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Abstract

We design an adaptive virtual element method (AVEM) of lowest order over trian-
gular meshes with hanging nodes in 2d, which are treated as polygons. AVEM hinges
on the stabilization-free a posteriori error estimators recently derived in [8]. The crucial
property, that also plays a central role in this paper, is that the stabilization term can
be made arbitrarily small relative to the a posteriori error estimators upon increasing the
stabilization parameter. Our AVEM concatenates two modules, GALERKIN and DATA. The
former deals with piecewise constant data and is shown in [8] to be a contraction between
consecutive iterates. The latter approximates general data by piecewise constants to a
desired accuracy. AVEM is shown to be convergent and quasi-optimal, in terms of error
decay versus degrees of freedom, for solutions and data belonging to appropriate approxi-
mation classes. Numerical experiments illustrate the interplay between these two modules
and provide computational evidence of optimality.

1 Introduction

Virtual element methods (VEMs) are a new paradigm for the conforming discretization of
partial differential equations (PDEs) over polytopal meshes. They were introduced a few
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years ago and have seen a rapid development with an increasing number of applications ever
since [5, 6, 7]. Virtual element functions are continuous piecewise polynomials on the skeleton
of the polytopal mesh and are extended inside the elements in a convenient way that avoids
their explicit manipulation. This flexibility allows for global regularity, say continuity in the
context of second order PDEs, but requires dealing with projection operators and stabilization
of the resulting discrete bilinear form to be coercive (or more generally to satisfy a discrete
inf-sup condition). If the PDE has variable data D = (A, c, f), as in our prototype boundary
value problem

−∇ · (A∇u) + cu = f in Ω , u = 0 on ∂Ω , (1.1)

then D has to be further approximated to formulate the discrete counterpart of (1.1). This
is well understood in the a priori analysis of VEMs, which deliver optimal convergence rates
under minimal regularity assumptions on D and for rather simple and practical choices of the
stabilization term.

The a posteriori error analysis of VEMs approximations of (1.1) initiated in [3, 14, 9], along
with suitable upper and lower error estimates for variable data D. The stabilization term and
the residual error estimator of [14], which is the one more relevant to us, turn out to be of
the same order but the former is not bounded above by the energy error. This is problematic
to study convergence of any adaptive VEM (AVEM for short). We have recently tackled
this crucial issue in [8] and shown that the stabilization term can be made arbitrarily small
relative to the error estimator upon increasing the stabilization parameter. This property is
valid in 2d on newest-vertex bisection meshes made of triangles with hanging nodes and a
fixed maximal global index, which limits the level of hanging nodes. Hence, triangles with
multiple nodes are viewed as polygons for the VEM approach. This severe mesh restriction
is crucial to relate the actual VEM mesh T with the largest conforming submesh T 0 of T
and their approximation properties. Moreover, this leads to stabilization-free a posteriori
error estimates, derived in [8], and facilitates the convergence analysis of AVEM, which is the
ultimate objective of this paper. We are not aware of similar studies for AVEM even though
convergence is a fundamental mathematical question of practical significance.

In contrast, the convergence and optimality analyses of adaptive finite element methods
(AFEMs) constitute a mature research field for elliptic PDEs such as (1.1); we refer to the
surveys [18, 19] as well as [15] for details. A common approach in the AFEM literature is to
assume that the linear and bilinear forms associated with (1.1) can be computed exactly. The
role of quadrature is not assessed a posteriori and, as a consequence, the resulting AFEMs
are not fully practical unless data D is piecewise polynomial. This leads to the usual one-loop
AFEMs which iterate the modules

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (1.2)

A valid and practical alternative is to first approximate D by piecewise polynomials to a
desired accuracy, and next run (1.2) for such approximate data to achieve a comparable
level of precision. This two-step AFEM was first proposed by R. Stevenson [20], and further
explored in [11, 16].

Dealing with approximate data D is inherent to the formulation of VEMs and their basic
definition. It is thus natural in this context to think of two-step AVEMs. This is precisely
our intent in this paper, in which we design an AVEM for (1.1) in two stages. We first
assume that D is piecewise constant and introduce a one-step AVEM, the so-called GALERKIN
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module, which is shown in [8] to possess a contraction property between consecutive adaptive
iterations. We next consider variable data D and design a two-step AVEM that consists of a
concatenation of the modules DATA and GALERKIN in the spirit of [11, 16, 20]. Given an initial
mesh T0 and parameters ε0, ω > 0, AVEM sets k = 0 and iterates

[T̂k, D̂k] = DATA (Tk,D, ω εk)

[Tk+1, uk+1] = GALERKIN (T̂k, D̂k, εk)
εk+1 =

1
2εk; k ← k + 1

The module DATA approximates D = (A, c, f) in the spaces
(
(L∞(Ω))2×2, L∞(Ω), L2(Ω)

)
by

piecewise constant data D̂k on an admissible refinement T̂k of Tk to accuracy ω εk. The pair
(T̂k, D̂k) is taken by GALERKIN to run an inner loop, with piecewise constant data D̂k and initial
mesh T̂k, that creates the next mesh-solution pair (Tk+1, uk+1). The module GALERKIN stops
as soon as the error tolerance εk is reached, which takes a finite number of iterations because
GALERKIN is a contraction between consecutive iterates. It is worth noticing that, in the
absence of this stopping test, GALERKIN would converge to the solution of (1.1) corresponding
to the perturbed data D̂k, which is not the desired solution u of (1.1). The relative resolution
of the modules DATA and GALERKIN is critical and is governed by the parameter ω > 0. In our
numerical experiments we observe that ω = 1 is an adequate choice.

It is clear from its definition that this two-step AVEM converges. Concerning its opti-
mality, we show that the number of iterations of GALERKIN is independent of the iteration
counter k and its complexity is dictated by the approximation classes of the solution u and
data D. This requires ω to be sufficiently small, or equivalently that the perturbed solution
of (1.1) with data D̂k is much closer to u than the error tolerance εk; this is in the spirit
of [11, 20]. We also prove that the complexity of DATA is given by suitable approximation
classes of D = (A, c, f) in the spaces

(
(L∞(Ω))2×2, L∞(Ω), L2(Ω)

)
. Altogether, this yields the

following optimal decay estimate for the energy error in terms of the number of degrees of
freedom #Tk

|u− uk|1,Ω ≤ C(u,D)
(
#Tk

)−s
, (1.3)

where s > 0 is the worse decay rate between those of the near-best approximations errors for
u and for D; typically s = 1

2 in dimension 2.
This paper is organized as follows. We present the weak formulation of (1.1) in Section 2

and recall the VEM basic ingredients in Section 3. We discuss VEM for piecewise constant
data in Section 4, including the stabilization-free a posteriori error estimates from [8]. In
Section 5 we design GALERKIN, and recall its fundamental contraction property from [8]. We
deal with variable data in Section 6, which entails a perturbation estimate for (1.1), the design
of DATA, and eventually of AVEM for general data. Section 7 analyzes the computational cost
of GALERKIN, showing that the number of sub-iterations inside a call to GALERKIN is uniformly
bounded. Section 8 is devoted to the study of the quasi-optimality of AVEM: approximation
classes for the solution and data are introduced, and the rate decay of the error in the energy
norm versus the number of degrees of freedom is estimated in terms of these classes. Section
9 completes the analysis, with the study of the decay of data approximation errors. We
document the interplay between the modules DATA and GALERKIN with several illuminating
numerical experiments in Section 10. It is important to realize that for mesh refinement
to maintain bounded global indices, and thus admissible meshes, further refinement beyond
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the marked elements might be necessary. In Section 11 we design and study a procedure
to make meshes admissible in the sense that the global index is uniformly bounded for all
k. This procedure hinges on the bisection algorithm and is of somewhat intrinsic interest.
We prove that it is optimal in terms of degrees of freedom, very much in the spirit of the
completion algorithm for conforming bisection meshes by Binev, Dahmen, and DeVore [10];
see also [18, 19, 21]. We finally draw conclusions in Section 12.

2 The continuous problem

In a polygonal domain Ω ⊂ R2, consider the second-order Dirichlet boundary-value problem

−∇ · (A∇u) + cu = f in Ω , u = 0 on ∂Ω , (2.1)

with data D = (A, c, f), where A ∈ (L∞(Ω))2×2 is symmetric and uniformly positive-definite
in Ω, c ∈ L∞(Ω) is non-negative in Ω, and f ∈ L2(Ω). The variational formulation of the
problem is

u ∈ V : B(u, v) = (f, v)Ω ∀v ∈ V , (2.2)

with V := H1
0 (Ω) and B(u, v) := a(u, v) +m(u, v) where

a(u, v) :=

∫
Ω
(A∇u) · ∇v , m(u, v) :=

∫
Ω
c u v

are the bilinear forms associated with (2.1). Let ||| · ||| =
√
B(·, ·) be the energy norm, which

satisfies
cB|v|21,Ω ≤ |||v|||2 ≤ cB|v|21,Ω ∀v ∈ V , (2.3)

for suitable constants 0 < cB ≤ cB.

3 VEM preliminaries

In view of the adaptive discretization of the problem, let us fix an initial conforming partition
T0 of Ω made of triangular elements. Let us denote by T any refinement of T0 obtained by a
finite number of successive newest-vertex bisections [10, 18, 19, 21]; the triangulation T need
not be conforming, since hanging nodes may be generated by the refinement. Let N denote
the set of nodes of T , i.e., the collection of all vertices of the triangles in T ; a node z ∈ N
is proper if it is a vertex of all triangles containing it; otherwise, it is a hanging node. Thus,
N = P∪H is partitioned into the union of the set P of proper nodes and the set H of hanging
nodes.

Given an element E ∈ T , let NE be the set of nodes sitting on ∂E; it contains the three
vertices and, possibly, some hanging nodes. If the cardinality |NE | = 3, E is said a proper
triangle of T ; if |NE | > 3, then according to the VEM philosophy E is not viewed as a triangle,
but as a polygon having |NE | edges, some of which are placed consecutively on the same line;
the set of all edges of E is denoted by EE . Note that if e ⊂ ∂E ∩ ∂E′, then it is an edge for
both elements; consequently, it is meaningful to define the skeleton of the triangulation T by
setting E = ET :=

⋃
E∈T EE . Throughout the paper, we will set hE = |E|1/2 for an element

and he = |e| for an edge.
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The concept of global index of a hanging node, introduced in [8], will be crucial in the
sequel. To define it, let us first observe that any hanging node x ∈ H has been obtained
through a newest-vertex bisection by halving an edge of a triangle in the preceding triangu-
lation; denoting by x′,x′′ ∈ N the endpoints of such edge, let us set B(x) = {x′,x′′}.

Definition 3.1 (Global index of a node and a partition). The global index λ of a node x ∈ N
is recursively defined as follows:

• If x ∈ P, then set λ(x) := 0;

• If x ∈ H, with x′,x′′ ∈ B(x), then set λ(x) := max
(
λ(x′), λ(x′′)

)
+ 1.

The global index of the partition T is defined as ΛT := max
x∈N

λ(x).

Definition 3.2 (Λ-admissible partitions). Given a constant Λ ≥ 1, a non-conforming parti-
tion T is said to be Λ-admissible if

ΛT ≤ Λ .

Starting from the initial conforming partition T0 (which is trivially Λ-admissible), all the
subsequent non-conforming partitions generated by the module REFINE in the sequel will
remain Λ-admissible due to the algorithm CREATE ADMISSIBLE CHAIN studied in Section 11.
We refer to [12] for a similar algorithm in the context of dG approximations.

Remark 3.3. The condition that T is Λ-admissible has the following implications for each
element E ∈ T :

• If L ⊂ ∂E is one of the three sides of the triangle E, then L may contain at most 2Λ− 1
hanging nodes; consequently, |NE | ≤ 3 · 2Λ.

• If e ⊂ ∂E is any edge, then he ≃ hE , where the hidden constants only depend on the
shape of the initial triangulation T0 and possibly on Λ.

In the following C will denote a generic positive constant independent of the mesh T but
which may depend on Ω, on the initial partition T0, on the data D and on the constant Λ (cf.
Definition 3.2) and that may change at each occurrence, whereas the symbol ≲ will denote a
bound up to C.

3.1 VEM spaces and projectors

Although the results of the present paper apply to a wider set of VEM spaces [5, 1, 7], we
prefer to focus the attention on the so-called enhanced VEM space. We will be brief and refer
to [8] for a more detailed description which adopts the same notation. We start with the
projector Π∇

E : H1(E)→ P1(E), which is is defined by the conditions

(∇(v −Π∇
Ev),∇q1)E = 0 ∀q1 ∈ P1(E),

∫
∂E

(v −Π∇
Ev) = 0 . (3.1)

To introduce the space of discrete functions in Ω associated with T , for each element E ∈ T
we define

V∂E := {v ∈ C0(∂E) : v|e ∈ P1(e) ∀e ∈ EE} ,

VE :=
{
v ∈ H1(E) : v|∂E ∈ V∂E , ∆v ∈ P1(E) ,

∫
E
(v −Π∇

Ev)q1 = 0 ∀q1 ∈ P1(E)
}
.

(3.2)
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Obviously P1(E) ⊆ VE and, if E is a proper triangle, then VE = P1(E). Once the local
spaces VE are defined, we introduce the global discrete space

VT := {v ∈ V : v|E ∈ VE ∀E ∈ T } . (3.3)

Note that functions in VT are piecewise affine on the skeleton E and are globally continuous. A
set of degrees of freedom for the space VT is given by the pointwise evaluation at all (internal)
mesh vertices.

We also define the subspace of continuous, piecewise affine functions on T

V0
T := {v ∈ V : v|E ∈ P1(E) ∀E ∈ T } ⊆ VT . (3.4)

This subspace was crucial in [8] to get a stabilization-free a posteriori error estimate, and
will play an essential role in this paper as well to remove the stabilization term from several
estimates.

The discretization of Problem (2.1) will involve the following global projection operators

Π∇
T : VT → P1(T ), IT : VT → P1(T ), Π0

T : L2(Ω)→ P1(T ), (3.5)

where P1(T ) denotes the space of (discontinuous) piecewise linear polynomials over T . We
define these operators in terms of their local counterparts. In fact, for each element E ∈ T ,
Π∇

T restricts to the local elliptic projection operator Π∇
E in (3.1), IT restricts to the local

Lagrange interpolation operator IE : VE → P1(E) at the vertices of E, and Π0
E restricts to

the local L2-orthogonal projection operator Π0
E : L2(E)→ P1(E). It turns out that Π0

E = Π∇
E

on VE , because of the definition (3.2) of the space VE , and that Π∇
E is computable on VE

in terms of the degrees of freedom [5, 8]. Furthermore, in view of the definition (3.4) of V0
T ,

Π∇
T v = IT v = v for all v ∈ V0

T .

4 A Virtual Element Method with piecewise constant data

In this section we briefly summarize the definition and certain properties of the virtual element
discretization of (2.2) introduced in [8] under the following assumption.

Assumption 4.1 (coefficients and right-hand side of the equation). The data D = (A, c, f)
in (2.1) are constant in each element E of T .

For any E ∈ T we use the following notation: AE = A|E ∈ R2×2, cE = c|E ∈ R,
fE = f|E ∈ R.

4.1 The discrete problem

Under the above assumption, we define aT ,mT : VT × VT → R by

aT (v, w) :=
∑
E∈T

aE(v, w) , aE(v, w) :=

∫
E
(AE∇Π∇

Ev) · ∇Π∇
Ew ,

mT (v, w) :=
∑
E∈T

mE(v, w) , mE(v, w) := cE

∫
E
Π∇

EvΠ
∇
Ew .

(4.1)
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Next, for any E ∈ T , we introduce the stabilization symmetric bilinear form sE : VE×VE → R

sE(v, w) =

NE∑
i=1

v(xi)w(xi) , (4.2)

with {xi}NE
i=1 denoting the nodes of E. This form controls the kernel of aE on VE/R because

it satisfies
cs|v|21,E ≤ sE(v, v) ≤ Cs|v|21,E ∀v ∈ VE/R , (4.3)

for constants Cs ≥ cs > 0 independent of E; for a proof of (4.3) we refer to [2, 13]. Other
choices for the stabilization form are available in the literature [2, 13] and the results presented
here easily extend to such cases. With the local form sE at hand, we define the local and
global stabilization forms

SE(v, w) := sE(v − IEv, w − IEw) ∀ v, w ∈ VE ,

ST (v, w) :=
∑
E∈T

SE(v, w) ∀ v, w ∈ VT . (4.4)

Note that from (4.3) we obtain

ST (v, v) ≃ |v − IT v|21,T ∀v ∈ VT , (4.5)

where | · |1,T denotes the broken H1-seminorm over the mesh T .

Finally, for all v, w ∈ VT we define the complete bilinear form

BT : VT × VT → R , BT (v, w) := aT (v, w) +mT (v, w) + γST (v, w) , (4.6)

where γ ≥ γ0 for some fixed γ0 > 0 is a stabilization constant independent of T . The following
properties are an easy consequence of the definitions and bounds outlined above.

Lemma 4.2 (properties of bilinear forms). The following properties are valid

• For any v ∈ VT and any w ∈ V0
T , it holds

aT (v, w) = a(v, w) , mT (v, w) = m(v, w) , ST (v, w) = 0 . (4.7)

• The form BT satisfies

b |v|21,Ω ≤ BT (v, v), |BT (v, w)| ≤ B|v|1,Ω|w|1,Ω , ∀v, w ∈ VT , (4.8)

with continuity and coercivity constants B ≥ b > 0 independent of the triangulation T .

Recalling (4.6), direct consequence of (4.7) is the following consistency result:

BT (v, w) = B(v, w) ∀v ∈ VT ,∀w ∈ V0
T . (4.9)

We now have all the ingredients to set the Galerkin discretization of Problem (2.1): find

uT ∈ VT : BT (uT , v) = FT (v) ∀v ∈ VT , (4.10)
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with discrete loading term

FT (v) :=
∑
E∈T

fE

∫
E
Π∇

Ev ∀v ∈ H1
0 (Ω) . (4.11)

Combining (4.8) with the Lax-Milgram Lemma, we obtain existence, uniqueness and stability
of the solution uT of (4.10). Moreover, uT satisfies the following orthogonality condition in
the subspace V0

T [5, 8].

Lemma 4.3 (Galerkin quasi-orthogonality). The solutions u of (2.2) and uT of (4.10) satisfy

B(u− uT , v) = 0 ∀ v ∈ V0
T . (4.12)

4.2 An a posteriori error estimator

Since we are interested in building adaptive discretizations, we rely on a posteriori error
control. Hereafter we present the residual-type a posteriori estimator introduced in [8] as a
variant of the one in [14]. To this end, recalling that D = (A, c, f) denotes the set of piecewise
constant data, for any v ∈ VT and any element E let us define the internal residual over E

rT (E; v,D) := fE − cE Π∇
Ev . (4.13)

Similarly, for any two elements E1, E2 ∈ T sharing an edge e ∈ EE1 ∩ EE2 , let us define the
jump residual over e

jT (e; v,D) := [[A∇Π∇
T v ]]e = (AE1∇Π∇

E1
v|E1

) · n1 + (AE2∇Π∇
E2
v|E2

) · n2 , (4.14)

where ni denotes the unit normal vector to e pointing outward with respect to Ei; set
jT (e; v,D) = 0 if e ⊂ ∂Ω. Then, taking into account Remark 3.3, we define the local residual
estimator associated with E

η2T (E; v,D) := h2E∥rT (E; v,D)∥20,E + 1
2

∑
e∈EE

hE∥jT (e; v,D)∥20,e . (4.15)

The residual estimator localized on some subset S ⊆ T is

η2T (S; v,D) :=
∑
E∈S

η2T (E; v,D) (4.16)

and the global residual estimator is

η2T (v,D) := η2T (T ; v,D) =
∑
E∈T

η2T (E; v,D) . (4.17)

Upper and lower a posteriori bounds of the energy error are provided by the following
result, whose proof can be found in [8, Proposition 4.1 and Corollary 4.3].

Proposition 4.4 (a posteriori error estimates). There exist constants Capost > capost > 0
depending on Λ and D but independent of u, T , uT and the stabilization parameter γ, such
that

|u− uT |21,Ω ≤ Capost

(
η2T (uT ,D) + ST (uT , uT )

)
,

capost η
2
T (uT ,D) ≤ |u− uT |21,Ω + ST (uT , uT ) .

(4.18)
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The stabilization term ST (uT , uT ) and residual estimator η2T (uT ,D) are, unfortunately,
of the same order [8, Section 4.1]. However, such difficulty is handled by the following cru-
cial result, proved in [8, Proposition 4.4], which relies on the subspace V0

T and Lemma 4.3
(Galerkin quasi-orthogonality). This shows the importance of V0

T .

Proposition 4.5 (bound of the stabilization term by the residual). There exists a constant
CB > 0, depending on Λ but independent of T , uT and the stabilization parameter γ, such
that

γ2ST (uT , uT ) ≤ CB η2T (uT ,D) . (4.19)

Combining (4.18) and (4.19) gives rise to the following fundamental estimate [8, Corollary
4.5].

Theorem 4.6 (stabilization-free a posteriori error estimates). Assume that the stabilization

parameter γ is chosen to satisfy γ2 >
CB

capost
. Then it holds

CL η2T (uT ,D) ≤ |u− uT |21,Ω ≤ CU η2T (uT ,D) , (4.20)

with CL = capost − CBγ
−2 and CU = Capost

(
1 + CBγ

−2
)
.

5 AVEM for piecewise constant data

In this section, we recall from [8] the Adaptive Virtual Element Method (AVEM) for approx-
imating (2.2) under Assumption 4.1, together with its convergence property. In particular,
AVEM for piecewise constant data is realized by a call to the module GALERKIN described
hereafter. Given a Λ-admissible input mesh T̂ , piecewise constant input data D on T̂ and a
tolerance ε > 0, the module

[T , uT ] = GALERKIN(T̂ ,D, ε) (5.1)

produces a Λ-admissible bisection refinement T of T̂ and the Galerkin approximation uT ∈ VT
to the solution u of problem (2.1) with piecewise constant data D, such that

|||u− uT ||| ≤ CG ε , (5.2)

with CG =
√
cBCU , where cB is defined in (2.3) and CU is defined in (4.20). This is obtained

by iterating the classical paradigm

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (5.3)

producing a sequence of Λ-admissible meshes {Tk}k≥0, with T0 = T̂ , and associated Galerkin
solutions uk ∈ VTk to the problem (2.1) with data D. The iteration stops as soon as
ηTk(uk,D) ≤ ε, which is possible thanks to the convergence result stated in Theorem 5.2
below.

The modules in (5.3) are defined as follows: given piecewise constant data D on T0 ,

• [uT ] = SOLVE(T ,D) produces the Galerkin solution on the mesh T for data D;
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• [{ηT ( · ;uT ,D)}] = ESTIMATE(T , uT ) computes the local residual estimators (4.15) on the
mesh T , which depend on the Galerkin solution uT and data D;

• [M] = MARK(T , {ηT ( · ;uT ,D)}, θ) implements the Dörfler criterion [17], precisely for a given
parameter θ ∈ (0, 1) an almost minimal setM⊂ T is found such that

θ η2T (uT ,D) ≤ η2T (M;uT ,D) ; (5.4)

• [T∗] = REFINE(T ,M) produces a Λ-admissible refinement T∗ of T , obtained by newest-
vertex bisection of all the elements inM and, possibly, some other elements.

In the procedure REFINE, non-admissible hanging nodes, i.e., hanging nodes with global
index larger than Λ, might be created while refining elements in M through newest-vertex
bisection. Thus, in order to obtain a Λ-admissible partition T∗, REFINE possibly refines other
elements in T . This is accomplished by applying to each E ∈ M a procedure, termed
CREATE ADMISSIBLE CHAIN(T , E), which identifies and refines a chain of elements starting at
E, thereby creating a Λ-admissible partition. The loop is as follows:

[T∗] = REFINE(T ,M)
for E ∈M∩ T
[T ] = CREATE ADMISSIBLE CHAIN(T , E)

end for
return(T )

Due to the technical nature of the procedure CREATE ADMISSIBLE CHAIN, we postpone its
description and analysis to Section 11.1. We state now a complexity estimate for REFINE,
whose proof is given at the end of that section. This result is fundamental for our optimality
analysis of AVEM in Section 8 and is similar in spirit to the original estimate for the bisection
method by Binev, Dahmen, and DeVore [10]; see also [18, 19, 21].

Theorem 5.1 (complexity of REFINE). Let T0 be an initial mesh with suitable initial labeling.
Let Tk be a Λ-admissible refinement of T0 by newest-vertex bisection created by successive calls
Tj+1 = REFINE(Tj ,Mj) for 0 ≤ j ≤ k − 1. Then there exists a universal constant C0 > 0,
solely depending on T0 and its labeling, such that

#Tk −#T0 ≤ C0

k−1∑
j=0

#Mj . (5.5)

We point out that a different procedure, termed MAKE ADMISSIBLE, was used in [8] to gen-
erate a Λ-admissible refinement. While the implementation of this procedure is simpler than
the one in CREATE ADMISSIBLE CHAIN, and works well in practice, only the latter guarantees
the validity of the bound (5.5).

At last, we state the following convergence result for GALERKIN (cf. [8, Theorem 5.1]) with
piecewise constant data.

Theorem 5.2 (convergence of GALERKIN). There exist constants β > 0 and α ∈ (0, 1) such
that, choosing the stabilization parameter γ > 0 sufficiently large in the Definition 4.6, the
approximations uk ∈ VTk defined in GALERKIN satisfy

|||u− uk|||2 + β η2Tk(uk,D) ≲ αk , k ≥ 0 . (5.6)
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6 AVEM for general data

In this section we describe the two-step AVEM for general (non-piecewise constant) data and
discuss its convergence properties. We first state the regularity of data.

Assumption 6.1 (regularity of data). The data D = (A, c, f) satisfies

D ∈ C0(T0;R2×2)× L∞(Ω)× L2(Ω) ,

where C0(T0;R2×2) denotes the space of piecewise uniformly continuous tensor fields over T0.

We will see below that the regularity of c and f can be weakened, but not that of A unless
we proceed as in [11]. We could assume c ∈ Lq(Ω) for 1 < q < ∞ and f ∈ H−1(Ω), but
we will not pursue this regularity much further. We begin with a perturbation result for the
solution of the exact problem.

6.1 Data perturbation

Let D̂ = (Â, ĉ, f̂) be the element-by-element average of D = (A, c, f) over a partition T of Ω,
namely

Â|E := AE =
1

|E|

∫
E
A ĉ|E := cE =

1

|E|

∫
E
c f̂ |E := fE =

1

|E|

∫
E
f ∀E ∈ T .

(6.1)
If α > 0 is the smallest eigenvalue of A = A(x) for all x ∈ Ω, then for any ξ ∈ R2

ξ ·A(x)ξ ≥ α|ξ|2 ∀x ∈ Ω ⇒ ξ ·AE ξ ≥ α|ξ|2 ∀E ∈ T ,

whence the smallest eigenvalue α̂ of Â satisfies α̂ ≥ α; thus Â is uniformly SPD in Ω. We view
D̂ as a perturbation of D and consider the corresponding bilinear form B̂(·, ·) = â(·, ·)+m̂(·, ·),
with

â(u, v) =

∫
Ω
Â∇u · ∇v, m̂(u, v) =

∫
Ω
ĉuv ∀u, v ∈ V ,

and perturbed problem
û ∈ V : B̂(û, v) = (f̂ , v) ∀v ∈ V. (6.2)

Lemma 6.2 (continuous dependence on data). There exists a constant C > 0, depending
on Ω and the mesh shape-regularity, such that for any 1 < q ≤ ∞ and s ∈ [0, 1] satisfying
s < 2(q − 1)/q it holds

|u−û|1,Ω≤
1

α
|u|1,Ω

(
∥A− Â∥L∞(Ω) +

Cq

2q − 2− sq
∥hs(c− ĉ)∥Lq(Ω)

)
+C∥h(f−f̂)∥L2(Ω) , (6.3)

where the mesh density h of T is the piecewise constant function satisfying h|E = hE for all
E ∈ T .

Proof. We write the difference between (2.2) and (6.2) as follows:∫
Ω

[
(Â∇(u− û)) · ∇v + ĉ(u− û)v

]
=

∫
Ω

[
((Â−A)∇u) · ∇v + (ĉ− c)uv

]
+

∫
Ω
(f − f̂)v .

11



Since (ĉ, f̂) are L2-projections of (c, f) on piecewise constants over T , we readily obtain∫
Ω

[
(Â∇(u− û)) · ∇v + ĉ(u− û)v

]
=

∫
Ω

[
((Â−A)∇u) · ∇v + (ĉ− c)(uv − uv)

]
+

∫
Ω
(f−f̂)(v−v) ,

where the overbars denote the piecewise constant averages over T . Taking the test function
v = u − û ∈ V, and using the relation α̂ ≥ α > 0 for the smallest eigenvalues of Â and A,
standard arguments yield

α∥∇v∥2L2(Ω) ≤ ∥(Â−A)∇u∥L2(Ω)∥∇v∥L2(Ω)

+
∑
E∈T

hsE∥c− ĉ∥Lq(E)|uv|W s
q′ (E) +

∑
E∈T

hE∥f − f̂∥L2(E)∥∇v∥L2(E) ,
(6.4)

where we set q′ = q/(q − 1). We now focus on the more involved mass term. We start by
observing that, by a standard Hölder inequality on sequences and Sobolev embeddings,∑

E∈T
hsE∥c− ĉ∥Lq(E)|uv|W s

q′ (E) ≤ ∥hs(c− ĉ)∥Lq(Ω)|uv|W s
q′ (Ω) ≤ C∥hs(c− ĉ)∥Lq(Ω)|uv|W 1

p′ (Ω) ,

(6.5)
where 1/p′ = 1/q′−s/2 and C depends on Ω. Consequently, for r satisfying 1/r+1/2 = 1/p′,
we get

|uv|W 1
p′ (Ω) = |u∇v + v∇u|Lp′ (Ω) ≤ ∥u∥Lr(Ω)∥v∥H1(Ω) + ∥v∥Lr(Ω)∥u∥H1(Ω).

Combining the definitions of r and p′ we easily obtain the explicit expression r = 2q′/(2−sq′) =
2q/(2q − 2− sq). Since r ∈ [1,∞), the Sobolev embedding H1(Ω) ⊆ Lr(Ω) and previous
bound yield

|uv|W 1
p′ (Ω) ≤ Cr∥∇u∥L2(Ω)∥∇v∥L2(Ω) (6.6)

with C depending on Ω. Inequalities (6.4), (6.5), (6.6) give

α∥∇v∥2L2(Ω) ≤ ∥(Â−A)∇u∥L2(Ω)∥∇v∥L2(Ω)

+ Cr∥hs(c− ĉ)∥Lq(Ω)∥∇u∥L2(Ω)∥∇v∥L2(Ω) + C∥h(f − f̂)∥L2(Ω)∥∇v∥L2(Ω) ,

from which we immediately deduce the asserted estimate (6.3).

Remark 6.3. The bound |u|1,Ω ≤ 1
α∥f∥H−1(Ω) allows us to rewrite (6.3) in terms of data

|u− û|1,Ω ≤
1

α2
∥f∥H−1(Ω)

(
∥A− Â∥L∞(Ω) +

Cq

2q − 2− sq
∥hs(c− ĉ)∥Lq(Ω)

)
+C∥h(f− f̂)∥L2(Ω).

(6.7)

Remark 6.4. A pair of relevant choices for q in Lemma 6.2 are q = ∞, which allows us to
take s = 1, and q = 2, which allows us to take any value of s strictly smaller than one. Values
of q ≤ 2 can be taken, but note that the largest possible exponent s tends to zero as q → 1.

12



6.2 The module DATA: piecewise constant approximation of data

Given D = (A, c, f) satisfying Assumption 6.1, a mesh T and a tolerance ε, the module

[T̂ , D̂] = DATA(T ,D, ε) (6.8)

produces a Λ-admissible bisection refinement T̂ of T and a piecewise constant approximation
D̂ = (Â, ĉ, f̂) of D over T̂ such that

∥A− Â∥L∞(Ω) + ∥h(c− ĉ)∥L∞(Ω) + ∥h(f − f̂)∥L2(Ω) ≤ ε , (6.9)

which controls the perturbation error according to Lemma 6.2 (continuous dependence on
data). In view of (6.9), for any E ∈ T̂ we introduce the following local data error estimators

ζT̂ (E;A) := ∥A− Â∥L∞(E) , ζT̂ (E; c) := hE∥c− ĉ∥L∞(E) , ζT̂ (E; f) := hE∥f − f̂∥L2(E) ,
(6.10)

and the global data error estimators

ζT̂ (A) := ∥A− Â∥L∞(Ω) , ζT̂ (c) := ∥h(c− ĉ)∥L∞(Ω) , ζT̂ (f) := ∥h(f − f̂)∥L2(Ω) , (6.11)

and
ζT̂ (D) := ζT̂ (A) + ζT̂ (c) + ζT̂ (f) . (6.12)

The data error reduction is obtained by iterating the following loop

PROJECT −→ ESTIMATE DATA −→ MARK DATA −→ REFINE , (6.13)

which produces a sequence of Λ-admissible meshes {T̂j}j≥0, with T̂0 = T , and associated

piecewise constant data D̂j = (Âj , ĉj , f̂j) w.r.t. T̂j , that approximates the exact data D until
a k ≥ 0 is found that satisfies ζT̂k(D) ≤ ε.

The modules in (6.13) are defined as follows:

• [D̂] = PROJECT(T ,D) computes the element-by-element average D̂ = (Â, ĉ, f̂) of D over T ;

• [{ζT ( · ;A)}, {ζT ( · ; c)}, {ζT ( · ; f)}] = ESTIMATE DATA(T ,D, D̂) computes the local data er-
ror estimators (6.10) on the mesh T ;

• [MD] = MARK DATA(T , {ζT ( · ;A)}, {ζT ( · ; c)}, {ζT ( · ; f)}, θ, ε) implements the following
marking criteria. For the diffusion and the reaction terms A and c we apply the greedy
strategy that selects

MA := {E ∈ T : ζT (E;A) ≥ 1
3ε} , Mc := {E ∈ T : ζT (E; c) ≥ 1

3ε} .

For the load term f , which accumulates in ℓ2 rather than ℓ∞, we first check if ζT (f) ≥ 1
3ε,

and if so we apply a pseudo-greedy stategy that, given a parameter θ ∈ (0, 1), selects

Mf := {E ∈ T : ζT (E; f) ≥ θ max
E′∈T

ζT (E
′; f) . (6.14)

Finally, we let the marked set be MD := MA ∪ Mc ∪ Mf . In Sect. 9, the optimality
properties of the greedy and pseudo-greedy strategies will be assessed.
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• [T̂ ] = REFINE(T ,MD) produces a Λ-admissible refinement T̂ of T , obtained by newest-
vertex bisection of all the elements inMD and, possibly, some other elements. This is the
same procedure described in Section 5, applied withM replaced byMD.

Altogether, if û denotes the exact solution of the perturbed problem (6.2) with the output
data D̂ from (6.8), in view of (2.3) and (6.7) with q =∞ there exists a constant CD depending
on Ω, data D, and the shape-regularity constant of T0 such that DATA delivers the error
estimate

|||u− û||| ≤ CD ε. (6.15)

6.3 Realization of AVEM

Hereafter, we propose an adaptive VEM (or AVEM) that concatenates the modules DATA

and GALERKIN introduced in (6.8) and (5.1), respectively. Concerning the latter module, its
input now is a mesh T̂ and piecewise constant data D̂ on T̂ , while its output is a bisection
refinement T of T̂ and the corresponding Galerkin approximation uT to the exact solution û
of problem (2.1) with piecewise constant data D̂. They satisfy (5.2), namely

|||û− uT ||| ≤ CG ε. (6.16)

The module AVEM. Given an initial tolerance ε0 > 0, a target tolerance tol and initial mesh
T0, as well as a safety parameter ω ∈ (0, 1], AVEM consists of the two-step algorithm:

[T , uT ] = AVEM(T0, ε0, ω, tol)
k = 0
while εk > 1

2tol

[T̂k, D̂k] = DATA(Tk,D, ω εk)

[Tk+1, uk+1] = GALERKIN(T̂k, D̂k, εk)
εk+1 =

1
2εk

k ← k + 1
end while
return(Tk, uk)

Proposition 6.5 (convergence of AVEM). For each k ≥ 0 the modules DATA and GALERKIN

converge in a finite number of iterations. Moreover, there exists a constant C∗ depending solely
on T0 such that the output of [Tk+1, uk+1] = GALERKIN(T̂k, D̂k, εk) satisfies |||u−uk+1||| ≤ C∗εk
for all k ≥ 0. Therefore, AVEM stops after K iterations, and delivers the estimate

|||u− uK+1||| ≤ C∗tol.

Proof. We recall that Assumption 6.1 guarantees that A is uniformly continuous in each
element of the initial mesh T0. Consequently, ∥A − Â∥L∞(E) can be made arbitrarily small

upon reducing hE for all E ∈ T̂k. Moreover, since c ∈ L∞(Ω) and f ∈ L2(Ω) in view of
Assumption 6.1, the errors ∥h(c− ĉ)∥L∞(Ω) and ∥h(f − f̂)∥L2(Ω) can also be made arbitrarily
small because of the factor h. This implies that DATA converges to tolerance ωεk for every
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k ≥ 0 in a finite number of steps. The same is valid for GALERKIN, this time due to Theorem 5.2
(convergence of GALERKIN), whence we deduce that each loop of AVEM requires finite iterations.
Thus, the output uk+1 satisfies

|||u− uk+1||| ≤ |||u− ûk|||+ |||ûk − uk+1||| ≤
(
CD + CG

)
εk ∀ k ≥ 0 ,

according to (6.15) with ωεk ≤ εk and (6.16). Finally, AVEM terminates after K loops, where
K satisfies 1

2tol < εK ≤ tol, and the asserted estimate holds with C∗ = CD + CG.

This elementary proof gives neither information about the dependence of the number of
sub-iterations within each loop of AVEM upon the iteration counter k, nor insight whether the
error decays optimally in terms of degrees of freedom. Answers to these two questions will be
provided in Section 7 and Sections 8 and 9, respectively.

7 Computational cost of GALERKIN

In the sequel, we aim at investigating the complexity of GALERKIN within the AVEM loops. To
this end, we need some preparatory results. In order to facilitate the reader, we shall use the
notation

• exact.sol( · ), to indicate the exact solution to the boundary-value problem (2.1) with
data prescribed by the argument,

• galerkin.sol( · , · ), to indicate the solution to the Galerkin problem (4.10) on the partition
prescribed by the first argument, with data prescribed by the second argument.

Furthermore, for any k ∈ N, let (T̂k, D̂k) and (Tk+1, uk+1), respectively, be the outputs of
the module DATA and module GALERKIN at iteration k of AVEM. Then referring to (3.3), (3.5),
(4.17), (6.1), we set the following notations:

mesh VEM space projection estimator piecewise constant data

T̂k V̂k := VT̂k Π̂∇
k := Π∇

T̂k
η̂k := ηT̂k D̂k := (Âk, ĉk, f̂k)

Tk Vk := VTk Π∇
k := Π∇

Tk ηk := ηTk D̂k−1 := (Âk−1, ĉk−1, f̂k−1).

Lemma 7.1 (uniform boundedness of uk). For any k ≥ 1, let uk = galerkin.sol(Tk, D̂k−1) be
the output of the module GALERKIN at iteration k − 1. Then it holds

|uk|1,Ω ≤ c0 ∥f∥0,Ω (7.1)

for a constant c0 > 0 independent of k.

Proof. Choosing v = uk = uTk in (4.10) and noting that ∥f̂k−1∥0,Ω ≤ ∥f∥0,Ω, we get

BTk(uk, uk) = FTk(uk) ≤ ∥f∥0,Ω∥Π
∇
k uk∥0,Ω .

The result follows from the uniform H1-coercivity of the form BTk and the H1-stability of the
Π∇

k operator.
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Lemma 7.2 (data perturbation of the error estimators). For any k ≥ 1, let (Tk, uk) be the
output of the module GALERKIN at iteration k−1 of AVEM, i.e. uk = galerkin.sol(Tk, D̂k−1). Let
(T̂k, D̂k) be the output of the module DATA at iteration k of AVEM, and uk,0 = galerkin.sol(T̂k, D̂k).
Then it holds

η̂2k(uk,0, D̂k) ≤ c1η
2
k(uk, D̂k−1) + c2ϵ

2
k + c3|uk,0 − uk|21,Ω (7.2)

for suitable positive constants c1, c2, c3.

Proof. We introduce the following notation

r̂k := f̂k − ĉkΠ̂
∇
k uk ĵk := [[ Âk∇ Π̂∇

k uk ]]Êk ,

rk := f̂k−1 − ĉk−1Π
∇
k uk jk := [[ Âk−1∇Π∇

k uk ]]Êk ,

and we observe that it holds

r̂k = rk + ĉk(Π
∇
k uk − Π̂∇

k uk) + (f̂k − f̂k−1) + (ĉk−1 − ĉk)Π
∇
k uk , (7.3)

ĵk = jk + [[ Âk∇ (Π̂∇
k −Π∇

k )uk ]]Êk + [[ (Âk − Âk−1)∇Π∇
k uk ]]Êk . (7.4)

We distinguish between refined and unrefined elements. Let us start from refined elements
and let E be an element of Tk which is split into E1, . . . , En ∈ T̂k, where n depends on E and
it holds min1≤i≤n hEi ≤ hE/2. Hence, we have

n∑
i=1

h2Ei
∥r̂k∥2Ei

≲
n∑

i=1

h2Ei

(
∥rk∥2Ei

+ ∥ĉk(Π∇
k uk − Π̂∇

k uk)∥2Ei

)
+

n∑
i=1

h2Ei

(
∥f̂k − f̂k−1∥2Ei

+ ∥(ĉk−1 − ĉk)Π
∇
k uk∥2Ei

)
=: I + II ,

n∑
i=1

∑
e∈EEi

hEi∥ĵk∥2e ≲
n∑

i=1

∑
e∈EEi

(
hEi∥jk∥2e + hEi∥[[ Âk∇ (Π̂∇

k −Π∇
k )uk ]]∥2e

)

+
n∑

i=1

∑
e∈EEi

(
hEi∥[[ (Âk − Âk−1)∇Π∇

k uk ]]∥2e
)
=: III + IV.

Adapting to I and III the same reasoning as in the proof of [8, Lemma 5.2] we get

η̂2k(E;uk, D̂k) ≲ η2k(E;uk, D̂k−1) + STk(E)(uk, uk) + II + IV . (7.5)

By employing [8, Lemma 5.3] we get

η̂2k(E;uk,0, D̂k) ≲ η2k(E;uk, D̂k−1) + STk(E)(uk, uk) + |uk,0 − uk|21,T (E) + II + IV . (7.6)

The sum II+IV can be bounded using Hölder’s inequality, the trace inequality together with
(6.9), the stability property of Π∇ and Lemma 7.1, obtaining

II + IV ≲ ε2k .

On unrefined elements E, we note that Π∇,E
k uk = Π̂∇,E

k uk. Hence, employing (7.3)-(7.4)
together with [8, Lemma 5.3], and estimating the terms II + IV as before, we have

η̂2k(E;uk,0, D̂k) ≲ η2k(E;uk, D̂k−1) + ε2k + |uk,0 − uk|21,E . (7.7)

16



Finally, summing over E and employing (4.19), we have

η̂2k(uk,0, D̂k) ≲ η2k(uk, D̂k−1) + ε2k + |uk,0 − uk|21,Ω. (7.8)

Proposition 7.3 (computational cost of GALERKIN). For any k ∈ N, the number Jk of sub-
iterations inside the call to GALERKIN at iteration k of AVEM is bounded independently of k.

Proof. We proceed in several steps. For any k ∈ N, let (T̂k, D̂k) and (Tk+1, uk+1) be the output
respectively of the module DATA and module GALERKIN at iteration k of AVEM. We will use the
following functions:

ûk−1 = exact.sol(D̂k−1) ∈ V ûk = exact.sol(D̂k) ∈ V

uk = galerkin.sol(Tk, D̂k−1) ∈ Vk uk+1 = galerkin.sol(Tk+1, D̂k) ∈ Vk+1

uenk = galerkin.sol(T̂k, D̂k−1) ∈ V̂k uk,0 = galerkin.sol(T̂k, D̂k) ∈ V̂k ,

(7.9)

where the suffix “en” stands for “enhanced” (i.e., uenk is computed with the same data as uk,
but on a finer mesh).

Step 1. Estimate of |ûk − uk,0|1,Ω. This a consequence of the a posteriori error upper bound

|ûk − uk,0|21,Ω ≤ CU η̂2k(uk,0, D̂k)

given in Theorem 4.6.

Step 2. Estimate of η̂2k(uk,0, D̂k). Lemma 7.2 gives

η̂2k(uk,0, D̂k) ≤ c1η
2
k(uk, D̂k−1) + c2ε

2
k + c3|uk,0 − uk|21,Ω

which, in view of the input tolerance εk appearing in the module GALERKIN, implies

η̂2k(uk,0, D̂k) ≤ c4ε
2
k + c3|uk,0 − uk|21,Ω (7.10)

for some c4 > 0. It remains to estimate |uk,0 − uk|21,Ω which, invoking the triangle inequality,
reduces to

|uk,0 − uk|1,Ω ≲ |uk,0 − uenk |1,Ω + |uenk − uk|1,Ω . (7.11)

We observe that the difference uk,0 − uenk between the two Galerkin solutions in V̂k is the

solution of the following variational problem: for any v ∈ V̂k it holds∫
Ω
Âk−1∇Π̂∇

k (uk,0 − uenk ) · ∇Π̂∇
k v +

∫
Ω
ĉk−1Π̂

∇
k (uk,0 − uenk )Π̂∇

k v + ST̂k(uk,0 − uenk , v) =

=

∫
Ω
(Âk−1 − Âk)∇Π̂∇

k uk,0 · ∇Π̂∇
k v +

∫
Ω
(ĉk−1 − ĉk)Π̂

∇
k uk,0Π̂

∇
k v +

∫
Ω
(f̂k − f̂k−1)Π̂

∇
k v .

Taking v = uk,0 − uenk , employing on the left-hand side the uniform coercivity of the discrete
bilinear term, and using on the right-hand side the triangle inequality, the Cauchy-Schwarz
inequality together with (6.9), and Lemma 7.1, we get

|uk,0 − uenk |1,Ω ≤ c5(ϵk + εk−1) = 3c5εk (7.12)
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for a proper choice of c5 > 0. In order to estimate |uenk − uk|1,Ω, we preliminary note that T̂k
is a refinement of Tk. Hence, invoking [8, Corollary 5.8] we have

|||ûk−1 − uenk |||2 + |||uenk − uk|||2 ≤ (1 + 4δ)|||ûk−1 − uk|||2

which, in view of (2.3), yields

|uenk − uk|1,Ω ≤ c6|ûk−1 − uk|1,Ω (7.13)

for some c6 > 0. On the other hand, from Theorem 4.6, we have

|ûk−1 − uk|1,Ω ≤
√
CU ηk(uk, D̂k−1) ≤

√
CUεk−1 = 2

√
CUεk . (7.14)

Thus, from eqs. (7.11)-(7.14), we obtain

|uk,0 − uk|1,Ω ≤ (3c5 + 2
√

CUc6)εk (7.15)

and, employing (7.10), we arrive at

η̂2k(uk,0, D̂k) ≤ c7ε
2
k

for some c7 > 0.
Step 3. Estimate of the total error ξ2

T̂k
(uk,0), where, referring to Theorem 5.2, for any

refinement T∗ of T̂k and for any v ∈ VT∗ we set

ξ2T∗(v) := |ûk − v|21,Ω + β η2T∗(v, D̂k) .

Because of Steps 1 and 2 we have

ξ2T̂k
(uk,0) ≤ c7(CU + β)ε2k =: c8 ε

2
k.

Step 4. Bound on Jk. Each consecutive iterate (Tk,j , uk,j) inside GALERKIN starting with

(Tk,0, uk,0) = (T̂k, uk,0) satisfies the contraction property in Theorem 5.2 (cf. [8, Theorem
5.1]). Therefore

ξ2Tk,j (uk,j) ≲ αj ξ2T̂k
(uk,0) ≤ αj c9 ε

2
k ,

for some c9 > 0. Since Jk is the smallest value for which

ηTk,Jk (uk,Jk , D̂k) ≤ εk

we have
ηTk,Jk−1

(uk,Jk−1, D̂k) > εk .

Concatenating the last two ingredients gives

ε2k ≤
1

β
ξ2Tk,Jk−1

(uk,Jk−1) ≤ αJk−1 c9
β
ε2k .

This in turn implies ( 1
α

)Jk−1
≤ c9

β
⇒ Jk ≤ 1 +

log(c9/β)

log(1/α)
=: J .

We see that the upper bound J of Jk is independent of k. This concludes the proof.
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8 Quasi-optimal cardinality of AVEM

The main purpose of this section is to prove, under suitable assumptions on the solution u and
data D, the bound (1.3) announced in the Introduction, namely the existence of constants
C(u,D) > 0 and s ∈ (0, 12 ] such that

|u− uk|1,Ω ≤ C(u,D)
(
#Tk

)−s
. (8.1)

To this end, we introduce in Sect. 8.1 certain approximation classes for functions in V and
for data, tailored on the decomposition of Ω into Λ-admissible non-conforming partitions, and
we assume that the solution and the data of Problem (2.1) belong to some of these classes.
In Sect. 8.2, we investigate the approximability properties of certain perturbations of the
exact solution, namely exact solutions of (2.1) with perturbed coefficients. Next, in Sect. 8.3,
we consider a refinement T∗ of a partition T , and give conditions under which an optimal
Dörfler marking property holds. This allows us to prove in Sect. 8.4 an optimal estimate of
the cardinality of the marked set in a call to GALERKIN. At last, in Sect. 8.5, we apply these
results to establish the desired estimate on the rate of decay of the error produced by AVEM.

8.1 Approximation classes

We first introduce two families of approximation classes for a function v ∈ V, and we show
they coincide. Subsequently, we define approximation classes for the operator coefficients
A ∈ (L∞(Ω))2×2 and c ∈ L∞(Ω), and for the forcing f ∈ L2(Ω).

8.1.1 Approximation classes for v ∈ V

We start by defining the following quantity for v ∈ V and vT ∈ VT

E2
T (v, vT ) := |||v − vT |||2 + |vT − IT vT |21,T . (8.2)

It is worthy to observe that for v0T ∈ V0
T it obviously holds

E2
T (v, v

0
T ) = |||v − v0T |||2 . (8.3)

Lemma 8.1 (quasi-best approximation). Let u and uT be the solutions of problem (2.2) and
problem (4.10), respectively, with piecewise constant data. There exists a constant C† > 0,
independent of u and the mesh T , such that

E2
T (u, uT ) ≤ C†E2

T (u, vT ) ∀vT ∈ VT . (8.4)

Proof. Let εT = uT − vT . By the triangle inequality

E2
T (u, uT ) ≤ 2

(
|||u− vT |||2 + |vT − IT vT |21,T + |||εT |||2 + |εT − IT εT |21,T

)
, (8.5)

so that we only need to bound the last two terms. First by the coercivity of the discrete
bilinear form, then by recalling the discrete (4.10) and continuous (2.2) weak problems, we
obtain

|||εT |||2+|εT −IT εT |21,T ≤ CBT (εT , εT ) = C
(
FT (εT )−BT (vT , εT )

)
= C

(
B(u, εT )−BT (vT , εT )

)
,
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where we also used that FT (v) = (f, v)Ω since in this section we are working under a piecewise
constant data assumption. We can split the above right hand side into two terms, obtaining

|||εT |||2 + |εT − IT εT |21,T ≤ T1 + T2 (8.6)

with
T1 := B(u− vT , εT ) , T2 := B(vT , εT )− BT (vT , εT ) .

The bound for the first term is trivial

T1 ≤ |||u− vT ||| · |||εT ||| . (8.7)

The second term is first written explicitly recalling the expression for BT (·, ·), see (4.6), and
using the orthogonality properties of the projectors

T2 =
∑
E∈T

∫
E

(
AE∇(vT −Π∇

EvT )
)
· ∇εT

+
∑
E∈T

∫
E

(
cE(vT −Π∇

EvT )
)
εT − sE(vT − IEvT , εT − IEεT )

≤ C
(
|vT −Π∇

EvT |1,T + ∥vT −Π∇
EvT ∥0,Ω + |vT − IT vT |1,T

) (
|||εT |||+ |εT − IT εT |1,T

)
.

Since the projector Π∇
E minimizes the distance from (discontinuous) piecewise linear functions

both in the broken H1 semi-norm and in the L2 norm, the above bound easily yields

T2 ≤ C|vT − IT vT |1,T
(
|||εT |||+ |εT − IT εT |1,T

)
. (8.8)

The result follows first combining bounds (8.6), (8.7), (8.8) and recalling (8.5).

Remark 8.2. Note that Lemma 8.1 would be false in the norm ||| · |||, that is without the
second term in definition (8.2). Indeed this would imply that if u ∈ VT then uT = u, which
is well known to be false in the VE method due to the approximation of the bilinear form.

We now introduce two different approximation classes, one based on the full Virtual El-
ement space, and the other one based on the underlying piecewise linear conforming Finite
Element space. Afterwards we will prove that, under the assumption of Λ-admissible parti-
tions (cf. Definition 3.2), such classes are equivalent.

For any N ∈ N, we define the following collection of partitions:

TN =
{
T : T is Λ-admissible and satisfies #T ≤ N

}
.

Definition 8.3 (approximation classes of v). Given any s ∈ R, s > 0, we define the following
approximation classes

As =
{
v ∈ H1

0 (Ω) : ∃C ∈ R s.t. σN (v) := inf
T ∈TN

inf
vT ∈VT

ET (v, vT ) ≤ CN−s ∀N ≥ #T0
}
,

A0
s =

{
v ∈ H1

0 (Ω) : ∃C ∈ R s.t. σ0
N (v) := inf

T ∈TN

inf
v0T ∈V0

T

ET (v, v
0
T ) ≤ CN−s ∀N ≥ #T0

}
.

and denote
|v|As := sup

N≥#T0
N sσN (v) . (8.9)
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We now prove the following result on the equivalence of the approximation classes (see
[12, Proposition 5.2]).

Proposition 8.4 (equivalence of classes). The two classes in Definition 8.3 coincide, i.e.

As = A0
s ∀s ∈ R, s > 0 .

Proof. Let s ∈ R, s > 0. The inclusion A0
s ⊆ As is immediate since V0

T ⊆ VT and thus

inf
T ∈TN

inf
vT ∈VT

E2
T (v, vT ) ≤ inf

T ∈TN

inf
v0T ∈V0

T

E2
T (v, v

0
T ) ∀v ∈ H1

0 (Ω) .

We now show the converse inclusion. We take a generic v ∈ As. Let N ≥ #T0 , then it exists
T ∈ TN and vT ∈ VT such that

E2
T (v, vT ) = |||v − vT |||2 + |vT − IT vT |21,T ≤ CN−s ,

with C = C(v) but independent of N . We will exhibit an approximant in V0
T that satisfies

the same bound, possibly with a different constant. We choose I0T vT ∈ V0
T , the Lagrange

interpolant of vT at the proper nodes of T . Recalling observation (8.3) and by the triangle
inequality

E2
T (v, I0T vT ) = |||v − I0T vT |||2 ≤ 2(|||v − vT |||2 + |||vT − I0T vT |||2)

≤ C ′(|||v − vT |||2 + |vT − I0T vT |21,Ω) ,

where in the current proof C ′ denotes a generic positive constant that may change at each
occurrence. Applying [8, Prop. 3.2] the above bound yields

E2
T (v, I0T vT ) ≤ C ′(|||v − vT |||2 + |vT − IT vT |21,T ) ≤ C ′E2

T (v, vT ) ≤ C ′N−s .

Since the constant C ′ does not depend on N , we have shown that v ∈ A0
s. Therefore As ⊆ A0

s,
and the proof is concluded.

In the rest of the paper, we make the following assumption.

Assumption 8.5 (approximability of u). The solution u of Problem (2.1) belongs to As for
some s = su ∈ (0, 12 ].

Remark 8.6 (equivalence with approximation classes on conforming partitions). It is easily
seen that the class A0

s, hence As, coincides with the class Ac
s defined by replacing TN by

Tc
N =

{
T : T is conforming and satisfies #T ≤ N

}
. Indeed, any T ∈ TN can be refined to

produce a conforming partition T c, such that #T c ≤ K#T for a positive constant K = KΛ

solely depending on Λ. As a consequence, one can apply e.g. [10, Theorem 9.1] and deduce
that u ∈ A 1

2
provided u ∈W 2

p (Ω) for some p > 1.

It must be finally observed that the important result above does not exclude that AVEM,
which contains AFEM and allows more flexibility in terms of hanging nodes, could obtain a
better efficiency in terms of the involved constants (in this respect, see also Section 10).
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8.1.2 Approximation classes for data

Given a partition T and piecewise constant data D̂ = (ÂT , ĉT , f̂T ) defined as in (6.1), let us
set (cf. (6.11))

ζT (A) = ∥A− ÂT ∥L∞(Ω) , ζT (c) = ∥h(c− ĉT )∥L∞(Ω) , ζT (f) = ∥h(f − f̂T )∥L2(Ω).
(8.10)

Definition 8.7 (approximation classes of A). Let

As = {A ∈ (L∞(Ω))2×2 : ∃C ∈ R s.t. inf
T ∈TN

ζT (A) ≤ CN−s ∀N ≥ #T0} (8.11)

and denote

|A|As := sup
N≥#T0

(
N s inf

T ∈TN

ζT (A)

)
. (8.12)

Definition 8.8 (approximation classes of c). Let

Cs = {c ∈ L∞(Ω) : ∃C ∈ R s.t. inf
T ∈TN

ζT (c) ≤ CN−s ∀N ≥ #T0} (8.13)

and denote

|c|Cs := sup
N≥#T0

(
N s inf

T ∈TN

ζT (c)

)
. (8.14)

Definition 8.9 (approximation classes of f). Let

Fs = {f ∈ L2(Ω) : ∃C ∈ R s.t. inf
T ∈TN

ζT (f) ≤ CN−s N ≥ #T0} (8.15)

and denote

|f |Fs := sup
N≥#T0

(
N s inf

T ∈TN

ζT (f)

)
. (8.16)

In the rest of the paper, we make the following assumptions concerning the data of our
problem and their piecewise-linear approximation.

Assumption 8.10 (approximability of data). There exist sA, sc, sf ∈ (0, 12 ] such that the
data of Problem (2.1) satisfy A ∈ A sA, c ∈ Csc, f ∈ Fsf .

Assumption 8.11 (quasi-optimality of the module DATA). The procedure MARK DATA intro-
duced in Sect. 6.2 is quasi-optimal, namely the cardinalities of the marked setsMA,Mc,Mf

for A, c, f resp., satisfy

#MA ≲ |A|
1
sA
A sA

ε
− 1

sA , #Mc ≲ |c|
1
sc
Csc

ε−
1
sc , #Mf ≲ |f |

1
sf

Fsf
ε
− 1

sf . (8.17)

Under this assumption, setting sD = min(sA, sc, sf ), the cardinality of the marked set
MD =MA ∪Mc ∪Mf satisfies

#MD ≲
(
|A|

1
sA
A sA

+ |c|
1
sc
Csc

+ |f |
1
sf

Fsf

)
ε
− 1

sD =: |D|
1

sD
AD

ε
− 1

sD . (8.18)

Remark 8.12. In Sect. 9 we will give regularity conditions on the data such that Assumption
8.10 is satisfied. In particular, we will prove that sA = sc = sf = 1

2 if A ∈ (W 1
p (Ω))

2×2 with
p > 1, c ∈ L∞(Ω) and f ∈ L2(Ω). Furthermore, we will show that the implementation of
MARK DATA described in Sect. 6.2 guarantees the validity of Assumption 8.11.
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8.2 ε-approximation of order s

Since the data D̂k is fixed inside GALERKIN, the performance of this module is dictated by the
regularity of ûk = exact.sol(D̂k), which is the exact solution with data D̂k, rather than u. We
know that u ∈ As and wonder what regularity is inherited by ûk. This leads to the following
concept introduced in [11, Def. 3.1 and Lemma 3.2].

Definition 8.13 (ε-approximation of order s). Given u ∈ As and ε > 0, a function v ∈ H1
0 (Ω)

is said to be an ε-approximation of order s to u if |||u − v||| ≤ ε and there exists a constant
C > 0 independent of ε, u and v such that for all δ ≥ ε there exists N ≥ #T0 satisfying

σN (v) ≤ δ N ≤ C|u|
1
s
As

δ−
1
s + 1.

Remark 8.14. In view of the definition of σN (v), there exists T ∈ TN and vT ∈ VT such
that

σN (v) = ET (v, vT ) ≤ δ.

Lemma 8.15 (ε-approximation of u of order s). Let u ∈ As and v ∈ H1
0 (Ω) satisfying

|||u− v||| ≤ ε for some ε > 0. Then v is a 2ε-approximation of order s to u.

Proof. Let δ ≥ 2ε. By definition of σN (u), there exists N ≥ #T0, T ∈ TN and wT ∈ VT such
that

σN (u) = ET (u,wT ) ≤
δ

4
N ≤ |u|

1
s
As

(δ
4

)− 1
s + 1.

The triangle and Young inequalities yield

σN (v) ≤ ET (v, wT ) ≤ |||v − wT |||+ |wT − IT wT |1,Ω
≤ |||v − u|||+ |||u− wT |||+ |wT − IT wT |1,Ω ≤ |||v − u|||+

√
2ET (u,wT )

≤ ε+
√
2
δ

2
≤

(
1

2
+

√
2

2

)
δ < δ .

Moreover, there holds

N ≤ 4
1
s |u|

1
s
As

δ−
1
s + 1.

This concludes the proof with constant C = 4
1
s .

8.3 Optimality of mesh refinement

Hereafter, we consider two Λ-admissible partitions T and T∗, the latter being a refinement
of the former obtained by applying a newest-vertex bisection to some of the elements of
T . Considering the corresponding Galerkin solutions uT and uT∗ of problem (4.10) with
piecewise constant data, we first prove that the difference in energy norm between uT and the
orthogonal projection of uT∗ upon V0

T∗ can be essentially bounded by the contribution to the
error estimator coming from a neighborhood of the refined elements. Next, we give conditions
under which this portion of the error estimator satisfies a Dörfler property with respect to
the full estimator.
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8.3.1 Localized upper bound of the difference between Galerkin solutions

Consider an element E ∈ T which has been split into two elements E1, E2 ∈ T∗. If v ∈ VT ,
then v is known on ∂E, hence in particular at the new vertex of E1, E2 created by bisection.
Thus, v is known at all nodes (vertices and possibly hanging nodes) sitting on ∂E1 and ∂E2,
since the new edge e = E1 ∩ E2 does not contain internal nodes. This uniquely identifies a
function in VE1 and a function in VE2 , which are continuous across e. In this manner, we
associate to any v ∈ VT a unique function v∗ ∈ VT∗ , that coincides with v on the skeleton E .
We will actually write v for v∗ whenever no confusion is possible.

We introduce the following orthogonal decomposition of VT

VT = V0
T ⊕ V⊥

T , (8.19)

where V⊥
T is the orthogonal complement of V0

T in VT with respect to the (discrete) scalar
product BT (·, ·), and we prove a localized estimate (cf. [12, Lemma 3.5]) that is crucial in the
discussion of the quasi-optimal cardinality of our adaptive algorithm. To this end, we denote
by RT →T∗ the set of refined elements of T to obtain T∗ and let ω(RT →T∗) be any subset of
T containing RT →T∗ . We observe that as T∗ is a refinement of T , Assumption 4.1 implies
that for every E∗ ∈ T∗ with E∗ ⊆ E, E ∈ T we have AE∗ = AE , cE∗ = cE and fE∗ = fE .
The following lemma bounds the difference between a discrete solution and (the V 0

T∗ part of)
another discrete solution on a refined mesh. Such difference is bounded by the error estimator
evaluated on a suitable neighbourhood of the refined elements, plus an additional term which
nevertheless becomes “negligible” for γ sufficiently large.

Lemma 8.16 (localized upper bound). Let T∗ be a refinement of T and let uT ∈ VT and
uT∗ ∈ VT∗ be the corresponding discrete solutions of (4.10) with piecewise constant data. Let
uT∗ = u0T∗+u⊥T∗ ∈ V0

T∗⊕V
⊥
T∗ be the orthogonal decomposition of uT∗ according to (8.19). Then,

there exists a constant CLU only depending on the shape regularity of T so that

|||u0T∗ − uT ||| ≤ CLU

(
ηT (ω(RT →T∗);uT ,D) + γ−1ηT (uT ,D)

)
. (8.20)

Proof. Let us preliminarily proceed by steps and collect some instrumental results that will
be employed in the sequel.
Step 1. First, we observe that as V0

T ⊂ V0
T∗ is made of continuous piecewise linear functions

on T we have
v0T = Π∇

T v
0
T = Π∇

T∗v
0
T . (8.21)

Step 2. There holds
BT∗(u0T∗ , v

0
T∗) = FT∗(v

0
T∗) ∀v0T∗ ∈ V 0

T∗ . (8.22)

Indeed, for any v0T∗ ∈ V 0
T∗ we have

FT∗(v
0
T∗) = BT∗(uT∗ , v

0
T∗) = BT∗(u

0
T∗ + u⊥T∗ , v

0
T∗) = BT∗(u

0
T∗ , v

0
T∗) (8.23)

where in the last step we employed that V⊥
T∗ is the orthogonal complement of V0

T∗ in VT∗ with
respect to BT∗(·, ·).
Step 3. There holds

B(u0T∗ − uT , v
0
T ) = 0 ∀v0T ∈ V0

T . (8.24)
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Using (4.9) and (8.21) we have

B(u0T∗ − uT , v
0
T ) = BT∗(u0T∗ , v

0
T )− BT (uT , v0T ) = FT∗(v

0
T )−FT (v

0
T ) (8.25)

where in the last step we employed (8.22). From Assumption 4.1, (4.11) and (8.21) we get
(8.24).
Step 4. Let e0∗ = u0T∗ − u0T − v0T with v0T ∈ V 0

T , where u0T = uT − u⊥T ∈ V0
T . There holds

BT∗(u0T∗ − uT , e
0
∗) ≲ |u0T∗ − u0T |1,Ω(ηT (ω(RT →T∗);uT ,D) + γ−1ηT (uT ,D)). (8.26)

Indeed, we have

BT∗(u0T∗ − uT , e
0
∗) = FT∗(e

0
∗)− BT∗(uT , e0∗)

=
(
FT∗(e

0
∗)− BT∗(Π∇

T uT , e
0
∗)
)
+ BT∗(Π∇

T uT − uT , e
0
∗) =: I + II ,

where, with a slight abuse of notation, we extend the definition (4.6) of BT∗ to P1(T∗).
In the sequel we choose v0T = Ĩ0T (u0T∗−u0T ) in the definition of e0∗, where Ĩ0T : C0(Ω̄)→ V0

T
is the Clément quasi-interpolation operator on T 0. We also notice that e0∗ vanishes outside
the set ω(RT →T∗). As e

0
∗ ∈ V 0

T∗ and Π∇
T∗e

0
∗ = e0∗ we have

I = FT∗(e
0
∗)−

∑
E∗∈T∗

∫
E∗

(
AE∗∇Π∇

T∗(Π
∇
T uT ) · ∇Π∇

T∗e
0
∗ + cE∗Π

∇
T∗(Π

∇
T uT )Π

∇
T∗e

0
∗
)

= FT (e
0
∗)−

∑
E∈T

∑
E∗∈T∗,E∗⊆E

∫
E∗

(
AE∗∇Π∇

T uT · ∇e0∗ + cE∗Π
∇
T uT e0∗

)
=

∑
E∈ω(RT →T∗ )

∫
E

(
fEe

0
∗ −AE∇Π∇

T uT · ∇e0∗ − cEΠ
∇
T uT e0∗

)
where we employed the properties of the enhanced space (3.2). Integrating by parts, em-
ploying the Cauchy-Schwarz inequality together with the vanishing property of e0∗ and the
interpolation error estimate for I0T , we obtain

I ≲ |u0T∗ − u0T |1,Ω ηT (ω(RT →T∗);uT ,D). (8.27)

On the other hand, again as e0∗ ∈ V 0
T∗ and Π∇

T∗e
0
∗ = e0∗, we have

II =
∑

E∗∈T∗

∫
E∗

(
AE∗∇Π∇

T∗(Π
∇
T − I)uT · ∇Π∇

T∗e
0
∗ + cE∗Π

∇
T∗(Π

∇
T − I)uT Π∇

T∗e
0
∗
)

=
∑

E∗∈T∗

∫
E∗

(
AE∗∇(Π∇

T − I)uT · ∇e0∗ + cE∗(Π
∇
T − I)uT e0∗

)
=
∑
E∈T

∑
E∗∈T∗,E∗⊆E

∫
E∗

(
AE∗∇(Π∇

T − I)uT · ∇e0∗ + cE∗(Π
∇
T − I)uT e0∗

)
=
∑
E∈T

∫
E

(
AE∇(Π∇

T − I)uT · ∇e0∗ + cE(Π
∇
T − I)uT e0∗

)
≲ ST (uT , uT )

1/2|u0T∗ − u0T |1,Ω ≲ γ−1ηT (uT ,D)|u0T∗ − u0T |1,Ω .

(8.28)
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where in the last step we used (4.19). The thesis follows combining (8.27)-(8.28).
Step 5. Let uT = u0T + u⊥T be the orthogonal decomposition (8.19). There holds

|||u⊥T ||| ≲ ST (uT , uT )
1/2 ≲ γ−1ηT (uT ,D) . (8.29)

Indeed, we have

BT (u⊥T , u⊥T ) = inf
w0

T ∈V 0
T

BT (uT − w0
T , uT − w0

T ) ≤ BT (uT − I0T uT , uT − I0T uT ) ≲ ST (uT , uT )

where in the last inequality we employed the continuity of BT (·, ·) in combination with [8,
Prop. 3.2]. The coercivity of BT (·, ·) together with (4.5) and (2.3), and the bound (4.19) yield
the result.

At this point, we have collected all ingredients to prove (8.20). From the coercivity of
B(·, ·) and employing (8.24) we get

|||u0T∗ − uT |||2 ≲ B(u0T∗ − uT , u
0
T∗ − uT ) = B(u0T∗ − uT , e

0
∗) + B(u0T∗ − uT , v

0
T − u⊥T )

= B(u0T∗ − uT , e
0
∗)− B(u0T∗ − uT , u

⊥
T ) =: (i) + (ii).

Employing the consistency of BT∗(·, ·) (cf. (4.9)) together with (8.26) we get

(i) = BT∗(u0T∗ − uT , e
0
∗) ≲ |u0T∗ − u0T |1,Ω(ηT (ω(RT →T∗);uT ,D) + γ−1ηT (uT ,D)). (8.30)

On the other hand, employing the continuity of B(·, ·) in combination with (8.29) we obtain

(ii) ≲ |||u0T∗ − uT ||||||u⊥T ||| ≲ |||u0T∗ − uT ||| γ−1ηT (uT ,D) . (8.31)

We now observe that |u0T∗ − u0T |1,Ω = |u0T∗ − uT + u⊥T |1,Ω ≲ |||u0T∗ − uT ||| + γ−1ηT (uT ,D)).
Concatenating (8.30)-(8.31), we easily conclude the proof of Lemma 8.16.

8.3.2 Optimal marking

We first recall two instrumental results that will be useful in the sequel. From [8, Corollary
4.3] we have the global error bound

CGLη
2
T (uT ,D) ≤ |||u− uT |||2 + |uT − IT uT |21,T = E2

T (u, uT ) . (8.32)

Moreover, we observe that (4.5) and (4.19) yield

|uT − IT uT |21,T ≤ C̃Bγ
−2η2T (uT ,D). (8.33)

In order to derive a quasi-optimal decay of the total error, we define

γ2∗ :=
2CLU + C̃B

CGL
θ∗(γ) :=

CGL − γ−2(2CLU + C̃B)

2CLU

for γ > γ∗, where CLU is given by Lemma 8.16. Notice that γ > γ∗ yields θ∗ > 0 and if
CGL < 2CLU then θ∗ < 1. Moreover we make the following assumption.

Assumption 8.17 (module MARK). The set of marked elements produced by the module MARK

has minimal cardinality and the marking parameter satisfies θ ∈ (0, θ∗).
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In order to simplify the notation, we let 0 < µ < 1/2 be defined by

µ(γ, θ) :=
CGL − γ−2(2CLU + C̃B)

2CGL
(1− θ

θ∗
) ∀γ > γ∗, 0 < θ < θ∗.

We now prove the analogous of [12, Lemma 5.4].

Lemma 8.18 (optimal marking). Let T∗ be a refinement of T and and let uT ∈ VT and
uT∗ ∈ VT∗ the corresponding discrete solutions of (4.10). In addition, assume

E2
T (u, u

0
T∗) ≤ µE2

T (u, uT ) (8.34)

where uT∗ = u0T∗ + u⊥T∗ is the orthogonal decomposition (8.19). Then, for γ > γ∗ and θ ∈
(0, θ∗(γ)), the set ω(RT →T∗) satisfies a Dörfler marking property

η2T (ω(RT →T∗);uT ,D) ≥ θη2T (uT ,D).

Proof. Since 0 < µ < 1/2, employing (8.32) and (8.34) we get

(1− 2µ)CGLη
2
T (uT ,D) ≤ |||u− uT |||2 − 2|||u− u0T∗ |||

2 + |uT − IT uT |21,T (8.35)

where we used IT∗u
0
T∗ = u0T∗ . From the triangle inequality and (8.20) we obtain

|||u− uT |||2 − 2|||u− u0T∗ |||
2 ≤ 2|||uT − u0T∗ |||

2 ≤ 2CLU

(
η2T (ω(RT →T∗);uT ,D) + γ−2η2T (uT ,D)

)
.

(8.36)
Combining (8.35)-(8.33) we get

(1− 2µ)CGLη
2
T (uT ,D) ≤ 2CLUη

2
T (ω(RT →T∗);uT ,D) + γ−2(2CLU + C̃B)η

2
T (uT ,D)

which implies, employing the definition of µ and θ∗, the desired estimate

η2T (ω(RT →T∗);uT ,D) ≥
1

2CLU

(
(1− 2µ)CGL − γ−2(2CLU + C̃B)

)
η2T (uT ,D) ≥ θη2T (uT ,D).

The proof is concluded.

8.4 Complexity of GALERKIN

In this section, we rely on the notation introduced in Sect. 7, in particular those in (7.9). We
assume that the pair (T̂k, D̂k) transferred by DATA to GALERKIN at iteration k satisfies

ηT̂k(uk,0, D̂k) =: ε̂k > εk ,

for otherwise GALERKIN is skipped. On the other hand, combining (2.3) with the stabilization
free a posteriori error estimates (4.20), we can write

Ĉ2
L η2T̂k

(uk,0, D̂k) ≤ |||ûk − uk,0|||2 ≤ Ĉ2
U η2T̂k

(uk,0, D̂k) (8.37)

with Ĉ2
L := cBCL and Ĉ2

U := cBCU . Therefore, we get the lower bound

|||ûk − uk,0||| ≥ ĈLε̂k > ĈLεk.
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On the other hand, from (6.7) and (6.9) it follows that DATA provides a perturbed exact
solution ûk ∈ H1

0 (Ω) satisfying

|||u− ûk||| ≤ Dωεk =
Dω

ĈL

ĈLεk

for a suitable constant D > 0. Let

ω :=

√
µĈL

2D
,

which implies

|||u− ûk ||| ≤
√
µ

2
ĈLεk.

In view of Proposition 7.3 (computational cost of GALERKIN) the module GALERKIN performs
a number of iterations Jk bounded uniformly in k by J . For each such iteration j we have a
mesh Tk,j and a Galerkin solution uk,j ∈ VTk,j so that for 0 ≤ j < Jk

Tk,0 = T̂k ,
ηTk,j (uk,j , D̂k) > εk ,

ETk,j (ûk, uk,j) ≥ |||ûk − uk,j ||| ≥ ĈLηTk,j (uk,j , D̂k) > ĈLεk .

LetMk,j be the marked set within Tk,j using the Dörfler strategy.

Lemma 8.19 (cardinality of marked sets). If u ∈ As and ω =
√
µĈL

2D , then there exists a
constant C0 > 0 such that

#Mk,j ≤ C0|u|
1
s
As

ε−
1
s , 0 ≤ j < Jk.

Proof. Fix 0 ≤ j < Jk and set

δ :=
√
µETk,j (ûk, uk,j) =

√
µ
(
|||ûk − uk,j |||+ |uk,j − ITk,juk,j

|1,Ω
)

whence
δ ≥ √µĈLεk.

Since |||u − ûk||| ≤
√
µ
2 ĈLεk, we deduce that ûk is an

√
µĈLεk-approximation of order s to u.

Therefore, there exist an admissible mesh Tδ such that

ETδ(ûk, u
0
Tδ) ≤ δ #Tδ ≲ |u|

1
s
As

δ−
1
s

where u0Tδ ∈ V0
Tδ because As = A0

s. This implies

|||ûk − u0Tδ ||| = ETδ(ûk, uTδ) ≤ δ.

In order to compare with Tk,j we consider the overlay T∗ = Tk,j ⊕ Tδ, which satisfies

#T∗ ≤ Tk,j +#Tδ −#T0.
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Consider now u0T∗ ∈ V0
T∗ , the Galerkin solution on the subspace of continuous piecewise linears

V0
T∗ . Exploiting the monotonicity

|||ûk − u0T∗ ||| ≤ |||ûk − u0Tδ ||| ,

because T∗ is a refinement of Tδ, we see that

ET∗(ûk, u
0
T∗) = |||ûk − u0T∗ ||| ≤ |||ûk − u0Tδ ||| ≤ δ =

√
µETk,j (ûk, uk,j) . (8.38)

Applying Lemma 8.18 (optimal marking) to T∗ and Tk,j we infer that the refined set Rk,j =
RTk,j→T∗ satisfies Dörfler marking with parameter 0 < θ < θ∗ and stabilization constant
γ > γ∗. In addition,

#Rk,j = #T∗ −#Tk,j .

Since our Dörfler marking involves a minimal setMk,j , we deduce

#Mk,j ≤ #Rk,j ≤ #Tδ −#T0 ≲ |u|
1
s
As

δ−
1
s ≲ |u|

1
s
As

ε
− 1

s
k .

This concludes the proof.

Corollary 8.20 (complexity of GALERKIN). If u ∈ As and ω =
√
µĈL

2D , the number of marked
elementsMk within a call to GALERKIN satisfies

#Mk ≤ JC0|u|
1
s
As

ε
− 1

s
k .

Proof. Use that #Mk =
∑Jk−1

j=0 #Mk,j and the previous lemma.

8.5 Quasi-optimality of AVEM

We finally address the quasi-optimality of the 2-loop method AVEM, by proving the announced
bound (8.1).

Theorem 8.21 (quasi-optimality of AVEM). Let Assumptions 8.5, 8.10, and 8.11 hold true.
Then, there exist constants θ∗, ω∗ < 1 and γ∗ ≥ 1 such that for all θ < θ∗, ω < ω∗, and γ ≥ γ∗
there holds

|||u− uk||| ≤ C(u,D)
(
#Tk

)−s
1 ≤ k ≤ K + 1,

where 0 < s = min{su, sD} = min{su, sA, sc, sf} ≤ 1
2 .

Proof. We know that the number of marked elements Nk(u) within GALERKIN satisfies

Nk(u) ≲ |u|
1
su
Asu

ε
− 1

su
k

with su ≤ 1
2 . Moreover, by Assumption 8.11 the number of marked elements Nk(D) within

DATA satisfies

Nk(D) ≲ |D|
1

sD
AsD

εk
− 1

sD
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with sD ≤ 1
2 . Upon termination, DATA and GALERKIN give

|||u− ûk||| ≤ Dωεk = D

√
µĈL

2D
εk < ĈUεk ,

|||ûk − uk+1||| ≤ ĈUηTk+1
(uk+1,Dk) ≤ ĈUεk ,

because µ < 1. This implies by triangle inequality

|||u− uk+1||| ≤ 2ĈUεk. (8.39)

In addition, the total number of marked elements in the j-th loop of AVEM is

Nj(D) +Nj(u) ≤ C1(|u|
1
su
Asu

+ |D|
1

sD
AsD

) εj
− 1

s .

Therefore, the total amount of elements created by k loops of AVEM, besides those in T0, obey
the expression

#Tk+1 −#T0 ≤ C0

k−1∑
j=0

(
Nj(D) +Nj(u)

)
≤ C0C1(|u|

1
su
Asu

+ |D|
1

sD
AsD

)

k−1∑
j=0

ε
− 1

s
j .

Since ε0 = 1, εj = 2−j and
k−1∑
j=0

(2−
1
s )j ≤ 1

1− 2−1/s

we deduce

#Tk+1 −#T0 ≤ C(|u|
1
su
Asu

+ |D|
1

sD
AsD

) ε
− 1

s
k (8.40)

with C = C0C1

1−2−1/s . Since the first refined mesh satisfies #T1 ≥ c0#T0 for some c0 > 1, it holds

#Tk+1 ≤ c0
c0−1(#Tk+1 −#T0). Combining this with (8.40) and (8.39) yields the thesis.

Remark 8.22. The thresholds θ∗, ω∗ play no role in Proposition 6.5 but are critical in The-
orem 8.21. The former takes care of the gap between CL and CU in the a posteriori bounds
(4.20), and is well documented in the optimality analysis of AFEMs [12, 19, 18, 20]. The latter
guarantees that the perturbation error (6.15) is much smaller than εk and enables GALERKIN
to learn the regularity of u from ûT̂k [11, 20].

9 Data approximation: cardinality properties

In this section, we provide sufficient regularity conditions for data D = (A, c, f) to belong to
the approximation classes introduced earlier and present algorithms for their approximation.

9.1 Greedy algorithm: definition and performance

We start with a constructive approximation estimate for a generic function g : Ω→ R of class
W s

p (Ω) and next apply it to D.
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Let 1 ≤ p, q ≤ ∞, 0 ≤ s ≤ 1 be so that

sob(W s
p (Ω)) = s− 2

p
≥ sob(Lq(Ω)) = 0− 2

q
,

whence

s− 2

p
+

2

q
≥ 0 . (9.1)

Let E ∈ T be a generic element, and let

gE :=
1

|E|

∫
E
g

denote the mean value of g on E. Polynomial approximation theory yields

∥g − gE∥Lq(E) ≲ h
s−2/p+2/q
E |g|W s

p (E) .

In view of the application to D, it is convenient to consider the weighted Lq(E)-norm instead,
namely for 0 ≤ t ≤ 1

ζT (E; g) := htE∥g − gE∥Lq(E) ≲ hrE |g|W s
p (E) , with r := t+ s− 2

p
+

2

q
. (9.2)

Given a tolerance δ > 0, we consider the algorithm

[T ] = GREEDY(T , δ)
while M = {E ∈ T : ζT (E; g) > δ} ≠ ∅
T = REFINE(T ,M)

end while
return(T )

The following properties are valid for the global weighted error

ζT (g) :=

(∑
E∈T

ζqT (E; g)

) 1
q

,

with the usual interpretation ζT (g) := maxE∈T ζT (E; g) for q =∞.

Proposition 9.1 (performance of GREEDY). If r > 0, then GREEDY terminates in a finite
number of steps. The output partition T satisfies the estimates

ζT (g) ≤ δ (#T )
1
q , (9.3)

δ ≲ |g|W s
p (Ω)(#T −#T0)−

1
q
− t+s

2 . (9.4)

Remark 9.2 (error decay in GREEDY). Assuming #T ≥ c0#T0 for some c0 > 1, and concate-
nating (9.3) and (9.4) yields

ζT (g) ≲ |g|W s
p (Ω)(#T )−

t+s
2 . (9.5)
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Proof of Proposition 9.1. We proceed in several steps.

(i) Termination. Since r > 0, GREEDY stops in finite steps k, producing k subsequent
refinements T1, . . . , Tk of T . Upon termination, it holds ζTk(E; g) ≤ δ for all E ∈ Tk,
whence (9.3) follows.

(ii) Counting. LetM =M0 ∪ . . .∪Mk−1 be the set of marked elements. We reorganizeM
by size: let Pj be the set of elements E ∈M such that

2−(j+1) ≤ |E| < 2−j , namely 2−
j+1
2 ≤ hE < 2−

j
2 .

Since REFINE uses bisection, the elements of Pj are disjoint, whence

2−(j+1)#Pj ≤ |Ω| i.e., #Pj ≤ |Ω |2j+1.

On the other hand, E ∈ Pj (with E ∈ Ti for some i) implies

δ < ζTi(E; g) ≲ hrE |g|W s
p (E) ≤ 2−

jr
2 |g|W s

p (E) .

In view of the summability of the right-hand side, we now accumulate these inequalities
in the ℓp norm

δp#Pj ≲ 2−
jrp
2 |g|pW s

p (Ω).

This gives an alternative bound

#Pj ≲ δ−p2−
jrp
2 |g|pW s

p (Ω).

(iii) Summing up. Adding over j we obtain

#M =
∑
j

#Pj ≲
∑
j≤j0

|Ω| 2j+1 +
∑
j>j0

δ−p2−
jrp
2 |g|pW s

p (Ω) ,

where j0 corresponds to the crossover of the two series, namely

|Ω| 2j0+1 ≃ δ−p2−
j0rp
2 |g|pW s

p (Ω) .

This implies
2j0(1+

rp
2
) ≃ |Ω|−1|g|pW s

p (Ω)δ
−p ,

and

1 +
rp

2
= 1 +

p

2

(
t+ s− 2

p
+

2

q

)
=

p

2
(t+ s) +

p

q
= pw , with w :=

1

2
(t+ s) +

1

q
.

We thus deduce

2j0 ≃ |Ω|−
1
pw |g|

1
w

W s
p (Ω)δ

− 1
w

and the two series amount to the same sum

#M ≲ |Ω|1−
1
pw |g|

1
w

W s
p (Ω)δ

− 1
w .
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(iv) Complexity. Apply finally the estimate (5.5) that controls the number of elements in Tk
in terms ofM:

#Tk −#T0 ≲ #M ≲ |Ω|1−
1
pw |g|

1
w

W s
p (Ω)δ

− 1
w .

This in turn yields

δ ≲ |Ω|w− 1
p |g|W s

p (Ω)(#Tk −#T0)−w ,

which is the asserted inequality (9.4) in view of the definition of w. This concludes the
proof. □

We now apply Proposition 9.1 to data D = (A, c, f), starting with A. In this case, we
have

t = 0, q =∞, r = s− 2

p
> 0 .

This allows for s = 1, p > 2 (i.e., A ∈ (W 1
p (Ω))

2×2), or s > 0, p =∞ (i.e., A ∈ (W s
∞(Ω))2×2 =

(C0,s(Ω̄))2×2, the space of Hölder-continuous tensor fields of exponent s).

Corollary 9.3 (approximation of A). If A ∈ (W s
p (Ω))

2×2 with 0 < s ≤ 1 and p > 2
s , then

∥A− ÂT ∥L∞(Ω) ≲ |Ω|
s
2
− 1

p |A|W s
p (Ω)(#T )−

s
2 . (9.6)

Thus, A belongs to the approximation class A s
2
, and the GREEDY algorithm provides a quasi-

optimal approximation of A.

We next consider the reaction term c, for which we have

t = 1, q =∞, r = s− 2

p
+ 1 > 0 .

The latter inequality is surely satisfied if condition (9.1) holds. Thus, we may take s = 1,
p = 2 (i.e., c ∈ H1(Ω)), or 0 ≤ s ≤ 1, p =∞ (i.e., c ∈W s

∞(Ω)).

Corollary 9.4 (approximation of c). If c ∈W s
p (Ω) with 0 ≤ s ≤ 1 and p ≥ 2

s , then

∥h(c− ĉT )∥L∞(Ω) ≲ |Ω|
1+s
2

− 1
p |c|W s

p (Ω)(#T )−
1+s
2 . (9.7)

Thus, c belongs to the approximation class C 1+s
2
, and the GREEDY algorithm provides a quasi-

optimal approximation of c.

We conclude with the forcing term f , for which we have

t = 1, q = 2, r = s− 2

p
+ 2 > 0 .

Again, the latter inequality is implied by (9.1). Admissible cases are 0 ≤ s ≤ 1, p = 2 (i.e.,
f ∈ Hs(Ω)), or s = 1, p = 1 (i.e., f ∈W 1

1 (Ω)).

Corollary 9.5 (approximation of f). If f ∈W s
p (Ω) with 0 ≤ s ≤ 1 and p ≥ 2

s+1 , then

∥h(f − f̂T )∥L2(Ω) ≲ |Ω|
s
2
+1− 1

p |f |W s
p (Ω)(#T )−

1+s
2 . (9.8)

Thus, f belongs to the approximation class F 1+s
2
, and the GREEDY algorithm provides a quasi-

optimal approximation of f .
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Remark 9.6 (rates of convergence). We see that the most critical data term is A, whose
approximation error decays, according to (9.6), with rate− s

2 (0 < s ≤ 1) provided A ∈W s
p (Ω).

If s = 1, p > 2, we get the best possible rate −1
2 .

On the other hand, data c and f lead to a rate −1+s
2 < −1

2 for any regularity c, f ∈W s
p (Ω)

with 0 < s ≤ 1. This is observed in the numerical experiments of Sect. 10. If instead, c and
f have minimal regularity for our AVEM to make sense, namely c ∈ L∞(Ω), f ∈ L2(Ω), then
the convergence rates are −1

2 for both data (i.e., s = 0).

9.2 A pseudo-greedy strategy for f

Since the local error estimators ζT (E; f) = hE∥f − f̂∥L2(E) accumulate in ℓ2, the threshold
δ of GREEDY is not directly related to the desired tolerance ε. In fact, all ζT (E; f) could be
rather small relative to ε and yet ζT (f) = ∥h(f − f̂)∥L2(Ω) >

1
3ε. A practical choice is δ =

maxT∈T ζT (E; f), but the ensuing algorithm is inefficient. We propose a minor modification
of GREEDY with similar properties as Dörfler’s algorithm that hinges on the maximum strategy.
We describe the algorithm for a generic function f ∈ W s

p (Ω) in the general setting presented
at the beginning of this section, then we restrict the result to the forcing f of Corollary 9.5.

Given θ ∈ (0, 1) and a tolerance δ > 0, consider the algorithm

[T ] = P-GREEDY(T , δ)
while ζT (f) > δ
M = {E ∈ T : ζT (E; f) ≥ θ max

E′∈T
ζT (E

′; f)}
T = REFINE(T ,M)

end while
return(T )

The following statement is the counterpart of Proposition 9.1 and Remark 9.2 for P-GREEDY.

Proposition 9.7 (performance of P-GREEDY). Let r be defined in (9.2), and suppose r > 0.
Then P− GREEDY terminates in a finite number of steps. The output partition T satisfies the
estimates

ζT (f) ≤ δ and ζT (f) ≲ |f |W s
p (Ω)(#T )−

t+s
2 . (9.9)

Proof. Since the proof is similar to that of Proposition 9.1, we only report the new ingredients.
Let T1, . . . , Tk be the sequence of refinements produced by P-GREEDY, andM1, . . .Mk be the
sequence of marked elements, withM =M1 ∪ · · · ∪Mk. Set

µi := max{ζTi(E; f) : E ∈ Ti} (1 ≤ i ≤ k) and µ := µk−1 .

Then, it holds

ζTk(f) ≤ δ < ζTk−1
(f) ≤ µ(#Tk−1)

1
q ≤ µ(#Tk)

1
q . (9.10)

On the other hand, since REFINE does not increase the element estimators, one has µi ≥ µ
for any i, whence

ζTi(E, f) ≥ θ µi ≥ θ µ ∀E ∈Mi, ∀i .
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Let us introduce the partition of M into disjoint subsets Pj as in the proof of Proposition
9.1. If E ∈ Pj , denoting by i the index such that E ∈Mi, we get

θ µ ≤ ζTi(E, f) ≲ hrE |f |W s
p (Ω) ≤ 2−

jr
2 |f |W s

p (Ω) ,

whence
#Pj ≲ θ−pµ−p2−

jrp
2 |f |pW s

p (Ω).

As in the proof of Proposition 9.1, this yields

µ ≲ |f |W s
p (Ω)(#Tk −#T0)−w ,

and we conclude using (9.10) and the bound #Tk ≥ c0#T0 for c0 > 1.

If the forcing f ∈ W s
p (Ω) with 0 ≤ s ≤ 1 and p ≥ 2

s+1 , as in Corollary 9.5, then (9.9)

reads ζT (f) ≲ |f |W s
p (Ω)(#T )−

1+s
2 , i.e, P-GREEDY provides a quasi-optimal approximation of

f with convergence rate −1+s
2 . In particular, if f ∈ L2(Ω), then ζT (f) ≲ ∥f∥L2(Ω)(#T )−

1
2 .

10 Numerical results

In this section we present a numerical experiment to confirm the convergence and optimality
properties of the 2-step algorithm AVEM. We consider problem (2.1) in the L-shaped domain
Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]), with diffusion term A = aI, where

a(x, y) = 1 + exp
(
−50((x+ 0.5)2 + (y + 0.5)2)

)
+ exp

(
−50((x+ 0.5)2 + (y − 0.5)2)

)
,

and reaction term

c(x, y) = 1 + exp
(
−50((x+ 0.5)2 + y2)

)
+ exp

(
−50(x2 + (y − 0.5)2)

)
;

note that the Gaussians in the definition of a and c have the same intensity but are located in
different places within Ω (see Figures 2 and 3). The load term f and the Dirichlet boundary
conditions are chosen in accordance with the analytical solution

u(x, y) = r
2
3 sin

(
2α/3

)
+ exp

(
−1000((x− 0.5)2 + (y − 0.5)2)

)
,

where (r, α) are the polar coordinates around the origin. Notice that the exact solution u

is singular at the reentrant corner: it belongs to the Sobolev spaces H(Ω)
5
3
−ϵ with ϵ > 0

and W 2
p (Ω) with p > 1. It also exhibits a rapid transition of order 10−3/2 around the point

(0.5, 0.5) due to the presence of a very narrow Gaussian. The three Gaussians are meant to
test the performance of the module DATA.

We utilize the following parameters in the numerical test

γ = 1, Λ = 10, θDörfler = 0.5, ω = 1, θp-greedy = sqrt(0.75), tol = 0.125,

where γ is parameter of the dofi-dofi stabilization (4.2), Λ is the bound for the global index
of non-conforming partitions in Definition 3.2, θDörfler is the Dörfler marking parameter (5.4),
ω is the safety input parameter of DATA, θp-greedy is the pseudo-greedy marking parameter
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(6.14), and tol is the target tolerance of AVEM. We implement algorithm AVEM with a uniform
structured triangular mesh T0 with diameter h = 0.125 and initial tolerance ϵ0 = 1.

In order to estimate the VEM error between the exact solution u and the VEM solution
uT , we consider the computable H1-like error quantity:

H^1-error :=
|u−Π∇

T uT |1,T
|u|1,Ω

.

In Fig. 1 (left) we display the estimator ηT (uT ,D), the data error ζT̂ (D) and the H^1-error
obtained with algorithm AVEM. In Fig. 1 (right) we exhibit the data error ζT̂ (D) and the
addends ζT̂ (A), ζT̂ (c), ζT̂ (f) (cf. (6.12) and (6.11)). Notice that the number of iterations of
the algorithm AVEM is K = log2(ϵ0/tol) = 3.
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Figure 1: Left: estimator ηT (uT ,D), data error ζT̂ (D), H^1-error obtained with the algo-
rithm AVEM. Right: data error ζT̂ (D), tensor error ζT̂ (A), reaction error ζT̂ (c), load error
ζT̂ (f), obtained with the algorithm AVEM. In both figures the optimal decay is indicated by
the dashed line with slope -0.5.

The predictions of Theorem 5.2 (contraction property of GALERKIN) are confirmed: both
the estimator ηT (uT ,D) and the H^1-error converge to zero and the decay rate reaches
asymptotically the theoretical optimal value #T −1/2; this corresponds to s = 1/2 in Theorem
8.21 (optimality of AVEM). Concerning data approximation, we observe from Fig. 1 (right) that
ζT̂ (D) decays with rate #T −1/2 dictated by ζT̂ (A), as predicted by Corollary 9.3 , while ζT̂ (c)
and ζT̂ (f) exhibit a faster decay rate. This is due to regularity of (c, f) beyond L∞(Ω)×L2(Ω),
as predicted by Corollaries 9.4 and 9.5. We finally notice from Fig. 1 that the module DATA

is active for all k except k = 1 because ζT1(D) < ϵ1.
In order to highlight the different level of approximation of data D = (A, c, f) required

by AVEM, we display in Figs. 2, 3 and 4 the graphs of the piecewise constant approximations
D̂ = (Â, ĉ, f̂) with respect to the mesh T̂K (left), and of the continuous piecewise linear
counterparts with respect to the mesh TK+1 (right). Since the Gaussians in a and c are
located in non-overlapping subregions of Ω, it is possible to see that AVEM imposes a much
finer resolution of a than of c in both meshes T̂K and TK+1; this is due to the extra factor h
in the definition (6.11) of ζT̂ (c).

Finally in Figs. 6, 7 and 8 we compare the grids T̂K and TK+1 generated by the modules
DATA and GALERKIN upon termination of AVEM. The heat map on the rightmost pictures shows,
for each element E ∈ TK+1, the number of newest-vertex bisections needed to create E starting
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Figure 2: Left: graph of the piecewise constant approximation â of a (w.r.t. T̂K). Right:
graph of the piecewise linear interpolant of a (w.r.t. TK+1).

Figure 3: Left: graph of the piecewise constant approximation ĉ of c (w.r.t. T̂K). Right:
graph of the piecewise linear interpolant of c (w.r.t. TK+1). Notice much coarser resolution
than in Fig. 2.

Figure 4: Zoom to (−0.75,−0.25)2 for the load term f . Left: graph of the piecewise constant
approximation f̂ of f (w.r.t. T̂K). Right: graph of the piecewise linear interpolant of f (w.r.t.
TK+1).

from T̂K , according to the colorbar in Fig. 5. The number of nodes N vertices and elements
N elements are

N vertices(T̂K) = 5030, N elements(T̂K) = 9236,

N vertices(TK+1) = 19676, N elements(TK+1) = 37244.
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Number of bisections

0 1 2 3 4 5

Figure 5: Colorbar for the heat map in Figures 6, 7 and 8.

Furthermore, the number of polygons in T̂K (elements with more than three vertices) is 730:
723 quadrilaterals, 2 pentagons, 5 hexagons; the number of polygons in TK+1 is 1920: 1908
quadrilaterals, 16 pentagons, 4 hexagons. In Fig. 7 we plot a zoom to (0.35, 0.65)2 of the
meshes T̂K and TK+1. We highlight for both meshes the presence of hexagons in this subregion.
Moreover, looking at the vertices having maximum global index λ sitting on the hexagons,
we realize that the global indices are ΛT̂K = 2 and ΛTK+1

= 3. It is worth noting that the
threshold Λ = 10 is never reached by AVEM; therefore, the condition of Λ-admissibility is not
restrictive in practice. We further notice that the Gaussian in (0.5, 0.5) associated with f is
sufficiently resolved by DATA. In Fig. 8 we present a zoom to (−10−2, 10−2)2 to examine mesh
refinement at the origin. We see that the mesh TK+1 exhibits a rather strong grading at the
reentrant corner, in accordance with the singularity of the exact solution. Elements in TK+1

in this region need up to five newest-vertex bisection refinements relative to T̂K .
We close this section with the following observation. From Figs. 6, 7 and 8 it can be

appreciated how the presence of hanging nodes allows for quite abrupt and ‘steep’ refinements
where needed in order to approximate the data and the solution singularity. In this respect,
a direct comparison with AFEM in terms of generated meshes can be found in [8]. Such
numerical results suggest that, although as shown in Remark 8.6 the approximation classes
of AVEM and AFEM are the same, this added flexibility may be an important asset in
adaptivity, especially in situations with more complex geometry. This aspect is worth further
investigation, but is not within the scopes of the present contribution.

Figure 6: Left: final grid T̂K generated by DATA. Middle: final grid TK+1 generated by
GALERKIN. Mesh elements having more than three vertices (polygons) are drawn in red. Right:
heat map representing for each E ∈ TK+1 the number of newest-vertex bisection needed to
generate E starting from the mesh T̂K (colorbar in Fig. 5).
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Figure 7: Zoom to (0.35, 0.65)2 related to f . Left: final grid T̂K generated by DATA. Middle:
final grid TK+1 generated by GALERKIN. Elements having more than three vertices (polygons)
are drawn in red; elements drawn in black are hexagons. Right: heat map representing for
each E ∈ TK+1 the number of newest-vertex bisection needed to generate E starting from the
mesh T̂K (colorbar in Fig. 5).

11 Λ-admissibility

Our theory of AVEM relies on the Λ-admissibility condition in Definition 3.2. Hereafter, we
establish two results related to this concept: in Sect. 11.1, we show how to preserve Λ-
admissibility while refining a mesh, whereas in Sect. 11.2 we prove that the overlay of two
Λ-admissible meshes remains Λ-admissible.

11.1 Λ-admissible mesh refinement

In this section we introduce a constructive procedure that enforces Λ-admissibility at every
stage of AVEM and study its complexity. If T is a Λ-admissible refinement of T0 by newest-
vertex bisection, the level of an element E ∈ T , denoted by ℓ(E), is the number of successive
bisections needed to generate E from T0. Given E ∈ T marked for refinement, the procedure

[T∗] = CREATE ADMISSIBLE CHAIN(T , E,Λ)

generates a Λ-admissible refinement T∗ of T upon bisecting E and at most ℓ(E) + 1 other
elements. To describe and analyze this procedure, we need some auxiliary notation and
results.

Given any E ∈ T , let us denote its newest vertex by nv(E), the edge opposite to nv(E)
by oe(E), and the midpoint of oe(E) by moe(E). Furthermore, two elements E′, E′′ ∈ T
are said adjacent if e = E′ ∩E′′ is an edge for at least one element, and are said compatible if
they are adjacent and neither nv(E′) nor nv(E′′) belong to the line containing e (see Fig. 9,
cases A and B).

Denote by T the infinite tree obtained by successive bisections of the root partition T0.
The following result is well-known [10, 12, 18, 19, 21].

Lemma 11.1 (levels of elements sharing a full edge). Assume that E,E′ ∈ T share a full
edge e = E ∩ E′. Then

|ℓ(E)− ℓ(E′)| ≤ 1 .
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Figure 8: Zoom to (−10−2, 10−2)2 to examine the origin. Left: final grid T̂K generated by
DATA. Middle: final grid TK+1 generated by GALERKIN. Elements having more than three
vertices (polygons) are drawn in red. Right: heat map representing for each E ∈ TK+1 the
number of newest-vertex bisection needed to generate E starting from the mesh T̂K (colorbar
in Fig. 5).

E′′

E′

nv(E′′)

nv(E′)

case A

E′′

E′

nv(E′′)

nv(E′)

case B

E′′

E′

nv(E′′)

nv(E′)

case C

E′′

E′

nv(E′′)

nv(E′)

case D

Figure 9: The elements E′ and E′′ are adjacent in cases A to D. They are compatible in cases
A and B, and non-compatible in cases C and D.

Proof. If neither nv(E) nor nv(E′) belong to e, or both nv(E) and nv(E′) belong to e, then
ℓ(E) = ℓ(E′). On the other hand, if nv(E) ∈ e but nv(E′) ̸∈ e, then ℓ(E′) = ℓ(E) + 1, since
E′ is generated by bisecting an element Ẽ of the same level as E.

Lemma 11.2 (global index of a hanging node). Consider an edge [x′,x′′] of the partition T .
If x ∈ H ∩ int e is generated by m ≥ 1 bisections of e, then its global index λ(x) satisfies

λ(x) = max(λ(x′), λ(x′′)) +m.

Proof. If m = 1, x = xM is the midpoint of e, and the formula is just the Definition 3.1
of global index. If m > 1, then x is generated by bisecting some interval [z′, z′′] ⊂ e, and
λ(x) = max(λ(z′), λ(z′′)) + 1. Exactly one between z′, z′′ has been generated by m − 1
bisections, whereas the other one has been generated by less than m − 1 bisections. Hence,
one concludes by induction.
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Proposition 11.3 (reducing the global index of hanging nodes). Let H∩ int e contain at least
the midpoint xM of e. Assume that a bisection of some element in T transforms xM into a
proper node, and let λnew denote the new global-index mapping of the nodes in H∩ int e after
the bisection. Then there holds

λnew(x) ≤ λ(x)− 1 ∀x ∈ H ∩ int e .

Proof. If x = xM , then trivially λnew(x) = 0 ≤ λ(x) − 1. If x ∈ H ∩ int e is contained, say,
in (x′,xM ) and has been generated by m > 1 successive bisections of e, then it is generated
by m− 1 successive bisections of [x′,xM ]. Thus, by Lemma 11.2

λnew(x) ≤ max(λnew(x
′), λnew(xM )) +m− 1

= max(λ(x′), 0) +m− 1 = λ(x′) +m− 1

≤ max((λ(x′), λ(x′′)) +m− 1 = λ(x)− 1 .

This gives the desired estimate.

The result just established is the motivation for the proposed refinement strategy. Indeed,
it assures that in order to reduce the global index of a hanging node sitting on an edge, it is
enough to transform the midpoint of the edge into a proper node.

The following remark will be useful in the sequel.

Remark 11.4 (facing element). Given a Λ-admissible mesh T and E ∈ T , let x = moe(E)
and suppose that λ(x) > Λ. Then x is not a node of T , whence the edge oe(E) cannot
contain any hanging node in its interior. We conclude that there exists a unique adjacent
element Ẽ ∈ T , Ẽ ̸= E, such that E ∩ Ẽ = oe(E). This element will be called the element
facing E.

Given an element E ∈ T which has been marked for refinement, we are ready to identify
those elements in T that need be bisected with E in order to create a Λ-admissible refinement
of T .

Definition 11.5 (chain of elements to be refined). Define by recurrence the chain of elements

C(E) = {E0, E1, . . . , EK}

for some K ≥ 0, as follows: set first E0 = E and, assuming to have defined Ek for k ≥ 0,
then

(i) if λ(moe(Ek)) ≤ Λ, set K = k and stop;

(ii) if λ(moe(Ek)) = Λ+1 and the facing element Ẽk is compatible with Ek, set Ek+1 = Ẽk,
K = k + 1 and stop;

(iii) if λ(moe(Ek)) = Λ+1 and the facing element Ẽk is not compatible with Ek, set Ek+1 =
Ẽk and continue.

Lemma 11.6 (properties of the chain of refinement). The chain C(E) has at most K ≤
ℓ(E) + 1 elements. Furthermore, the sequence of element levels {ℓ(Ek)}Kk=0 is not increasing.
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Proof. We claim that step (iii) in Definition 11.5 reduces the level by at least one. In fact,
Ek coincides with or is a refinement of a triangle E ∈ T sharing with Ek+1 a full edge; thus
ℓ(Ek) ≥ ℓ(E). Such triangle E satisfies ℓ(E) = ℓ(Ek+1)+1 according to Lemma 11.1, whence

ℓ(Ek+1) = ℓ(E)− 1 ≤ ℓ(Ek)− 1. (11.1)

Therefore, for as long as case (iii) is active, i.e. for all j < K, we have ℓ(Ej) ≤ ℓ(E0)− j and

0 ≤ ℓ(EK−1) ≤ ℓ(E0)− (K − 1) ,

which gives the first part of the Lemma. The monotonicity of {ℓ(Ek)}Kk=0 follows from (11.1)
and the fact that ℓ(EK−1) = ℓ(EK) in case (ii).

We are now ready to define the procedure

[T∗] = CREATE ADMISSIBLE CHAIN(T , E,Λ)

The partition T∗ is obtained from T by refining only the elements in C(E). More precisely,
starting from EK , one goes traverses the chain backwards and, for K ≥ k ≥ 1, considers the
cases

• if Ek and Ek−1 are compatible, then Ek is bisected once (see Fig. 10, cases A or B);

• if Ek and Ek−1 are not compatible, then Ek is bisected twice and, after the first bisection,
the sibling that is facing Ek−1 is further bisected (see Fig. 10, cases C or D);

• finally, E0 = E is bisected once.

Ek−1

Ek

nv(Ek−1)

nv(Ek)

case A

Ek−1

Ek

nv(Ek−1)

nv(Ek)

case B

Ek−1

Ek

nv(Ek−1)

nv(Ek)

case C

Ek−1

Ek

nv(Ek−1)

nv(Ek)

case D

Figure 10: Two elements Ek−1 and Ek in the chain C(E): Ek−1 can be bisected in a Λ-
admissible way, only after Ek is refined once (cases A and B), or twice (cases C and D)

Proposition 11.7 (properties of CREATE ADMISSIBLE CHAIN). If T is Λ-admissible, then the
call [T∗] = CREATE ADMISSIBLE CHAIN (T , E,Λ) bisects once or twice the elements of the chain
C(E), whose cardinality is at most ℓ(E) + 1, and produces a Λ-admissible mesh T∗ with E
bisected once. Moreover, every element E′ ∈ T∗ generated by this call satisfies

ℓ(E′) ≤ ℓ(E) + 1 . (11.2)
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Proof. Let C(E) = {Ek}Kk=0 and observe that, for k ≥ 1, one or two bisections of Ek convert
the midpoint of the edge e of Ek shared with Ek−1 into a proper node. Therefore, Proposition
11.3 (reducing the global index of hanging nodes) implies that the global indices of all interior
nodes to e decrease by at least 1, and makes the bisection of Ek−1 Λ-admissible as desired.
This procedure creates T∗ upon partitioning at most ℓ(E)+1 elements, namely those of C(E),
according to Lemma 11.6 (properties of the chain refinement).

Moreover, to prove (11.2) we take k ≥ 1 and consider the following two mutually exclusive
cases. If Ek and Ek−1 are compatible, then Ek is replaced by two elements E′ ∈ T∗ of level

ℓ(E′) = ℓ(Ek) + 1 ≤ ℓ(E) + 1,

according to Lemma 11.6. On the other hand, if Ek and Ek−1 are not compatible, then Ek is
replaced by one element of level ℓ(Ek) + 1 and two elements E′ ∈ T∗ of level

ℓ(E′) = ℓ(Ek) + 2 ≤ ℓ(Ek−1) + 1 ≤ ℓ(E) + 1

because of (11.1). Finally, the element E0 = E is replaced by two elements of level ℓ(E)+1.

In view of Proposition 11.7 a bound of the form #T∗−#T ≤ C0 with a universal constant
C0 is false because C0 may depend on ℓ(E) in general. This obstruction to optimal complexity
of REFINE was tackled by Binev, Dahmen and DeVore in their seminal paper [10], and further
studied in [12, 18, 19, 21]. In fact, the cumulative effect of bisection on conforming meshes
obeys the weaker, but yet optimal, equation (5.5). The extension of this to Λ-admissible
non-conforming partitions is precisely guaranteed by the stated Theorem 5.1, whose proof
follows.

Proof of Theorem 5.1 (complexity of REFINE). We follow [19, Section 6.3], which ex-
plains the basic ingredients to derive (5.5). It turns out that two crucial properties of
CREATE ADMISSIBLE CHAIN as required. The first is (11.2). The second one relates the level
of elements and their distance to E, namely

dist (E,E′) ≤ C2
ℓ(E′)

2 ∀E′ ∈ T∗\T ;

such property is valid for bisection grids regardless of Λ-admissibility [19, Lemma 18]. This
completes the proof. □

11.2 Mesh Overlay and Λ-admissibility

Given two partitions TA and TB, denote by TA⊕TB the overlay of TA and TB, i.e., the partition
whose associated tree is the union of the trees of TA and TB. The following property holds.

Proposition 11.8. If TA and TB are Λ-admissible, then TA ⊕ TB remains Λ-admissible.

Proof. Denote here by N the set of all nodes obtained by newest-vertex bisection from the
root partition T0. Let N0, NA, NB, NA+B, resp., be the set of nodes of the partitions T0,
TA, TB, TA ⊕ TB, resp.. It is easily seen that for each x ∈ N \ N0 there exists a unique
B(x) = {x′,x′′} ⊂ N such that x is generated by the bisection of the segment [x′,x′′].
Furthermore, if x ∈ NA+B is a proper node of TA (of TB, resp.), then it is also a proper node
of TA ⊕ TB.
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Let us denote by λA, λB, λA+B, resp., the global-index mappings defined on NA, NB,
NA+B, resp.. It is convenient to extend the definition of λA and λB to the whole NA+B by
setting

λA(x) = +∞ if x ∈ NA+B \ NA , λB(x) = +∞ if x ∈ NA+B \ NB .

With these notations at hand, we are going to prove the inequality

λA+B(x) ≤ min(λA(x), λB(x)) ∀x ∈ NA+B , (11.3)

from which the thesis immediately follows.
We proceed by induction on k = λA+B(x), x ∈ NA+B. If k = 0, the inequality is trivial

since λA(x), λB(x) ≥ 0. So suppose (11.3) hold up to some k ≥ 0. If x ∈ NA+B satisfies
λA+B(x) = k + 1 > 0, then it is a hanging node of TA ⊕ TB by definition of global index,
hence, it is a hanging node of TA or TB; wlog, suppose it is a hanging node of TA. If x is
generated by the bisection of the segment [x′,x′′], then again by definition of global index it
holds

k + 1 = λA+B(x) = max(λA+B(x
′), λA+B(x

′′)) + 1 ,

which implies
λA+B(x

′) ≤ k , λA+B(x
′′) ≤ k .

By induction,

λA+B(x
′) ≤ min(λA(x

′), λB(x
′)) , λA+B(x

′′) ≤ min(λA(x
′′), λB(x

′′)) ,

from which we obtain

λA+B(x) ≤ max(λA(x
′), λA(x

′′)) + 1 = λA(x)

since x is a hanging node of TA. On the other hand, either x ∈ NB or x ̸∈ NB. In the latter
case, λB(x) = +∞, and (11.3) is proven. In the former case, necessarily x is a hanging node
of TB, hence as above

λA+B(x) ≤ max(λB(x
′), λB(x

′′)) + 1 = λB(x) ,

and the thesis is proven.

12 Conclusions

This paper introduces and studies a two-step adaptive virtual element method (AVEM) of lowest
order over triangular meshes with hanging nodes in 2d, which are treated as polygons. AVEM
applies to linear symmetric elliptic problems with variable data. The main achievements of
the paper can be summarized as follows:

• AVEM concatenates two modules, DATA and GALERKIN. The former approximates data by
piecewise constants to a desired accuracy, while the latter handles the adaptive approxi-
mation of the problem with piecewise constant data, as described in [8]. AVEM converges
(Proposition 6.5);
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• Complexity of GALERKIN: the number of sub-iterations inside the call to GALERKIN at iter-
ation k of AVEM is bounded independently of k (Proposition 7.3);

• Complexity of DATA: the module DATA is quasi-optimal in terms of accuracy versus mesh
cardinality, under suitable regularity conditions on the data (Sect. 9);

• Complexity of AVEM: AVEM is quasi-optimal in terms of error decay versus degrees of freedom,
for solutions and data belonging to appropriate approximation classes (Theorem 8.21);

• Numerical experiments: they illustrate the interplay between the modules DATA and GALERKIN
and provide computational evidence of the optimality of AVEM (Section 10).

• Mesh admissibility: Section 11 designs a procedure to keep the global index of meshes
uniformly bounded for all steps k, and proves its optimality in terms of degrees of freedom.

Although in Remark 8.6 we observed that, in the presence of a bound on the maximal
index of hanging nodes, the equivalence classes of AVEM and AFEM are the same, the
numerical results in Section 10 and in [8] suggest that the flexibility of VEM may lead to
more efficient meshes in complex situations, at least in terms of the involved constants. A
deeper investigation of this aspect at the theoretical level may require a more advanced VEM
approach, for instance taking inspiration from the a-priori analysis in [4].
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