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Abstract

We examine shape optimization problems in the context of inexact sequential quadratic
programming. Inexactness is a consequence of using adaptive finite element methods
(AFEM) to approximate the state and adjoint equations (via the dual weighted residual
method), update the boundary, and compute the geometric functional. We present a
novel algorithm that equidistributes the errors due to shape optimization and discretiza-
tion, thereby leading to coarse resolution in the early stages and fine resolution upon
convergence, and thus optimizing the computational effort. We discuss the ability of the
algorithm to detect whether or not geometric singularities such as corners are genuine to
the problem or simply due to lack of resolution—a new paradigm in adaptivity.

1 Shape Optimization as Adaptive Sequential Quadratic Pro-

gramming

We consider shape optimization problems for partial differential equations (PDE) that can be
formulated as follows: We denote with u = u(Ω) the solution of a PDE in the domain Ω of
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Rd (d ≥ 2),
Bu(Ω) = f, (1)

which we call the state equation. Given a cost functional J [Ω] = J [Ω, u(Ω)], which depends
on Ω itself and the solution u(Ω) of the state equation, we consider the minimization problem

Ω∗ ∈ Uad : J [Ω∗, u(Ω∗)] = inf
Ω∈Uad

J [Ω, u(Ω)], (2)

where Uad is a set of admissible domains in Rd. We view this as a constrained minimization
problem, (1) being the constraint. We do not discuss conditions on B, J or Uad that yield
existence of a solution.

The goal of this paper is, instead, to formulate and test a practical and efficient computa-
tional algorithm that adaptively builds a sequence of domains {Ωk}k≥0 converging to a local
minimizer Ω of (1)–(2). Coupling adaptivity with shape optimization seems to be important
but rather novel.

To achieve this goal we will define an Adaptive Sequential Quadratic Programming algo-
rithm (ASQP). To motivate and briefly describe the ideas underlying ASQP, we need the concept
of shape derivative δΩJ [Ω;v] of J [Ω] in the direction of a velocity v, which usually satisfies

δΩJ [Ω;v] =

∫

Γ
g(Ω)v dS = 〈g(Ω), v〉Γ, (3)

where v = vν is the normal component of v to Γ = ∂Ω, the boundary of Ω, and g(Ω) is the
Riesz representation of the shape derivative. We postpone the precise definition of (3) until
Section 2.2. We will see later that g(Ω) depends on u(Ω) and on the solution z(Ω) of an adjoint
equation. We present ASQP in two steps: we first introduce an infinite dimensional Sequential
Quadratic Programming (∞-SQP) algorithm, which is an ideal but impractical algorithm, and
next we discuss its adaptive finite dimensional version, which is responsible for the inexact
nature of ASQP that renders it practical.

Exact SQP Algorithm. To describe the ∞-SQP algorithm, we let Ωk be the current iterate
and Ωk+1 be the new one. We let Γk := ∂Ωk and V(Γk) be a Hilbert space defined on Γk.
We further let AΓk

[·, ·] : V(Γk)×V(Γk)→ R be a symmetric continuous and coercive bilinear
form, which induces the norm ‖ · ‖V(Γk) and gives rise to the elliptic selfadjoint operator Ak

on Γk defined by 〈Akv,w〉Γk
= AΓk

[v,w]. We then consider the following quadratic model

Qk : V(Γk)→ R of J [Ω] at Ωk

Qk(w) := J [Ωk] + δΩJ [Ωk;w] +
1

2
AΓk

[w,w]. (4)

We denote by vk the minimizer of Qk(w), which satisfies

vk ∈ V(Γk) : AΓk
[vk,w] = −〈gk,w〉Γk

∀w ∈ V(Γk), (5)

with gk := g(Ωk). It is easy to check that vk given by (5) is the unique minimizer of Qk(w)
and the coercivity of the form AΓk

(·, ·) implies that vk is an admissible descent direction, i.e.
δΩJ [Ωk;vk] < 0, unless vk = 0, in which case we are at a stationary point of J [Ω].

Once vk has been found on Γk, we need to determine a vector field vk in Ωk so that
vk · νk = vk on Γk, along with a suitable stepsize µ so that the updated domain Ωk+1 = Ωk +

2



µvk := {y ∈ Rd : y = x+µvk(x), x ∈ Ωk} gives a significant decrease of the functional value
J [Ωk]. We are now ready to introduce the exact (infinite dimensional) Sequential Quadratic
Programming algorithm (∞-SQP) for solving the constrained optimization problem (1)–(2):

∞-SQP Algorithm

Given the initial domain Ω0, set k = 0 and repeat the following

steps:

(1) Compute uk = u(Ωk) by solving (1)

(2) Compute the Riesz representation gk = g(Ωk) of (3)

(3) Compute the search direction vk by solving (5) and extend it

to vk

(4) Determine the stepsize µk by line search

(5) Update: Ωk+1 = Ωk + µkvk; k := k + 1

The ∞-SQP algorithm is not feasible as it stands, because it requires the exact computation
of the following quantities at each iteration:

• the solution uk to the state equation (1);

• the solution zk to the adjoint equation which in turn defines gk;

• the solution vk to problem (5);

• the values of the functional J in the line search routine, which in turn depend on uk.

Adaptive SQP Algorithm (ASQP). In order to obtain a practical algorithm, we replace all
of the above non-computable operations by finite approximations. This leads to the Adaptive
Sequential Quadratic Programming algorithm (ASQP), which adjusts and balances the accura-
cies of the various approximations along the iteration. It is worth noticing that the adaptive
algorithm has to deal with two distinct main sources of error: the approximation of the PDE
(PDE error) and the approximation of the domain geometry (geometric error). We observe
that the approximation of (1) and the values of the functional J and of its derivative relate to
the PDE Error, whereas the approximation of (5) and domain update lead to the geometric
error. Since it is wasteful to impose a PDE error finer than the expected geometric error, we
devise a natural mechanism to balance the computational effort.

The ASQP algorithm is an iteration of the form

Ek → APPROXJ→ SOLVE→ RIESZ→ DIRECTION→ LINESEARCH → UPDATE→ Ek+1,

where Ek = Ek(Ωk,Sk,Vk) is the total error incurred in at step k, Sk = Sk(Ωk) is the finite
element space defined on Ωk and Vk = Vk(Γk) is the finite element space defined on the
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boundary Γk. We now describe briefly each module along with the philosophy behind ASQP.
Let Gk be an approximation to the shape derivative g(Ωk), let vk ∈ V(Γk) be the exact
solution of (5) on Γk and let Vk ∈ Vk(Γk) be its finite element approximation.

The discrepancy between vk and Vk leads to the geometric error. Upon using a first order
Taylor expansion around Ωk, together with (5) for the exact velocity vk, we obtain

∣∣J [Ωk+µkVk]−J [Ωk+µkvk]
∣∣ ≈ µk

∣∣δΩJ [Ωk;Vk−vk]| = µk

∣∣AΓk
[vk, Vk−vk]

∣∣ ≤ µk‖vk‖Γk
‖vk−Vk‖Γk

.

Motivated by this expression, we now define two modules, APPROXJ and DIRECTION, in which
adaptivity is carried out. These modules are driven by different adaptive strategies and
corresponding different tolerances, and tolerance parameters γ (PDE) and θ (geometry). Their
relative values allow for different distributions of the computational effort in dealing with the
PDE and the geometry.

The routine DIRECTION enriches/coarsens the space Vk to control the quality of the descent
direction

‖Vk − vk‖Γk
≤ θ‖Vk‖Γk

, (6)

where θ ≤ 1/2 guarantees that the angle between Vk and vk is ≤ π/6; in particular (1 −
θ)‖Vk‖Γk

≤ ‖vk‖Γk
≤ (1+θ)‖Vk‖Γk

. This implies a geometric error proportional to µk‖Vk‖2Γk
,

namely ∣∣J [Ωk + µkVk]− J [Ωk + µkvk]
∣∣ ≤ δµk‖Vk‖2Γk

, (7)

with δ := θ(1 + θ) ≤ 3
2θ. Adaptivity in the module DIRECTION is guided by a posteriori

estimators for the energy error given by the bilinear form AΓk
[·, ·]. In the applications of

Sections 5 and 6, Ak is related to the Laplace-Beltrami operator over Γk.
On the other hand, the module APPROXJ enriches/coarsens the space Sk to control the error

in the approximate functional value Jk[Ωk + µkVk] to the prescribed tolerance γµk‖Vk‖2Γk
,

∣∣J [Ωk + µkVk]− Jk[Ωk + µkVk]
∣∣ ≤ γµk‖Vk‖2Γk

, (8)

where γ = 1
2 − δ ≥ δ prevents excessive numerical resolution relative to the geometric one;

this is feasible if θ ≤ 1/5. Adaptivity in APPROXJ is guided by the Dual Weighted Residual

method (DWR) [5, 2], taylored to the approximation of the functional value J , instead of the
usual energy estimators.

The remaining modules perform the following tasks. The module SOLVE finds finite element
solutions Uk ∈ Sk of (1) and Zk ∈ Sk of an adjoint equation (necessary for the computation
of the shape derivative gk = g(Ωk)), while RIESZ builds on Sk an approximation Gk to gk.
Finally, the module LINESEARCH finds an optimal stepsize µ while using, if necessary, Lagrange
multipliers to enforce domain constraints present in the definition of Uad.

Energy Decrease. The triangle inequality, in conjunction with conditions (7) and (8), yields

∣∣J [Ωk + µkVk]− Jk[Ωk + µkvk]
∣∣ ≤ 1

2
µk‖Vk‖2Γk

, (9)

which is a bound on the local error incurred in at step k. However, the exact energy decrease
reads

J [Ωk]− J [Ωk + µkvk] ≈ −µkδΩJ [Ωk;vk] = µkAΓk
[vk, vk] = µk‖vk‖2Γk

≥ (1− θ)2µk‖Vk‖2Γk
,

(10)
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and leads to the further constraint (1− θ)2 > 1
2 to guarantee the energy decrease

Jk[Ωk + µkVk] < J [Ωk].

Consistency. If ASQP converges to a stationary point, i.e. µk‖Vk‖2Γk
→ 0 as k → ∞, then

the modules DIRECTION and APPROXJ approximate the descent direction Vk and functional
J [Ωk] increasingly better as k →∞, as dictated by (6) and (8). In other words, this imposes
dynamic error tolerance and progressive improvement in approximating Uk, Zk and Gk as
k →∞.

We observe that (8) is not a very demanding test for DWR. So we expect coarse meshes
at the beginning, and a combination of refinement and coarsening later as DWR detects
geometric singularities, such as corners, and sorts out whether they are genuine to the problem
or just due to lack of numerical resolution. This aspect of our approach is a novel paradigm
in adaptivity, resorts to ideas developed in [6], and is documented in Sections 5 and 6.

Prior Work. The idea of coupling FEM, a posteriori error estimators and optimal design
error estimators to efficiently solve shape optimization problems is not new. The pioneering
work [3] presents an iterative scheme, where the Zienkiewicz-Zhu error indicator and the L2

norm of the shape gradient are both used at each iteration to improve the PDE error and the
geometric error, respectively. However, the algorithm in [3] does not resort to any dynamically
changing tolerance, that would allow, as it happens for ASQP, to produce coarse meshes at the
beginning of the iteration and a combination of geometric and PDE refinement/coarsening
later on. Moreover, [3] does not distinguish between fake and genuine geometric singularities
that may arise on the domain boundary during the iteration process, and does not allow the
former to disappear. More recently, the use of adaptive modules for the numerical approxima-
tion of PDEs has been employed by several authors [1, 22, 23] to improve the accuracy of the
solution of shape optimization problems. However, in these papers the critical issue of linking
the adaptive PDE approximation with an adaptive procedure for the numerical treatment of
the domain geometry is absent. We address this linkage below.

Outline. The rest of this paper is organized as follows. In Section 2 we introduce the La-
grangian L for the constrained minimization problem (1)–(2) and derive the adjoint equation
and shape derivative of L. In Section 3 we introduce the finite element discretization along
with a brief summary of DWR and a novel error estimate. In Section 4 we present in detail
the ASQP algorithm, and discuss its several building blocks. We next apply ASQP to two
benchmark problems for viscous incompressible fluids governed by the Stokes equations. We
examine drag minimization in Section 5 and aortic-coronary by-pass optimization in Section
6. In both sections we derive the shape derivative as well as the full expression of the dual
weighted residual estimate. We also document the performance of ASQP with several interest-
ing numerical simulations, which were implemented within ALBERTA [24] and postprocessed
with PARAVIEW [13]. We end this paper in Section 7 with some conclusions.

2 Lagrangian Formalism

2.1 State and Adjoint Equations

We consider a (nonlinear) functional J [Ω, u(Ω)] depending on a domain Ω and the solution
u = u(Ω) of a state equation, which is a (linear) PDE defined in Ω. In strong form it reads
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Bu = f and in weak form can be written as follows:

u ∈ S : B[u,w] = 〈f,w〉 ∀w ∈ S. (11)

Here S is a Hilbert space, S∗ is its dual, B : S → S∗ is a linear isomorphism, and B is the
corresponding bilinear form. Therefore, B is continuous and satisfies the inf-sup condition

inf
w∈S

sup
v∈S

B[v,w]

‖v‖‖w‖ = inf
v∈S

sup
w∈S

B[v,w]

‖v‖‖w‖ > 0.

If f ∈ S∗, then (11) has a unique solution u = u(Ω). Our goal is to minimize J [Ω, u(Ω)]
always maintaining the state constraint (11) in the process. To this end, we introduce the
Lagrangian

L[Ω, u, z] := J [Ω, u]−B[u, z] + 〈f, z〉, (12)

for u, z ∈ S. The adjoint variable z is a Lagrange multiplier for (11).
The first order stationarity conditions, namely the state and adjoint equations for (u, z),

read

〈δzL[Ω, u, z], w〉 = 0, (13)

〈δuL[Ω, u, z], w〉 = 0, (14)

for all test functions w ∈ S. Equations (13) and (14) imply respectively for all w ∈ S

u = u(Ω) ∈ S : B[u,w] = 〈f,w〉, (15)

z = z(Ω) ∈ S : B[w, z] = 〈δuJ [Ω, u], w〉, (16)

which are the weak forms of state equation Bu = f and adjoint equation B∗z = δuJ [Ω, u].
Therefore, if we enforce (15), then the Lagrangian reduces to the cost functional

L[Ω, u, z] = J [Ω, u] (17)

no matter whether Ω is a minimizer or not. This is useful to construct a descent direction for
J [Ω, u] via L[Ω, u, z], perhaps using a discrete gradient flow.

2.2 Shape Derivatives

To construct a descent direction we need δΩJ [Ω, y], which may not necessarily vanish unless
we are already at a stationary point. We now recall a basic rule for shape differentiation. If
φ = φ(x) does not depend on Ω and

J [Ω] =

∫

Ω
φdx

then the shape derivative of I[Ω] in the direction V is given by [25, Prop. 2.45, Prop. 2.50
and (2.145)]

〈δΩJ [Ω],V〉 =

∫

Γ
φV dS (18)
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where V = V ·ν is the normal velocity to Γ. This is unfortunately not enough: L also involves
integrals of functions which solve PDE in Ω, such as u(Ω) and z(Ω). If φ(Ω, x) also depends
on Ω, then

〈δΩJ [Ω],V〉 =

∫

Ω
φ′(Ω;V) +

∫

Γ
φV dS (19)

where φ′(Ω;V) stands for the shape derivative of φ(Ω, x) in the direction V [25, Sect. 2.31-
2.33]. This requires computing the shape derivatives of the state and adjoint variables in the
direction V, namely u′(Ω;V) and z′(Ω;V), which will be solutions of elliptic boundary value
problems.

To render the discussion concrete, let u(Ω) solve the Dirichlet problem

Bu(Ω) = f in Ω, u(Ω) = ℓ on ∂Ω. (20)

with B a linear second order selfadjoint operator in S and f, ℓ functions defined on Rd, i.e.
independent of Ω. The shape derivative u′(V) := u′(Ω;V) is the solution to the following
Dirichlet problem [25]

Bu′(V) = 0 in Ω, u′(V) = −∇(u− ℓ) ·V on ∂Ω. (21)

Finally, the shape derivative of I[Ω, u(Ω)] can be computed by means of the usual chain rule.
For example, if φ(Ω, x) = 1

2u(Ω, x)2 with u(Ω, x) solution to (20), then (19) yields

δΩJ [Ω;V] =

∫

Ω
u(Ω)u′(V) dx +

∫

∂Ω

1

2
u(Ω)2V dS. (22)

The computation of δΩL[Ω, u(Ω), z(Ω)] resorts once more to the chain rule

〈δΩL[Ω, u(Ω), z(Ω)],V〉 = 〈δΩL[Ω, u, z],V〉+〈δuL[Ω, u, z], u′(V)〉+〈δzL[Ω, u, z], z′(V)〉, (23)

where on the right-hand side we regarded the variables Ω, u, z as independent. If either u′(V)
or z′(V) were admissible test functions, then either the second or third term would vanish in
light of (13) and (14). However, this is not the case when u, z satisfy a Dirichlet problem such
as (20) and their shape derivatives u′(V), z′(V) have a non-vanishing trace dictated by (21).

Using the PDE satisfied by u′(V) and z′(V), and suitable regularity assumptions, (23)
can be rewritten as a duality pairing on the deformable part Γ of ∂Ω [25, §2.11 and Th. 2.27]

〈δΩL[Ω, u(Ω), z(Ω)],V〉 = 〈g, V 〉Γ. (24)

We view g, which concentrates on Γ and pairs with the normal component V of V, as a Riesz
representative of the shape derivative of L. In Sections 5 and 6, we examine two examples for
the Stokes flow and carry out these calculations in detail.

3 Dual Weighted Residual Method

We now want to evaluate the PDE error using finite element methods (FEM). Therefore,
we assume that the domain Ω is fixed and omit it as argument in both J and L; thus
L[Ω, u, z] = L[u, z]. We recall that if we enforce the state equation (15), then (17) holds as
well.
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Given a conforming and shape-regular triangulation T of Ω, for any T ∈ T we denote by
hT := |T | 1d its size. Let ST ⊂ S be a finite element subspace that satisfies the discrete inf-sup
condition

inf
W∈ST

sup
V ∈ST

B[V,W ]

‖V ‖‖W‖ = inf
V ∈ST

sup
W∈ST

B[V,W ]

‖V ‖‖W‖ ≥ β > 0,

with β independent of T . This yields existence and uniqueness of the Galerkin solutions to
the following finite element approximations of (15)–(16)

U ∈ ST : B[U,W ] = 〈f,W 〉 ∀W ∈ ST , (25)

Z ∈ ST : B[W,Z] = 〈δuJ [U ],W 〉 ∀W ∈ ST , (26)

which are stationary points of L in ST . It remains to introduce the primal and dual residuals
for w ∈ S

R(U,Z;w) := 〈δzL[U,Z], w〉 = 〈f,w〉 −B[U,w], (27)

R∗(U,Z;w) := 〈δuL[U,Z], w〉 = 〈δuJ [U ], w〉 −B[w,Z]. (28)

In view of (25)–(26), these residuals satisfy Galerkin orthogonality

R(U,Z;W ) = R∗(U,Z;W ) = 0 ∀ W ∈ ST . (29)

The error J [u] − J [U ] = L[u, z] − L[U,Z] can be estimated in terms of the residuals R and
R∗. This leads to the following error representation formula, whose proof can be found in
[2, 5, 11]. We present it here for completeness.

Proposition 3.1 (error representation). The following a posteriori expression for J [u]−J [U ]
is valid

J [u]− J [U ] =
1

2
R(U,Z; z −Wz) +

1

2
R∗(U,Z;u−Wu) + E ∀ Wz,Wu ∈ ST (30)

where the remainder term E = E(u, z, U, Z) is given by

E =
1

2

∫ 1

0
〈δ3uJ [su + (1− s)U ], e, e, e〉 s(s− 1) ds (31)

with e = u−U the primal error. In addition, if J is a linear functional, then the two residuals

R,R∗ are equal, namely R(U,Z; z) = R∗(U,Z;u), and

J [u]− J [U ] = R(U,Z; z −Wz) ∀ Wz ∈ ST . (32)

Proof. By the fundamental theorem of Calculus

L[u, z]−L[U,Z] =

∫ 1

0

(
〈δuL[s(u, z)+(1−s)(U,Z)], u−U〉+〈δzL[s(u, z)+(1−s)(U,Z)], z−Z〉

)
ds

The trapezoidal rule, in conjunction with the fact that δuL[u, z] = δzL[u, z] = 0, yields

L[u, z] −L[U,Z] =
1

2
〈δuL[(U,Z], u− U〉+

1

2
〈δzL[U,Z], z − Z〉+ E,
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where E satisfies (31) by direct computation. The equality (30) follows from (17), (27), (28),
and (29). To prove (32), we observe that 〈δuJ [u], w〉 = J [w] if J is linear, whence (16) and
(29) yield

J [u]−J [U ] = 〈δuJ [u], u−U〉 = B[u−U, z] = R(U,Z; z−W ) = R∗(U,Z;u−W ) ∀ W ∈ ST .

This completes the proof.

The Dual Weighted Residual method (DWR) consists of splitting R,R∗ into element con-
tributions

R(U,Z;w) =
∑

T∈T

〈r(U,Z), w〉T +〈j(U,Z), w〉∂T , R∗(U,Z;w) =
∑

T∈T

〈r∗(U,Z), w〉T +〈j∗(U,Z), w〉∂T

where r(U,Z) = f −BU , r∗(U,Z) = δuJ [U ]−B∗Z are the interior residuals, or strong form of
the PDE, and j(U,Z), j∗(U,Z) are the jump residuals. They are both computable since they
depend only on the computed discrete solutions U and Z. In most applications, the duality
pairings 〈·, ·〉T , 〈·, ·〉∂T appearing in the last two expressions are just the L2(T ), L2(∂T ) inner
products, respectively. Consequently, the first two terms in (30) yield the (constant-free)
bounds

|R(U,Z; z −Wz)| ≤
∑

T∈T

‖r(U,Z)‖L2(T )‖z −Wz‖L2(T ) + ‖j(U,Z)‖L2(∂T )‖z −Wz‖L2(∂T ),

|R∗(U,Z;u−Wu)| ≤
∑

T∈T

‖r∗(U,Z)‖L2(T )‖u−Wu‖L2(T ) + ‖j∗(U,Z)‖L2(∂T )‖u−Wu‖L2(∂T ),

(33)
and the quantities ‖z −Wz‖L2(T ), ‖u−Wu‖L2(T ) as well as those on ∂T are regarded as local
weights. Estimating these weights requires knowing the state and adjoint variables u and z,
and finding suitable quasi-interpolants Wu and Wz. We present now a novel local interpolation
estimate for a given function v (= u, z) expressed in terms of jumps of the discontinuous
Lagrange interpolant ΠT v of v plus a higher order remainder. Similar estimates without
justification are proposed in [5] for polynomial degree 1.

Lemma 3.1 (local interpolation estimate). Let m ≥ 1 be the polynomial degree, d = 2 be the

dimension, and v ∈ Hm+2(N (T )) where N (T ) is a discrete neighborhood of T ∈ T . There

exist constants C1, C2 > 0, solely dependent on mesh regularity, so that

‖v −ΠT v‖L2(N (T )) + h
1/2
T ‖v −ΠT v‖L2(∂T )

≤ C1

m∑

j=0

h
j+1/2
T ‖[[DjΠT v]]‖L2(∂T ) + C2h

m+2
T |v|Hm+2(N (T )),

(34)

where [[·]] denotes jump accross interelement sides.

Proof. We scale to the reference element T̂ , where the desired estimate contains no powers of
meshsize. We then proceed by contradiction: assume there is a sequence v̂n ∈ Hm+2(N̂ (T̂ ))
so that

‖v̂n − Π̂v̂n‖L2(N̂ (T̂ )) = 1,

m∑

j=0

‖[[DjΠ̂v̂n]]‖L2(∂T̂ ) + |v̂n|Hm+2(N̂ (T̂ )) → 0
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as n → ∞. For a subsequence, still labeled v̂n, we have that v̂n → v̂ ∈ Hm+2(N̂ (T̂ )) weakly
and thus strongly in Hm+1(N̂ (T̂ )) and pointwise. The latter yields convergence Π̂v̂n → Π̂v̂
in L2(N̂ (T̂ )) as well as convergence of [[DjΠ̂v̂n]]→ [[DjΠ̂v̂]] in L2(∂T̂ ) for 0 ≤ j ≤ m because
Π̂v̂n is a piecewise polynomial of degree ≤ m. Hence, [[DjΠ̂v̂]] = 0 on ∂T̂ and Π̂v̂ is a global
polynomial of degree ≤ m in N̂ (T̂ ).

On the other hand, the fact that |v̂|Hm+2(N̂ (T̂ )) = 0 implies that v̂ is a polynomial of degree

≤ m + 1 in N̂ (T̂ ). Therefore, v̂ − Π̂v̂ vanishes at the 1
2 (m + 1)(m + 2) canonical nodes of

T̂ . Moreover, v̂ − Π̂v̂ vanishes at the additional 3
2m(m + 1) canonical nodes outside T̂ but in

N̂ (T̂ ). Since 3
2m(m + 1) ≥ m + 2 for all m ≥ 1, we infer that v̂ − Π̂v̂ = 0 in N̂ (T̂ ), whence

v̂ is a global polynomial of degree ≤ m. This contradicts the property ‖v̂ − Π̂v̂‖
L2(N̂ (T̂ ))

= 1

and proves the asserted estimate for ‖v −ΠT v‖L2(N (T )).

The same reasoning applies to ‖v̂ − Π̂v̂‖
L2(∂T̂ ))

, and thus concludes the proof.

Except in degenerate situations, the remainder in (34) is asymptotically of higher order,
whence

‖v −ΠT v‖L2(N (T )) + h
1/2
T ‖v −ΠT v‖L2(∂T ) .

m∑

j=0

h
j+1/2
T ‖[[DjΠT v]]‖L2(∂T ), (35)

as hT → 0. This may be viewed as a discrete version of the celebrated Bramble-Hilbert
estimate. Unfortunately, however, the remainder in (34) cannot in general be removed. The
estimate (35) is not really computable because it requires knowing v. If V ∈ ST is a Galerkin
approximation of v ∈ S, then we expect its behavior to be similar to that of ΠT v, which leads
to the heuristic bound

‖v − V ‖L2(N (T )) + h
1/2
T ‖v − V ‖L2(∂T ) .

m∑

j=0

h
j+1/2
T ‖[[DjV ]]‖L2(∂T ). (36)

Combining (30) and (33) with (36) we end up with the a posteriori upper bound

|J [u]− J [U ]| .
∑

T∈T

η(T ) (37)

with element indicator

η(T ) =
(
h
1/2
T ‖r(U,Z)‖L2(T ) + ‖j(U,Z)‖L2(∂T )

) m∑

j=0

hjT ‖[[DjZ]]‖L2(∂T )

+
(
h
1/2
T ‖r∗(U,Z)‖L2(T ) + ‖j∗(U,Z)‖L2(∂T )

) m∑

j=0

hjT ‖[[DjU ]]‖L2(∂T ),

(38)

which is the bound proposed in [5] for m = 1. One important drawback of this bound,
discussed in [5], is the fact that there are unknown interpolation constants in it. This is less
severe in the present context because we are mostly concerned with the correct distribution of
spatial degrees of freedom rather than accurate bounds. Hence, for our purposes, the heuristic
bound (37) is justified.
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4 The Adaptive Sequential Quadratic Programming Algorithm

In this section we describe the modules pertaining to the ASQP algorithm. Recall that k ≥
1 stands for the adaptive counter and Ωk is the current domain produced by ASQP with
deformable boundary Γk. Let Sk = STk(Ωk) and Vk = VTk(Γk) be the finite element spaces on
the bulk and boundary, which are compatible and fully determined by one underlying mesh
Tk of Ωk.

We define ASQP as follows:

Adaptive Sequential Quadratic Programming Algorithm (ASQP)

Given the initial domain Ω0, a triangulation T0 of Ω0, and the

parameter 0 < θ ≤ 1
5, set γ = 1

2 − θ(1 + θ), k = 0, ε0 = +∞, µ0 = 1
and repeat the following steps:

(1) [Tk, Uk, Zk, Jk, Gk] = APPROXJ(Ωk,Tk, εk)

(2) [Vk,Tk] = DIRECTION(Ωk,Tk, Gk, θ)

(3) [Ωk+1,Tk+1, µk+1] = LINESEARCH(Ωk,Tk,Vk, Jk, µk)

(4) εk+1 := γµk+1‖Vk‖2Γk
; k ← k + 1.

In theory this algorithm is an infinite loop giving a more acurate approximation as the itera-
tions progress, but in practice we implement a stopping criteria in LINESEARCH. In the next
few subsections, we describe in detail each module of ASQP.

4.1 The Module APPROXJ

This is a typical adaptive loop based on a posteriori error estimators, in which the domain Ω
remains fixed. In this context we use the goal oriented estimators alluded to in Section 3 and
refine and coarsen separately. The module APPROXJ is defined as follows:

11



[T∗, U∗, Z∗, J∗, G∗] = APPROXJ(Ω,T , ε)

do

[U,Z] = SOLVE(Ω,T )
{η(T )}T∈T = ESTIMATE(U,Z,ST )
[R, C] = MARK(T , {η(T )}T∈T )
if (η(T ) > ε)
[T , C] = REFINE(T ,R)
elseif (η(C) < δε)
T = COARSEN(T , C)
endif

while (η(T ) > ε)

T∗ = T ; U∗ = U; Z∗ = Z

J∗ = EVALJ(Ω,T∗, U∗)

G∗ = RIESZ(Ω,T∗, U∗, Z∗)

The module SOLVE computes the solution to the primal and dual discrete problems (25)–
(26). The module ESTIMATE determines the local indicators η(T ), T ∈ T of the DWR method
given by (38).

The module MARK selects some elements of T and assigns them to the set R of elements
marked for refinement or to the set C of elements marked for coarsening. In both cases, MARK
uses the maximum strategy which turns out to be more local and thus effective than others in
this application. In fact, given parameters 0 < δ− ≪ δ+ < 1, we let η∗ = maxT∈T η(T ) and
apply the rules:

η(T ) > δ+η∗ ⇒ T ∈ R; η(T ) < δ−η∗ ⇒ T ∈ C.

The module REFINE subdivides the elements in the set R via bisection, and perhaps a few
more elements to keep conformity of T ; REFINE also updates the set C which may have been
affected by refinements. In contrast, the module COARSEN deals with the set of elements C
selected for coarsening. Alternation of REFINE and COARSEN is crucial in this context, in which
geometric singularities detected early on may disappear as the algorithm progresses towards
the optimal shape. We illustrate this new paradigm with simulations in Sections 5 and 6.

Finally, the module EVALJ evaluates the functional J [Ω, U∗] on the updated mesh T∗,
whereas RIESZ computes a finite element approximation G∗ to the shape derivative g(Ω).

4.2 The Module DIRECTION

Given a tolerance θ ≤ 1/5, an approximate shape derivative G, and a domain Ω described
through a triangulation T , the call

[V∗,T∗] = DIRECTION(Ω,T , G, θ)

12



finds an approximate descent direction V∗ and an updated mesh T∗ as follows: we let V(Γ)
be a Hilbert space over Γ, AΓ : V(Γ) × V(Γ) → R a continuous and coercive bilinear form,
and define the exact descent direction v as

v ∈ V(Γ̃) : AΓ̃(v,w) = −〈G,w〉Γ̃ ∀ w ∈ V(Γ̃),

i.e., v is the weak solution of Av = −G on a smooth surface Γ̃ being approximated by Γ. Let
VT be the finite element space over the restriction of the mesh T to the boundary Γ of Ω,
and let V satisfy

V ∈ VT : AΓ(V,W ) = −〈G,W 〉Γ ∀ W ∈ VT .

The module DIRECTION then performs (stationary) adaptivity through an alternation of refine-
ment and coarsening so that on the output mesh T∗, the finite element solution V∗ ∈ V∗ := VT∗

satisfies
‖V∗ − v‖V(Γ) ≤ θ‖V∗‖V(Γ) (39)

and is also a descent direction because (39) controls the angle between v and V∗; see (6)
in Section 1. The choice of AΓ is critical to obtain a sequence of relatively smooth domains
and avoid instabilities [9]. We have successfully implemented the weighted Laplace-Beltrami
bilinear form AΓ defined by

AΓ(v,w) =

∫

Γ
ρ∇Γv∇Γw + vw dS ∀v,w ∈ V(Γ) = H1(Γ).

The weight ρ depends on the optimization problem under study, as well as on its relative
scales (see Sections 5 and 6). The error control (39) is achieved by resorting to residual a
posteriori error estimates for the H1(Γ)-norm [7, 8, 15]. More precisely, if V ∈ VT denotes
the Galerkin approximation to v on a mesh T we define the Laplace-Beltrami (LB) error
indicator by [15]

η2Γ(T ;V ) := h2T ‖−ρ∆ΓV +V−G‖2L2(T )+hT ‖[[ρ∇ΓV ]]‖2L2(∂T )+‖ν−νT ‖2L∞(T )‖
√
ρ∇ΓV +V ‖2L2(T ),

for T a surface element of T contained in Γ. These indicators satisfy ‖v − V ‖2
V(Γ) ≤

C
∑

T⊂Γ η
2
Γ(T ;V ). The first two terms are the usual indicators for a reaction-diffusion equa-

tion, whereas the last one is a geometric indicator, that takes into account the error in ap-
proximating the domain through ν − νT . Here ν denotes the exact normal to the smooth
surface Γ̃ being approximated by Γ and νT denotes the normal of the discrete surface. Since
we do not have access to the exact smooth surface Γ̃ we estimate ‖ν −νT ‖L∞(T ) by the jump
term ‖[[νT ]]‖L∞(∂T ), and the computable estimator reads

η2Γ(T ;V ) := h2T ‖−ρ∆ΓV +V−G‖2L2(T )+hT ‖[[ρ∇ΓV ]]‖2L2(∂T )+‖[[νT ]]‖2L∞(∂T )‖
√
ρ∇ΓV +V ‖2L2(T ).

When the domains are two-dimensional, and the boundaries are polygonal, a simpler up-
per bound is obtained (by taking the Lagrange, instead of the Clément interpolant in the
derivation) and some of the jump terms disappear, yielding the simpler definition

η2Γ(T ;V ) := h2T ‖ − ρ∆ΓV + V −G‖2L2(T ) + ‖[νT ]‖2L∞(∂T )‖
√
ρ∇ΓV + V ‖2L2(T ).
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With this definition of a posteriori error indicators we execute a loop of the form

SOLVE → ESTIMATE → MARK → REFINE/COARSEN

with MARK based on the maximum strategy, as described in Subsection 4.1, until the last
discrete solution V∗ satisfies C

∑
T⊂Γ η

2
Γ(T ;V∗) ≤ θ2‖V∗‖V(Γ), thereby giving (39).

To advance the domain we need a vector velocity V∗ such that V∗ is its normal component.
Since Γ is piecewise polynomial, the normal ν is discontinuous. We thus define an average
vector velocity V∗, and output of DIRECTION, as follows

V∗ ∈ Vd
∗ : 〈V∗,ϕ〉Γ = 〈V∗,ν · ϕ〉Γ ∀ϕ ∈ Vd

∗, (40)

as in [4, 9].

4.3 The Module LINESEARCH

Given a domain Ω described by a triangulation T , a vector velocity V, the functional value
J [Ω], and the previous timestep µ, the LINESEARCH module computes a new timestep µ∗ and
updates both the domain Ω to Ω∗ and the mesh T to T∗ as follows:

[Ω∗,T∗, µ∗] = LINESEARCH(Ω,T ,V, J, µ)

m = GEOSTEP(V) %find max possible geometric step

µ = min(µ,m)

Jold = J, J = TRYSTEP(µ,Ω,T ,V)

if (Jold < J) %energy is not decreasing reduce time

step

[success, µ] = DECREASESTEP(J, µ,Ω,T ,V)
if (success == false) %we reached the stopping

criteria

break end if

else %energy is decreasing, can we get better?

[success, µ] = TRYDECREASE(J, µ,Ω,T ,V)
if ( success == false )

[success, µ] = TRYINCREASE(J, µ,Ω,T ,V)
end if

end if

[Ω∗,T∗] = UPDATE(Ω,T ,V, µ), µ∗ = µ

The use of the module GEOSTEP is a mechanism to avoid mesh distortion due to tangential
motion of nodes, i.e. we need to control the effect of the tangential component (I− ν ⊗ ν)V
of V. Such a control boils down to a geometric restriction of steplength: the output m of
GEOSTEP is the largest admissible steplength that avoids node crossing and is computed as
follows. If ρT is the diameter of the largest inscribed ball in T ∈ T , and z is a generic
boundary node, then we let d(z) be the nodal function that takes the minimum of ρT over
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all T ∈ T that share z. The quantity ϑ d(z)
|(I−ν⊗ν)V(z)| gives the largest steplength allowed for

node z to move without entangling the mesh, provided ϑ ≤ 1/2, and represents a worst case
scenario; m is thus the smallest of those values for all boundary nodes z. Practice suggests
that ϑ = 1/3 is a good choice for linear meshes whereas ϑ = 1/6 is a safe choice for quadratic
meshes controlled by the hybrid method of [17].

The module TRYSTEP finds the energy of a deformation of Ω by µV corresponding to a
given timestep µ as follows:

J∗ = TRYSTEP(µ,Ω,T ,V)

[Ω∗,T∗] = UPDATE(µ,Ω,T ,V)

[U∗, Z∗] = SOLVE(Ω∗,T∗)

J∗ = EVALJ(Ω∗,T∗, U∗)

Here the module UPDATE advances the domain to the new configuration Ω∗ and updates the
mesh T to T∗. This is done as follows:

[Ω∗,T∗] = UPDATE(Ω,T ,V, µ)

Ω∗ = Ω

x = x + µV(x) ∀x ∈ ∂Ω∗

MESHOPTIMIZE(Ω∗)

We first move the boundary using V and then we move the interior nodes using the mesh
smoothing routine MESHOPTIMIZE that optimizes the location of the star center nodes trying
to improve their quality; see [17] for details.

The module SOLVE finds primal and dual solutions of (25)–(26) on the new finite element
space S∗. Finally, EVALJ evaluates the new functional J∗ = J [Ω∗, U∗].

The modules TRYDECREASE and TRYINCREASE decrement or increment the timestep as long
as the energy keeps decreasing, and use the parameters 0 < a < 1 < b provided by the user.
The module DECREASESTEP has a built-in stopping mechanism: when the energy cannot be
reduced anymore while keeping the timestep above a threshold timestep µ0 the algorithm
stops.

[success, µ∗] = TRYDECREASE(J, µ,Ω,T ,V)

%Reduce µ while energy keeps decreasing

µ∗ = µ, success = false

do

Jold = J, µ∗ = a ∗ µ∗

J = TRYSTEP(µ∗,Ω,T ,V)
while (J < Jold)
µ∗ = µ∗/a
if (µ∗ < µ) success = true;
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[success, µ∗] = TRYINCREASE(J, µ,Ω,T ,V)

%increment µ while energy keeps decreasing

µ∗ = µ, success = false

do

Jold = J, µ∗ = b ∗ µ∗

J = TRYSTEP(µ∗,Ω,T ,V)
while (J < Jold)
µ∗ = µ∗/b
if (µ∗ > µ) success = true

[success, µ∗] = DECREASESTEP(J, µ,Ω,T ,V)

%decrease µ until we reduce energy or stop criteria

µ∗ = µ, success = false

do

Jold = J, µ∗ = a ∗ µ∗

J = TRYSTEP(µ∗,Ω,T ,V)
while (J > Jold) and (µ∗ > µ0)
if (µ∗ > µ0) success = true;

Remark 4.1 (Wolfe-Armijo conditions). Even though it looks very simple minded, our line-
search and backtracking algorithm is very robust. We have also tried to use the celebrated
Armijo-Wolfe conditions, but their behavior was not so robust because it depends on having
a reliable computation of the functional derivative in addition to the functional itself.

4.4 Geometrically Consistent Mesh Modification

After the final UPDATE in LINESEARCH some post-processing takes place to ensure a healthy
and geometrically sound mesh for the next iteration. It involves a geometrically consistent

relocation of the newly created nodes (if any) and a mesh quality check with the possibility
of remeshing if certain threshold is not satisfied. Below and in the next subsection we explain
each process.

The presence of corners (or kinks) on the deformable boundary Γk is usually problematic.
First, the scalar product AΓk

(·, ·) of (5) includes a Laplace-Beltrami regularization term (ρ >
0) which stabilizes the boundary update but cannot remove kinks because Vk is smooth.
Secondly, DWR regards kinks as true singularities and tries to refine around them accordingly.
The combination of these two effects leads to numerical artifacts (ear formation) and halt
of computations. The geometrically consistent mesh modification (GCMM) method of [6]
circumvents this issue. Assuming that a piecewise polynomial approximation Hk to the vector
curvature of Γk is available, [6] provides a method to place the nodes after a mesh modification
such as refinement, coarsening or smoothing takes place. The method requires a transfer of Hk

to an intermediate modified mesh and yields the new position Xk of the free boundary from the
fundamental geometric identity −∆Γk

Xk = Hk. This preserves geometric consistency—which
is violated by simply interpolating Γk—as well as accuracy [6]. In addition, this computation
rounds fake kinks (due to numerics) and preserves genuine kinks (see Section 5).
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Since in the present context a vector curvature approximation Hk is not directly available,
as required in [6], we resort to the techniques described in [16]. More precisely, we use a star
average to construct a continuous normal νk from the discontinuous element normals, exactly
as in (40) plus nodal normalization. We next consider the scalar approximation to mean
curvature Hk = divΓk

νk, let Hk = Hkνk, and proceed as in [6].

4.5 Remeshing

A rule of thumb for dealing with complicated domain deformations is that remeshing is in-
dispensable and unavoidable. Our approach is to use remeshing only when necessary for the
continuation of the simulation. At the end of each iteration we check the mesh quality, and if it
falls below a given threshold remeshing takes place. In the drag simulation of Section 5.6, for
example, 4 remeshings were necesary in 180 iterations, whereas the less complex deformations
for the bypass simulations of Section 6 did not require remeshing.

A disadvantage of remeshing in the context of adaptivity is that most mesh generators
create unstructured meshes. Since the hierarchical mesh structure is then lost, coarsening
cannot be performed beyond the structure of the new (macro) mesh. This problem could be
easily solved by using a hierarchical mesh generator, but its discussion is beyond the scope of
this work.

4.6 Volume Constraint

If the definition of Uad involves a fixed-volume constraint V0, like in Section 5, such a con-
straint is enforced as follows in the module UPDATE of LINESEARCH. Given a descent direction
Ṽ (from the module DIRECTION) for the unconstrained energy J [Ω] with |Ω| = V0, then
[Ω∗,T∗] =UPDATE (Ω,T , Ṽ, µ) returns a new domain Ω∗ with the same prescribed volume
|Ω∗| = V0 and intuitively a smaller associated energy J [Ω∗]; the latter is in turn ultimately
checked in LINESEARCH. The module UPDATE proceeds by moving the boundary of Ω by µṼ
and then projects it onto the manifold Uad of shapes with the fixed volume V0. This projection
is not arbitrary but based on the augmented energy functional

J [Ω] = J [Ω]− λ
(
|Ω| − V0

)
,

where λ is a Lagrange multiplier to ensure that |Ω| = V0. The shape derivative of J in the
direction V is given by

〈δΩJ [Ω],V〉 = 〈δΩJ [Ω],V〉 − λ〈ν,V〉,

and a gradient flow would choose to move along the descent direction Ṽ = A−1
Γ (−δΩJ [Ω]) to

decrease the unconstrained energy J [Ω]. Once the boundary of Ω has been deformed using µṼ
and a new configuration Ω∗ reached, it seems natural to evolve the domain with the normal
flow

d

dλ
X = ν in Ω(t); X(0) = Id in Ω(0) = Ω∗,

until we find a zero of the scalar function f(λ) = |Ω(λ)| − V0. Such a zero can be found

via a Newton method with step δλ = − f(λ)
f ′(λ) . Since f ′(λ) = |∂Ω(λ)|, we now have the two

ingredients of the following algorithm, namely a Newton correction of λ (starting from λ = 0)
and a normal update of Ω(λ):
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Ω = Ω∗

while ( |Ω|−V0

V0
> ǫ)

δλ = − |Ω|−V0

|∂Ω| %compute newton step

ν = AVERAGENORMAL(∂Ω); Ω = Ω + δλν %update the domain

end while

Here ǫ is a given tolerance for the Newton method whereas the function AVERAGENORMAL(∂Ω)
computes a continuous normal ν over the piecewise polynomial boundary ∂Ω, with nodal
unit length. To this end, it uses the same averaging procedure (40) on stars described in
Section 4.4 (see also [4]). Notice that in view of the use of AVERAGENORMAL which changes the
normal at each iteration, it seems to be more appropriate to refer to the above algorithm as
to a quasi-Newton scheme.

5 Drag Minimization for Stokes Flow

5.1 The Stokes Problem

We consider the flow around an obstacle described by the following Stokes equations. Let
Ω ⊂ Rd, d ≥ 2 be a bounded domain as depicted in Fig. 1.

Ω

ΓsΓin Γout

Γw

Γw

Figure 1: Domain Ω for drag minimization for Stokes flow: Ω ⊂ Rd, d ≥ 2, is a bounded domain with
its boundary subdivided into an inflow part Γin, an outflow part Γout, a part considered as walls Γw,
and an obstacle Γs which is the deformable part to be optimized.

Let the velocity u := u(Ω) and the pressure p := p(Ω) solve the following problem:

− div(T(u, p)) = 0 in Ω

divu = 0 in Ω

u = ud on Γin ∪ Γs ∪ Γw

T(u, p)ν = 0 on Γout

(41)

where T(u, p) := 2µǫ(u)−pI is the Cauchy tensor with ǫ(u) = ∇u+∇uT

2 , µ > 0 is the viscosity,
and

ud =
{ v∞ on Γin

0 on Γw ∪ Γs,

with v∞ = V∞v̂∞, v̂∞ being the unit vector pointing in the direction of the incoming flow
and V∞ a scalar function.
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In order to state a weak formulation of this problem, we introduce the following bilinear
forms:

a[·, ·] : [H1(Ω)]d × [H1(Ω)]d → R, a[u,v] := 2µ

∫

Ω
ǫ(u) : ǫ(v) dx,

b[·, ·] : L2(Ω)× [H1(Ω)]d → R, b[p,v] := −
∫

Ω
p divv dx.

(42)

We let Γd := Γin ∪ Γs ∪ Γw be the Dirichlet boundary, introduce the affine manifolds

[H1
Γd

(Ω)]d = {u ∈ [H1(Ω)]d : u = 0 on Γd},
ud ⊕ [H1

Γd
(Ω)]d = {u ∈ [H1(Ω)]d : u = ud on Γd},

and set S(v) := (v ⊕ [H1
Γd

(Ω)]d)× L2(Ω). The weak formulation of the Stokes problem (41)
reads

(u, p) ∈ S(ud) : B[(u, p), (v, q)] = 0 ∀(v, q) ∈ S(0), (43)

where
B[(u, p), (v, q)] := a[u,v] + b[p,v] + b[q,u]. (44)

5.2 Cost Functional and Lagrangian

We let the cost functional measuring the obstacle drag be

I[Ω, (u, p)] := −
∫

Γs

(T(u, p)ν) · v̂∞ dS, (45)

where (u, p) solves (43). We would like to minimize the linear boundary functional I subject
to the state constraint (43) among all admissible configurations with fixed volume that can
be obtained by piecewise smooth perturbations of the obstacle boundary Γs [18, 19]. We thus
introduce the functional with Lagrange multiplier λ ∈ R and |Ω| =

∫
Ω dx

J [Ω, (u, p), λ] := I[Ω, (u, p)] + λ
(
|Ω| − |Ω0|

)
. (46)

It is useful to rewrite I as a volume integral. This helps derive, as well as compute, the
adjoint equation and shape derivative of I. We introduce a function Φ∞ ∈ [H1(Ω)]d such
that

Φ∞ =
{ −v̂∞ on Γs

0 on Γw ∪ Γin.

The traction-free boundary condition T(u, p)ν = 0 on Γout and Gauss theorem yield

I[Ω, (u, p)] =

∫

∂Ω
(T(u, p)ν) ·Φ∞ dS =

∫

Ω
div(T(u, p)Φ∞) dx

=

∫

Ω
div(T(u, p)) ·Φ∞ + T(u, p) : ∇Φ∞ dx = a[u,Φ∞] + b[p,Φ∞].

(47)

According to (12), the Lagrangian is defined as follows for all (v, r) ∈ S(0):

L[Ω, (u, p), (v, r), λ] := J [Ω, (u, p), λ] −B[(u, p), (v, r)]

= a[u,Φ∞ − v] + b[p,Φ∞ − v]− b[r,u] + λ
(
|Ω| − |Ω0|

)

= B[(u, p), (Φ∞ − v,−r)] + λ
(
|Ω| − |Ω0|

)

= B[(u, p), (z, q)] + λ
(
|Ω| − |Ω0|

)
,

(48)

where z = Φ∞ − v and q = −r are the adjoint variables.
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5.3 Adjoint Equation

We now derive the adjoint equation from the Lagrangian (48).

Lemma 5.1 (adjoint equation for (48)). The adjoint pair (z, q) satisfies the weak equation

(z, q) ∈ S(Φ∞) : B[(w, s), (z, q)] = 0 ∀(w, s) ∈ S(0), (49)

as well as the strong form

− div(T(z, q)) = 0 in Ω

div z = 0 in Ω

z = Φ∞ on Γin ∪ Γs ∪ Γw

T(z, q)ν = 0 on Γout,

(50)

Proof. Differentiate (48) with respect to (u, p) to arrive at

〈δ(u,p)L[Ω, (u, p), (z, q), λ], (w, s)〉 = B[(w, s), (z, q)] = 0 ∀(w, s) ∈ S(0),

which is (49). The strong form (50) results from (49) by integration by parts.

5.4 Shape Derivative

We now compute the shape derivative δΩL[Ω, (u, p), (z, q), λ], recalling that u, p, z, q depend
on Ω, using the rules described in §2.2.

Lemma 5.2 (shape derivative of (48)). Let (u, p) be the solution to (43) and (z, q) be the

solution to (49). The shape derivative of L[Ω, (u, p)(Ω), (v, q)(Ω), λ(Ω)] in the direction V is

given by

〈
δΩL[Ω, (u, p)(Ω), (z, q)(Ω), λ(Ω)],V

〉
= −2µ

∫

Γs

ǫ(u) : ǫ(z) V dS + λ

∫

Γs

V dS. (51)

Proof. In view of (48), we have

L[Ω, (u, p)(Ω), (z, q)(Ω), λ(Ω)] = a[u, z] + b[p, z] + b[q,u] + λ
(
|Ω| − |Ω0|

)

=

∫

Ω

(
2µǫ(u) : ǫ(z)− p div z− q divu

)
dx + λ

(∫

Ω
dx−

∫

Ω0

dx
)
.

Invoking (23), and recalling that divu = div z = 0, we deduce

〈
δΩL[Ω, (u, p)(Ω), (v, q)(Ω), λ(Ω)],V

〉
=

∫

Γs

(
2µǫ(u) : ǫ(z) + λ

)
V dS

+

∫

Ω

(
2µǫ(u′) : ǫ(z)− p′ div z− q divu′

)
dx

+

∫

Ω

(
2µǫ(u) : ǫ(z′)− q′ divu− p div z′

)
dx

+ λ′
(
|Ω| − |Ω0|

)
,

(52)
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with (u′, p′) = (u′(V), p′(V)) and (z′, q′) = (z′(V), q′(bV )) the shape derivatives. Moreover,
we have

∫

Ω

(
2µǫ(u′) : ǫ(z) − p′ div z− q divu′

)
dx = B[(u′, p′), (z, q)] (53)

∫

Ω

(
2µǫ(u) : ǫ(z′)− q′ divu− p div z′

)
dx = B[(u, p), (z′, q′)]. (54)

Recalling (20) and (21), the shape derivatives (u′, p′) and (z′, q′) satisfy the boundary value
problems

− div(T(u′, p′)) = 0 in Ω

divu′ = 0 in Ω

u′ = 0 on Γin ∪ Γw

u′ = −∇uν V on Γs

T(u′, p′)ν = 0 on Γout

(55)

and
− div(T(z′, q′)) = 0 in Ω

div z′ = 0 in Ω

z′ = 0 on Γin ∪ Γw

z′ = −∇zν V on Γs

T(z′, q′)ν = 0 on Γout

(56)

Since the pair (u′, p′) /∈ S(0), combining (53) with (55) we obtain

B[(u′, p′), (z, q)] = −
∫

Γs

(
T(z, q)ν

)
·
(
∇uν

)
V dS

We now exploit the fact that u = 0 on Γs to write

(
T(z, q)ν

)
·
(
∇uν

)
= T(z, q) : ∇u. (57)

By the definition of the Cauchy tensor T(z, q),

T(z, q) : ∇u = 2µǫ(z) : ǫ(u)− q divu = 2µǫ(z) : ǫ(u),

whence

B[(u′, p′), (z, q)] = −2µ

∫

Γs

ǫ(z) : ǫ(u)V dS.

Similarly, using now (56) in conjunction with the fact that z = Φ∞ is constant on Γs we infer
that

B[(u, p), (z′, q′)] = −
∫

Γs

(
T(u, p)ν

)
·
(
∇zν

)
V dS = −2µ

∫

Γs

ǫ(u) : ǫ(z)V dS.

Inserting the last two expressions into (52), and realizing that |Ω| = |Ω0|, we conclude the
asserted expression for the shape derivative of the Lagrangian.
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5.5 Dual Weighted Residual Estimator

Let T be a conforming and shape regular triangulation of Ω. Let UT ×QT ⊂ [H1(Ω)]d×L2(Ω)
be a stable pair of finite element spaces [12] for the Stokes equations so that UT (resp. QT )
contains polynomials of degree ≤ m (resp. ≤ m− 1) for m ≥ 1. Let

UT (v) = {U ∈ UT : U = v on Γd} (58)

where we assume v ∈ UT and set ST (v) := UT (v) × QT . The finite element approximation
to the Stokes problem (43) reads

(U, P ) ∈ ST (ud) : B[(U, P ), (W,Φ)] = 0 ∀(W,Φ) ∈ ST (0), (59)

where we assume ud ∈ UT .
We next evaluate the PDE error induced by the finite element method. To this end,

we assume that the domain Ω is fixed, whence J [Ω, (u, p), λ] = I[(u, p)]. In particular, we
are interested in deriving an a posteriori error estimate for the quantity

∣∣I[(u, p)]− I[(U, P )]
∣∣

where (u, p) is the solution to (43) and (U, P ) that of (59). Applying the abstract theory of the
Dual Weighted Residual method presented in Section 3 we obtain the following result. Even
though a similar estimate has been derived in [10], we present the proof now for completeness.

Lemma 5.3 (DWR estimate for the drag). The following error estimate holds

∣∣J [Ω, (u, p), λ] − J [Ω, (U, P ), λ]
∣∣ ≤

∑

T∈T

(
‖r(U, P )‖L2(T )‖z− Z‖L2(T )

+ ‖j(U, P )‖L2(∂T )‖z− Z‖L2(∂T ) + ‖ρ(U)‖L2(T )‖q −Q‖L2(T )

)
,

(60)

where (Z, Q) is the finite element approximation to the solution (z, q) of the adjoint problem

(50) and

r(U, P )|T := − divT(U, P ), ρ(U)|T := divU,

j(U, P )|S :=





1

2
[T(U, P )ν], S 6⊂ ∂Ω,

T(U, P )ν, S ⊂ Γout,

0 otherwise,

where [·] denotes the jump across the interelement side S.

Proof. Applying (32) to (46), with linear functional I obeying (47), yields

J [Ω, (u, p), λ] − J [Ω, (U, P ), λ] = B[(U, P ), (z − Z, q −Q)].

Integrating B[(U, P ), (z − Z, q − Q)] by parts over the elements T ∈ T , and collecting the
boundary terms from adjacent elements to form jumps, we obtain the expression

B[(U, P ), (z−Z, q−Q)] =
∑

T∈T

∫

T
r(U, P )(z−Z) + ρ(U)(q −Q) dx+

∫

∂T
j(U, P )(z−Z) dS.

Applying the Cauchy-Schwarz inequality leads to (60), which is consistent with (33).
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In view of the discussion following Lemma 3.1, especially (37)–(38), for the simulations
below we use the following heuristic bound in the module ESTIMATE of the adaptive algorithm
ASQP: ∣∣J [Ω, (u, p), λ] − J [Ω, (U, P ), λ]

∣∣ .
∑

T∈T

ηT (T ).

where the explicit element indicators are given by

ηT (T ) :=
(
h
1/2
T ‖r(U, P )‖L2(T ) + ‖j(U)‖L2(∂T )

) m∑

j=1

hjT ‖[DjZ]‖L2(∂T )

+ h
1/2
T ‖ρ(U)‖L2(T )

m−1∑

j=0

hjT ‖[DjQ]‖L2(∂T ).

Since the various terms hjT ‖[DjZ]‖L2(∂T ) in this heuristic bound are expected to be of the same
order, except for pathological situations, we just take j = 1 in our numerical implementation.

5.6 Numerical Experiments

In Figure 2 we show a sequence of meshes, starting from a non-convex initial obstacle, and
arriving at the optimal rugby-ball shape, with the same volume [18, 19].

This simulation is rather demanding due to the non-convexity and non-smoothness of the
initial obstacle shape. In Figure 2 we observe its evolution under the ASQP algorithm. It can be
seen that DWR finds large estimators close to the corners of the initial shape, and forces some
refinement in order to control the PDE error. Afterwards, using the direction dictated by the
shape derivative δΩJ [Ω] and the scalar product AΓ(·, ·), as well as GCMM, ASQP smooths out
those corners and straightens out the non-convex part of Γ. A few iterations later the elements
that were initially around the original corners are coarsened due to the current smoothness
of Γ, and the elements around the newly formed corners are strongly refined to reduce both
the PDE and geometric errors (see Figure 3).

Iteration 2 3 4 5 8 9 10 17 18 23 26 28 30 31 32 33 35 R

DWR-ref 220 216 94 79 153 80 225 11 241 94 R

DWR-coars 34 51 54 48 90 778 63 43 23 135 R

LB-ref 11 16 19 19 13 19 36 7 37 6 10 62 R

LB-coars 2 8 2 1 R

Table 1: Drag optimization: adaptivity statistics of the ASQP method for the first 35 iterations. The
number of marked elements for refinement/coarsening is denoted with LB for Laplace-Beltrami and
DWR for the Dual Weighted Residual method. After iteration 35 the first occurrence of remeshing
appears (R) due to failed mesh quality check. Subsequent remeshings occured after iterations 62, 100
and 154.

In Table 1 we show numerical data that document some aspects of the practical behavior of
ASQP. During the first 10 iterations the refinement process dominates the coarsening procedure;
this is mostly due to the detection of the initial corners. At iteration 28 a strong coarsening
occurs in response to the flattening of the initially highly refined corners. The method is
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Figure 2: Drag optimization: snapshots at iterations 0, 10, 28, 50, 130 and 174 of the evolution of a
non-convex obstacle in a channel flow using the ASQP algorithm to find the optimal rugby-ball shape
that minimizes its drag. The flow is modeled as a stationary Stokes fluid. The obstacle is constrained
to maintain its initial volume. Taylor-Hood finite elements with m = 2 (quadratics for velocity and
linears for pressure) are employed for approximating both the state and adjoint problems. For the
boundary we consider the Laplace-Beltrami operator with ρ = 0.05. It is worth noticing that the
initial refinement due to the presence of (non-genuine) corners on the initial shape disappears later on,
and new refinement appears around the (genuine) corners of the optimal shape. This is the combined
effect of DWR (section 3) and GCMM (section 4.4).

thus able to detect and coarsen fake corners (see Figure 3). The first remeshing occurs after
iteration 35. Subsequent remeshing occured after iterations 62, 100 and 154.
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Figure 3: Drag optimization: detection of genuine geometric singularities (iterations 0, 5, 20, 32, 50
and 160). Zoom of the evolution of the non-convex obstacle towards the optimal shape that minimizes
the drag with a given volume. The geometric singularities given by the artificial corners of the initial
shape are quickly detected by the ASQP method. They are refined by the combined effect of the LB
and DWR error estimates, and smoothed out by the energy minimizing iterations and GCMM (first
three frames). A few iterations later the elements that were initially around the original corners are
coarsened due to the current smoothness of Γ (forth frame). As the genuine singularity of the problem
(the corner of the rugby ball) appears the ASQP method is able to recognize it and to refine around it
(last two frames) so as to improve both the PDE and geometric approximation.

6 Optimization of an Aortic-Coronary By-Pass

6.1 Cost Functional, Lagrangian, and Adjoint Equation

We consider now a model of blood flow through an aortic-coronary by-pass. Let Ω ⊂ Rd,
d ≥ 2 be a bounded domain of Rd as depicted in Fig. 4. Let the velocity-pressure pair
(u, p) = (u(Ω), p(Ω)) solve the Stokes problem (41) in strong form or (43) in weak form. Let
the finite element pair (U, P ) solve the Galerkin problem (59). We are interested in the total

dissipated energy in Ω, which is given by

I[Ω, (u, p)] := 2µ

∫

Ω
|ǫ(u)|2 dx. (61)

It is worth noticing that in two dimensions I measures the vorticity of an incompressible flow.
The corresponding minimization problem has been considered in [20] to find the optimal
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Ω

Γs

Γw
Γin

Γout

Γw

Γw

Γw

Figure 4: Domain Ω for coronary by-pass shape optimization: Ω ⊂ Rd, d ≥ 2, is a bounded domain
with boundary split into an inflow part Γin, an outflow part Γout, a part considered as a wall Γw, and
a deformable part Γs, which is is the main design variable. The end points of Γs connecting to Γw are
fixed and are not part of the optimization.

design of an aorto-coronary by-pass (see also [21]). We supplement (61) with a penalization
of the perimeter of Γs and thus consider for ε > 0 fixed

J [Ω, (u, p)] := I[Ω, (u, p)] + ε|Γs|. (62)

According to (12), the Lagrangian associated with this shape optimization problem reads

L[Ω, (u, p), (z, q)] := J [Ω, (u, p)] −B[(u, p), (z, q)]. (63)

Lemma 6.1 (adjoint equation for (63)). The adjoint pair (z, q) satisfies the weak form

(z, q) ∈ S(0) : B[(w, s), (z, q)] = 4µ〈ǫ(u), ǫ(w)〉 ∀(w, s) ∈ S(0), (64)

as well as the strong form

− div(T(z, q)) = −4µ div(ǫ(u)) in Ω,

div z = 0 in Ω,

z = 0 on Γd,

T(z, q)ν = 4µǫ(u)ν on Γout,

(65)

Proof. It suffices to differentiate L in (63) with respect to (u, p) to get (64) and to integrate
(64) by parts to obtain (65).

6.2 Shape Derivative

We now compute δΩL[Ω, (u, p)(Ω), (z, q)(Ω)] for L in (63).

Lemma 6.2 (shape derivative of (63)). Let (u, p) be the solution of (43) and (z, q) be that

of (64). The shape derivative of L[Ω, (u, p)(Ω), (z, q)(Ω)] in the direction V is given by

〈δΩL[Ω, (u, p)(Ω), (z, q)(Ω)],V〉 = 2µ

∫

Γs

ǫ(u) :
(
ǫ(z)− ǫ(u)

)
V dS + ε

∫

Γs

κ V dS, (66)

where κ is the mean curvature of Γs.
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Proof. In view of (63), we can write

L[Ω, (u, p)(Ω), (z, q)(Ω)] =

∫

Ω

(
2µ|ǫ(u)|2 + 2µǫ(u) : ǫ(z)− p div z− q divu

)
dx + ε

∫

Γs

dS.

Applying the chain rule (23) we end up with

〈δΩL[Ω, (u, p)(Ω), (z, q)(Ω)],V〉 =

∫

Γs

(
2µ|ǫ(u)|2 + 2µǫ(u) : ǫ(z)− p div z− q divu

)
V dS

+

∫

Ω
4µǫ(u) : ǫ(u′) dx

+

∫

Ω

(
2µǫ(u′) : ǫ(z)− p′ div z− q divu′

)
dx

+

∫

Ω

(
2µǫ(u) : ǫ(z′)− p div z′ − q′ divu

)
dx

+ ε

∫

Γs

κV dS,

where the shape derivatives (u′, p′) = (u′(V), p′(V)) and (z′, q′) = (z′(V), q′(V)) satisfy (55)
and (56) respectively, except that

− div(T(z′, q′)) = −4µ div
(
ǫ(u′)

)
in Ω. (67)

We next examine each term separately. We first observe that integration by parts yields
∫

Ω
4µǫ(u) : ǫ(u′) dx = −4µ

∫

Ω
div(ǫ(u))u′dx + 4µ

∫

∂Ω
(ǫ(u)ν) · u′dS. (68)

Employing (65), integrating by parts, and using the weak form of (55), we infer that

−4µ

∫

Ω
div

(
ǫ(u)

)
u′dx =

∫

Ω
T(z, q) : ∇u′ dx−

∫

∂Ω

(
T(z, q)ν

)
· u′ dS

= B[(u′, p′), (z, q)] +

∫

Γs

(
∇uν

)
·
(
T(z, q)ν

)
V dS −

∫

Γout

(
T(z, q)ν

)
· u′ dS.

Since B[(u′, p′), (z, q)] = 0 for (z, q) ∈ S(0) we deduce

−4µ

∫

Ω
div

(
ǫ(u)

)
u′dx = 2µ

∫

Γs

ǫ(u) : ǫ(z)V dS −
∫

Γout

(
T(z, q)ν

)
· u′ dS,

where we have used, as in (57), that (∇uν) · (T(z, q)ν) = 2µ ǫ(u) : ǫ(z). We observe now
that the last term cancels with a corresponding term in (68) because T(z, q)ν = 4µǫ(u)ν
according to (65). On the other hand, in light of (55), the remaining integral over ∂Ω\Γout

in (68) becomes

4µ

∫

Ω\Γout

(
ǫ(u)ν

)
· u′dS = −4µ

∫

Γs

(
ǫ(u)ν

)
· ∇uνV dS = −4µ

∫

Γs

ǫ(u) : ǫ(u)V dS,

where we have used again the argument in (57) to write
(
ǫ(u)ν

)
· ∇uν = ǫ(u) : ǫ(u). This

implies ∫

Ω
4µǫ(u) : ǫ(u′) dx = 2µ

∫

Γs

ǫ(u) : ǫ(z)V dS − 4µ

∫

Γs

ǫ(u) : ǫ(u)V dS.
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Similarly, since (z, q) ∈ S(0), the weak form of (55) yields

∫

Ω

(
2µǫ(u′) : ǫ(z)− p′ div z− q divu′

)
dx = B[(u′, p′), (z, q)] = 0,

whereas, proceeding as before

∫

Ω

(
2µǫ(u) : ǫ(z′)− p div z′ − q′ divu

)
dx = B[(u, p), (z′, q′)]

=

∫

Γs

(T(u, p)ν) · z′ dS

= −
∫

Γs

(T(u, p)ν) · (∇zν)V dS

= −2µ

∫

Γs

ǫ(u) : ǫ(z)V dS

because of (57); note that we do not resort to (67) because (z′, q′) is viewed as a test function.
Collecting the expressions above we arrive easily at the desired formula (66).

6.3 Dual Weighted Residual Estimator

We now estimate the PDE error induced by the finite element approximation and assume
that the domain Ω is fixed; thus J [Ω, (u, p)] = I[(u, p)].

Lemma 6.3 (DWR estimate for the by-pass). The following error estimate holds

|J [Ω, (u, p)] − J [Ω, (U, P )]| ≤ 1

2

∑

T∈T

(
‖r∗(U,Z, Q)‖L2(T )‖u−U‖L2(T )

+ ‖j∗(U,Z, Q)‖L2(∂T )‖u−U‖L2(∂T )

+ ‖ρ∗(Z)‖L2(T )‖p − P‖L2(T )

+ ‖r(U, P )‖L2(T )‖z− Z‖L2(T )

+ ‖j(U, P )‖L2(∂T )‖z− Z‖L2(∂T )

+ ‖ρ(U)‖L2(T )‖q −Q‖L2(T )

)
,

(69)

where (U, P ) and (Z, Q) are the finite element solutions of the state problem (41) and the

adjoint problem (65), respectively, and the residuals are given by

r∗(U,Z, Q)|T := −4µ div(ǫ(U)) + divT(Z, Q), ρ∗(Z)|T := divZ,

r(U, P )|T := divT(U, P ), ρ(U)|T := divU,

j∗(U,Z, Q)|S =





1

2
[[4µǫ(U)ν −T(Z, Q)ν]], S 6⊂ ∂Ω,

4µǫ(U)ν −T(Z, Q)ν, S ⊂ Γout,

0, otherwise,
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j(U, P )|S =





− 1

2
[[T(U, P )ν ]], S 6⊂ ∂Ω,

−T(U, P )ν, S ⊂ Γout,

0, otherwise,

with [[·]] denoting the jump across the interelement side S.

Proof. In view of (27) and (28) for J obeying (62), we can write for all (w, s) ∈ S

R((U, P ), (Z, Q); (w, s)) = −B[(U, P ), (w, s))

R∗((U, P ), (Z, Q); (w, s)) = 4µ

∫

Ω
ǫ(U) : ǫ(w) dx−B[(w, s), (Z, Q)].

Therefore, applying (30) and realizing that the remainder E = 0 because J is quadratic, we
obtain

J [Ω, (u, p)] − J [Ω, (U, P )] =
1

2

{
4µ

∫

Ω
ǫ(U) : ǫ(u−U) dx

−B[(u−U, p − P ), (Z, Q)] −B[(U, P ), (z − Z, q −Q)]
}
.

Splitting the integrals over elements T ∈ T , integrating by parts, and collecting the boundary
terms from adjacent elements to form jumps, yields

J [Ω, (u, p)] − J [Ω, (U, P )] =
1

2

{ ∑

T∈T

∫

T
r∗(U,Z, Q)(u −U) +

∫

∂T
j∗(U,Z, Q)(u −U)

+

∫

T
ρ∗(Z)(p − P ) +

∫

T
r(U, P )(z − Z) +

∫

∂T
j(U, P )(z − Z) +

∫

T
ρ(U)(q −Q)

}

On using the Cauchy-Schwarz inequality we obtain the asserted estimate (69).

In view of the discussion following Lemma 3.1, especially (37), for the simulations below
we use the following heuristic bound in the module ESTIMATE of the adaptive algorithm ASQP:

∣∣J [Ω, (u, p)] − J [Ω, (U, P )]
∣∣ .

∑

T∈T

ηT (T ) + η∗T (T )

where

ηT (T ) :=
(
h
1/2
T ‖r(U, P )‖L2(T ) + ‖j(U, P )‖L2(∂T )

) m∑

j=1

hjT ‖[DjZ]‖L2(∂T )

+ h
1/2
T ‖ρ(U)‖L2(T )

m−1∑

j=0

hjT ‖[DjQ]‖L2(∂T ),

η∗T (T ) :=
(
h
1/2
T ‖r∗(U,Z, Q)‖L2(T ) + ‖j∗(U,Z, Q)‖L2(∂T )

) m∑

j=1

hjT ‖[DjU]‖L2(∂T )

+ h
1/2
T ‖ρ∗(Z)‖L2(T )

m−1∑

j=0

hjT ‖[DjP ]‖L2(∂T ).
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Figure 5: Coronary by-pass: optimal configurations obtained with different penalization parameters:
ε = 0.5×10−5 (top-left), 0.8×10−5 (top-right), 1.0×10−5 (bottom-left) and 5.0×10−5 (bottom-right).
Taylor-Hood finite element with m = 2 are employed for approximating state and adjoint problems
and for the boundary we consider the pure Laplace-Beltrami opertor. Small values of the penalization
parameter yield a Taylor-patch like geometry [26] (top-left), while large values of ǫ lead to by-pass
configurations similar to those in [14] (bottom-right). Corresponding energy plots are shown in Fig.
6.

6.4 Numerical Experiments

In this section we elaborate on the iterations that led to the meshes shown in Fig. 5 and explore
the different behavior of the algorithm when changing the perimeter penalization parameter
ε in the cost functional. In Fig. 5 we depict the optimal bypass configurations obtained with
the following penalization parameters: ε = 0.5× 10−5, 0.8× 10−5, 1.0× 10−5 and 5.0× 10−5.
Small values of ε lead to a Taylor-patch like geometry [26], while large values of ε lead to
by-pass configurations similar to those in [14]. Remeshing was unnecessary for any of these
by-pass simulations.

We observe the effect of DWR that refines at the junction between the deformable curve
Γs and the wall Γw, which is a reentrant corner of Ω. DWR is also sensitive to changes of
boundary conditions and thus refines at the corners of the outflow boundary Γout where the
traction-free condition changes to no-slip. Since the heuristic element indicators ηT (T ) and
η∗T (T ) of DWR contain terms of the form hjT ‖[DjZ]‖L2(∂T ) and hjT ‖[DjZ]‖L2(∂T ), which are
expected to be of the same order except for pathological cases, we take j = 1 in our numerical
experiments.

In Fig. 6 we show the expected monotone behavior of J [Ωk, (Uk, Pk)(Ωk)] vs the number
of iterations k for a discrete gradient flow, for the four values of ε listed above.

7 Conclusions and Further Comments

• We develop an Adaptive Sequential Quadratic Programming (ASQP) algorithm for shape
optimization, which dynamically changes the tolerance and equidistributes the computa-
tional effort between the PDE and geometry approximation. This leads to rather coarse
meshes in the early stages of the optimization when the shape is still far from optimal and
full numerical accuracy is a waste.
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Figure 6: Coronary by-pass optimization: histories of convergence of the energy functional
J [Ωk, (Uk, Pk)(Ωk)] in terms of the iteration counter k for different values of the perimeter penal-
ization parameter (left: ε = 0.5× 10−5, 0.8× 10−5, 1.0× 10−5; right: 5.0× 10−5). Fig. 5 displays the
corresponding optimal configurations.

• We give a formula that relates the PDE and geometric errors dynamically and depends on
the best domain deformation to perturb the energy functional J [Ω]. Such a deformation is
characterized via shape differential calculus. The dual weighted residual (DWR) method
controls the PDE error and the Laplace-Beltrami (LB) error indicator deals with the geo-
metric error associated to domain deformations. This appears to be the first work with all
these critical ingredients.

• We exploit the geometrically consistent mesh modification (GCMM) algorithms of [6] within
ASQP. This allows for detection and removal of kinks that are fake (numerical artifacts) but
not of those that are genuine to the problem. This is a new paradigm in adaptivity and
its resolution is a crucial contribution. It is important to notice that both DWR and LB
would insist on refining kinks regardless of their nature in the absence of a robust detection
and correction mechanish.

• We apply the ASQP algorithm to two relevant problems governed by the stationary Stokes
equation. We first examine a drag minimization problem, which has been the subject
of intense research in the literature but without including adaptivity. We next study an
aorto-coronary by-pass model. In both cases we discuss the ingredients of ASQP in detail
and document its performance with interesting simulations. It is worth realizing that the
applicability of ASQP goes far beyond viscous fluids.

• We present a novel interpolation error estimate which measures regularity in terms of jumps
of the interpolant plus a higher order correction term (see Lemma 3.1). This may be
viewed as a discrete Bramble-Hilbert lemma and justifies asymptotic expressions used in
the literature of DWR.
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