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Abstract
The term brownout refers to the uplift of sand particles in the air and is
generated when a helicopter is close to a dusty soil. When a brownout occurs
the visibility area is remarkably restricted, thus the pilot may be disoriented
and the helicopter may dangerously collide with the ground. Simulations of
a brownout require tens of millions of particles in order to be significative,
so that the execution of a serial program takes a very long time. In order to
speedup the computation, the GPU-parallelization of a brownout simulation
program is performed in order to obtain a notable speedup. The dynamics
of the particles are considered in a Lagrangian way, under the effect of the
gravity force and of a precomputed aerodynamic field. The particles are
independent from each other since collisions between them are not taken
into account. Thus trajectories are independent and the parallelization is
very effective. In this paper we discuss in detail the impact of the techniques
used for the GPU implementation of the parallel code on the performance.
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Introduction

In aviation the term brownout refers to the phenomenon generated when
a helicopter is close to a dusty or sandy soil and consists in a visibility area
restriction due to the uplifting of sand particles in the air by vortices of the
aerodynamic field, as it is shown in Figure 1.
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(a) Eurocopter EC135 D-HZSG [1] (b) Bell-Boeing V-22 Osprey [2]

Figure 1: Helicopters experiencing brownout.

When a brownout occurs, the pilot may experience disorientation and
loss of control, so the helicopter may bump the ground. Other consequences
of a brownout are rotor blades abrasion, damages to the components of the
rotor and loss of power due to air filters occlusion. Single-rotor helicopters
are generally severely affected by this problem and for dual-rotor helicopters
(like tandems and tiltrotors) the situation sometimes is even worse.

Different factors may influence the occurrence and the intensity of a
brownout, including rotation speed of rotor blades, rotor configuration, soil
composition, weather conditions and landing angle. To prevent or limit the
occurrence of this phenomenon, some remedies do exist such as landing site
preparation, specific piloting techniques and helicopter aerodynamic-design
solutions. Landing site preparation is possible only in specific sites, like
the base camp. In cases of landing in unpredicted sites then particular
piloting techniques and specific aerodynamic-design are essentials. During
the past few years industries and researchers have been spending a lot of
effort to further improve the knowledge about the brownout phenomenon.
Numerical simulations of brownout can be found in D’Andrea [3, 4, 5],
Wachspress et al. [6], Wadcock et al. [7], Gerlach [8]. In the works of
Phillips et al. [9, 10, 11, 12] the brownout is simulated taking into account
the ground effects and it is demonstrated that the shape of the sandy cloud
is mainly affected by the whole helicopter system and not only by the ro-
tor configuration. In the treatise of Tritschler et al. [13] it is described how
flight path optimization can mitigate the rotorcraft brownout. Experimental
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analysis of brownout are presented in Nathan and Green [14], Doehler and
Peinecke [15]. HPC techniques and numerical methods for the acceleration
of brownout simulations can be found in Hu et al. [16], Lohry et al. [17],
Thomas [18] but they lack in the details of the implementation and in an
accurated analysis of the performances and it is not clear if their paralleliza-
tion is optimal or not. These latter topics are instead discussed in this paper
and in Porcù [19] where it is also demonstrated that a more appropriate
numerical method than the one used in this work can provide even better
performances.

The paper is organized as follows: in the first section we describe the
mathematical and numerical model implemented in the code and used for the
simulations. In the second section we provide a brief digression on GPGPU
and then a detailed description of the parallelization features used to over-
come the most important bottlenecks of the serial program. Finally in the
third section we present the numerical results obtained using firstly an ana-
lytical wind field and then a precomputed aerodynamical field; in the latter
case we computed a high order solution by means of the Richardson ex-
trapolation and we tested the convergence order of the numerical method
implemented.

1. Mathematical and numerical model of the brownout

In this work the brownout is simulated in a Lagrangian way, following
the motion of the sand particles. This section presents the semi-implicit
Euler scheme that is the numerical model adopted for the discretization of
the problem. For the aerodynamic definitions contained in the following
equations we refer to Hoerner [20].

The dynamics of the particles are governed by the well known second
Newton’s equation Fp = mpap, where ap is the acceleration and Fp is the
forcing term additively decomposed into the gravity force and the aerody-
namic field:

Fp = −1

2
ρair|vrel,p|vrel,p

πd2p
4
Cd,p −mpg. (1)

In relation (1) for each particle the quantity vrel,p = vp − vwind(xp) rep-
resents the relative velocity with respect to the wind velocity at the position
of the particle; g is the gravitational acceleration; mp and dp denote respec-
tively the mass and the diameter of the particle and ρair is the density of the

3



air assumed uniform. The drag coefficient Cd,p is inversely proportional to
the Reynolds number (Rep), as stated by the following definitions:

Cd,p =
24

Rep
, Rep =

ρair|vrel,p|dp
µair

, (2)

where µair denotes the dynamic viscosity of the air, assumed uniform. Thanks
to identities (2.a) and (2.b) the forcing term (1) can be simplified as:

Fp = −3πdpµairvrel,p −mpg. (3)

Thus at each time step the new velocity vk+1
p and the new position xk+1

p

are computed on the basis of the following numerical scheme: xk+1
p = xk

p +∆t · vk+1
p ,

vk+1
p = vk

p +∆t · ak
p,

(4)

where, according to (2)-(3), it is assumed:

ak
p =

Fk
p

mp

= −18
µair

ρpd2p

(
vk
p − vwind(x

k
p)
)
− g, (5)

and ∆t is the constant timestep. Since particles are assumed to have a spheric
shape, in relation (5) formula mp = πd3pρp/6 has been used. The numerical
scheme (4) is semi-implicit and so the fulfillment of stability condition is
required.

2. Parallelization on GPU architecture

CUDA extensions allow the programmer to define a particular type of
functions, called kernels, which are invoked by the host (that can be the
main thread on the CPU) and are run on the device (that is the GPU). After
a kernel has been invoked, the CUDA runtime system creates a grid of many
parallel threads residing on the device and each one executes the entire kernel.
Usually a grid can contain hundreds of thousands of lightweight threads.
Inside this grid, threads are organized into a two-levels hyerarchy. At the
higher level, each grid is defined as a three-dimensional array of blocks whose
dimensions can be retrieved by the CUDA keywords gridDim.x, gridDim.y
and gridDim.z. Inside the 3D array each block is indexed by the CUDA
keywords blockIdx.x, blockIdx.y and blockIdx.z. At the lower level each
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block is defined as a three-dimensional array of threads whose dimensions
are limited by the technical specifics of the GPU and are defined by the
CUDA keywords blockDim.x, blockDim.y and blockDim.z. Inside each
block a particular thread can be locally indexed by the CUDA keywords
threadIdx.x, threadIdx.y and threadIdx.z.

Execution resources are organized in Streaming Multiprocessors (SMs)
which are subdivided in Streaming Processors (SPs); to each SP can be as-
signed one block of threads at a time. Thus a SM can execute simultaneously
a number of blocks at most equal to the number of its SPs. Actually this
number depends on the quantity of resources requested by the kernel: if the
necessary resources exceed the limits on the local shared memory space the
CUDA runtime system automatically reduces the number of blocks assigned
to each SM.

A block of threads is further subdivided into thread-units called warps.
A warp is the execution unit of the threads inside the SMs, that is the set
of threads which are really executed at the same time. Warp dimension is
proper of the GPU hardware architecture. A wise implementation of warps
execution is one of the aspects that can help to optimize the performances
of CUDA programs.

For further details on GPUs and CUDA programming we refer to Mei
Hwu and Kirk [21], Kandrot and Sanders [22], Fatica and Ruetsch [23] and
to manuals [24], [25].

The parallelization of the code has been implemented using the CUDA
extensions for Fortran 90 provided by the PGI Portland compiler v16.3 and
all the serial and parallel simulations were run on the same computer whose
specifics are synthetized in section §3.

2.1. Single-GPU implementation
The code is mainly structured as illustrated in Figure 2. The computa-

tional domain is generated into the subroutine that reads the aerodynamic
grid and its dimensions are parallelly determined as described in subsection
§2.1.1. The initial positions of the particles can be uniformly or randomly
distributed inside the domain; this task is contained into the subroutine that
sets up the initial conditions and it is described in subsection §2.1.2. The
subroutine that updates all the kinematical and physical quantities is the
nucleus of the simulation and its parallelization, which is fundamental for
the overall speedup of the program, is described in subsection §2.1.3. The
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Figure 2: Flow chart of the serial program.

parallel determination of the densities of the sand for each cell of the domain
represents the last relevant task and is described in subsection §2.1.4.

2.1.1. Parallel reduction
The wind velocity field is a given data known at scattered points in space.

Since it is required for the computational domain to contain the whole aero-
dynamic field, it is necessary to determine the maximum and minimum values
for the coordinates of the wind data. This operation can be done with a par-
allel reduction on each singular coordinate, thus for the sake of simplicity the
following digression is restricted to the one-dimensional case.

The parallel reduction of a 1D array with CUDA requires taking into ac-
count the development of bank conflicts and execution divergence problems.
For this topic and for what will be discussed in the following lines we refer
to Harris [26].

Figure 3(a) describes the computation of the maximum element among an
array of data by means of a parallel reduction characterized by interleaved
addressing. Recalling that Fortran adopts a 1-based indexing, at the step
number k the active threads are those one whose index i is equal to 1 plus a
multiple of 2k and each of them computes the maximum between the elements
at positions i and i + 2k−1 in the array. This access scheme leads to a high
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Figure 3: Different implementations of the parallel reduction of a 1D array.

divergent execution and to high overhead due to the selection of active or
inactive threads.

Figure 3(b) shows the same parallel reduction but with a strided address-
ing. In this access scheme, at the step number k the active threads are those
one whose index i is less than or equal to a quantity s which is initially
set equal to the dimension of the block of threads (that is the number of
threads of each block) and that halves at each iteration. These threads com-
pute the maximum between the elements at positions (i − 1) · 2k + 1 and
(i − 1) · 2k + 2k−1 + 1 in the array. This method is affected by many bank
conflicts (between threads of the same warp).

Finally Figure 3(c) shows the same parallel reduction with sequential
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addressing. This access scheme needs a parameter s initially set equal to
half the dimension of the block: at each iteration, only those threads whose
index i is less than or equal to s are active and s halves. Each active thread
computes the maximum between the elements at positions i and i+ s in the
array. The cycle goes on until s is strictly greater than 0. This access-scheme
is conflict free and has very low execution divergence.

All the above parallel reductions require a call to the syncthreads func-
tion inside each step because each active thread needs to access areas of
memory that have been updated by other threads in the previous step. This
operation is characterized by a high overhead since it acts like a barrier at
which all threads belonging to the same block stop their execution waG-
iting for each other. For this reason in the code it has been implemented
the parallel reduction with sequential addressing with the following further
improvement: reduction cycling stops when s ≤ 32 (32 being the warp-size)
since threads of the same warp are naturally synchronous and so from now on
threads synchronization is no longer needed. In this way, the latest iterations
can be explicitly written (unrolled).

Table 1 reports respectively the times of execution of the serial, the par-
allel without unroll and the parallel with unroll reductions of a test made
on a three-dimensional array of double precision values with dimensions
151× 151× 81. It shows that, avoiding last calls to threads synchronization
(thanks to unrolling), the latency of execution can be considerably reduced.

Table 1: Reduction times comparison.
Time (ms) Speedup

Serial reduction 11.2058
Parallel reduction without unroll 1.1623 9.64X
Parallel reduction with unroll 0.5954 1.95X 18.82X

2.1.2. Random numbers generation
At initial time, the particles are arranged inside a horizontal narrow box

which has the same length and width of the domain but is 15mm tall starting
from the height of 10mm. The positions of the particles can be distributed
uniformly or randomly along the three directions. In case of random placing
the indices ip,x, ip,y and ip,z of each particle are multiplied by a correspondent
random number rp in the interval taken from uniform distributions in [0,1]
generated by the GPUs thanks to the CURAND library functions. In the
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other case these random quantities are all set equal to 1. The following
equation describes the chosen initial setting:



xp,0 = xmin,box +∆x · (ip,x · rp,x),

yp,0 = ymin,box +∆y · (ip,y · rp,y),

zp,0 = zmin,box +∆z · (ip,z · rp,z),



∆x =
xmax,box − xmin,box

(#particles)x − 1
,

∆y =
ymax,box − ymin,box

(#particles)y − 1
,

∆z =
zmax,box − zmin,box

(#particles)z − 1
,

where xmin,box, ymin,box and zmin,box are the lower boundaries of the narrow
box, ip,x, ip,y and ip,z are the 1-based numbering indexes of one particle and
∆x, ∆y and ∆z are the spatial steps in case of a uniform spatial distribution.

With PGI Fortran compiler v16.3, libraries like CUBLAS, CUFFT and
CURAND can be called by means of Fortran interfaces and of the ISO C
binding as discussed in [23]. In this way random numbers generators can be
called with the same signature of CUDA C, as illustrated in Listing 1.

Listing 1: Random numbers generation on GPU.
module FortranRand

integer, public :: CURAND_RNG_PSEUDO_DEFAULT=100

interface CreateGenerator
subroutine CreateGenerator(gen, gen_type) &
bind (C, name =' curandCreateGenerator ')

use iso_c_binding
integer(c_size_t) :: gen
integer(c_int), value :: gen_type

end subroutine CreateGenerator
end interface

interface GenerateUniformDouble
subroutine GenerateUniformDouble(gen, outdata, size) &
bind (C, name =' curandGenerateUniformDouble ')

use iso_c_binding
integer(c_size_t),value :: gen
real(c_float), device :: outdata(*)
integer(c_int), value :: size

end subroutine GenerateUniformDouble
end interface

end module FortranRand
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2.1.3. Motion of the particles
The operative core of the program is the subroutine which computes the

displacements of the particles on the basis of the numerical method described
in (4). This process can be subdivided into four main parts: the first updates
the accelerations, the velocities and the positions; the second checks if the
new computed positions exceed the domain boundaries and in this case it
resets the outlier particles to their respective initial condition (that is their
state at t = 0); the third part updates the relative velocities and finally the
fourth updates the drag coefficients and the Reynolds numbers.

These four tasks can be implemented into four different kernels in a biu-
nique correspondence. The positive aspect of this pattern is that each kernel
doesn’t require too much space on shared memory and registers and so the
optimization of the occupancy of the SMs (namely the choice of the number
of threads per block) is quite easy. A higher percentage of occupancy does
not necessarily mean better performances but the higher the occupancy, the
more the runtime system can hide latencies. On the other hand, the negative
aspect is that each kernel invocation implies an overhead that, if repeated
many times, can impact the performances of the parallel application.

Thus, in order to gain an higher speedup, a two-kernels version has been
implemented, grouping the first with the second and the third with the fourth
task. In this case the optimization of the occupancy of the SMs is a bit harder
since each kernel now requires more resources and so the number of threads
per block should be chosen more accurately (the CUDA Occupancy Calcu-
lator [27] tool can be useful in this sense). On the other hand, this pattern
halves the number of kernels invocations and their respectives overheads. A
comparison between the four-kernel and the two-kernel implementations is
synthetized in Table 2.

Table 2: Timings of four-kernel and two-kernel implementations.
four-kernel implementation two-kernel implementation

1st task 1st kernel 3.71ms
5.04ms

1st task
1st kernel 4.31ms

2nd task 2nd kernel 1.33ms 2nd task
3rd task 3rd kernel 3.53ms

4.55ms
3rd task

2nd kernel 3.82ms
4th task 4th kernel 1.02ms 4th task
Aggregate 9.59ms Aggregate 8.13ms

Since the above kernels are repeated for each timestep, the 1.18X speedup
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guaranteed by the two-kernel design pattern becomes significant for the over-
all simulation time.

As previously said, the CUDA Occupancy Calculator can analyze the
occupancy of the SMs for a given kernel. This utility consists of a spreadsheet
that takes as input the amount of resources occupied by the kernel: these
data can be retrieved by means of a profiler, such as the “NVIDIA Visual
Profiler” [28]). The output consists of a table of data to whom three graphics
with lines are associated. Analyzing these results it is possible to identify
the factors that are limiting the occupancy.

(a) Impact of threads-number. (b) Impact of requested registers.

(c) Impact of requested shared memory.

Figure 4: Impact of parameters variations on the occupancy of the SMs.

Figure 4 shows the graphics with lines obtained in the case of the sec-
ond kernel in the two-kernels design pattern. It is possible to see that the
occupancy obtained is of the 66.7%. For the first kernel it was obtained an
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occupancy of 58%. These were the best possible results. The number of
threads per block should always be chosen as a multiple of the warp-size.
Then one strategy to identify the best configuration is to try different num-
bers of threads per block and analyze each case.

2.1.4. Atomic functions
A further bottleneck for the serial implementation is represented by the

subroutine where the density of the sand in each cell of the domain is com-
puted. In this task the program cycles over all the particles firstly determin-
ing the spatial indices of the cell in which a fixed particle is contained and
then updating the density relative to that cell. This latter operation consists
just in the addition of a quantity equal to the mass of the particle divided
by the volume of the cell to the local temporary density.

The use of the atomic function atomicAdd is fundamental in the imple-
mentation of the kernel associated to this task. Indeed the memory space,
where the temporary density is stored, might be updated by multiple threads
at the same time. When a thread is asked to update a variable, it firstly makes
a private copy of the value, then it updates its copy and finally it stores its
updated copy into the original memory space. If two or more threads perform
this operation simultaneously on the same memory address, the final result
can obviously be wrong. This inconvenience is known as race condition.

Atomic functions perform operations using techniques that achieve mu-
tual exclusion mechanisms in order to prevent race conditions. These func-
tions work both on global and shared memory (in the latter case performances
should be higher since accesses must be mutually exclusive only for threads
of the same block).

2.2. Multi-GPU implementation
A multi-GPU version of this parallel code has been implemented in order

to investigate the additional benefit of performances that can be obtained
using both the GPUs Tesla K80 available on the HPC node. From version
CUDA 4.0 onwards, programming multi-GPU systems has become easier,
thanks to the introduction of new functions such as the cudaSetDevice func-
tion which allows the user to dinamically select the operative GPU.

The first relevant change with respect to the single-GPU version is the
allocation of the memory on the RAM of each GPU: supposing that N GPUs
are available for the computation and that a 1D array of L elements has
to be allocated among the N GPUs, then the array must be divided into N
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smaller arrays each one of d elements, where d is equal to the integer division
of L by N, except for the last one which contains d+ r elements, being r the
remainder after the division of L by N, as illustrated in Figure 5.

Figure 5: Memory allocation among N different GPUs.

A synthetic and exemplifying implementation of the described memory
allocation is presented in Listing 2.

Listing 2: Multi-GPU memory allocation.
type my_type_name

real*8,allocatable ,device :: GPU_variable_1_name(:)
real*8,allocatable ,device :: GPU_variable_2_name(:)

end type my_type_name
type(my_type_name),pointer,dimension(:) :: N_GPUs_variable_name

allocate( N_GPUs_variable_name(N) )
do GPU_id = 1, N

ierr = cudaSetDevice(GPU_id -1)
if(GPU_id .eq. N) then

allocate(N_GPUs_variable_name(k)%GPU_variable_1_name(d+r))
allocate(N_GPUs_variable_name(k)%GPU_variable_2_name(d+r))

else
allocate(N_GPUs_variable_name(k)%GPU_variable_1_name(d))
allocate(N_GPUs_variable_name(k)%GPU_variable_2_name(d))

endif
enddo

The second important difference with respect to the single-GPU imple-
mentation is that kernels and memory operations involving more than one
GPU must be invoked individually for each GPU, as illustrated in the exam-
ples of Listings 2 and 3. Since the particles do not interact it is implicitly
assumed that there is no need for synchronization, unless in the very few and
rare cases when the sand densities are updated.

Listing 3: Multi-GPU kernel call.
! highly simplified model of the subroutine in subsection §3.1.3
do time_iteration = first_iteration , last_iteration
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do GPU_id = 1, N
ierr = cudaSetDevice(GPU_id -1)
call kernel_1<<<grid_dimensions ,blocks_dimensions >>> &

(N_GPUs_variable_name(k)%GPU_variable_1_name)
enddo
do GPU_id = 1, N

ierr = cudaSetDevice(GPU_id -1)
call kernel_2<<<grid_dimensions ,blocks_dimensions >>> &

(N_GPUs_variable_name(k)%GPU_variable_2_name)
enddo

enddo

Non-blocking CUDA functions such as kernels do not prevent the CPU
thread from changing the GPU to which assign instructions before they have
completed their execution. This is an important aspect since it allows the
different GPUs to work as much synchronously as possible, thereby obtaining
a sort of additional parallelism, as illustrated in Figure 6.

kernel_1 kernel_2 kernel_1 kernel_2 kernel_1 kernel_2

kernel_1 kernel_2 kernel_1 kernel_2 kernel_1 kernel_2

kernel_1 kernel_2 kernel_1 kernel_2 kernel_1 kernel_2

first_iteration last_iteration

overhead

Figure 6: Kernel execution is a non-blocking CUDA function.

At the end of the last iteration the overhead due to the loops over the
GPUs is a negligible percentage of the total execution time, expecially if
the total number of time iterations is high. Applying these considerations
to the core of the program, that is the subroutine described in subsection
§2.1.3 which takes up more than the 99% of the total execution time of the
simulation, it is clear that the single-CPU thread configuration that has been
implemented is satisfactory and that there would be no significative speedup
with a shared-memory multi-threaded CPU environment.

3. Numerical results

In this section the results obtained with two different types of aerody-
namic fields (one analytical and another more realistic) are described and
analyzed. The simulations were run on a Linux-based operating system
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equipped with 2 octa-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
with 128GB RAM, and 2 GPUs NVIDIA Tesla K80.

In the first case an analytical solenoidal flow field is considered, which
does not give significative results from the point of view of the brownout phe-
nomenon but is useful to investigate the performances of the parallelization
without overheads due to file reads or writes. In the second case a realistic
flow field, obtained from a previous fluidodynamic simulation consistent with
the brownout problem, is considered. In the latter case the interest falls not
only into the performance gain obtained by the parallelization but also into
the accuracy of the numerical solution.

3.1. Analytical aerodynamic field
Let us consider an analytical field defined in cylindric coordinates as fol-

lows: 
vρ = −∂ψ

∂z
= −Aπ

L
sin

(
π
ρ

L

)
cos

(
π
z

L

)
,

vθ = 0,

vz =
∂ψ

∂ρ
= A

π

L
cos

(
π
ρ

L

)
sin

(
π
z

L

)
,

where ψ(ρ, z) = A sin(πρ/L) sin(πz/L) is a potential field with the multiplicative
factor A equal to 40m2 s−1 and L (set equal to 7.5m) represents the size of the
domain along the radial and the vertical directions. Since vθ is always zero
and the other two components of the velocity don’t depend on the angular
coordinate θ, the above aerodynamic field has a cylindrical symmetry along
the z direction and can be naturally assumed as a two-dimensional field. It
is represented in Figure 7.

In order to discuss the performances of the serial, the single-GPU and
the double-GPU simulations, two different configurations has been taken
into account: one with 3.072× 106 particles and the other with 6.144× 106

particles. For each configuration the sand particles are uniformly subdivided
into three groups of different diameters, in particular a “Small” particle has
dp = 5 µm, a “Medium” particle has dp = 10 µm and a “Large” particle has
dp = 15 µm.

The pictures in Figure 8 are representative of this simulation and they
show respectively the positions and the modules of the velocities of the par-
ticles at the simulation time of 12.5 s. It can be observed that the disposition
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Velocity magnitude [m/s]

4.1e-3 123 94.5 7.56 10 141.5 15 16.76

(a) Three-dimensional top view. (b) Three-dimensional bottom view.

(c) Slice along a vertical plane passing through the origin.

Figure 7: Analytical aerodynamic field.

of the particles and their velocities agree with the cylindrical symmetry of the
analytical field and with its distribution but there are no remarkable prefer-
ences on the type of the particle. Indeed it is not possible to distinguish a
particular pattern.

The computational times needed for these formulations are synthetized in
Table 3. Using one GPU the parallel program is 129.7 times faster than the
serial program. Using two GPUs a further 1.3X speedup is gained. On the
other hand, in the configuration with more particles, the single-GPU program
is 133.4 times faster than the serial one and the double-GPU program is again
1.3 times faster than the single-GPU one.
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Type

Large

Medium

Small

(a) Particles positions.

3.5

7

10

14

0.000e+00

1.717e+01
Velocity modules [m/s]

(b) Particles velocity modules.

Figure 8: Analytical field simulation at time t = 12.5 s.

Comparing these results it is clear that the speedups between the parallel
and the serial implementations are a little bit higher in the second configura-
tion. This behavior can be explained by noticing that the bigger the number
of particles is, the bigger the percentage of the parallel portion of the code
is.

Furthermore observe that the performance gain provided by the double-
GPU program is not much higher than the single-GPU one: this should be
related to the fact that in the double-GPU simulation there isn’t a good par-
allelism between the two devices because there is only a single thread on the
host. This thread can control only one GPU at a time and so it manages the
two GPUs cyclically, preventing the devices to work synchronously.

Table 3: Computational times for the analytical field.
3.072× 106 particles 6.144× 106 particles

computational time speedup computational time speedup
Serial 7 d, 13 h, 36min 14 d, 23 h, 47min

1 GPU 1 h, 24min 129.7X 2 h, 42min 133.4X
2 GPUs 1 h, 24min 167.6X 1.3X 1 h, 24min 173.4X 1.3X

3.2. Realistic aerodynamic field
A realistic aerodynamic field has been computed in order to investigate

the accuracy of the implemented numerical method. These discrete data
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represent the wind velocities evaluated at fixed points in the space and at
given time instants and are stored into files loaded at runtime. Successively
a spatial B-spline interpolation and a time linear interpolation are performed
in order to recover global C0 regularity of the aerodynamic field.

It is important to notice that the performances of the overall simulation
are affected by high uncoalesced global memory accesses occurring in one
of the kernels, discussed in subsection §2.1.3, which updates the particles
relative velocities. Indeed, since particles positions are distributed in an
unpredictable way inside the domain, it is not possible to determine a priori
which subset of the wind velocities array will be needed by a particular GPU
thread. For this reason each block of threads has to have access to the whole
array which is too big to be stored on the shared memory and so remains on
the global memory.

For this simulation it has been considered a configuration with 6.144× 106

sand particles equally subdivided into three groups of different diameters: a
“Small” particle has dp = 5 µm, a “Medium” particle has dp = 10 µm, the
“Large” particle has dp = 15 µm). The final instant of the simulation is set
at 50 s. Assuming the air dynamic viscosity equal to µair = 1.78× 10−5 Pa s,
then it is possible to observe that the timestep ∆t must be ≤ 2× 10−4 s in
order to assure numerical stability.

Figure 9 shows the displacements of the particles respectively after 1 s,
2 s and 5 s.

Let us discuss the computational gain obtained by the parallelization.
The serial program takes about 16 days and 15 hours to end the execution.
The single-GPU parallelization drops the computational time down to a little
more than 3 hours and a half. The double-GPU implementation provides an
additional speedup taking a little less than 3 hours to complete the simula-
tion. These results are synthetized in Table 4. Comparing these speedups
with those one observed in the analytical field test it can be noticed that
now the performance gain provided by the parallelization is smaller. This
decrease can be explained by the uncoalesced global memory accesses dis-
cussed above and by the file reads computed every N timesteps, where N is
an integer fixed by the input parameters, in order to load the wind velocities
data. Since the size of each file is about 12 MB, these reading operations are
quite expensive and so the portion of code that is not parallelizable increases,
resulting in a loss of parallelization performance (Amdahl’s law).

Another noticeable aspect is that now the speedup ratio between the
double-GPU and the single-GPU is a little bit smaller if compared to the
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(a) Simulation time t = 1 s (b) Simulation time t = 2 s

(c) Simulation time t = 5 s

Figure 9: Simulations with the real aerodynamic field at different instants.

correspondent quantity of the anaylitical field simulation. This result can be
explained by observing that in the realistic field simulation the aerodynamic
field information read from file is needed by both the GPUs, so that these
data are transferred from host memory to the global memory of each GPU,
which means two transfers for the double-GPU program in place of one single
transfer in the single-GPU program.

A numerical assessment of the convergence order for the implemented
method has been carried out. Different simulations with timesteps ∆ti =
21−i × 10−4 s with i = {0, . . . , 5} have been considered and the errors of the
coordinates and velocities with respect to the values provided by Richardson
extrapolation method have been computed at simulation time t = 0.45 s.
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Table 4: Computational times for the realistic field.
computational time speedup

Serial 16 d, 14 h, 52min
Single-GPU 3 h, 32min 112.6X
Double-GPU 2 h, 57min 135.1X 1.2X
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Figure 10: `∞ norm of the error over the timestep

A loglog plot of the `∞-norm of the error over the timestep is shown in
Figure 10. Since the numerical scheme used, that is the semi-implicit Euler
method, is a first-order integrator, it is clear that the performed analysis is
in accord to the expected order.

Figure 11 describes the spatial distribution of the error. In this figure the
particles are located at their respective computed positions. As expected the
error is greater for those particles which have travelled longer, that are those
one at the advancing front.

The particles that, during the computation, leave the domain at least
one time are not taken into account in the shown results. Indeed when
a particle goes out of the domain, its physical quantities are resetted at its
corresponding initial values, thus resulting in a discontinuity on its trajectory.

Analyzing individually each type of particle it is possible to observe that
the error is still decreasing with the timestep, as represented in Figure 12,
and the convergence orders are still equal to 1. The grater particles are
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Position error module [m]

2.458e-01
0.134e-6 3.2e-5 0.0020.00025 0.0165e-7

2.634e-07

(a) Timestep ∆t = 2× 10−4 s. (b) Timestep ∆t = 5× 10−5 s.

(c) Timestep ∆t = 1.25× 10−5 s.

Figure 11: `∞ norm of the error of the positions in a log scale.

affected by a smaller error, either for their coordinates and velocities. This
can be explained considering that the greater particles have more inertia so
are less affected by perturbations and it should not be related to the travelled
distance since the advancing front is composed by each type of particle, as
illustrated in Figure 13.

Conclusions

The parallelization of the code showed the potentialities provided by
CUDA programming on graphic hardwares. The problem was embarassingly
parallel since we considered the trajectories of the particles independent of
each other. We obtained a high speedup, indeed the serial simulation takes
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Figure 12: `∞ norm of the error for each type of particle.

Particle type

Large

Medium

Small

Figure 13: Distribution of the different types of particle at time t = 0.45 s.

about 16 days and 12 hours for its whole execution; the parallel simulation
on a single GPU takes a little more than 3 hours and a half to end its work,
112.6 times faster than the serial program. The parallel implementation with
two GPUs is even faster and completes its execution after about 3 hours, 1.2
times faster than the single GPU simulation.

Future developments of this work will focus on some different aspects.
From the numerical point of view the most important thing to change is
the implemented numerical scheme, which is a semi-implicit Euler integra-
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tor. Indeed it requires a very small timestep in order to guarantee numerical
stability. It has been proved, see Porcù [19], that high order methods, such
as spectral variational integrators, even if more expensive from the computa-
tional point of view within the single timestep, can provide a relevant speedup
expecially for accurate computations, thanks to a noticeable increase in the
timestep size.

The second fundamental improvement that we have in mind is an ex-
tension of the mathematical model that has been actually implemented. It
would be really important to take into account particle-particle interactions
and also particle-ground interactions. With the latter aspect we mean not
only the collisions of the particles with the ground but also the physics gov-
erning the motion of the sand particles when they’re uplifted from the soil,
which is not trivial but can have a remarkable impact on the overall phe-
nomenon.

The last development that we account as interesting and fruitful con-
cerns a further improvement of the parallelization of the code, in the sense
of a hybrid multi-GPU + distributed-memory parallelization, dividing the
computation over different HPC nodes by means of the MPI paradigm. We
believe that such an implementation of the code would lead to the possibility
of a significative increase in the number of particles used and so to more
realistic simulations.
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