
MOX–Report No. 28/2010

Fluid Structure Interaction Simulations of
Physiological Blood Flow in the Aorta

Paolo Crosetto, Philippe Reymond, Simone Deparis,

Dimitrios Kontaxakis, Nikolaos Stergiopulos,
Alfio Quarteroni

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it



 



Fluid Structure Interaction Simulations of

Physiological Blood Flow in the Aorta

Paolo Crosetto, Philippe Reymond, Simone Deparis,
Dimitrios Kontaxakis, Nikolaos Stergiopulos, Alfio Quarteroni

September 14, 2010

Abstract

The numerical tools to simulate blood flow in the cardiovascular system
are constantly developing due to the great clinical interest and to scientific
advances in mathematical models and computational power. The present
work aims to address and validate new algorithms to efficiently predict the
hemodynamics in large arteries. The latter rely on finite elements simula-
tion of the fluid-structure interaction between blood flow and arterial wall
deformation of a healthy aorta. Different sets of boundary conditions are
devised and tested. The mean velocity and pressure time evolution is plot-
ted on different sections of the aorta and the wall shear stress distribution
is computed. The results are compared with those obtained with a rigid
wall simulation. Pulse wave velocity is computed and compared with the
values available from the literature. The flow boundary conditions used for
the outlets are obtained using the solution of as one dimensional model.
The results of the simulations are in agreement with the physiological data
in terms of wall shear stress, wall displacement, pressure waveforms and
velocities.

1 Introduction

Blood flow dynamics in arteries is an underlying factor for many vascular patholo-
gies. A better understanding of these dynamics could improve the prediction and
diagnosis in both healthy and pathological situations [11]. A simulation with
rigid walls fails to predict some essential characteristics of the blood flow (such
as pressure wave propagation). Thus it cannot be considered reliable in every
situation (e.g. when the vessels undergo relatively large displacements). Fur-
thermore, in most of the physiological cases the appearance of secondary flow
(because of, e.g., branching or curved arteries) makes it necessary to consider
the 3D dynamics. Since this dramatically increases the computational cost, it
becomes of utmost importance to develop and implement parallel and scalable
computational algorithms.
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Modeling the Fluid-Structure Interaction (FSI) between the blood and the
arterial wall is a challenging task. The research in this field is developing fast
concerning both modeling aspects and computational efficiency. Taking into
account the compliance of the vessels can be achieved by introducing a 3D or
2D elastic structure, using a Lagrangian, Eulerian, or Arbitrary Lagrangian
Eulerian (ALE) formulation. The structure model should take into account the
non linearity due to the collagen activation and the presence of surrounding tissue
inducing a static pressure and a dynamic response to the wall displacement.

Alternative options that avoid the introduction of a structure model for the
external wall are transpiration techniques (e.g. [7, 6]), or the coupled momentum
method, used e.g. by Kim et al. [17]. These methods consist of dropping the ho-
mogeneous Dirichlet condition at the fluid-structure interface, and substituting
it with a proper condition that emulates the presence of a surrounding structure.
In particular the coupled momentum method shows good results in many phys-
iological situations, and it has the advantage of being computationally cheap
because the mesh is fixed. Although it is well suited for small displacements, it
can be inappropriate when the displacements become large [8]. Furthermore, as
the fixed control volume where the fluid equations are solved allows the fluid to
pass through the interface, the quantities computed at the boundary , such as
the wall shear stress, are subject to a further approximation. The FSI simulation
of blood flow in the aortic arch was performed in [13] on a simplified geometry
without branching and using a three-layer nonlinear model for the structure. In
[13] the FSI system is formulated in an ALE frame and solved with a standard
Dirichlet-Neumann method imposing an inlet flux and homogeneous Neumann
condition on the outlet. An FSI simulation in a patient-specific aorta using the
ALE formulation can be found in Bazilevs et al. [3], where a pathological case
was considered. In the latter the physiological boundary conditions used were
also taken from a previous reduced model simulation, and particular attention
is devoted to the fluid flow pattern, wall shear stress and oscillatory shear index.
In our work, besides reporting the quantities that influence the formation of
several pathologies (i.e, the wall shear stress) we highlight some characteristics
that are peculiar to the compliant wall simulations and validate the FSI model,
such as the pulse wave velocity (PWV) and the radius change.

2 Model Description

While in many contexts the rheological properties of blood flow have a great
influence on its dynamics, the flow in large healthy arteries is known to have
an almost Newtonian behavior [11]. The interaction between the blood and the
arterial wall has to be taken into account to correctly predict the behavior of
the arteries, especially where the pressure impulse induces large deformations
of the domain, as in the aortic arch. In the present work we will simulate the
hemodynamics in the aorta, taking into account the 3D FSI between the blood
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Figure 1: Reference and current configuration with Lagrangian and ALE map-
pings.

flow and the arterial wall, modeling blood as a Newtonian fluid and the aortic
wall as a linear elastic structure. We recall in this section the model adopted
in this work to describe the FSI problem, and the methodology used to solve it.
We refer to [4] for further details.

The moving fluid domain is handled using the ALE formulation. This is
a diffused approach in FSI, motivated by the need of imposing the boundary
conditions for the fluid equations on an arbitrarily moving control volume, e.g.
that follows the material configuration on the fluid-structure interface and is
fixed at the inlet-outlet.

The FSI model considered is composed by three coupled subproblems. The
geometry problem, introduced to define the ALE map, that describes the fluid
domain displacement df as a harmonic extension of the solid displacement ds|Γo

from the FS interface Γo to the internal of the fluid reference domain Ωf
o ⊂ R

3:{
−∆df = 0 in Ωf

o

df = ds|Γo on Γo,
(2.1)

The ALE mapping is then defined as

At : Ωf
o → Ωf

t

xo 7→ At(xo) = xo + df(xo).

The fluid problem, that consists of the incompressible Navier-Stokes equa-
tions written in ALE formρf

∂uf

∂t

∣∣∣∣
xo

+ (ρf(uf −w) · ∇)uf −∇ · σf = 0 in Ωf
t

∇ · uf = 0 in Ωf
t.

(2.2)

where σf = −pI + µ(∇uf + (∇uf)T ) is the Cauchy stress tensor, ρf is the blood
density, µ is the dynamic viscosity and uf and p represent blood velocity and
pressure respectively.

The solid problem describes the arterial wall dynamics through a linear elastic
model:

ρs
∂2ds

∂t2
−∇ · σos = 0 in Ωs

o, (2.3)

where σos = λtr(ε) + 2µsε, with ε = (∇ds+(∇ds)T )
2 , is the Piola stress tensor and

Ωs
o is the solid domain in the reference configuration.
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A wide variety of models for the structure of the arterial wall are present in
literature, with different levels of complexity. An accurate model for the arterial
wall should take into account the effects of anisotropy due to the distribution
of the collagen fibers, the three layers (intima, media and adventitia) structure,
the nonlinear behavior due to collagen activation and the incompressibility con-
straint. Accurate models devised for the tissue of the aorta, in particular applied
to the study of pathological situations (abdominal aorta aneurisms (AAA), in-
juries), can be found e.g. in [14], [16] and more recently in [31], [29] and references
therein. Furthermore, we refer to [15] for an overview of the mechanical prop-
erties of the arterial walls, and to [1] for an overview of the existing models and
mathematical principles of the elasticity applied to the arterial wall. Needless
to say the structural dynamics, and in particular the AAA formation, is greatly
influenced by the patient specific geometry of the vessels, e.g. the eccentricity
of the aorta lumen [9]. Also the physical parameters introduced in the model
vary from case to case, influenced e.g. by the artery segment location and by
the age of the patient, so that introducing complex models often requires extra
parameter identifications.

The large arteries in healthy situations are often modeled with an isotropic
linear elastic constitutive law in FSI applications. Although this constitutive
relation is a rough simplification, the results by far improve those obtained using
flow simulations with rigid walls, and show to correctly detect the hemodynamics
(cf. Section 3.3). The Lamé coefficients λ and µs are characterized by the choice
of a Young modulus and Poisson coefficient. In our simulations these are taken
respectively as E = 4 106 dyne

cm2 and ν = 0.48, and the material is considered to
be linear elastic. The viscosity of blood is set to µ = 0.035P [22].

Using the notations introduced in [4] we express, at a fixed time t, the equa-
tions describing the coupled problem in a compact form:

G(ds,df) = 0
F(u,ds,df) = 0
S(u,ds,df) = 0,

(2.4)

where u represents the set of velocity and pressure unknowns in the Navier-
Stokes equations, df is the fluid domain displacement and ds is the structure
displacement. We refer to [5] for the variational formulation of the coupled
problem (2.4) which properly accounts for the coupling conditions on veloc-
ity and stresses. In the present work equations (2.4) are coupled using the
Geometry-Convective Explicit (GCE) time discretization, i.e., considering in the
fluid problem the fluid domain displacement explicitly and the convective term
partly explicitly. With this choice of the time discretization the FSI system is
linear at every time step, and the geometry problem can be solved in a separate
step, leading to a significant reduction of the computational cost per time step
with respect to other schemes, like the convective explicit, or the fully implicit
ones (both with implicit treatment of the fluid geometry, see e.g. [18]). In [3] a
similar coupling algorithm is used, but the fluid domain displacement is treated
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implicitly and the GCE matrix is used as an approximation of the Jacobian in
the Newton iterations, leading to an inexact Newton scheme where the shape
derivatives are neglected.

The numerical simulations reported in the present work are performed us-
ing the FSI solver implemented in LifeV1. The fluid problem is discretized in
space using P1-P1 finite elements stabilized with the interior penalty technique
described in [24]. The solid and the geometry problems are discretized in space
with P1 finite elements. The discretization in time is implicit Euler for the
fluid (in its non conservative formulation, see [23]) and a Newmark second order
scheme for the structure (see [23] Chap. 4).

3 Numerical Simulations

3.1 Geometry and Mesh

The geometric model of the aorta is obtained through 3T MRI scanner (Siemens
Trio-Tim 3T System), details on the sequences used are mentioned in [27]. The
arterial geometry was reconstructed in 3-D from the raw medical images (ITK
Snap).

The structure part is obtained extruding the fluid surface in the normal
direction. The thickness of the structure is proportional to the local aortic
lumen, see [20]. An unstructured tetrahedral mesh was then generated with
Gambit for both the fluid and the structure domains, conforming at the fluid-
structure interface.

3.2 Boundary Conditions

The proper choice of the boundary conditions is essential to obtain simulations
of physiological interest.

The simulation of a vessel subject to a high load, as it is the case in the
thoracic aorta, undergoes large deformations concerning both the luminal radius
and the vessel centerline displacement. In particular in a curved vessel, when
imposing a free stress condition on the external wall, the movement of the domain
turns out to be non physiological, as if there was no surrounding tissue around
the solid wall. The importance of considering the surrounding tissue effects
is often neglected, although in some cases it is shown to significantly change
the behavior of the solution (e.g. [21]). Furthermore, as we will show, taking
into account the surrounding tissue through a simplified model can be easily
implemented in our numerical simulations. In absence of a constitutive law
for the heterogeneous tissues surrounding the aorta, and to obtain a simple
model for the external response, we assume a linear algebraic stress displacement
constitutive relation on the external wall. This choice is arbitrary, but it leads to
good agreement with the experiments, when we properly tune the coefficients in

1http://www.lifev.org
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the constitutive law. The issue of the influence that the surrounding tissue has
on the arterial hemodynamics was recently investigated in-vivo and in-vitro on
swines [21]. In the latter work, under the physiological range for pressure and
displacement, the intraluminal pressure was shown to be proportional to the
radius of the lumen only when the surrounding tissue was taken into account,
which suggests indeed a pressure-displacement linear constitutive relation.

More precisely, the boundary condition on the external wall is:

pon + (σs · n) + αds = 0 on Γo, (3.5)

where σs is the structure stress tensor, po is a static pressure and n is the outward
normal to Γo. This is a Robin condition (see [25]). It is worth noticing that if
we do not impose Neumann conditions on any other fluid and solid boundary,
then the stresses σf and σs in the fluid and solid equations are defined up to
a constant, which allows us to set po = 0 in the condition (3.5), and then to
arbitrarily shift the pressure scale in the final solution.

The main difficulty encountered was a suitable choice of the parameter α
in (3.5). We choose empirically for this parameter the value of α ≈ 104 dyne

cm3 ,
which leads to physiological displacements and fits qualitatively the plot of in-
traluminal pressure versus inner radius reported in [21]. However, as the wall
thickness varies according to the intraluminal radius, we observed a great dilata-
tion in the small branches when subject to a high intraluminal pressure. This
dilatation would be avoided with a nonlinear structure model where the effects
of collagen are taken into account. Our “remedy” to this problem has been to
choose a parameter α varying in space, in particular increasing when the arterial
wall becomes thin.

Another crucial issue concerning the imposition of boundary conditions on
the arterial wall is the choice of the boundary conditions for the rings at the ends
of the arterial branches. In fact, in the literature many strategies to impose ab-
sorbing boundary conditions on the fluid outlets have been devised. These allow
in FSI to absorb the non physiological pressure wave reflections [23, 11]. However
an absorbing boundary condition on the fluid outlets inhibits the imposition of
other physiological quantities such as velocity, or stresses. Concerning the struc-
ture, at the best of our knowledge absorbing boundary conditions for FSI have
not been implemented yet, thus we chose in our simulations to impose a Neu-
mann homogeneous condition on the structure outflow rings. With this choice
we did not observe spurious reflection waves. The aorta inlet in proximity of the
aortic valve is clamped.

On the fluid outlets we impose fluxes obtained from 1D model simulations, as
defective boundary conditions [10]. At the inlet we impose either the measured
flux or a pressure obtained from the 1D simulation.
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Figure 2: Pressure and displacement distribution at different times. The upper-
left figure represents the pressure at the end of the second heartbeat (at t = 1.6s).
The other pictures are taken at intervals of 0.2s. We remark that the pressure
reaches the maximum value in proximity of the systole, at t ≈ 1.8s. The low-
left and low-right figures represent the displacement magnitude at t = 1.8s and
t = 2.2s. The location of the maximum displacement during systole in the aortic
arch is probably due to the curved and branching shape of the geometry inducing
a variation of the eccentricity of the lumen.
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Figure 3: Sections in which the mean values of pressure and velocity are com-
puted.

Figure 4: FSI simulation with inlet flux imposed. History of the mean pressures
(in mmHg) at S1, S2, S3 and S4 in figure 3 (starting from the upper-left corner
with the S1 section, until the S4 section in the low-right corner).

3.2.1 FSI vs Rigid Walls

In order to compare our results with a standard Navier-Stokes simulation with
rigid walls we set up a CFD problem with similar boundary conditions as those
imposed in the previously described simulations. Thus we keep the imposition
of the fluxes at all the outlets, and we substitute the inlet flux with a constant
normal stress condition on the inlet section. Note that as the inlet is the only
boundary where a Neumann condition is imposed, the value of the stress imposed
is defined only up to a constant.
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Figure 5: FSI simulation with inlet flux imposed. Mean velocities computed in
the sections S1, S2, S3 and S4 represented in figure 3.

Figure 6: NS simulation with rigid walls. History of the mean velocity over the
sections S1, S2, S3 and S4 represented in figure 3, starting from the S1 section
(up left), until the abdominal outflow S4 (low right). The imposition of an inlet
pressure instead of a flux leads to a nonzero positive flux through the aortic
valve (section S1) also when the valve should be closed.

3.3 Timings and Validation

All the simulations reported in this paper were run using the parallel FE li-
brary LifeV2. The computations were done on the massively parallel processing
Cray XT4 supercomputer HECToR3, composed by blades containing 4 quad-
core (AMD 2.3 GHz) nodes each. LifeV uses the Trilinos4 library as interface
to MPI. All the simulations were run on 16 nodes using 4 MPI processes per
node. At every time-step most of the time was spent in the preconditioner com-
putation, in the solution of the linear system, and in the assembly of the matrix
block for the fluid equations. The average time for these tasks was 16.6s, 11.5s
and 8.1s respectively (the assembly of the stabilization part at every time it-
eration took 7.1s, while the assembly of the rest of the block took about 1s).
The preconditioner considered was a one-level algebraic additive Schwarz (AAS)
preconditioner with two layers overlap (see [26]). The LU factorization of the
sub-blocks in the AAS preconditioner was achieved through the unsymmetric

2http://www.lifev.org
3http://www.hector.ac.uk
4http://trilinos.sandia.gov
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multifrontal method implemented in the package Umfpack5. The linear system
was solved with preconditioned GMRES iterations and the average number of
iterations was about 25. The time-step chosen was 10−3s, so that one heartbeat
(0.8s) consisted of 800 time levels. Summing the timings for the solution of
the linear system, the preconditioner computation and the assembly of the fluid
block we obtain a global timing per heartbeat of about 8 hours. However by
also considering the Hdf5 post-processing at every time-step this time increases
to about 10h. Neglecting the post-processing time we remark that the assembly
of the fluid block scales while increasing the number of processors since it does
not require inter-processor communications (the ghost nodes of each partition
are repeated on all the processors), while the preconditioner computation, and
in particular the GMRES solution, are less scalable operations. We refer to [4]
for considerations on the scalability of the FSI GCE system and for a discussion
on suitable preconditioners for coupled problems.

Figure 7: Aorta mesh partitioned with 32 processors. The mesh is composed of
380′690 tetrahedra, i.e., 324′000 dofs.

5http://www.cise.ufl.edu/research/sparse/umfpack
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The velocity of the pressure wave is measured by evaluating the foot of
pressure in two sections of the abdominal aorta 5cm from each other. The phase
shift observed is 0.009s, which corresponds to a velocity of 5.5ms . This value
corresponds to the physiological PWV (around 5ms , see [22], [12]). However this
value is closely related to the Young modulus chosen in the solid model, which
depends on the specific case and is influenced by many factors. For patient
specific simulations these parameters should be accurately tuned. Furthermore,
frequently the Young modulus for in-vivo arteries is devised from the PWV using
empirical formulas, or from measurements of pressure versus luminal area, thus
already taking into account the effect of the surrounding tissue [21].

To test the influence of the flux boundary condition imposed at the inlet
and to have another comparison with the rigid walls simulation, we ran an
FSI simulation imposing the pressure at the inlet obtained from a 1D model
simulation. With this choice we do not guarantee that the flux is zero when the
aortic valve is closed. We observe indeed a reflux in the diastolic phase, that
simulates the back flow inducing the closure of the aortic valve and the flow
into the coronary arteries. This phenomenon is physiologically observed and
cannot be simulated without taking into account the compliance of the wall.
However imposing a stress condition at the inlet introduces another parameter
to be tuned. In fact the outer static pressure po, that we set to zero in (3.5), in
this case is no more arbitrary. The value chosen is po = 115000dyne ≈ 86mmHg,
which is slightly greater than the diastolic inlet pressure.

The time histories of the mean pressure and normal velocity computed on
the sections represented in Figure 3 are reported in Figures 8 and 9, where only
the second heartbeat is represented. Note that instead of imposing the external
static pressure po we shifted the inlet pressure so that the zero value corresponds
to po ≈ 86mmHg. Figure 12 represents a section of the lumen boundary in the
middle of the aortic arch at different times, showing in particular the change in
eccentricity of the lumen.
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Figure 8: FSI simulation with inlet pressure imposed. History of the mean
pressures (in mmHg) over the sections S1, S2, S3 and S4 represented in figure
3.

Figure 9: FSI simulation with inlet pressure imposed. History of the mean
normal velocities (in cm/s) over the sections S1, S2, S3 and S4 represented in
Figure 3. In the plot for the S1 section (upper-left) we show the pressure curve
over the same section with a dashed line, to highlight the dependence of the
reverse flow in the coronary arteries on the steep pressure decrease after the
systole. Notice that at regime in the abdominal aorta no more backward flow is
observed.

4 Wall Shear Stress

The arterial wall tissue reacts to both the normal and shear stresses [11]. In
particular, the wall shear stress is involved with the formation of atherosclerosis,
which is a pathology which is characterized by a narrowing of the arterial lumen
due to the accumulation of fatty material. However wall shear stress is difficult to
measure in vivo with a sufficient spatial resolution. Thus numerical simulations
can help to predict the WSS distribution in a specific geometry of the vessel,
improving diagnosis and prevention. A reliable numerical tool that carries out all
the process from the patient-specific segmentation to the simulation could help
a medical doctor to choose the correct therapy adapted to a specific patient.
Furthermore, if the model is validated, a simulation of the WSS distribution can
help to solve the inverse problem, i.e., to identify the role that WSS plays in the
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Figure 10: History of the mean radius over the sections S2, S3 and S4 represented
in figure 3, for the simulation with inlet flux imposed.
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Figure 11: History of the mean radius over the sections S2, S3 and S4 represented
in figure 3 for the simulation with inlet pressure imposed.

Figure 12: Several snapshots of the aorta section located in the middle of the
aortic arch during the third heartbeat of the inlet flux FSI simulation.
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development of pathologies such as atherosclerosis.
The shear stress is defined as the tangential component of the traction vector

σfn. Thus in Newtonian fluids it is

τ = σfn− (σfn · n)n =

µ(∇uf +∇uTf )n− µ{[(∇uf +∇uTf ) · n] · n}n

where µ is the dynamic viscosity. If uf = (u1, u2, u3) the latter corresponds to

τ = µ[(∇uf +∇uTf )− (∇uf +∇uTf ) : (n⊗ n)]n.

Written in Einstein notation the latter reads

τj = µ[(∂iuj + ∂jui)− (∂kul + ∂luk)(nknl)δij ]ni.

Fixing a point x on the fluid-structure interface we can write all the quantities
with respect to the associated frame of reference (t1, t2,n), where t1 and t2 are
orthonormal vectors on the tangent plane and n is the normal vector. We denote
the local coordinate system associated with this frame (ξ1, ξ2, ξ3). The previous
expression reads

τ = µ

 (∂ξ2uξ3 + ∂ξ3uξ2)
(∂ξ1uξ3 + ∂ξ3uξ1)

0

 .

We notice here that if the FS wall is fixed every tangential derivative is zero,
∂ξ1uξ3 = 0, ∂ξ2uξ3 = 0. This leads to a straightforward relation between the
magnitude of the wall shear stress and of the vorticity vector ω = ∇ × uf . In
fact we have that

ω =

 ∂ξ2uξ3 − ∂ξ3uξ2
∂ξ3uξ1 − ∂ξ1uξ3
∂ξ1uξ2 − ∂ξ2uξ1

 =

 −∂ξ3uξ2−∂ξ3uξ1
0


and thus µ‖ω‖2 = ‖τ‖2.

When the wall is moving this relation is no longer valid. However in the
following we suppose that the velocity gradient due to the boundary layer (the
normal derivatives of the tangential velocity) dominates the other components
of the velocity gradient, so that µ‖ω‖2 ≈ ‖τ‖2. We refer to [30] for details and
discussions about shear stress and vorticity relations.

Figures 14 and 13 show the wall shear stress (WSS) magnitude in both
the rigid walls and FSI simulations computed through the wall vorticity right
after the systole of the second heartbeat. The period of one heartbeat is T =
0.8s, so that t = 1s corresponds approximatively to the systolic peak. The
WSS distribution is similar at systole with rigid walls and FSI, although it is
slightly larger in the former case, then at t = 1.1s and t = 1.2s the WSS
magnitude is larger in the rigid walls case. In particular the WSS in the rigid wall
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simulation seems to be overestimated, we refer to [28] for a detailed comparative
study of the two simulations. The systolic WSS are in the physiological range,
particularly in the FSI case, if compared with measurements obtained in [2] for
the control patients. We did not observe remarkable differences between the two
FSI simulations corresponding to different inlet boundary conditions.

Figure 13: The wall shear stress distribution at t = 1.1 for the FSI simulation
with the inlet flux imposed.
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Figure 14: This figure represents the wall shear stress distribution at t = 1.1 for
the rigid walls simulation.

5 Conclusions

In this paper we report the result of 3D simulations on a physiological geometry
over several heartbeats. We tested different boundary conditions at the inlet
in proximity of the aortic valve. In particular we ran a simulation imposing a
measured flux at the inlet section and fluxes obtained from a 1D simulation on all
the outlets. We then imposed an inlet pressure instead of the flux, and observed
a backward diastolic flow through the section. This phenomenon is observed and
causes the closure of the aortic valve and the circulation in the coronary arteries.
Since it is due to the compliance of the arterial wall it cannot be simulated using
only a CFD code that does not take into account the fluid-structure interaction.

We introduced a Robin condition at the external wall to take into account
the influence of the heterogeneous tissue surrounding the aorta. This condition
consists of a pressure-displacement linear relation, that when properly tuned
leads to results that agree with physiological ones. To validate our model we
computed the pulse wave velocity, wall shear stress, the histories of the mean
pressure, velocity and intraluminal radius at different axial sections along the
vessel. We found that the values are in the physiological range, though many
parameters may be adapted on a patient-specific basis.

We compared the FSI results with those obtained through a CFD simulation
with rigid walls in which the pressure is imposed at the inlet section. In particular
we observed a difference in the wall shear stress magnitude, that is overestimated
with rigid wall. Furthermore we observed a flux entering through the inlet section
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in the rigid wall simulation also when the valve is closed, while there should be
a reflow inducing the closure of the aortic valve, which is indeed observed in
the FSI case. We stress the fact that in the FSI model we could impose fluxes
over every inlet and outlet of the arterial tree, which would not be possible
in a rigid wall simulation, as well as in many FSI codes (see [19]), unless the
Dirichlet condition on the fluid-structure interface would be substituted with
another proper condition.
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[29] J. Rodriguez, C. Ruiz, M. Doblaré, and G. Holzapfel. Mechanical stresses
in abdominal aortic aneurysms: Influence of diameter, asymmetry, and ma-
terial anisotropy. Journal of Biomechanical Engineering, 130, 2008.

[30] J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou. Vorticity and Vortex Dynamics.
Springer, 1 edition, May 2006.

[31] A. R. Zhao, M. L. Field, K. Digges, and D. Richens. Blunt trauma and
acute aortic syndrome: a three-layer finite-element model of the aortic wall.
European Journal of Cardio-Thoracic Surgery, 34(3):623 – 629, 2008.

21



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

28/2010 Paolo Crosetto, Philippe Reymond, Simone Deparis,
Dimitrios Kontaxakis, Nikolaos Stergiopulos,
Alfio Quarteroni:
Fluid Structure Interaction Simulations of Physiological Blood Flow in
the Aorta

27/2010 Matteo Bruggi, Marco Verani:
An adaptive algorithm for topology optimization with goal-oriented
error control

26/2010 Francesca Ieva, Anna Maria Paganoni:
Designing and mining a multicenter observational clinical registry
concerning patients with Acute Coronary Syndromes

25/2010 G. Pena, C. Prud’homme, Alfio Quarteroni:
High Order Methods for the Approximation of the
Incompressible Navier-Stokes Equations in a Moving Domain

24/2010 Lorenzo Tamellini, Luca Formaggia,
Edie Miglio, Anna Scotti:
An Uzawa iterative scheme for the simulation of floating boats

23/2010 Joakim Baeck, Fabio Nobile,
Lorenzo Tamellini, Raul Tempone:
Stochastic Spectral Galerkin and collocation methods for PDEs with
random coefficients: a numerical comparison

22/2010 Carlo D’Angelo, Paolo Zunino:
Numerical approximation with Nitsche’s coupling of transient Stokes’/Darcy’s
flow problems applied to hemodynamics

21/2010 Niccolo’ Grieco, Francesca Ieva,
Anna Maria paganoni:
Provider Profiling Using Mixed Effects Models on a Case Study
concerning STEMI Patients

20/2010 Fabio Nobile, Alfio Quarteroni, Ricardo Ruiz Baier:
Numerical solution of an active strain formulation for the electro-
mechanical activity in the heart



19/2010 Loredana Gaudio, Alfio Quarteroni:
hN-adaptive spectral element discretization of optimal control problems
for environmental applications


