̂∥F , where
X is the matrix of fully observed data.

Finally, we assess the accuracy of the methods in reconstructing the space spanned
by the principal components, considering the principal angle between the space
spanned by the true principal components and the estimated ones, computed with the
command subspace of the R package pracma (Borchers, 2022).

5.4 Results

We here compare the results obtained by the various methods using M = 3 principal
components. The data are indeed generated using 3 orthonormal functions, as detailed
in Section 5.1. Moreover, all the considered methods correctly select M = 3 compo-
nents, following an elbow analysis of the total explained variance. Figure 5 reports some
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Fig. 5: Dependent censoring in space and time, first PC. Top-left: spatial profile of
the true first PC, at a fixed time step. Center and right panels: spatial profile of the
estimated first PC, at the same time step. Bottom-left: temporal profile of the true
and estimated first PC, at a fixed spatial location.

visualizations of the true first PC, and its estimates provided by PPCA, DINEOF,
IPPCA and the proposed fPCA, in the most challenging scenario of dependent cen-
soring in space and time, as illustrated in Figure 4. Figure C1 in Appendix C reports
instead the estimates provided by the various methods in the independent censoring
scenario. The panels in the center and right column display the spatial profile of the
estimated first PC, at a fixed time step. We observe that all methodologies are able
to capture the overall spatial profile of the true principal component, with fPCA pro-
ducing the smoothest results. The bottom-left panel on the same figure shows instead
the temporal profile of the true and estimated first PC, at a fixed spatial location. We
note that the proposed fPCA is able to correctly follow the smooth behavior of the
true PC function, while PPCA, DINEOF, and IPPCA, which do not account for any
temporal correlation in the data, produce an irregular and less accurate estimate.

Figures 6 and 7 show the boxplots of the considered performance measures, for
the estimates obtained by the various competing methods, across the 100 simulation
repetitions. The boxplots show that the proposed fPCA performs equally or better
than the competitors, along all performance measures. In particular, it produces the
best results in terms of signal reconstruction as well as space reconstruction, both for
sparsely observed data and for data presenting large gaps in space-time. In particular,
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Fig. 6: Independent censoring in space and time: boxplots of the errors for Proba-
bilistic PCA (PPCA), Data INterpolating Empirical Orthogonal Function (DINEOF),
multivariate Iterative Penalized PCA (IPPCA) and the proposed functional PCA
(fPCA). Top: RMSE on the three PCs. Center: RMSE on scores of the three PCs.
Bottom: signal reconstruction error and space reconstruction error.

in the simulation considered with sparsely observed data, the signal reconstruction
error of the proposed approach is, on average, 83% smaller than that of PPCA and 35%
smaller than that of DINEOF and IPPCA. For the most challenging scenario of space-
time dependent censoring, fPCA was able to reduce the average reconstruction error of
28% when compared to IPPCA and DINEOF, and to reduce the space reconstruction
error of approximately 45%. We point out that we here reported the performances in
the signal reconstruction over the whole space-time grid. However, the ordering of the
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Fig. 7: Dependent censoring in space and time: boxplots of error for Probabilistic PCA
(PPCA), Data INterpolating Empirical Orthogonal Function (DINEOF), multivariate
Iterative Penalized PCA (IP-PCA) and the proposed functional PCA (fPCA). Left:
signal reconstruction error. Right: space reconstruction error.

methods is the same when considering the RMSE computed over the missing locations
only.

6 Application to Lake Victoria satellite data

Lakes possess a remarkable ability to stabilize short-term temperature fluctuations,
while accentuating long-term variations. Notably, the Lake Surface Water Tempera-
ture (LSWT) is internationally acknowledged as an Essential Climate Variable (ECV),
serving as a surrogate indicator for climate change and representing an important

18



indicator of lake hydrology and biogeochemistry. Furthermore, ecologists are also inter-
ested in understanding the spatial and temporal patterns of LSWT, to gain deeper
insights into the dynamics of the environmental system.

With the aim of establishing a comprehensive long-term record of lakes’ physical
conditions, several satellite temperature data products have been developed. Among
these, the ARC-Lake database (MacCallum and Merchant, 2011) offers an array of
satellite-derived LSWT datasets, encompassing thousands of lakes worldwide. ARC-
Lake is a project funded by the European Space Agency (ESA) and developed by the
Earth Observation and Space Research Division at the University of Reading. The
ESA’s Earth Observing missions, including the series of (Advanced) Along Track Scan-
ning Radiometers, (A)ATSRs, hold the potential to serve as highly accurate sources of
information concerning LSWTs on a systematic global scale. However, due to technical
challenges and specific meteorological conditions, such as the presence of atmospheric
clouds, ice covering, and snow, the recorded data contain a significant number of miss-
ing observations. Accurate LSWT reconstructions are crucial in many applied fields,
such as climate monitoring and numerical weather prediction. Concerning the latter,
for instance, the increasing spatial resolution of weather simulations implies that it
is no longer possible to neglect the presence of inland water bodies, nor it suffices to
provide coarse approximations of their behavior.

In this section, we apply the proposed fPCA model to investigate the main spatio-
temporal patterns in the surface temperature of Lake Victoria, starting from the noisy
and incomplete observations shown in Figure 1, considering its complex shoreline and
the spatio-temporal correlation in the data. Using the estimated smooth principal
components, we can provide a reconstruction of the temperature field over the lake,
which results to be more accurate than those provided by other signal reconstruction
techniques.

6.1 Lake Surface Temperature data

We consider the monthly averaged LSWT of Lake Victoria, in Central Africa. Specif-
ically, each datum is an average of the surface temperature over a lake patch of 0.05◦

latitude by 0.05◦ longitude, and considering a month of observations (daytime). The
resulting value is assigned to the center of the pixel, resulting in a grid of n = 2180
equidistant spatial locations over the lake surface. The observation period goes from
January 1996 to December 2011, for a total of 202 observations per spatial location
(one per month). The considered data display a proportion of missing data equal to
45.2%, with non-trivial observation patterns, as highlighted in Figure 1.

In order to prepare the spatio-temporal water surface temperature data for the
fPCA model, we split the data in L = 16 statistical units, one per each calendar year
of observations. Because, fixed a calendar year and a spatial location, we observe its
temperature once per month, we have m = 12 time instants per statistical unit. This
leads us to an L × nm data matrix X, in which each row corresponds to a calendar
year. It should be point out that, in the given grid of observations, there are several
spatio-temporal locations (pi, tj) for which there is no observation available, for any
statistical units (i.e., calendar year). These correspond to columns of the data matrix
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X with all missing entries. As discussed in Section 6.2, this setting is particularly
challenging and invalidates some of the available state-of-the-art methods.

We point out that, due to the limited temporal range of the considered data, no
long-term changes over the years are evident in this dataset. Consequently, we can
treat each calendar year as an independent realization of the same spatio-temporal
random field X (p, t), so that the assumptions of the proposed fPCA are met. In
presence of long-term trends, it is instead necessary to first detrend the data, to obtain
signals exhibiting seasonal behaviors, where each recurrence of the yearly pattern can
be regarded as an independent realization of the same spatio-temporal random field.
The proposed fPCA can thus be applied to the detrended data.

6.2 Data analysis
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Fig. 8: Left: empirical percentage of variance explained by the first 8 PCs. Right:
cumulative percentage of explained variance captured by the first 8 PCs.

Before fPCA can be applied, the data matrix X must first be centered around
its mean. If the noise in the measurements is low, the underlying spatio-temporal
signal is smooth, and the data matrix X has no columns with all entries missing,
then a simple point-wise mean is sufficient. However, in presence of very noisy data,
with strong local variability, and for a data matrix X having columns with all entries
missing, it is convenient to compute a smooth mean. This avoids removing much of
the data variability in the mean, and bypasses the problem raised by spatio-temporal
locations (pi, tj) for which there is no observation available, for any statistical units. To
compute a smooth estimate of the mean spatio-temporal temperature field, we use the
smoothing method described in (Arnone et al., 2022) and implemented in the R package
fdaPDE (Arnone et al., 2023). The estimate is obtained using the triangulation shown
in the left panel of Figure 2, and forcing high values for the smoothing parameters. We
then extract the first 8 PCs, from the centred data, using the proposed fPCA approach.
To do so, we use again the triangulation shown in the left panel of Figure 2, but now
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Fig. 9: Top left: observed LWST in August 1996. Top right: representation on the
estimated first 3 PCs of LWST in August 1996. Center: same as top panels, for March
2011. Bottom: fPCA representation on the estimated first 3 PCs of LWST at the
spatial location 3 displayed in the top-left map of Figure 1.
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we select the optimal level of smoothness by K-fold cross validation, as detailed in
Section 4.4, using K = 10. We then select M = 3 PCs, since the plot of explained
variance, given in the left panel of Figure 8, shows a clear elbow in correspondence of
M = 3, with the first 3 PCs accounting for 60% of the total variation in the data, and
the remaining PCs contributing less than 6% each. Figure 9 contrasts the observed
LWST data, and the representation of LWST data on the first 3 estimated PCs. The
top and central panels contrast the observed data (left) and the reconstructions on
the first three estimated PCs (right), respectively, in August 1996 and March 2011.
The bottom panel contrasts instead the observed temporal profile (in gray) and its
reconstruction based on the first 3 estimated PCs, at the spatial location 3 displayed
in the top left map of Figure 1. The accuracy in the reconstruction, using only 3 PCs,
is remarkable.

It should be pointed out that, among the state-of-the-arts competitors presented
in Section 5.2, only DINEOF is applicable for the considered data. Indeed, the R pack-
ages pcaMethods and missMDA, which implements respectively PPCA and IPPCA,
do not consent to analyze data matrices X having at least one column without any
observed entry. Subsequently, we contrast the proposed functional Principal Compo-
nent Analysis (fPCA) with DINEOF, executed through the R package sinkr (Taylor,
2022). It is noteworthy that sinkr autonomously determines the most suitable number
of Empirical Orthogonal Functions. Through a K-fold cross-validation with K = 10
folds, the average signal reconstruction error for DINEOF is 0.38, whereas for the
proposed fPCA, is 0.29, reflecting a notable reduction in error by an average of 25%.

7 Conclusions

We have presented an innovative method functional Principal Component Analysis of
incomplete space-time data. The functional nature of the proposed method makes it
able to borrow information from measurements observed at nearby spatio-temporal
locations. This permits an accurate identification of the main variability patterns, in
space and time, also when data are sparsely observed or in presence of large spatio-
temporal gaps in the signals. The simulation studies in Section 5 demonstrate the
comparative advantages of the proposed method over state-of-the-art PCA techniques
for data with missing values, in both missing data scenarios. In particular, these stud-
ies highlight the superiority of the proposed fPCA in terms of signal reconstruction
and space reconstruction. The ability to accurately reconstruct signals is a highly valu-
able feature in environmental applications, where signals are often affected by large
observational gaps in space and time, as illustrated by the application to the study of
LSWT of Lake Victoria.
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Appendix A Majorization of the estimation
functional

The proof of Proposition 1 is based on the following lemma.
Lemma 1. Let S an n × n real symmetric matrix and λS its maximum eigenvalue,
then

Tr[e⊤Se] ≤ λSTr[e
⊤e] ∀e ∈ Rn. (A1)

Proof : the thesis follows directly from the fact that λS is the maximum of the
Rayleigh quotient, i.e. e⊤Se ≤ λSe

⊤e, for any e ∈ Rn (see, e.g., Horn and Johnson,
2013). Applying the trace operator on both sides of the inequality yields the desired
result.

Proof of Proposition 1: We follow similar arguments as those described in (Heiser,
1987b; Kiers, 1997). In particular, we provide a majorization of the functional h(U) =
∥W ∗ (X − UΨ⊤)∥2F + Tr[UPU⊤] by majorizing the data loss term ℓ(U) = ∥W ∗
(X − UΨ⊤)∥2F . In the following, for any n ×m matrix A, let vec(A) be the nm × 1
vector obtained by stacking the columns of A on top of one another. Define DW =
Diag(vec(W )), and rewrite the Hadamard product as a matrix product to obtain

∥W ∗ (X − UΨ⊤)∥2F = ∥DW (vec(X)− vec(UΨ⊤))∥22 =

Tr[vec(X − UΨ⊤)⊤D2
Wvec(X − UΨ⊤)] (A2)

The last equality is obtained by recalling that, for any matrix A, Tr[A⊤A] = ∥A∥2F .
Let Us be the estimate produced by the MM algorithm at the s-th iteration, and set
e = vec((U −Us)Ψ⊤). We can sum and subtract UsΨ⊤ to each operand of the vec(·)
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operator in Equation (A2) to obtain

Tr[vec(X − UΨ⊤)⊤D2
Wvec(X − UΨ⊤)] =

Tr[vec(X − (Us + U − Us)Ψ⊤)⊤D2
Wvec(X − (Us + U − Us)Ψ⊤)] =

ℓ(Us) + Tr[e⊤D2
We]− 2Tr[vec(X − UsΨ⊤)⊤D2

We]. (A3)

Using the bound in Equation (A1) with S = D2
W , we can provide a majorization for

the functional in Equation (A3). In particular, because D2
W is binary and diagonal,

its maximum eigenvalue λD2
W

equals 1, so that Tr[e⊤D2
We] ≤ Tr[e⊤e]. Therefore

h(U) ≤ ℓ(Us) + Tr[e⊤e]− 2Tr[vec(X − UsΨ⊤)⊤D2
We] + Tr[UPU⊤].

Set g(U |Us) = ℓ(Us)+Tr[e⊤e]−2Tr[vec(X−UsΨ⊤)⊤D2
We]+Tr[UPU ]⊤ and observe

that g(U |Us) is a majorization for h(U) at Us. Indeed g(Us|Us) = h(Us), as in this
case e = 0. Moreover, for the previous argument, g(U |Us) ≥ h(U).

Finally, let z be the vector D2
Wvec(X − UsΨ⊤), then

ℓ(Us) + Tr[e⊤e]− 2Tr[z⊤e] = ℓ(Us)− ∥z∥22 +Tr[e⊤e− 2z⊤e+ z⊤z] =

ℓ(Us)− ∥z∥22 +Tr[(z − e)⊤(z − e)] = ℓ(Us)− ∥z∥22 + ∥z − e∥22 =

ℓ(Us)− ∥W ∗ (X − UsΨ⊤)∥2F + ∥(W ∗X +WC ∗ UsΨ⊤)− UΨ⊤∥2F .

Setting ζ = ℓ(Us) − ∥W ∗ (X − UsΨ⊤)∥2F , and observing that this quantity is not
function of U , we obtain the thesis.

Appendix B Minimization of the majorizing
functional

Proof of Proposition 2: We can rewrite the objective function in Equation (11) in
vectorial form as ∥Y s−s(Ψ̃c)⊤∥2F +s⊤s(c⊤Pc). Deriving this functional with respect
to s we get

∂

∂s

[
∥Y s − s(Ψ̃c)⊤∥2F + s⊤s(c⊤Pc)

]
= −2(Y s − s(Ψ̃c)⊤)Ψ̃c+ 2s(c⊤Pc). (B4)

We can then set to zero the last term in Equation (B4), thus obtaining

− 2(Y s − s(Ψ̃c)⊤)Ψ̃c+ 2s(c⊤Pc) = 0 ⇐⇒ Y sΨ̃c− sc⊤Ψ̃⊤Ψ̃c = s(c⊤Pc)

⇐⇒ s(∥Ψ̃c∥22 + c⊤Pc) = Y sΨ̃c.

Using the last equality, we obtain the following expression for the estimator ŝ

ŝ =
Y sΨ̃c

∥Ψ̃c∥22 + c⊤Pc
. (B5)
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On the other hand, for fixed c, the objective in Equation (11) is convex in s as
∂2

∂s2 (∥Y s − s(Ψ̃c)⊤∥2F + s⊤s(c⊤Pc)) = ∥Ψ̃c∥22 + c⊤Pc ≥ 0 . We conclude that the
expression in Equation (B5), for fixed c, is the unique minimizer of the functional in
Equation (11). Finally, normalizing the expression in (B5) we recover the expression
for ŝ in Equation (12).

The proof of Proposition 3 is based on the following lemma.
Lemma 2. Minimizing (11) with respect to c ∈ RNM , for fixed s ∈ RL such that
∥s∥2 = 1, is equivalent to minimize the following functional

c⊤(Ψ̃⊤Ψ̃)c− 2(Ψ̃c)⊤Y s⊤s+ c⊤Pc. (B6)

Proof : consider the objective function in Equation (11), and develop the term
∥Y s − s(Ψ̃c)⊤∥2F to obtain ∥Y s∥2F + ∥s∥22c⊤(Ψ̃⊤Ψ̃)c − 2(Ψ̃c)⊤Y s⊤s. Thus, we can
rewrite Equation (4) as

∥Y s∥2F + ∥s∥22c⊤(Ψ̃⊤Ψ̃)c− 2(Ψ̃c)⊤Y s⊤s+ ∥s∥22(c⊤Pc).

Since ∥s∥2 = 1 and ∥Y s∥2F do not depend on f , we get the thesis.
Proof of Proposition (3): let z = Y s⊤s. By summing and subtracting z⊤z, we can

rewrite the functional in Equation (B6) as

∥z − Ψ̃c∥22 + c⊤Pc− z⊤z. (B7)

Because z⊤z does not depend on c, minimizing (B7) with respect to c, for fixed s, is
equivalent to minimize ∥z−Ψ̃c∥22+c⊤Pc. On the other hand, as detailed in (Bernardi
et al., 2017), estimating c as the minimizer of this functional corresponds to fit a
smooth spatio-temporal field to the vector of noisy observations z, using the differential
penalty in Equation (3). Moreover, the solution f̂ to this estimation problem is equal
to (Ψ̃⊤Ψ̃ + P )−1Ψ̃⊤z. Finally, thanks to Proposition 2.1 in Arnone (2018), we have
the existence and uniqueness of the estimator.

Appendix C Independent censoring simulation

In this section we report the plots of the first PC function as estimated by the proposed
fPCA and the competing methods discussed in Section 5.2, under the independent
space-time censoring illustrated in Figure 3. The panels in the center and right column
display the spatial profile of the estimated PC, at a fixed time step. In analogy to what
discussed in Section 5.4 of the paper, we observe that all multivariate methodologies
are not able to produce regular estimates, even when data are sparsely observed over
the spatio-temporal domain. The proposed fPCA approach, instead, is able to estimate
a smooth spatial field, thanks to the regularisation induced by the differential penalty.
The bottom-left panel of the same figure report the estimated temporal profile of the
PC function at a fixed spatial locations and for all the considered methods. We point
out that only fPCA, which properly regularise the estimated field in time, is able to
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capture the smooth behavior of the true PC, while other methodologies produce less
accurate and regular estimates.

True PPCA DINEOF
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Fig. C1: Independent censoring in space and time, first PC. Top-left: spatial profile
of the true first PC, at a fixed time step. Center and right panels: spatial profile of the
estimated first PC, at the same time step. Bottom-left: temporal profile of the true
and estimated first PC, at a fixed spatial location. Plots are produced using the same
spatial location and time instant considered for producing Figure 5.
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