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Abstract

A flexible multiscale topology optimization methodology is introduced
in order to associate different areas of the design domain with diverse mi-
crostructures extracted from a dictionary of optimized unit cells. The gener-
ation of the dictionary is carried out by exploiting microSIMPATY algorithm,
which promotes the design of free-form layouts. The proposed methodology
is particularized to the design of orthotic devices for the treatment of foot dis-
eases. Different patient-specific settings drive the prototyping of customized
insoles, which are numerically verified and successively validated in terms
of mechanical performances and manufacturability.

Keywords: Multiscale topology optimization, Material design, 3D printing,
Orthopedic devices, SIMPATY algorithm, Anisotropic mesh adaptation
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1 Introduction

Cellular materials, characterized by a porous microstructure which properly al-
ternates solid and void, have been engineered in the last years to artificially re-
produce the lightweight and the strength properties exhibited by some biological
systems, such as bones, honeycombs, sponges, and wood. In parallel, the rise of
innovative manufacturing techniques, such as additive processes (e.g., 3D print-
ing), promoted the production of cellular materials in very diverse fields of appli-
cation, for instance, in healthcare, aerospace, defense, construction, and automo-
tive [19, 53, 106].

The strong interest in cellular materials has favoured the proposal of a wide range
of analytical, numerical, and experimental methods for an efficient design of new
porous materials. In this context, topology optimization represents the reference
mathematical methodology. Actually, this technique has been extensively adopted
not only to create optimized structures [5, 6, 13, 14, 17, 60, 65, 73, 80, 84, 86, 89,
105], but also to address the design of unit cells optimized with respect to a specific
goal [21, 51, 88, 101]. Starting from the seminal work by O. Sigmund [88], inverse
and direct homogenization techniques have been massively employed to engineer
and validate periodic microstructures [7, 8, 47].
However, it is well known that the topology optimization carried out at a monoscale
(either at a macroscale or at a microscale level) may limit structural performances.
Multiscale topology optimization has been proposed as a remedy to overcome such
limitations [24, 83]. This strategy consists in identifying the optimal alternation
of void, solid, and microstructures inside the design domain [9, 10, 42, 45, 102].
The distribution of void, solid, and microstructures can be carried out by the user
through a trial-and-error approach, or automatically driven by a topology optimiza-
tion tool, to match design or performance requirements at the macroscale. More-
over, the same microstructure or a multiplicity of different cells can be used to
handle the transition areas between solid and void. The first option confers the
same effective properties on the whole design domain, while the coexistence of
several topologies at the microscale allows us to locally diversify the property of
the macro domain. Finally, the layout of the employed microstructures can be
selected a priori, starting from consolidated dictionaries of unit cells [7, 75, 97],
or designed from scratch to match the requirement of interest via homogenization
techniques [24, 26, 36, 77, 82].
The scenario which provides us the highest flexibility in terms of design of struc-
tures with diversified mechanical performances is the one where the microstruc-
tures are ad-hoc designed and change across the optimized macro domain. This
option clearly represents the most challenging choice in terms of modeling (ded-
icated optimizations are employed both at the macro- and at the microscale and,
possibly, follow different goal quantities, see, e.g., [41]), computational effort (es-
pecially, if the optimizations at the macro- and at the microscale are concurrent,
see, e.g., [24]) and manufacture (due to intrinsic limits in manufacturability, for
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instance, associated with the transition among different cells, or to possible defects
or irregularities characterizing the optimized layouts, see, e.g., [30]).

In this paper, we propose a highly flexible procedure for multiscale topology opti-
mization characterized by a computationally affordable burden, based on a recent
and already successfully validated structural design methodology, which provides
some improvements in terms of manufacturability. This procedure consists of two
phases. During the first one, we create a dictionary of unit cells characterized by
the same or by a different topology, sharing the same mechanical objective. In the
second phase, we exploit the multiscale topology optimization strategy proposed
in [102], combined with a suitable density material thresholding, to identify the
areas of the macro domain to be associated with the different microstructures.
The computational complexity of the proposed procedure remains limited thanks to
a sequential optimization of the unit cells and of the macrostructure. The indepen-
dence between the macro- and the microscale allows us to increase the flexibility of
the modeling, since different goal quantities can be adopted to drive the optimiza-
tion of the cells and of the macro layout. Moreover, the generation of the dictionary
relies on the recent algorithm microSIMPATY [36], which combines homogeniza-
tion techniques together with the SIMP method and a customized selection of the
computational mesh, generalizing the SIMPATY algorithm proposed in [72] to a
microscale. The blending of these three ingredients results in a cost-effective pro-
cedure, which provides very smooth layouts, thus limiting the post-processing be-
fore manufacturing. It has also been checked that microSIMPATY promotes the
design of new topologies in accordance with a free-form paradigm [26, 36]. The
computational and practical advantages characterizing the methodology supporting
SIMPATY and microSIMPATY algorithms have been already successfully verified
in several contexts, involving also shape optimization [37], model reduction [34]
and new metamaterial design [26, 36].

MicroSIMPATY algorithm is employed in this paper for the first time into a multi-
scale topology optimization setting to tackle a biomedical case study as a new ap-
plication context. Indeed, we focus on the design of an optimized patient-specific
insole for the treatment of foot problems [59, 68]. Many conditions are associated
with foot diseases, such as musculoskeletal disorders, foot deformity, foot ulcera-
tion [52]. The impairments led by foot problems include a higher risk of falling,
lower ability to execute standard activities of daily living, and a general lower level
of quality of life [46, 63]. Among the different interventions and pain management
strategies, foot orthotics represent a very common conservative solution, although
an open debate on the correlated effectiveness and biomechanical contribution is
still ongoing [66]. Despite that, the reduction of plantar pressure remains a refer-
ence target to improve patient’s condition [96], typically ensuring the attenuation
of symptoms for different pathologies [22, 25]. For this reason, several methods
have been proposed to optimize the design and the production of patient-specific
foot orthotics, guaranteeing a therapeutic effect [1, 94]. The methodology pro-
posed in this paper is meant to provide a contribution in such a context, relying on
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the flexibility and on the good design and manufacturing properties characterizing
microSIMPATY algorithm.

The paper is organized as follows. Section 2 introduces the SIMPATY algorithm
after a brief recap on the SIMP method. Section 3 is devoted to the homogeniza-
tion techniques, with a particular emphasis on the inverse methodology, directly
involved in the microstructural design. In Section 4, we exploit inverse homog-
enization to generate two dictionaries of unit cells, different for the number of
included microcellular topologies. The adopted multiscale topology optimization
is described in Section 5 and applied to the design of optimized orthotic devices in
Section 6. Here, two different patient-specific configurations are analyzed for the
prototyping of customized insoles. The two scenarios are numerically verified and
the most meaningful setting from a medical viewpoint is successively validated in
terms of mechanical properties and 3D printing manufacturability. Finally, in the
last section, some conclusions are drawn and some hints are provided on possible
future developments.

2 A generic setting for structural topology optimization

Topology optimization aims at allocating the material inside the design domain in
order to match a goal quantity strictly related to the application at hand, while sat-
isfying specific physical and design constraints.
Originally, topology optimization has been settled to deal with structural problems
(see, e.g., the landmark papers by A.G.M. Michell [73], G.I.N. Rozvany [84, 85,
86], M.P. Bendsøe and N. Kikuchi [13]). In this context, the stiffness, the stress,
the vibration modes and the mass of the structure are classical examples of target
quantities or constraints to the optimization, in combination with the state equation
which models the physical law the structure is subject to.
Successively, the crucial impact of topology optimization has been verified in sev-
eral engineering fields different from structural mechanics (see, e.g., [3, 18, 27,
43, 54, 80, 98, 104] and the references therein). The employment of topology
optimization in a wide range of different settings motivated the proposal in the lit-
erature of several mathematical and numerical methodologies. Among the most
popular approaches, we mention density-based schemes [14, 89], level-set meth-
ods [6, 65], topological derivative procedures [91], phase field techniques [17, 28],
evolutionary approaches [105], homogenization [5, 13], performance-based opti-
mization [60], and more recently, model reduction and machine learning tools [4,
23, 34, 87, 103]. The main feature distinguishing these methodologies is the mod-
eling expedient adopted to track the solid/void alternation in the design domain,
with pros and cons for each possible choice. In this paper, we opt for a density-
based scheme, i.e., the Solid Isotropic Material with Penalization (SIMP) method.
For an insight review on SIMP we refer to [85].
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2.1 The SIMP method

SIMP has been employed for several applications to drive topology optimization,
including fluid dynamics [16], acoustics [108], heat transfer [79], electromag-
netism [57], electro-mechanics [74], electro-thermo-mechanics [67], fatigue and
static failure [55], medicine [92], optics [109], automotive design and manufactur-
ing [38], and aerospace engineering [110]. These references provide just possible
examples of the many papers available in the specialized literature.

SIMP introduces an auxiliary function ρ ∈ L∞(Ω, [0,1]), referred to as density or
design variable, which models the distribution of the material in the so-called de-
sign domain Ω ⊂ R2, here identified with a two-dimensional setting. Ideally, ρ is
assumed to take only the extreme values, 0 and 1, where ρ = 1 identifies the mate-
rial whereas ρ= 0 characterizes the void. In practice, ρ takes all the values in [0,1].
This leads very often to an over-diffused material-void interface in correspondence
with intermediate densities, whose physical interpretation is not straightforward.
To overcome this issue, SIMP penalizes the intermediate densities by means of a
suitable function of ρ.

The generic formulation of the SIMP method looks for the optimal material dis-
tribution inside the design domain according to a selected goal quantity, subject
to constraints, which take into account the physical configuration at hand together
with design requirements. It reads as

min
ρ∈L∞(Ω,[0,1])

G(u(ρ),ρ) :


aρ(u(ρ),v) = Fρ(v) ∀v ∈U
cm ≤C(u(ρ),ρ)≤ cM

ρmin ≤ ρ≤ ρmax,

(1)

where G(·, ·) is the target functional to be optimized, the first constraint coincides
with the weak form of the equation modeling the physics, the second one enforces
a control on the system, with cm and cM the corresponding lower and upper bounds,
while the last two-sided inequality guarantees the well-posedness of the weak form,
being 0 < ρmin < ρmax ≤ 1, and where U denotes a Sobolev space strictly depen-
dent on the boundary data characterizing the physical model [31].
Notice that the weak form includes the density function according to a law, which
depends on the phenomenon under investigation. For instance, a suitable power of
ρ multiplies the stiffness tensor when optimizing structures in a linear regime [12];
in a fluid-dynamic setting, it is standard to consider a density-weighted inverse
permeability [16]; in the design of microstructures, ρ modifies the homogenization
applied at the microscale [88].
Moreover, the system can be multi-constrained, so that relation cm ≤C(u(ρ),ρ)≤
cM in (1) is replaced by a set of constraints (see Section 5).
Different algorithms are used in the literature to manage the constrained minimiza-
tion in (1), such as MMA [93], IPOPT [100], heuristic-based, genetic or machine
learning routines [23].

When dealing with a structural topology optimization at the macroscale, it is com-
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mon to identify the state equation in (1) with the linear elasticity problem in the
small displacement regime, so that the bilinear form becomes

aρ(u(ρ),v) =
∫

Ω

σρ(u(ρ)) : ε(v)dΩ, (2)

where u : Ω→R2 denotes the displacement of the structure; ε(v) = (∇v+∇vT )/2
is the strain tensor;

σρ(u(ρ)) = ρ
p[2µε(u(ρ))+λ tr(ε(u(ρ)))I], (3)

is the stress tensor penalized by a power law of the density, ρp, with p≥max{1/(1−
ν),4/(1+ν)},

λ =
EY ν

(1+ν)(1−2ν)
, µ =

EY

2(1+ν)
,

the Lamé coefficients, EY and ν the Young’s modulus and the Poisson’s ratio, tr(·)
the trace operator, and I the identity tensor.

Different boundary conditions may characterize the configuration of the structure.
Recurrent choices are

u(ρ) = 0

to take into account a clamped portion, ΓD, of the boundary;

σρ(u(ρ))n = f

to model a portion, ΓN , of the body boundary ∂Ω loaded by the traction f : ΓN →
R2;

σρ(u(ρ))n = 0

for a traction-free portion ΓF ⊂ ∂Ω. It is understood that ∂Ω = ΓD∪ΓN ∪ΓF , the
boundary portions being assumed as closed sets. The selected boundary data define
the space U and the right-hand side, Fρ(v), in (1).

Problem (1) combined with the state equation (2) may be characterized by multiple
local minima, due to the non-convexity of the functional G , so that the uniqueness
of the solution is a priori not guaranteed. This is, for instance, the case of the
minimum compliance benchmark problem [12, 90]

We discretize the weak form in (1) by means of continuous finite elements, i.e.,
we look for the displacement, uh, and the density, ρh, in Uh = [V r

h ]
2 ∩U and V s

h ,
respectively, with

V q
h = {v ∈C0(Ω̄) : v|K ∈ Pq ∀K ∈ Th}

the space of the finite elements of degree q, Th = {K} a conforming triangular
tessellation of the domain Ω and Pq the set of polynomials of global degree q, with
the understanding that the functions in V 0

h are discontinuous and piecewise constant
on Th [31].
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It is well-known that SIMP method suffers from several issues related to the dis-
cretization adopted in (1). Among the main drawbacks, we list the dependence
of the final layout on the grid Th, the presence of checkerboard and grayscale ef-
fects [12, 90], jagged boundaries or too complex topologies which make the opti-
mized design unpractical for manufacturing.
The mesh dependence can be ascribed to the non-uniqueness of the solution. It is
generally tackled by constraining or filtering the design variable.
Checkerboard effects arise when solid and void elements alternate in an uneven
way. This feature is rather standard in the presence of a two-field formulation, un-
less an ad hoc combination of the finite element spaces for the displacement, uh,
and the density, ρh, is adopted (standard choices are, for instance, s = 0, r = 2 for
quadrilateral elements [14] and s = 0, r = 1 for triangular elements [20]). Filtering
techniques are an alternative viable remedy to get rid of checkerboard patterns, to-
gether with adapted computational meshes as detailed in the next section.
Filtering and thresholding techniques can be helpful to manage the presence of the
grayscales associated with the intermediate values of ρh, between 0 and 1.
Jagged material/void interfaces can be traced back to excessively coarse grids,
whereas thin struts often depend on the employment of too fine meshes. As a com-
promise between too coarse and too fine meshes, in [37, 72] the authors propose
a new algorithm, presented in the next section, which enriches the SIMP method
with a customized choice of the computational mesh in the framework of structural
optimization.

2.2 The SIMPATY algorithm

SIMPATY algorithm (SIMP with AnisoTropic mesh adaptivitY) has been proposed
in [72] to assist the design of lightweight and stiff structures aimed at aerospace
applications. This new algorithm consists of an iterative procedure, which sequen-
tially alternates the topology optimization in (1), tackled by the Interior Point OP-
Timizer (IPOPT) package [99, 100], with the generation of an anisotropic adapted
mesh.

The benefits guaranteed by adapted computational grids are widely recognized by
the availability of devoted tools in the majority of commercial software. Actually,
by optimizing the element size, standard isotropic adapted meshes allow us to im-
prove the solution accuracy for a certain mesh cardinality or, vice versa, to contain
the number of elements for a user-defined tolerance on the numerical approxima-
tion. These improvements are further enhanced by anisotropic grids, which tune
the size, the shape, and the orientation of the mesh triangles in order to track the di-
rectional features of the modeled phenomena, such as steep boundary and internal
layers, discontinuities, sharp fronts, shocks in compressible flows, more in general
areas where the problem exhibits strong gradients [11, 29, 33, 39, 40, 64, 71, 81].
The generation of anisotropic grids deserves more technicalities when compared
with an isotropic context. This justifies the limited availability of anisotropic mesh
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adaptation modules in current simulation software.
Anisotropic mesh adaptation can be driven by heuristic or theoretically sound
quantifiers. The first class exploits information prompted by the application at
hand in terms of numerical solution or associated variation (e.g., gradient or Hes-
sian). The second class is represented by the a priori and the a posteriori error
estimators, which can be classified according to the controlled quantity adjusting
the allocation of the elements in the adapted mesh [2].

After discretizing both the displacement and the density with affine finite elements,
SIMPATY algorithm resorts to an a posteriori anisotropic recovery-based error es-
timator, η, associated with the density variable. This estimator turns out to be the
ideal tool to identify the steep gradients of ρ across the material/void interface,
since it controls the H1-seminorm of the discretization error, eρ = ρ−ρh. The idea
formalized by a recovery-based error estimator is very straightforward [111]. It
consists in replacing in the definition of |eρ|H1(Ω) the exact gradient of the solution
with the so-called recovered gradient so that

|eρ|2H1(Ω) =
∫

Ω

|∇ρ−∇ρh|2dΩ ' η
2 =

∫
Ω

|P(∇ρh)−∇ρh|2dΩ, (4)

with P(∇ρh)∈ [V q
h ]

2 a suitable polynomial reconstruction of the exact gradient ∇ρ,
for q≥ 0.

Recovery-based error estimators have been exploited in several engineering con-
texts (see, e.g., [50, 71, 76, 81, 107]). The popularity of these estimators is justified
by the good properties they have, among which we cite the independence of the
specific problem and of the adopted discretization; the computational cheapness;
the handy implementation; the high performance in very diverse fields of applica-
tion. On the other hand, the theoretical investigation of these estimators remains
limited to very regular grids, far from the outcome of a mesh adaptation procedure.
Concerning the choice of the recovery operator P in (4), several proposals have
been made in the literature, to target specif problem- or theoretical-driven require-
ments. In general, P(∇ρh) is expected to provide a better approximation to ∇ρ

with respect to ∇ρh. Standard rules identify P with a local projection or average
of the discrete gradient. Here, we adopt the area-weighted average of ∇ρh over the
patch of elements, ∆K = {T ∈ Th : T ∩K 6= /0}, associated with the generic element
K ∈ Th, being

P(∇ρh)(x) = |∆K |−1
∑

T∈∆K

|T |∇ρh
∣∣
T for any x ∈ K, (5)

|ω| denoting the measure of the generic domain ω ⊂ R2, so that P(∇ρh) ∈ [V 0
h ]

2.
Despite the low polynomial degree, the recovered gradient in (5) proved to be a
good approximation for ∇ρ [32, 35, 36, 37, 70, 71, 72, 81], due to the large number
of elements contributing to the average.

In 2010, a generalization of the recovery-based error estimators to an anisotropic
setting has been proposed in [70]. This extension exploits the anisotropic setting
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proposed in [39]. Here, the generic element K of the mesh Th is characterized
by the elementwise metric MK = {λi,K ,ri,K}i=1,2, with λ1,K ≥ λ2,K > 0. In more
detail, the lengths λi,K and the orthonormal vectors ri,K identify the ellipse, EK ,
circumscribed to K, which coincides with the push-forward of the circle circum-
scribed to the reference triangle K̂ via the standard affine map TK : K̂ → K [31].
In particular, the scalar quantities λi,K measure the lenghts of the semi-axes of EK ,
whereas the unit vectors ri,K provide the corresponding directions. To quantify
the deformation of the element K, it is standard to adopt the so-called aspect ratio
sK = λ1,K/λ2,K ≥ 1, with sK = 1 for equilateral triangles.

The anisotropic variant of the recovery-based error estimator in [111] relies on the
correspondence, up to an area-dependent scaling factor,

|v|H1(∆K) 

[ 2

∑
i=1

λ
2
i,K(r

T
i,KG∆K (∇v)ri,K)

]1/2
, (6)

between the H1-seminorm of a function v∈H1(∆K) and the anisotropic counterpart
proposed in [39], where G∆K (·) is the symmetric positive semi-definite matrix with
entries

[G∆K (z)]i j = ∑
T∈∆K

∫
T

zi z j dT for i, j = 1,2, z = (z1,z2) ∈ [L2(Ω)]2.

In (6), the first order derivatives defining the H1-seminorm are projected along
directions ri,K’s, to comply with the anisotropic characterization of the element K.

A cross-comparison between (4) and (6) leads to the anisotropic error estimator

η
2 = ∑

K∈Th

η
2
K with ηK =

[ 1
λ1,Kλ2,K

2

∑
i=1

λ
2
i,K(r

T
i,KG∆K (e

∇
ρ )ri,K)

]1/2
, (7)

where e∇
ρ = P(∇ρh)−∇ρh denotes the recovered error associated with the material

density.

Following [69], estimator η is exploited to generate an anisotropic adapted mesh.
This goal is pursued by resorting to an iterative procedure, whose generic j-th
iteration consists of the following steps:

i) computation of the density function ρ
j
h, solution to problem (1), on the mesh

T j
h ;

ii) evaluation of the a posteriori error estimator (7) for ρh = ρ
j
h;

iii) derivation of the piecewise constant metric M j on T j
h ;

iv) projection of the metric M j into a piecewise linear metric M̃ j on T j
h ;

v) generation of the adapted mesh T j+1
h associated with the metric M̃ j.
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We comment on steps iii)-v), separately, by neglecting the iteration index j to
simplify the notation.

Concerning item iii), we look for the elementwise metric M = {M ∗
K}K∈Th with

M ∗
K = {λ∗i,K ,r∗i,K}i=1,2, the local metric. For the derivation of M we enforce a cer-

tain accuracy on ρh, while minimizing the mesh cardinality and equidistributing the
error throughout the mesh. These critera give rise to the constrained minimization
problem

min
sK ,ri,K

JK(sK ,{ri,K}i=1,2) :

{
ri,K · r j,K = δi j

sK ≥ 1,
(8)

to be solved on each elements K, with δi j the Kronecher symbol,

JK(sK ,{ri,K}i=1,2) = sK
(
rT

1,KĜ∆K (e
∇
ρ )r1,K

)
+ s−1

K

(
rT

2,KĜ∆K (e
∇
ρ )r2,K

)
,

and Ĝ∆K (e∇
ρ ) = G∆K (e∇

ρ )/|∆K |. Quantity JK follows from the local estimator in (7),
being

η
2
K = |∆K |

[
sK
(
rT

1,KĜ∆K (e
∇
ρ )r1,K

)
+ s−1

K

(
rT

2,KĜ∆K (e
∇
ρ )r2,K

)]
. (9)

Notice that the area information is now confined into the term |∆K |. Due to the
error equidistribution,

η
2
K = |∆K |JK(sK ,{ri,K}i=1,2) = constant. (10)

Since minimizing the mesh cardinality is equivalent to maximize the area of the
mesh elements, the derivation of M leads us to solve problem (8). In [69, Proposi-
tion 26], the authors supply the explicit solution to this problem, namely

s∗K =
√

γ1,K/γ2,K , r∗1,K = g2,K , r∗2,K = g1,K ,

with {γi,K ,gi,K}i=1,2 the eigen-pairs associated with matrix Ĝ∆K (e∇
ρ ), with γ1,K ≥

γ2,K > 0 and {gi,K}i=1,2 orthonormal vectors. Directions r∗i,K provide the two direc-
tions characterizing metric M ∗

K , whereas we have only the ratio of the two lenghts
λ∗i,K . To compute λ∗1,K and λ∗2,K , separately, we explicitly impose the error equidis-
tribution, i.e.,

η
2
K = λ

∗
1,Kλ

∗
2,K |∆K̂ |JK(s∗K ,{r∗i,K}i=1,2) = constant =

TOL2

#Th
, (11)

with TOL a user-defined tolerance on the density ρh, #Th the mesh cardinality, and
where relation |∆K | = λ1,Kλ2,K |∆K̂ | has been exploited, with ∆K̂ = T−1

K (∆K) the
pull-back of the patch ∆K via map TK .
Since JK(s∗K ,{r∗i,K}i=1,2) = 2

√
γ1,Kγ2,K , after straightforward algebraic manipula-

tions, we have

λ
∗
1,K = γ

−1/2
2,K

(
TOL2

2#Th|∆K̂ |

)1/2

, λ
∗
2,K = γ

−1/2
1,K

(
TOL2

2#Th|∆K̂ |

)1/2

,
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so that the local metric M ∗
K = {λ∗i,K ,r∗i,K}i=1,2 and the metric M = {M ∗

K} are de-
fined.

As far as item iv) is concerned, we commute the elementwise quantities in M into
information associated with the mesh vertices, as it is required by standard mesh
generators. For this purpose, we resort to an area-weighted average across the
patch of elements associated with each vertex [32, 71]. This step identifies the new
metric M̃ .

Finally, metric M̃ is provided as an input to a metric-based mesh generator (see
step v)). For the numerical verification in Section 4, we use the software BAMG
(Bidimensional Anisotropic Mesh Generator), which is the default geometric dis-
cretization tool linked to the adopted solver, FreeFEM [48].

SIMPATY algorithm proved to have remarkable features. The sharp detection
of the density across the material/void interface allows us to limit filtering, thus
minimizing the post-processing required by standard design tools. Moreover, the
same discrete space can be adopted both for the displacement components and the
density, thus limiting the computational effort ascribed to the approximation step.
These properties guarantee a very cost-effective design procedure, striking a bal-
ance between accuracy and computational demands.

SIMPATY algorithm has been successfully applied in [72] to the design of struc-
tures optimized with respect to the static compliance in the presence of a one-sided
constraint on the mass, and in [35] with respect to the mass of the final layout with
a control on the compliance and/or the stress.
SIMPATY has been enriched by shape optimization in [37] to enhance the light-
weight and mechanical properties of the optimized configuration, towards an out-
of-the-box, free-form paradigm.
Finally, in [34], the authors propose an innovative way to circumvent the compu-
tational burden typical of the SIMP approach. The idea is to resort to a Proper Or-
thogonal Decomposition on SIMP snapshots to predict a rough structure, which is
eventually finalized via SIMPATY, in the spirit of an offline/online paradigm [58].

All the references above refer to a topology optimization performed via SIMPATY
at the macroscale. In addition, in two preliminary works, SIMPATY algorithm has
been modified to optimize microstructures, for the design of new cellular materi-
als [26, 36]. In such a context, problem (1) deserves an ad-hoc formulation which
involves the homogenization theory, as detailed in the next section.

3 Homogenization: direct and inverse techniques

We tackle the design of cellular materials, obtained by the periodic repetition of
a unit cell, in order to match a required property at the macroscale. A standard
approach is the asymptotic homogenization theory, which is, in general, adopted
both in a direct and in an inverse form [8, 88]. The basic idea behind direct homog-
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enization is to inherit at the macroscale the effects associated with the microscale.
In this case, the microscale is the known contribution, whereas the macroscale has
to be identified. Vice versa, when dealing with inverse homogenization, we start
from a desired feature at the macroscale and we look for the microscopic layout en-
suring the expected macroscopic property in the homogenized scale. Some of the
methodologies adopted to perform topology optimization at the macroscale have
been employed to design the periodic internal structure of cellular materials (see,
for instance, [21, 51, 78, 88, 101] where the SIMP, the bidirectional evolutionary
structural optimization (BESO) and the level set method are employed). The high
versatility of direct and inverse homogenization justifies the adoption of these tech-
niques for diverse applications (see, e.g., [19, 53, 106]).
In this section, we resort to the asymptotic homogenization theory combined with
the SIMP method to design new cellular materials. This leads us to solve an opti-
mization problem which can be formalized as in (1), after a suitable redefinition of
the quantities involved.

As a reference physical model, we adopt the linear elasticity framework. In partic-
ular, it is convenient to consider the componentwise stress-strain (σ−ε) relation in
terms of the symmetric stiffness tensor E, given by

σ(u) =

 σ11(u)
σ22(u)
σ12(u)

=

 E1111 E1122 E1112
E1122 E2222 E2212
E1112 E2212 E1212

 ε11(u)
ε22(u)
2ε12(u)

= Eε(u), (12)

according to the Voigt notation [49].

Direct homogenization incorporates the contribution at the microscale into the
macroscale model by modifying the stiffness tensor E [8]. To this aim, it is stan-
dard to employ an asymptotic representation of the displacement field, following
the two-step procedure:

i) we compute the microscopic displacement, u∗,i j, with i j ∈ I = {11,22,12},
by solving, in the periodic function space U# = [H1

	(Y )]
2, the elliptic equa-

tion

ai j(u∗,i j,v) :=
1
|Y |

∫
Y

σ(u∗,i j) : ε(v)dY =
1
|Y |

∫
Y

σ(u0,i j) : ε(v)dY =: F i j(v),

(13)
for any v ∈U#, with Y the design unit cell, u0,i j a displacement imposed to
Y for i j ∈ I, and with H1

	(Y ) the space of functions in H1(Y ) satisfying peri-
odic boundary conditions on ∂Y . In particular, we assign the displacements
u0,11 = [x,0]T , u0,22 = [0,y]T , u0,12 = [y,0]T , which correspond to the linearly
independent engineering strain fields, ε0,11 = [1,0,0]T , ε0,22 = [0,1,0]T , and
ε0,12 = [0,0,1]T , respectively;

ii) the computed fields u∗,i j and the imposed ones u0,i j define the components
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of the homogenized stiffness tensor, EH , according to the relation

EH
i jkl(u

∗,i j,u∗,kl) =
1
|Y |

∫
Y

[
σ(u0,i j)−σ(u∗,i j)

]
:
[
ε(u0,kl)− ε(u∗,kl)

]
dY,

(14)

for i j,kl ∈ I.The stiffness tensor EH takes into account the effect of the microscale.
Thus, when dealing with a homogenized context, the linear elasticity equation in
(12) is replaced by the stress-strain relation

σ
H =


σH

11(u)

σH
22(u)

σH
12(u)

=


EH

1111 EH
1122 EH

1112

EH
1122 EH

2222 EH
2212

EH
1112 EH

2212 EH
1212




ε11(u)

ε22(u)

2ε12(u)

= EH
ε. (15)

With reference to an inverse homogenization setting, following [88], we design the
optimal unit cell ensuring the desired property at the macroscale by means of the
SIMP method properly cast in the homogenization framework. To find the optimal
distribution of material ρm (where the subscript m stands for microscale) in the unit
cell, we solve problem (1) where we identify the design domain with Y , and the
bilinear and linear forms with

ai j
ρm(u∗,i j(ρm),v) =

1
|Y |

∫
Y

ρ
p
mσ(u∗,i j(ρm)) : ε(v)dY,

F i j
ρm(v) =

1
|Y |

∫
Y

ρ
p
mσ(u0,i j) : ε(v)dY,

(16)

respectively, with v ∈ U# and i j ∈ I. The design variable ρm is selected in V# =
H1
	(Y ) to extend the periodic conditions on u∗,i j to the density function. This

assumption simplifies the theoretical and numerical discussion below. Concerning
the goal functional in (1), we choose

Gm(u∗(ρm),ρm) = Gi jkl(u∗,i j,u∗,kl;ρm) =
1
2
[EH

i jkl,ρm
−EG

i jkl]
2, (17)

where i j, kl ∈ IG ⊆ I, with g = #IG, u∗(ρm) is the vector in [U#]
g of components

u∗,mn, with mn ∈ IG, EH
i jkl,ρm

= EH
i jkl,ρm

(u∗,i j,u∗,kl;ρm) is the tensor defined by

EH
i jkl,ρm

=
1
|Y |

∫
Y

ρ
p
m
[
σ(u0,i j)−σ(u∗,i j(ρm))

]
:
[
ε(u0,kl)− ε(u∗,kl(ρm))

]
dY, (18)

EG
i jkl , for i j,kl ∈ IG, denotes the goal stiffness tensor component adopted by the

user to control a physical quantity of interest. Finally, the first box inequality in (1)
is reduced to the one-sided constraint on the structure mass

C(u∗(ρm),ρm) = M (ρm) =
∫

Y
ρm dY ≤ α|Y |, (19)

with α ∈ (0,1] the maximum allowed volume fraction.
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To summarize, problem (1) turns into the following optimization statement:

min
ρm∈L∞(Y,[0,1])

Gm(u∗(ρm),ρm) :


ai j

ρm(u∗,i j(ρm),v) = F i j
ρm(v) ∀v ∈U#,

M (ρm)≤ α|Y |
ρmin ≤ ρm ≤ 1,

(20)

with i j ∈ IG.

Analogously to in Section 2.2, the minimization in (20) is carried out by using
IPOPT. Among the input quantities to IPOPT, the gradient, ∇ρmG(ρm), of the goal
functional in (17) with respect to the density variable ρm requires a more careful
computation. To this aim, we exploit an adjoint-based Lagrangian formulation, by
introducing the augmented functional

L(u∗,λλλ,ρm) = Gi jkl(u∗,i j,u∗,kl;ρm)+ ∑
mn∈IG

[amn
ρm
(u∗,mn(ρm),λλλ

mn)−Fmn
ρm

(λλλmn)],

for i j, kl ∈ IG. In particular, λλλ ∈ [U#]
g is the adjoint variable used to impose the

state equations, with components λλλ
mn.

By differentiating L with respect to u∗,pq, we obtain the so-called dual problems

[EH
i jkl,ρm

−EG
i jkl]

∂EH
i jkl,ρm

∂u∗,pq (w)+apq
ρm(w,λλλpq) = 0 ∀w ∈U#, (21)

with pq ∈ IG; the derivative of L with respect to λλλ
pq leads to the g state equations

in (20); finally, the gradient of the goal functional

〈∇ρmGm(ρm),φ〉= [EH
i jkl,ρm

−EG
i jkl]

∂EH
i jkl,ρm

∂ρm
(φ)

+ ∑
mn∈IG

1
|Y |

∫
Y

pρ
p−1
m [σ(u∗,mn)−σ(u0,mn)] : ε(λλλmn)φdY ∀φ ∈ V#,

(22)

is obtained by deriving L with respect to ρm. Formulas (21) and (22), together
with the state equations in (20), constitute the well-known Karush–Kuhn–Tucker
(KKT) conditions [61]. These conditions are discretized by employing linear fi-
nite elements for both density and displacement, thanks to the use of SIMPATY
algorithm in the design of the new cells, so that ρm,h ∈V#,h and u∗,i j

h ∈ [V#,h]
2, with

V#,h = V#∩V 1
h and with i j ∈ IG.

The resulting algorithm, named microSIMPATY [26, 36], is listed below.
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Algorithm 1 : microSIMPATY
Input: CTOL,TOL,TOPT,kmax, ρ0

m,h, ρmin, T 0
h , EG

i jkl , α

1: Set: k = 0, errC = 1+CTOL

2: while errC > CTOL & k< kmax do
3: ρ

k+1
m,h = optimize(α,ρk

m,h,ρmin,EG
i jkl,Gm,∇ρmGm,TOPT);

4: T k+1
h = adapt(T k

h , ρ
k+1
m,h ,TOL);

5: errC = |#T k+1
h −#T k

h |/#T k
h ;

6: k= k+1;

7: end
8: τ = ρk

m,h;

9: EH(τ) = homogenize(τ);

Output: τ, EH(τ)

The algorithm switches between an optimization phase (function optimize in line
3) and a mesh adaptation step (function adapt in line 4), based on the anisotropic
adaptive strategy detailed in Section 2.2. In particular, three tolerances, together
with a maximum number kmax of global (optimization+adaptation) iterations, con-
strain the optimization. In more detail, CTOL controls the stagnation of the number
of elements between two consecutive mesh adaptations; TOPT sets the accuracy
for the minimization problem; TOL is the user-defined accuracy characterizing the
equidistribution of the error throughout the mesh elements according to (11).
MicroSIMPATY algorithm returns the optimized layout τ identified by the distri-
bution of ρm,h in Y , together with vector

EH(τ) = [EH
1111,τ,E

H
2222,τ,E

H
1212,τ,E

H
1122,τ,E

H
1112,τ,E

H
2212,τ] (23)

which gathers the components of the homogenized stiffness tensor in (18) com-
puted on τ, i.e., EH

i jkl,τ =EH
i jkl,ρm,h

(u∗,i j,u∗,kl;τ), with i j, kl ∈ I (function homogenize
in line 9).

4 Generation of a cellular dictionaries

In this section, we provide two different strategies to generate a collection of differ-
ent unit cells. We will refer to this ensemble as to a dictionary, D = {W1, . . . ,Wz},
consisting of z different words. The generic word Ws = (τs,αs,EH(τs)), with
s = 1, . . . ,z, gathers the layout τs generated by microSIMPATY algorithm, the cor-
responding volume fraction, αs, and the associated homogenized stiffness tensor,
EH(τs), defined as in (23). Without loss of generality, we consider words charac-
terized by different volume fractions, ordered in an ascendant way, and optimized
with respect to the same goal quantity Gm, even though for different values EG.

15



In particular, we generate two distinct dictionaries. The words of the first ensemble
(referred to as single-cellular dictionary) share the same cell topology; vice versa
the second set (referred to as multi-cellular dictionary) consists of words with a dif-
ferent topology. To this aim, we adopt a multi-objective framework, where topol-
ogy optimization is contemporary driven by several goal quantities. This choice is
typical of practical contexts such as the one analyzed in Section 6. A first instance
of a multi-objective topology optimization carried out by the microSIMPATY al-
gorithm is provided in [26].
A multi-objective formulation of problem (20) implies a generalization of the def-
inition for the goal functional Gm, here identified by the convex combination of
functionals as in (17), i.e.,

Gm(u∗(ρm),ρm) =
ϑ

∑
t=1

βt Gi jt klt (u
∗,i jt ,u∗,klt ;ρm) =

ϑ

∑
t=1

βt

2
[EH

i jt klt ,ρm
−EG

i jt klt
]2, (24)

with i jt , klt ∈ IG, with weights βt ≥ 0 for t = 1, . . . ,ϑ, such that ∑
ϑ
t=1 βt = 1. The

components of the goal stiffness tensor are collected in the vector EG = [Ei jt klt ]
ϑ
t=1

in Rϑ, which replaces the scalar input EG
i jkl to microSIMPATY algorithm.

Algorithm 2 provides a unified scheme for the generation of the two dictionaries
(with SvsM=‘S’ for the single-cellular dictionary, SvsM=‘M’ for the multi-cellular
one). The details of the two procedures are addressed in the next sections.

4.1 Generation of a single-cellular dictionary

A single-cellular dictionary is characterized by a unique topology. We choose the
reference layout, τR, yielded by microSIMPATY algorithm for the multi-objective
goal functional identified by the reference vector EG = EG,R ∈ Rϑ, and for an as-
signed volume fraction, vR

f , both selected by the user (lines 3-5). In particular, the
words in D are generated via a suitable post-processing of τR, which essentially in-
creases or reduces the thickness of the considered layout, according to the volume
fractions in the input vector v f = [v f (s)]zs=1 (function offset in line 7). For this
purpose, we resort to a parametric design platform, which is based on the Rhino 3D
CAD software1 endowed with the embedded visual programming tool Grasshop-
per2.

1http://www.rhino3d.com/
2http://www.grasshopper3d.com/
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Algorithm 2 : dictioSIMPATY
Input: CTOL,TOL,TOPT,kmax, ρ0

m,h, ρmin, T 0
h , v f , SvsM

1: z = length(v f );
2: if SvsM==‘S’ then
3: read vR

f ;

4: read EG,R;
5: [τR,EH(τR)] = microSIMPATY(CTOL,TOL,TOPT,kmax, ρ0

m,h, ρmin, T 0
h ,

EG,R, vR
f );

6: for s = 1, ...,z do
7: τs = offset(τR,v f (s));
8: EH(τs) = homogenize(τs);
9: Ws = (τs,v f (s),EH(τs));

10: D = {D,Ws};
11: end
12: end
13: if SvsM==‘M’ then
14: read EG;
15: for s = 1, ...,z do
16: [τs,EH(τs)] = microSIMPATY(CTOL,TOL,TOPT,kmax, ρ0

m,h, ρmin, T 0
h ,

EG(s, :), v f (s));
17: Ws = (τs,v f (s),EH(τs));
18: D = {D,Ws};

19: end
20: end
21: D = sort(D);

Output: D

The definition of each word Ws is completed by computing the homogenized stiff-
ness tensor EH(τs) defined as in (23) (function homogenize in line 8).
Finally, the words are sorted for increasing values of the volume fraction (function
sort in line 21) to build up the dictionary DS, all the entries in v f being assumed
distinct.
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We exemplify this procedure by selecting the multi-objective goal functional

Gm(u∗(ρm),ρm) =
1
2

G1111(u∗,11,u∗,11;ρm)+
1
2

G2222(u∗,22,u∗,22;ρm)

=
1
4
[EH

1111,ρm
−EG

1111]
2 +

1
4
[EH

2222,ρm
−EG

2222]
2.

(25)
The two components of the homogenized stiffness tensor here selected are instru-
mental with a view to the application in Section 6. Concerning the other input
parameters to Algorithm 2, we set

CTOL= 1e−04, TOL= 1e−03, TOPT= 1e−06, kmax= 10,

ρ0
m,h = |sin(2πx/5)sin(2πy/5)|, ρmin = 1e−04,

(26)

with v f = [0.35,0.4 : 0.1 : 0.9], T 0
h coinciding with a structured 50×50 mesh of the

unit cell Y = (0,10)2 [mm2], and where the flag SvsM is set to ‘S’ since interested
in a single-cellular dictionary. The values set by the user for the reference volume
fraction and for the selected homogenized stiffness tensor components are vR

f = 0.5

and EG
1111 = EG,R

1111 = 2.50e-01, EG
2222 = EG,R

2222 = 1.25e-01, respectively. We remark
that the components both of the reference and of the homogenized stiffness tensors
are scaled with respect to the corresponding full material configuration (i.e., ρm = 1
in (18)), after setting EY = 45.00 [N/mm2] and ν = 0.49 to characterize the base
material. Finally, the penalization exponent in (16) is taken equal to 4.

The reference layout, τR, yielded by algorithm microSIMPATY is the one in panel
(e) of Figure 2, whose homogenized stiffness tensor components, EH

1111,τR , EH
2222,τR ,

exactly coincide with the corresponding goal values, EG,R
1111, EG,R

2222. Starting from τR

and the volume fractions in v f , function offset returns the layouts in Figure 1.
We remark that the employment of a unique optimized topology modified via offset
criteria may lead to layouts that are not so handy to be manufactured. For instance,
this is the case of the layouts in panels (a) and (f) which exhibit thin struts and
small holes, respectively. Moreover, we have verified that volume fractions less
than 0.35 yield unprintable configurations.
Function homogenize computes the homogenized stiffness tensor characterizing
τs’s. Table 1 provides the values for the two components EH

1111,τs
and EH

2222,τs
,

for s = 1, ...,z, whereas we refer to Figure 5 for the values of the other non-null
components.

4.2 Generation of a multi-cellular dictionary

A multi-cellular dictionary gathers words which are associated with different topolo-
gies. With reference to Algorithm 2, this means that microSIMPATY algorithm is
run a number of times equal to z (line 16), after the user selects a multi-objective
goal functional (line 14) and for a certain volume fraction. As a result, we in-
troduce the tensor EG ∈ Rz×ϑ, whose s-th row, for s = 1, . . . ,z, collects the goal
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(a) v f (1) = 0.35 (b) v f (2) = 0.4 (c) v f (4) = 0.6

(d) v f (5) = 0.7 (e) v f (6) = 0.8 (f) v f (7) = 0.9

Figure 1: Optimized cells (single-cellular dictionary): density distribution over-
lapped to the associated anisotropic grid for the different volume fractions in v f .

values EG
i jt klt

, with t = 1, . . . ,ϑ, defining the functional in (24), whereas vector
v f ∈Rz gathers the chosen volume fractions. Here, we select v f = [0.1 : 0.1 : 0.9],
(i.e., z = 9), and, for each s = 1, . . . ,9, we choose the goal functional in (25) (i.e.,
ϑ = 2), with goal values specified in Table 2, top panel.
As far as the other input parameters to dictioSIMPATY is concerned, we preserve
the same values as in (26), while selecting T 0

h as a structured NT 0
h
×NT 0

h
mesh of

the unit cell Y = (0,10)2 [mm2], the flag SvsM being ‘M’ since interested in gener-
ating the multi-cellular dictionary, DM. Notice that, to design the nine layouts, we
adopt a initial tessellation of the computational domain characterized by a different
value for NT 0

h
(see Table 2, bottom panel). The same base material as well as the

same penalization law as in Section 4.1 are here adopted.

s 1 2 3 4 5 6 7

EH
1111,τs

1.95e-01 2.23e-01 2.50e-01 3.87e-01 4.77e-01 5.95e-01 7.24e-01
EH

2222,τs
6.19e-02 7.85e-02 1.25e-01 2.67e-01 3.65e-01 4.97e-01 6.41e-01

Table 1: Optimized cells (single-cellular dictionary): homogenized values of the
goal quantities for the different volume fractions in v f .
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s 1 2 3 4 5 6 7 8 9

EG
1111 1.50e-02 2.75e-02 8.65e-02 1.40e-01 2.50e-01 3.10e-01 3.90e-01 4.30e-01 6.50e-01

EG
2222 1.00e-02 2.27e-02 4.00e-02 6.20e-02 1.25e-01 2.10e-01 2.20e-01 2.65e-01 5.00e-01

NT 0
h

50 40 50 30 50 50 30 50 40

Table 2: Optimized (multi-cellular dictionary): goal values and selected initial
mesh for the different volume fractions in v f .

(a) v f (1) = 0.1 (b) v f (2) = 0.2 (c) v f (3) = 0.3

(d) v f (4) = 0.4 (e) v f (5) = 0.5 (f) v f (6) = 0.6

(g) v f (7) = 0.7 (h) v f (8) = 0.8 (i) v f (9) = 0.9

Figure 2: Optimized cells (multi-cellular dictionary): density distribution over-
lapped to the associated anisotropic grid for the different volume fractions in v f .

Figure 2 collects the microSIMPATY layouts τs, for the diverse volume fractions,
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overlapped with the corresponding final anisotropic adapted mesh. The stretched
elements of the grids allow to precisely detect the void/material interface, leading
to very smooth boundaries, while regularizing the possible sharp angles of the lay-
outs (as a clear example, see the unit cell in panel (d)). Moreover, following [37],
to improve the accuracy of the mechanical analysis, we restore an isotropic tessel-
lation in the internal part of the material, so that the stretched elements act only in
sharply detecting the topology.
The obtained configurations respond to the different design prescriptions. In more
detail, except for the unit cell in panel (a) which is far from being manufacturable,
the x-direction turns out to be the preferential one in terms of mass allocation, at
least until the volume fraction is sufficiently far from 1. This evidence is fully in
agreement with the imposed mechanical requirement which reduces the stiffness
in y-direction. More quantitative information about the final adapted mesh, here
denoted by Th to simplify the notation, is provided in the bottom panel of Table 3
where the cardinality and the maximum aspect ratio of the grid are gathered. We
observe that complex topologies require a larger number of elements, whereas the
stretching of the mesh elements is strictly related to the size of the holes in the cell
layout.

Concerning the homogenized stiffness tensor of the unit cells, we refer to Table 3,
top panel, for the components driving the topology optimization and to the mark-
ers in Figure 8 for the others. We recognize a good matching between goal and
homogenized components.

s 1 2 3 4 5 6 7 8 9

EH
1111,τs

1.68e-02 2.93e-02 8.22e-02 1.45e-01 2.50e-01 3.07e-01 3.90e-01 4.78e-01 6.50e-01
EH

2222,τs
1.18e-02 2.45e-02 3.98e-02 6.75e-02 1.25e-01 1.98e-01 2.20e-01 3.08e-01 5.00e-01

#Th 3664 10912 10796 6704 8030 8552 5862 3436 5080
smax

K 747.00 52.90 37.43 77.21 53.48 74.44 27.34 18.00 13.06

Table 3: Optimized cells (multi-cellular dictionary): homogenized values for the
goal quantities; cardinality and maximum aspect ratio for the final adapted mesh
for the different volume fractions in v f .

5 Multiscale topology optimization

In this section, we address the design of a macroscale geometry in terms of optimal
allocation of microscopic unit cells. This process, widely employed in practice [9,
10, 42, 45], is generally referred to as multiscale topology optimization.

In accordance with [7, 102], we detail how to employ a dictionary, D , of unit cells,
optimized to match a goal quantity G1 at the homogenized scale, for the design of
a structural configuration in order to satisfy a mechanical requirement, G2, at the
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macroscale.
In the literature, both pre-defined [7, 75, 97] and ad-hoc designed [24, 26, 36,
77, 82] cells are employed as words of the dictionary D . We follow the second
approach to exploit the dictionaries, DS and DM, generated in the previous section.

The reference framework is still represented by problem (1) which has to be prop-
erly customized according to a multiscale formulation. In particular, we have to
solve the following problem

min
ρM∈L∞(Ω,[0,1])

GM(u(ρM),ρM) :


aH

ρM
(u(ρM),v) = FρM(v) ∀v ∈U

cm ≤ C(u(ρM),ρM)≤ cM

ρmin ≤ ρM ≤ ρmax,

(27)

where GM =G2 is the quantity of interest driving the optimization at the macroscale,
the bilinear form of the state equation is

aH
ρM
(u(ρM),v) =

∫
Ω

σ
H
ρM
(u(ρM)) : ε(v)dΩ, (28)

with u(ρM) ∈U,

σH
ρM
(u(ρM)) =


σH

11,ρM
(u(ρM))

σH
22,ρM

(u(ρM))

σH
12,ρM

(u(ρM))

= ΞH(ρM)ε(u(ρM))

=


ΞH

1111(ρM) ΞH
1122(ρM) ΞH

1112(ρM)

ΞH
1122(ρM) ΞH

2222(ρM) ΞH
2212(ρM)

ΞH
1112(ρM) ΞH

2212(ρM) ΞH
1212(ρM)




ε11(u(ρM))

ε22(u(ρM))

2ε12(u(ρM))

 ,
(29)

and ΞH
i jkl(ρM) the i jkl-th component of the multiscale homogenized stiffness ten-

sor, at this level coinciding with a generic function of ρM, and FρM takes into ac-
count the work due to possible external volume or surface forces. Relation (29)
combines, while generalizing, definitions (3) and (15). Indeed, it supports a com-
pletely general dependence on the multiscale design variable ρM and it contempo-
rary takes into account the effect of the homogenization.

To explicitly define the components of the multiscale homogenized stiffness tensor,
ΞH , we follow an approach similar to the one adopted in [102].
First of all, we build a possible trend for the six sets of values {αs,EH

i jkl,τs
}s=1,...,z

by means of a polynomial approximation ΦH
i jkl(α), for i j, kl ∈ I. In particular, the

dependence of EH
i jkl,τs

on αs is understood due to the implicit relation between the
structure volume fraction and layout.
As a next step, we make matrix ΞH(ρM) computable in Ω to evaluate the bilin-
ear form in (28). For this purpose, for any x ∈ Ω, we resort to the identification
α = ρM(x), and we assign the value ΦH

i jkl(α) to the component ΞH
i jkl(ρM(x)) (see
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Figure 3 for a schematic representation of the implied correspondence between
multiscale density and microscopic volume fraction).

Figure 3: Multiscale topology optimization: correspondence between multiscale
density and microscopic volume fraction.

From a computational viewpoint, consistently with the previous sections, we adopt
linear finite elements to discretize both the multiscale density and the displacement,
i.e., we pick ρM,h ∈V 1

h , uh ∈ [V 1
h ]

2∩U.
The whole multiscale topology optimization is sketched in the algorithm below.

Algorithm 3 : multiscale topology optimization
Input: D , TOPT, ρ0

M,h, ρmin, ρmax, cm, cM

1: for i j, kl ∈ I do
2: ΦH

i jkl = fitting({αs,EH
i jkl,τs
}s=1,...,z);

3: ΞH
i jkl ←ΦH

i jkl;

4: end
5: ρM,h = optimize(cm,cM,ρ0

M,h,ρmin,ρmax,GM,∇ρM GM,TOPT);

Output: ρM,h

The algorithm combines, in a sequential way, the fitting of the data at the mi-
croscale (in line 2) with the topology optimization at the macroscale (in line 5).
The output of the procedure is the discretized multiscale design variable.

6 Design of orthopedic devices

In order to prove the effectiveness of the proposed multiscale topology optimiza-
tion, we apply the procedure to the design of an orthopedic device. In particular,
we focus on the prototyping of new patient-specific insoles for foot treatments,
starting from the well-established expertise gained by some of the authors in such
an area [66]. The final goal is to manufacture the optimized insole via 3D printing
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to check the actual feasibility of the methodology settled in the previous sections.

6.1 Verification

In order to accomplish the design of the patient-specific insole, we resort to Al-
gorithm 3, after introducing some simplifying hypotheses on the physical setting.
The main simplification leads us to work on a transverse cut section of the 3D or-
thopedic device, thus reducing the design domain to a 2D slab in the xy Cartesian
plane. Additionally, we assume that the patient-specific configuration is character-
ized only by three medical conditions for the sole of the foot, i.e., a healthy and an
ulcerated zone, together with a possible transition region between these two areas.
With a view to the 3D printing of the optimized configuration, the 2D final layout
is meant as to be extruded along the z direction.

From a mathematical viewpoint, the optimization of the insole can be cast into
the generic framework in (27). In particular, the target functional GM(u(ρM),ρM)
coincides with the mass of the orthotic device

GM(u(ρM),ρM) =
∫

Ω

ρMdx.

The two-sided constraint in (27) is generalized to different controls to take into
account that the stiffness varies according to the local clinical status of the tissue
(healthy, ulcerated, or pre-ulcerated). In more detail, the three inequalities

υH
m ≤ ϒH(u(ρM),ρM)≤ υH

M

υU
m ≤ ϒU(u(ρM),ρM)≤ υU

M

υT
m ≤ ϒT (u(ρM),ρM)≤ υT

M,

are imposed, where

ϒ
Z(u(ρM),ρM) =

1
ϒZ

1

∫
ΓZ

f ·u(ρM)ds

denotes the local static compliance computed on the boundary portion ΓZ ⊂ ΓN ,
with Z = H (healthy tissue), Z = U (ulcerated tissue) and Z = T (transition area
between healthy and ulcerated tissue), scaled with respect to the corresponding
compliance,

ϒ
Z
1 =

∫
ΓZ

f ·u(1)ds,

in the full-material configuration. Thus, with reference to formulation (27), it fol-
lows that

cm = [υH
m ,υ

U
m,υ

T
m]

T ,

C(u(ρM),ρM) = [ϒH(u(ρM),ρM),ϒU(u(ρM),ρM),ϒT (u(ρM),ρM)]T ,

cM = [υH
M,υU

M,υT
M]T .
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Finally, the PDE constraining the topology optimization is featured by the bilinear
form in (28), the linear form

FρM(v) =
∫

ΓN

f ·vds,

and the function space U = H1
ΓD
(Ω), where the boundary ∂Ω of the design domain

is subdivided into the portions ΓD, ΓN , and ΓF = ∂Ω\ (ΓD∪ΓN).

We observe that the domain Ω, the load f, and the areas ΓZ characterize the patient-
specific nature of the current modeling. Domain Ω strictly depends on the size of
the patient’s foot; force f takes into account the weight and the gait; finally, the
configuration of the ulcerated zone identifies the portions ΓZ , for Z = H, U, T.

Concerning the verification here performed, we select Ω = (−150,150)× (0,50)
[mm2], ΓD = {(x,y) ∈ ∂Ω :−150≤ x≤ 150,y = 0}, ΓN = {(x,y) ∈ ∂Ω :−150≤
x ≤ 150,y = 50}, and f as the profile in Figure 4 (left) to model the pressure ex-
erted by the heel, the pad, and the toe on the insole. The values are extracted from
experimental data [56].
We analyze two different clinical scenarios, i.e., the case of an abrupt transition
between healthy and ulcerated areas (referred to as the H-U setting), and the com-
plete configuration including the three possible status of the tissue (denoted by the
H-U-T setting). The two choices essentially differ in the definition of portions ΓZ ,
for Z = H, U, T, being

H-U :


ΓU = {(x,y) ∈ ΓN : LU ≤ x≤ RU},

ΓT = /0,

ΓH = ΓN \ΓU ,

H-U-T :


ΓU = {(x,y) ∈ ΓN : LU ≤ x≤ RU},

ΓT = {(x,y)ΓN : LT ≤ x < LU or RU < x≤ RT},

ΓH = ΓN \ (ΓU ∪ΓT ),

with
LU =−5(20+

√
51), RU =−5(20−

√
51),

LT =−15
√

37
2
−100, RT =

15
√

37
2
−100

(see the panel in Figure 4 (right) for a sketch).

Concerning the adopted discretization, we use linear finite elements to approximate
both the design variable, ρM, and the displacement, u, on a 150× 25 structured
computational mesh Th.

The multiscale optimization of the insole will be now driven by the dictionaries,
DS and DM, created in Sections 4.1 and 4.2, respectively. In particular, the func-
tional in (25) constraining the design of the words of the two dictionaries has been
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Figure 4: Patient-specific design of an orthopedic device: load distribution (left)
and location of the healthy, ulcerated and pre-ulcerated areas (right).

selected in order to minimize the stress component along the vertical direction on
the patient’s foot.

6.1.1 Insole optimization based on the single-cellular dictionary

To design the orthopedic device by means of a graded single topology, we resort to
Algorithm 3 with the input parameters

D = DS, TOPT= 1e−06, ρmin = 0.35, ρmax = 0.9,

cm, cM to be properly set according to the selected H-U or H-U-T configuration,
ρ0

M,h = 0.95χΩ, with χΩ the characteristic function associated with domain Ω, and
where DS is the single-cellular dictionary in Figure 1.

As a first task, Algorithm 3 performs the fitting of the data {αs,EH
i jkl,τs
}s=1,...,8, for

i jkl = 1111, 2222, 1122, 1212, the components EH
1112,τs

EH
2212,τs

being identically
null, and the full material configuration being added to the ones in Figure 1 for
s = 8. To this aim, we adopt a global polynomial least-square approximation of
degree n. The value n = 5 is the lowest degree which provides us a sufficiently re-
liable data approximation. In particular, Figure 5 shows the plot of the polynomials
ΦH

i jkl(α), where the circle markers highlight the fitted values for the homogenized
tensor components. The four curves ensure tensor ΞH(ρM) to be well-defined as
a function of ρM. Additionally, we have numerically checked that tensor ΞH is
definite positive for any ρM, which implies that the bilinear form aH

ρM
(·, ·) in (28) is

coercive.

The fitting in Figure 5 becomes instrumental to function optimize of Algorithm 3,
since, via (29), it defines the PDE problem constraining the topology optimization
in (27).
The lower and the upper bound for the two-sided constraint in (27) are set to

cm = [5.50,15.00]T , cM = [7.50,17.00]T ,

and
cm = [7.00,15.00,8.50]T , cM = [8.00,15.50,9.00]T ,
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Figure 5: Optimized insole (single-cellular dictionary): fitting of the homogenized
stiffness tensor components.

for the H-U and the H-U-T scenario, respectively corresponding to a requirement
of high and low (and, if included, medium) stiffness for the insole.

The distribution of the multiscale density function ρM,h representing the output of
Algorithm 3 is shown in Figure 6 for the patient-specific H-U (top) and H-U-T
(bottom) setting. The presence of the transition area between healthy and ulcerated
zones induces a milder gradation of the material density in correspondence with
the sick and the loaded portions of the boundary ΓN . The total mass of the two
insoles is given by 37.8% and 39.4% of the full material configuration for the H-U
and the H-U-T scenario, respectively.

In order to grade the different unit cells across the optimized insole, we exploit
again the relationship between ρM,h at the homogenized macroscale and α at the
microscale. In particular, we resort to a thresholding of ρM,h to identify the different
subregions, ωs, of the design domain associated with a specific microscopic layout,
τs. The number of the subregions ωs will be, at most, equal to z+1, after assuming
that the full material configuration corresponds to s = z+1.
According to the thresholding criterion here adopted, we define the subregions

ωs = {x ∈Ω : αs +δl,s ≤ ρM,h(x) = α < αs+1 +δu,s}
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Figure 6: Optimized insole (single-cellular dictionary): optimized distribution of
the density ρM,h for the patient-specific H-U (top) and H-U-T (bottom) configura-
tion.

for s = 1, . . . ,z, with δl,s, δu,s ∈ R properly selected by the user according to the
density distribution range, and region

ωz+1 = {x ∈Ω : ρM,h(x) = α≥ 1−δz+1},

being δz+1 ∈ R+ set by the user.
By applying this thresholding to the configurations in Figure 6, we obtain the
four subregions ωi, with i = 1, . . . ,4, shown in Figure 7, after setting δl,1 = 0,
δu,1 = δl,2 = −0.025, δu,2 = δl,3 = δu,4 = −0.05, δu,3 = δl,4 = −0.065. We ob-
serve that the inclusion of the pre-ulcerated area in the insole design introduces an
area of soft material just below the ulcer, and promotes the intermediate densities
corresponding to the volume fractions α = 0.4 and α = 0.5. These results support
not only the reduction of pressure below the ulcerated area but confirm the need of
a pressure re-distribution around those areas.

6.1.2 Insole optimization based on the multi-cellular dictionary

The topology optimization of the insole is now driven by exploiting the multi-
cellular dictionary DM generated in Section 4.2. To this aim, we run Algorithm 3
with the input parameters

D = DM, TOPT= 1e−06, ρmin = 0.2, ρmax = 0.7,

while selecting

cm = [18.50,38.50]T , cM = [20.50,39.00]T .

for the H-U setting,

cm = [17.00,38.50,24.00]T , cM = [18.00,39.00,25.00]T .
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(a) H-U scenario

(b) H-U-T scenario

Figure 7: Optimized insole (single-cellular dictionary): allocation of the different
unit cells across the insole.

for the H-U-T configuration, and with ρ0
M,h = 0.95χΩ.

The fitting of the homogenized stiffness tensor components EH
i jkl,τs

as a function of
the density α is carried out, for s = 1, . . . ,10 where s = 10 identifies the full mate-
rial unit cell, by employing a polynomial of degree n = 5, approximating the data
according to a least-squares criterion. Figure 8 gathers the polynomials ΦH

i jkl(α) to-
gether with the data to be approximated. A cross-comparison with Figure 5 shows
that the four curves exhibit a similar trend, except for polynomial ΦH

1111 which
increases slower to 1 when dealing with the multi-cellular dictionary.

The output of Algorithm 3 coincides with the distribution of ρM,h in Figure 9, where
the optimal design of the insole is distinguished between the H-U and the H-U-T
scenarios (top and bottom, respectively). The distribution of the material density
is very similar, although the presence of the pre-ulcerated area leads to a wider
extension of the subdomains corresponding to α = 0.4. This justifies the slight
difference in the total mass of the insole for the H-U and H-U-T settings, equal to
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Figure 8: Optimized insole (multi-cellular dictionary): fitting of the homogenized
stiffness tensor components.

29.8% and 32.4% of the full material domain, respectively. Moreover, the ulcer is
taken into account in both the H-U and H-U-T designs in contrast to Figure 6 (top
panel) where the same density characterizes the ulcerated and the healthy portions.

With a view to the manufacturing of the optimized insoles in Figure 9, we apply
the thresholding procedure introduced in the previous section. This strategy leads
us to identify three subregions, ω2, ω3, ω4, for both the scenarios, H-U and H-U-T,
after selecting δl,2 = 0, δl,3 = δl,4 = δu,s = −0.05 for s = 2,3,4. Figure 10 shows
the distribution of the three regions together with the associated unit cells.

When compared with the single-cellular case (see Figure 7), we recognize that the
multi-cellular dictionary involves fewer unit cells in the prototype of the insole and
turns out to be less sensitive to the inclusion of the pre-ulcerated zone in the design
of the orthotic device.

Finally, the two panels in Figure 10 emphasize that the presence of the transition
area between the healthy and the ulcerated tissue increases the extension of region
ω4 associated with the volume fraction α = 0.4. The transition areas favour the
re-distribution of the pressure, thus avoiding undesired localization of the load.
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Figure 9: Optimized insole (multi-cellular dictionary): optimized distribution of
the density ρM,h for the patient-specific H-U (top) and H-U-T (bottom) configura-
tion.

6.2 Validation

The optimization procedure set for the design of othopedic devices is finally tested
in practice via a mechanical validation, in the case of the patient-specific H-U-T
configuration of Figure 10. In detail, we computationally explore the macroscopic
mechanical behaviour of the prototype via a finite element analysis. Then, we
investigate the 3D printing manufacturability of the design, via fused deposition
modelling (FDM).

6.2.1 Mechanical performance evaluation

For the finite element analysis, we refer to the 2D geometry in Figure 11, where the
insole is regarded as a porous continuum body and includes a thin layer on the top,
to simulate the foot tissue (i.e., fat and skin) in contact with the orthotic device.
To evaluate the mechanical performance of the optimized insole, we assume as the
reference case the behaviour characterizing the H-U-T configuration when resort-
ing to a standard honeycomb design. In more detail, we mechanically test three
insole settings, i.e., (1) honeycomb design with constant volume fraction of 30%;
(2) honeycomb design with variable volume fraction, with the same distribution as
in Figure 10, panel (b); (3) the optimized H-U-T configuration in Figure 10, panel
(b).

The foot tissue layer is assumed linearly elastic, homogeneous and isotropic as well
as the mechanical behaviour of the Thermoplastic Polyether-polyurethane Elas-
tomer (TPE) material composing the insole, with Young’s modulus and Poisson’s
ratio equal to ET PE = 45 [MPa], νT PE = 0.49, respectively. For the foot tissue, we
set E f oot = 1 [MPa], ν f oot = 0.4. The loading condition applied to the top tissue
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(a) H-U scenario

(b) H-U-T scenario

Figure 10: Optimized insole (multi-cellular dictionary): allocation of the different
unit cells across the insole.

layer coincides with the patient-specific load distribution in Figure 4, left, while
the bottom boundary of the insole is constrained, as shown in Figure 11.

The mechanical analysis for cases (1)-(3) is carried out by using the software
COMSOL Multiphysics3. Figure 12 compares the deformation of the three de-
signs under the imposed load, in terms of spatial distribution of the displacement
magnitude. It is evident that the three insoles exhibit a different mechanical be-
haviour. In particular, the optimized configuration yielded by the procedure in
Section 6.1.2 exhibits a maximum value for the displacement which is 2 and 3
times lower with respect to the one characterizing designs (1) and (2), respectively.
This is confirmed by Figure 13, left which shows the displacement profile along
the cut line highlighted by the black dashed line in Figure 11. It is evident that the
new designed configuration localizes and attenuates the displacement in the ulcer
zone, thus preventing the stress concentration in the surrounding area.

3COMSOL Multiphysics®. Version 5.6, www.comsol.com, COMSOL AB, Stockholm, Sweden
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Figure 11: Optimized insole (mechanical validation): schematic representation for
the H-U-T configuration.

In order to characterize the loading-transfer mechanism between insole and foot
tissue, in Figure 13, right, we investigate the mechanical behaviour of the three
designs in terms of the von Mises stress distribution along the same cut line as
in Figure 11. The optimized layout in Figure 10, (b) dampens the stress in the
foot tissue and localizes the effect of the loading pressure. In particular, when
employing the two honeycomb insoles, the pressure affects also the plantar arch
zone (i.e., the region between 0.1 and 0.15 [m]), though this area is not loaded.
This is not the case for the multi-cellular dictionary in Figure 2, thus introducing
an innovative and relevant advantage in the design of orthopedic insoles.

6.2.2 Manufacturing feasibility evaluation

To assess the feasibility of the orthopedic device in Figure 10, (b) in terms of
manufacturing, we apply an axial extrusion of 0.01 [m] to the optimized insole
in Figure 11, in order to obtain a section of the 3D model. To this aim, we use
the dedicated software of slicing, Simplify3D4, to generate a g-code for the 3D
printer. The flexible TPE filament Filaflex, with a shore A equal to 82 (Filaflex
82A), has been selected to manufacture the extruded section shown in Figure14.
This material has proved to be suitable for the 3D printing of insoles, since it has an
optimal resistance to elongation and abrasion as well as a high tensile strength [15].
These properties make Filaflex 82A a perfect material for the production of flexible,
comfortable and resistant insoles.
Different slicing parameters and profiles have been tested to obtain an optimal
result in terms of reliability and quality of production. After several tests, the main
printing parameters are set as: print speed 2200 [mm/min], extruder temperature
235 [°C], cooling 60%, no-retraction, top/bottom/outline perimeters equal to 3.
The model took approximately 10 hours of printing.

These preliminary results confirm the feasibility of the proposed method to create

4Symplify3D®. Version 4.0, www.simplify3d.com
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Figure 12: Optimized insole (mechanical validation): spatial distribution of the
displacement magnitude for the insole settings (1)-(3) (top-bottom).

innovative and patient-specific solution for foot problems. The different areas are
well defined and the process was reasonable in terms of printing time and overall
quality. This is a promising starting point for the realisation of a full model of
patient-specific insoles that can be used for prevention of ulceration and can lead
to a better medical outcome.

7 Conclusions

The multiscale topology optimization proposed in this paper provides a fully gen-
eral, cost-effective tool for the design of macrostructures optimized in terms of

Figure 13: Optimized insole (mechanical validation): displacement magnitude
(left) and von Mises stress (right) profiles for the insole settings (1)-(3).
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Figure 14: Optimized insole (3D printing validation): manufacturing of the section
of the orthopedic prototype in Figure 11.

local distribution of void, solid, and cellular materials. Among the relevant prop-
erties, we list the possibility to decouple the optimization at the macro- and at the
microscale, possibly associated with different goal functionals. This feature allows
us to control target quantities which are simultaneously pivotal in the design of the
final product, in the spirit of a multi-objective optimization. Moreover, the non
concurrent optimizations at the micro- and at the macroscale lighten the computa-
tional burden of the whole procedure. Indeed, the generation of the cell dictionary
could be, a priori, confined to a preliminary phase, mimicking an offline/online
paradigm.

A cross-comparison between the single-cellular and the multi-cellular dictionary
optimization, customized to the design of orthotic devices, represents another in-
teresting contribution of the paper. Actually, the possibility to involve different
topologies in the design of the optimized macrostructure results in the adoption of a
lower number of different unit cells, i.e., in a structure simpler to be manufactured.
Additionally, the multi-cellular dictionary admits very small volume fractions (for
instance, values α = 0.2, 0.3 excluded by DS) which are used in practice to finalize
the optimized layout in Figure 10. Moreover, dictionary DM seems to be less sen-
sitive with respect to the two analyzed patient-specific configurations. Indeed, the
presence of the pre-ulcerated area in Figure 10 essentially preserves the allocation
of the unit cells when compared with the H-U scenario, just slightly increasing
the extension of the zones associated with the highest density. This is in contrast
to the optimized layouts in Figure 7 associated with the single-cellular dictionary,
which strongly differ in the global unit cells distribution and in the presence of a
soft region just below the damaged area in the H-U-T configuration.

The validation carried out in Section 6.2 confirms that the developed multiscale
topology optimization can lead to some benefits when compared with consolidated
medical practices. In particular, the finite element analysis in Figure 13 shows that
the insole design in Figure 10 for the H-U-T scenario reduces the stress in cor-
respondence with the ulcerated zone and the plantar arch, when compared with
standard homogeneous and heterogeneous honeycomb infills. Finally, the manu-
facturing analysis in Section 6.2.2 confirms the feasibility of the optimized proto-
type with respect to a 3D printing technology.
These preliminary results support the proposed multiscale topology optimization as
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an effective computational and manufacturing workflow for the design of custom-
made insoles for specific foot pathologies.

As a first possible development, we plan to extend the methodology here presented
to a 3D setting to provide a more effective solution to different foot pathologies
and to comply with patient-specific clinical prescriptions.
In addition, both the optimization phases can be enriched with constraints taking
into account the current limits in additive manufacturing [18, 44, 45, 75, 80, 95,
104], as well as the presence of possible failures or geometric defects [62] in the
final layouts.
A handy management of the transition between different cell layouts represents
another crucial issue with a view to manufacturability, in particular when dealing
with heterogeneous dictionaries.
A multi-physics optimization, where different physical problems coexist, turns out
to be another further step towards a more comprehensive description of complex
phenomena.
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[100] Wächter A, Biegler LT (2006) On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Math Pro-
gram 106(1, Ser. A):25–57

[101] Wang Y, Luo Z, Zhang N, Qin Q (2016) Topological shape optimization
of multifunctional tissue engineering scaffolds with level set method. Struct
Multidiscip Optim 54(2):333–347

[102] Wang Y, Xu H, Pasini D (2017) Multiscale isogeometric topology optimiza-
tion for lattice materials. Comput Methods Appl Mech Engrg 316:568–585

43



[103] Watts S, Arrighi W, Kudo J, Tortorelli DA, White DA (2019) Simple, accu-
rate surrogate models of the elastic response of three-dimensional open truss
micro-architectures with applications to multiscale topology design. Struct
Multidiscip Optim 60(5):1887–1920

[104] Wu J, Clausen A, Sigmund O (2017) Minimum compliance topology op-
timization of shell-infill composites for additive manufacturing. Comput
Methods Appl Mech Engrg 326:358–375

[105] Xie Y, Steven G (1993) A simple evolutionary procedure for structural opti-
mization. Comput Struct 49:885–896

[106] Xu H, Farag A, Pasini D (2018) Routes to program thermal expansion
in three-dimensional lattice metamaterials built from tetrahedral building
blocks. J Mech Phys Solids 117:54–87

[107] Yan N (2001) A posteriori error estimators of gradient recovery type for
elliptic obstacle problems. Adv Comput Math 15(1-4):333–362

[108] Yoon GH (2013) Acoustic topology optimization of fibrous material with
Delany–Bazley empirical material formulation. J Sound Vib 332(5):1172–
1187

[109] Yu S, Wang C, Sun C, Chen W (2014) Topology optimization for light-
trapping structure in solar cells. Struct Multidiscip Optim 50(3):367–382

[110] Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and
aerospace structures design. Arch Comput Methods Eng 23(4):595–622

[111] Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive pro-
cedure for practical engineering analysis. Int J Numer Meth Engng 24:337–
357

44



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

26/2021 Vigano, L.; Sollini, M.; Ieva, F.; Fiz, F.; Torzilli, G.
Chemotherapy-Associated Liver Injuries: Unmet Needs and New Insights for
Surgical Oncologists

27/2021 Scimone, R.;  Menafoglio,  A.; Sangalli, L.M.; Secchi, P. 
A look at the spatio-temporal mortality patterns in Italy during the COVID-19
pandemic through the lens of mortality densities

25/2021 Tenderini, R.; Pagani, S.; Quarteroni, A.; Deparis S.
PDE-aware deep learning for inverse problems in cardiac electrophysiology

24/2021 Regazzoni, F.; Chapelle, D.; Moireau, P.
Combining Data Assimilation and Machine Learning to build data-driven
models for unknown long time dynamics - Applications in cardiovascular
modeling

23/2021 Scimone, R.; Taormina, T.; Colosimo, B. M.; Grasso, M.; Menafoglio,  A.; Secchi, P. 
Statistical modeling and monitoring of geometrical deviations in complex
shapes with application to Additive Manufacturing

22/2021 Domanin, M.; Bennati, L.; Vergara, C.; Bissacco, D.; Malloggi, C.; Silani, V.; Parati, G.; Trimarchi, S.; Casana, R.
Fluid structure interaction analysis to stratify the behavior of different
atheromatous carotid plaques

20/2021 Pasquale, A.; Ammar, A.; Falcó, A.; Perotto, S.; Cueto, E.; Duval, J.-L.; Chinesta, F.
A separated representation involving multiple time scales within the Proper
Generalized Decomposition framework

21/2021 Torti, A.; Galvani, M.; Menafoglio, A.; Secchi, P.; Vantini S. 
A General Bi-clustering Algorithm for Hilbert Data: Analysis of the
Lombardy Railway Service

18/2021 Gigante, G.; Vergara, C.
On the choice of interface parameters in Robin-Robin loosely coupled
schemes for fluid-structure interaction

16/2021 Salvador, M.; Dede', L.; Manzoni, A.
Non intrusive reduced order modeling of parametrized PDEs by kernel POD
and neural networks


