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Abstract— Mental calculations involve various areas of the
brain. The frontal, parietal and temporal lobes of the left
hemisphere have a principal role in the completion of this
typology of tasks. Their level of activation varies based on
the mathematical competence and attentiveness of the subject
under examination and the perceived difficulty of the task.
Recent literature often investigates patterns of cerebral activity
through fMRI, which is an expensive technique. In this scenario,
EEGs represent a more straightforward and cheaper way to
collect information regarding brain activity. In this work, we
propose an EEG based method to detect differences in the
cerebral activation level of people characterized by different
abilities in carrying out the same arithmetical task. Our
approach consists in the extraction of the activation level of
a given region starting from the EEG acquired during resting
state and during the completion of a subtraction task. We
then analyze these data through Functional Data Analysis, a
statistical technique that allows operating on biomedical signals
as if they were functions. The application of this technique
allowed for the detection of distinct cerebral patterns among the
two groups and, more specifically, highlighted the presence of
higher levels of activation in the parietal lobe in the population
characterized by a lower performance.

Index Terms— EEGs, cortical activation, signal processing,
functional data analysis

I. INTRODUCTION

Difficulty and experience heavily influence cerebral activa-
tion during the completion of arithmetic assignments. Previ-
ous literature has clarified that, in right-handed individuals,
the left hemisphere of the brain is the one most involved
in the execution of arithmetical tasks [1], [2]. Concerning
more specifically the mathematical competence, Grabner et
al. [3] found a strong correlation between better skills and
higher cortical activity in the middle temporal gyrus and the
left angular gyrus. This fact is due to the involvement of
these regions with the verbal retrieval of arithmetical facts.
Moreover, when problem complexity increase, the activation
area of the left angular gyrus becomes wider and extends
to adjacent parietal regions. The left angular gyrus and the
left temporal lobe instead reflect the level of mathematical
knowledge [4], [3]. Individuals with a higher level of at-
tention and working memory present increased activity in
the prefrontal regions [1]. Lastly, the difficulty perceived
by the subjects in completing the task solely influences the
activation of the left parietal lobe [3].

In this paper, we focus on differences in cortical regions
activation between two groups of subjects, classified accord-

ing to their performance in executing an arithmetic task. In
particular, we aim to investigate specific electrical potential
responses evoked by these tasks in the prefrontal, parietal,
and temporal areas. These regions are the most involved
during attention and mathematical tasks [3]. Consequently,
we expect the two groups to present different activation
patterns in that lobe.

To be investigated, this context requires technologies ca-
pable of precisely assessing differences in the activation of
the brain lobes. For this reason, previous literature proposed
various attempts to investigate this phenomenon through
functional Magnetic Resonance Imaging (fMRI) [3], [5], [6]
and electroencephalograms (EEGs) [7], [8]. fMRI is a non-
invasive procedure that provides a detailed report of oxygena-
tion and deoxygenation levels in the brain that reflect, with
delay, the activation of the different cortical areas. Despite
these advantages, fMRI is an expensive technique and needs
the patients to stay still to reduce distortions and inaccuracy
to obtain the best possible data. Conversely, EEGs represent
a cheaper solution and are characterized by a higher temporal
resolution. Moreover, they are less invasive as they do not
require the subject to be immobilized. On the other hand,
they are less precise in locating the exact area of origin
of the brain activities since they superficially integrate the
whole underlying generated potentials. In fact, the potential
of EEGs in exploring the mechanisms underlying mathemat-
ical reasoning has been previously addressed with positive
results, yet leaving space to further analyses [9].

Given the respective strengths and weaknesses of fMRIs
and EEGs, in this work, we propose a method to investigate
EEG recordings through the use of a statistical technique
able to enhance temporal and morphological changes in
signals, known as Functional Data Analysis (FDA). This
family of statistical techniques, comprehensively described
by Ramsay [10], offers a class of methods to deal with
the analysis of continuous curves and surfaces generated
through the smoothing of discrete series of data. The main
advantage of introducing this level of complexity lies in
the possibility of treating discrete signals as continuous
functions, gaining access to features other than time shifts.
The quantitative assessment of morphological characteristics
and the evaluation of the derivatives are two examples among
the various features which can be analyzed. Moreover, curves
are more natural to think through modeling problems, and
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they do not suffer from model misspecification [11]. In
the specific context of biomedical signals, the smoothing
procedure also filters out noise efficiently without altering
the curve characteristics. Besides, previous studies proved
the adequacy of this method for the analysis of biomedical
signals and images [12] [13]. All these facts make FDA well-
suited for modeling stochastic noisy signals as EEGs.

In this paper, we propose a FDA-based approach to explore
cortical activation patterns at the basis of differences in the
perceived difficulty in the completion of an arithmetical task.
In Section II, we describe the dataset analyzed in this work,
the tools employed, and the proposed method. In Section III,
we present the results obtained, and in Section IV we discuss
them alongside possible future works.

II. METHODS

In this Section, we describe the dataset employed and the
analysis carried out in this study. Our approach consists of
three main steps: the representation of the signals as curves,
the outliers removal, and a statistical test to verify if the
curves characterizing the two populations differ significantly.

A. Dataset

The EEG signals treated in the present analyses come from
the “EEG During Mental Arithmetic Tasks” dataset, made
available by the National Taras Shevchenko University of
Kyiv (Ukraine) [7]. The signals contained in this dataset are
recorded using the international 10/20 scheme [14] sampled
at 500 Hz and are provided in edf format [15]. For this
study, we only take into consideration the channels Fp1, P3
and T3, as they are situated respectively in the left prefrontal,
left parietal, and left temporal region. The experimental pop-
ulation includes 36 right-handed university students (9 males
and 27 females) attending the Biology or Medicine faculties.
The recordings were acquired through two experimental
conditions: resting state and the execution of a subtraction
task. In particular, during the recording of the resting state,
the participants sat in a dark, soundproof chamber for 6
minutes with their eyes closed. During the subtraction task,
the participants had to count mentally, without speaking or
moving fingers for 4 minutes. The arithmetic task consisted
of the serial subtraction of a 2 digits number from a 4
digits one (e.g., 17 and 5143). The authors considered a
participant to succeed in the task if their result did not
differ by more than 20% from the correct value. Based on
their performance, participants were divided into two groups:
“Bad Counters” (Group B, 10 patients) and “Good Counters”
(Group G, 26 patients), based on the number of correct
operations per minute [7]. Age did not significantly differ
between the two subpopulations (B: 18.40 ± 2.01 and G:
18.19 ± 2.26 years). All the participants had normal or
corrected-to-normal visual acuity and color vision and did
not present any clinical manifestations of mental, cognitive,
or psychiatric impairment nor learning disabilities. None of
them were addicted to medications, alcohol, or drugs. Each
subject signed an informed consent. The study adheres to the

principles of the Declaration of Helsinki for medical research
involving human subjects.

B. Preprocessing

All the steps hereby described are performed through the
Python libraries: MNE, Numpy and scikit-fda [16], [17],
[18]. Firstly, we divide the recordings into segments of 40
seconds each. Then, to remove the majority of artifacts and
noise, we perform an averaging technique on them [19].

C. Curve Representation

In order to highlight the characteristics of the electrical
activity elicited by the task, we subtract the resting state
EEG from the one acquired during the task. The result is the
object of our analysis and from now on in this paper, we
will refer to it as the Extracted Functional Potential (EFP).
As mentioned before, one of the advantages correlated to
the use of FDA methods is that it allows the analysis of
discrete biomedical signals as continuous functions; hence,
the recordings are smoothed, fitting a basis function represen-
tation through the minimization of the sum of squared errors.
This procedure not only filters out remaining noise but pre-
pares the data for the application of FDA, by allowing their
representation as functions. Basis representation consists of
the use of a set of basis functions evaluated on sub-intervals
defined by knots [10]. Basis function procedure consists in
representing a function x(t) by a linear expansion in terms
of K known basis functions ϕk, weighted by the coefficients
ck, as below:

x(t) =

K∑
k=1

ckϕk(t)

Among all possible basis functions, we choose to use the
B-splines. In general, spline-basis are easier to compute and
allow direct computation of the derivatives [20]. In particular,
we use B-Spline basis elements [10], [21] recursively defined
as follows:

Bi,1(x) = 1 if ti ≤ x < ti+1, otherwise

Bi,k(x) =
x− ti

ti+k − ti
Bi,k−1 +

ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x)

where: i represents the number of knots, defined in the
interval [1, n] with n set by the user (n = 17 in the present
work); k indicates the order of the spline, which is set to
4 for B-Spline, meaning that each spline is a third order
polynomial. The performance of the smoothing procedure
was evaluated through visual inspection over traces, the
evaluation criteria were the reduction of noise and a good
approximation of the curves. The smoothed EFP curves are
then employed to investigate differences in the activation
patterns of the two groups.

D. Outliers removal and ANOVA test

We aim at detecting and removing outliers that would
harm the validity of the work. For this purpose we exploit
a functional boxplot of the smoothed EFPs for each of the
three channels considered in the analyses. This informative



exploratory tool is based on the center outward ordering
induced by depth measures for functional data, which allows
us to order curves from the most central to the most outlying
in the distribution [22]. Depth measures are functions that
assign, to each possible observation, a value measuring
how central that observation is in a given distribution of
curves. Thanks to this tool, we can efficaciously detect the
outliers, which are classified through the application of the
1.5 times the 50% central region empirical rule, analogously
to classical boxplots [23]. Finally, we remove the outlying
signals from the two groups.

In order to evaluate if the smoothed EFP of the groups
differ significantly, and in which channels, we use a func-
tional one-way ANOVA test [24], a statistical test specifically
developed to deal with functional data. This method assesses
the null hypothesis of equality between the means of groups
B and G. For this test we set the level of significance to
α = 0.05. Thus, we refuse the null hypothesis in channels
with a p-value inferior to α.

III. RESULTS

In this Section, we present the curves obtained through the
preprocessing pipeline previously illustrated, the functional
boxplots relative to the smoothed EFP and the outputs of the
functional ANOVA test.

Fig. 1 illustrates the subtraction procedure through which
we obtain the EFPs curves for the P3 electrode for two
subjects exemplifying the B and G groups.

Fig. 1. Resting state (RS), Task and Extracted Functional Potential (EFP)
recordings of one subject from group G (Female, 18 years old) and of one
from group B (Female, 21 years old). EFP results from the subtraction of
RS from Task.

The functional boxplots which allowed for the outlier
inspection and removal are shown in Fig. 2.

Fig. 3 highlights the difference between the mean of the
two sub-populations for the P3 channel, obtained after the
removal of the outliers. It is evident that the arithmetical task
elicits higher levels of activity in the parietal lobe of the B
group.

Table 1 summarizes the results of the functional ANOVA
test. Only the differences in the P3 recordings, the electrode
posed in the parietal region of the scalp, reach a statistical
significance. On the contrary, the activity recorded by the
electrodes Fp1 and T3 (respectively in the prefrontal and
temporal regions) result to be similar.

Fig. 2. Functional boxplots of EFP from channel P3 of groups G and B.
It is possible to distinguish the central region (in magenta), the median (in
black), the maximum non-outlying envelope (in blue) and the full outliers
(the red dotted lines).

Fig. 3. Functional means of smoothed EFPs of groups G (in blue) and B
(in orange) from channel P3 after the preprocessing and after the outliers
removal.

TABLE I
OUTPUT OF THE ONE-WAY FUNCTIONAL ANOVA TEST.

∗ : STATISTICALLY SIGNIFICANT.

Channel P-value Statistical Significance
Fp1 0.58
P3 0.04 ∗
T3 0.87

IV. DISCUSSION & CONCLUSIONS

In this work, we propose a FDA-based method to explore
cortical activity through EEGs recordings. To evaluate the
potentiality of the presented approach, we tackle the detec-
tion of the discrepancies in the task complexity experienced
by two groups of university students, classified as Good and
Bad counters, during a subtraction task. In our analyses, we
took into special account three brain regions by considering
a channel each: the parietal (through the P3 electrode), the
prefrontal (Fp1), and the temporal (T3), as they are the most



involved in mathematical tasks. For the same reason, and
since all the subjects are right-handed, we refer to the brain’s
left hemisphere.

A difference in the parietal region’s activity of the two
groups emerges from our result. More specifically, the P3
electrode registers significantly higher (p = 0.04) levels of
activation in the subjects considered to be “Bad counters”.
This fact is compatible with previous findings in literature
and with data made available by the creators of the dataset
themselves. As stated in Section I, this lobe is known to
increase its activity in correspondence of complicated tasks.
Analogously, the temporal lobe is known to increase its
activity according to the arithmetical competence of the
patient. Moreover, the subjects enrolled in the study attend
similar university faculties and, therefore, it is realistic to
expect them to have similar capabilities and competencies.
Hence, it is reasonable for T3 recordings not to show major
discrepancies in the activity of the temporal lobe (p = 0.87).
Likewise, the Fp1 electrode does not register significant
differences between the levels of prefrontal activation of the
two groups (p = 0.58). Consequently, we did not find any
significant differences in attentiveness and working memory
between the groups.

From these results, we can conclude that the proposed
method can successfully detect the divergence in the task
complexity experienced by the Good and Bad counters
groups. In conclusion, the analysis of cerebral activation
through EEG recordings and FDA can represent a useful
addition to the more common practice of fMRI.

In the future, we aim to extend the work hereby presented
in two ways. On the one hand, we plan to expand the method
and the analysis proposed by implementing additional FDA
procedures, such as clustering and functional PCA. This
would allow us to better detail the differences between the
groups. On the other hand, we plan to employ a more
extensive dataset, characterized by more balanced groups B
and G and by higher resolution EEGs, also considering more
than one channel for cortical region.

REFERENCES

[1] Stanislas Dehaene, Nicolas Molko, Laurent Cohen, and Anna J Wil-
son. Arithmetic and the brain. Current Opinion in Neurobiology,
14(2):218–224, 2004.

[2] Charles Thorvald Rasmussen, Roy Allen, and Robert D. Tarte. Hemi-
spheric asymmetries in the cortical evoked potential as a function of
arithmetic computations. Bulletin of the psychonomic society, 10:419–
421, 1977.

[3] Roland H. Grabner, Daniel Ansari, Gernot Reishofer, Elsbeth Stern,
Franz Ebner, and Christa Neuper. Individual differences in math-
ematical competence predict parietal brain activation during mental
calculation. NeuroImage, 38(2):346–356, 2007.

[4] S.M. Rivera, A.L. Reiss, M.A. Eckert, and V. Menon. Developmental
Changes in Mental Arithmetic: Evidence for Increased Functional
Specialization in the Left Inferior Parietal Cortex. Cerebral Cortex,
15(11):1779–1790, 02 2005.

[5] Linda Rueckert, Nicholas Lange, Arnaud Partiot, Ildebrando Appollo-
nio, Irene Litvan, Denis Le Bihan, and Jordan Grafman. Visualizing
cortical activation during mental calculation with functional mri.
NeuroImage, 3(2):97–103, 1996.

[6] Anja Ischebeck, Laura Zamarian, Christian Siedentopf, Florian Kop-
pelstätter, Thomas Benke, Stefan Felber, and Margarete Delazer. How
specifically do we learn? imaging the learning of multiplication and
subtraction. NeuroImage, 30(4):1365–1375, 2006.

[7] Igor Zyma, Sergii Tukaev, Ivan Seleznov, Ken Kiyono, Anton Popov,
Mariia Chernykh, and Oleksii Shpenkov. Electroencephalograms
during mental arithmetic task performance. Data, 4(1), 2019.

[8] Anup Das and Vinod Menon. Causal dynamics and information flow
in parietal-temporal-hippocampal circuits during mental arithmetic
revealed by high-temporal resolution human intracranial eeg. Cortex,
147:24–40, 2022.

[9] Vangelis Sakkalis, Michalis Zervakis, and Sifis Micheloyannis. Signif-
icant eeg features involved in mathematical reasoning: evidence from
wavelet analysis. Brain Topography, 19(1):53–60, 2006.

[10] J. Ramsay, J. Ramsay, B.W. Silverman, Springer Science+Business
Media, and H.O.W.P.M.B.W. Silverman. Functional Data Analysis.
Springer Series in Statistics. Springer, 2005.

[11] J. O. Ramsay and C. J. Dalzell. Some tools for functional data analysis.
Journal of the Royal Statistical Society. Series B (Methodological),
53(3):539–572, 1991.

[12] Francesca Ieva, Anna M Paganoni, Davide Pigoli, and Valeria Vitelli.
Multivariate functional clustering for the morphological analysis of
electrocardiograph curves. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 62(3):401–418, 2013.

[13] Letizia Clementi, Caterina Gregorio, Laura Savaré, Francesca Ieva,
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