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Abstract

We consider the two-dimensional numerical approximation of the fluid-
structure interaction problem over unfitted fluid and structure meshes. In
particular, we consider a method where the fluid mesh is on the background
and fixed, apart at the interface with the moving immersed structure, that
cuts the fluid mesh elements generating polygons of arbitrary shape. The
new idea of this work is to handle the discretization on such polygons by
using the Discontinuous Galerkin method on polyhedral grids (PolyDG),
which has been recently developed for different differential equations and
here adapted for the first time to an heterogeneous problem. We prove a
stability result of the proposed semi-discrete formulation and discuss how
to deal with the partial or total covering of a fluid mesh element due to the
structure movement. We finally present some numerical results with the
aim of showing the effectiveness of the proposed method.

1 Introduction

The numerical solution of the problem arising when an immersed structure in-
teracts with a surrounding fluid is very challenging. This fluid-structure in-
teraction (FSI) problem occurs in many applications, for example in the heart
where cardiac valves interact with blood [50, 73, 83, 86] and in civil engineering
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where the wind affects the stability of bridges [33,88], towers [67], and suspended
cables [28,82].

When the structure displacements are large, as happens for the applications
mentioned above, the classical Arbitrary Lagrangian-Eulerian (ALE) method
[54] becomes unfeasible since it would require at each time step a remeshing of
the computational domain in order to avoid too stretched elements [71]. For
such a reason, other numerical techniques have been developed in order to avoid
remeshing techniques. We refer here to strategies based on a fixed background
mesh for the fluid and on a moving foreground mesh for the structure. Among
them, we mention the Immersed Boundary method [31,32,62,65, 75,79, 80] and
the Fictitious Domain (FD) method [61,65], for example. Another, more recent,
strategy is the Cut-Finite Element method (Cut-FEM), where the weak formu-
lations of the two sub-problems are written at each time step in the physical
computational domains and then glued together by means of suitable mortaring
techniques, usually the Discontinuous Galerkin (DG) method, see, e.g., [38, 74].
Since the fluid problem is solved in an Eulerian framework, the fluid-structure
(FS) interface moves, whereas the fluid background mesh is fixed; therefore, such
an approach requires to handle general (possibly polygonal) elements close to the
FS interface, which are generated by the intersection of the structure boundaries
with the background mesh elements.

In order to deal with general-shaped mesh elements, the eXtended Finite
Elements method (XFEM) has been proposed in [66] for the Poisson problem,
then extended to the FSI problem in [1] for the case of a membrane structure and
in [89] for general thick structures and three-dimensional simulations. The idea
of XFEM is to consider, on the background cut elements, the basis functions of
the original triangle (tetrahedron) and build the solution over the whole original
element, then ignoring it in the portion of the triangle (tetrahedron) covered by
the structure. In particular, in two dimensions, whenever a triangle is cut into
three parts by a thin structure (two uncovered parts within a covered one in
the middle), the XFEM recovers a numerical solution by doubling the degrees
of freedom (dofs) of the original triangle. XFEM is an effective strategy, that
allows to recover optimal convergence for linear approximations of the Poisson
problem [66] and accurate results for FSI [1, 89]. Nevertheless, the extension
and implementation of this formulation for high-order approximations, three-
dimensional configurations, and possibly degenerate mesh elements (very small
angles/interesections) is a hard task. Indeed, at the best of our knowledge,
only first order XFEM have been proposed so far for FSI problems. Moreover,
stability of the formulation is guaranteed only under quite strong regularity
geometric assumptions on the mesh element or by adding a suitable “ghost”
stabilization term [37].

In this paper, we introduce and analyze a new way to handle polygonal fluid
elements generated by the intersection with the moving structure. The idea is
to consider a numerical method to handle directly the polygonal elements. Sev-
eral numerical discretization methods which admit polygonal/polyhedral meshes
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have been proposed within the current literature; here, we mention, for example,
the Composite Finite Elements method [5,63,64], the Mimetic Finite Difference
(MFD) method [4,27,34–36,70], the Polygonal Finite Elements method [84], the
Virtual Element Method (VEM) [3,9,18,24–26,29,30,46], the Hybrid High-Order
(HHO) method [51–53], and the Gradient Schemes [55]. Here, we consider the re-
cently developed Discontinuous Galerkin method on polyhedral grids (PolyDG),
see, e.g., [2,6–8,11,13–15,21–23,41–44,49,60,72,76,87]. In PolyDG the DG Fi-
nite Elements spaces are defined directly over polygonal elements resulting from
the interesection of the meshes. With this strategy, high order accuracy can be
achieved in any space dimension by introducing suitable modal basis functions
directly in the physical frame configuration. The proposed formulation allows
for very general polygonal meshes with possibly degenerate edges and without
any assumption on the number of edges that each polygon can have, thus being
perfectly suited for mesh agglomeration and intersections. Finally, as PolyDG
methods can be seen as the evolution of the classical DG approach, they are
naturally oriented towards 3D scalable implementations. To the best of our
knowledge, this is the first attempt to exploit the flexibility offered by polygonal
grids to efficiently handle problems posed on moving domains or interfaces.

The summary of the paper is as follows. In Sect. 2 we introduce the strong
formulation of the FSI problem, in Sect. 3 we introduce the corresponding
PolyDG approximation. In Sect. 4 we provide a stability result for the semi-
discretized problem, and in Sect. 5 we show several two-dimensional numerical
results aiming at demonstrating the effectiveness of the proposed strategy.

2 Continuous formulations of the fluid-structure in-
teraction problem

In this section, we introduce the continuous problems we are interested in. In
particular, referring to Figure 1, we consider a fluid domain Ωf (t) and a structure
domain Ωs(t), both changing in time, such that Ω = Ωf (t) ∪ Ωs(t) ⊂ R2, being
Σ(t) the fluid-structure interface. We set Γf = ∂Ωf (t) \ Σ(t), Γf 6= ∅, and
Γs = ∂Ωs(t) \Σ(t), Γs 6= ∅ (for simplicity, both supposed not changing in time).
Finally, we denote by n(t) the outward unit normal vector to the fluid domain.

Since the structure problem is solved in a Lagrangian framework, we need to
introduce the reference configuration of the solid domain, which will be denoted
by the superscript .̂ For any t > 0, the material domain Ωs(t) is the image of
Ω̂s by a Lagrangian map L(t) : Ω̂s → Ωs(t). We use the notation ĝ = g ◦ L(t) to
denote in Ω̂s any function g defined in the current solid configuration Ωs(t). On
the contrary, as usual, the fluid problem is written in an Eulerian framework.
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Ωf(t)

Γs

n(t)

Γf

Ωs(t)

Σ(t)

Figure 1: Fluid and structure domains Ωf (t) and Ωs(t), respectively, and fluid-
structure interface Σ(t). Notice that Ωs(t) could be completely immersed in the
fluid domain.

2.1 Strong formulation

Given a final observation time T > 0, the strong formulation of the fluid-
structure interaction problem reads as follows: for each t ∈ (0, T ], find the
fluid velocity u, the fluid pressure p, and the solid displacement d, such that

ρf∂tu−∇ · T f (u, p) = ff in Ωf (t) , (1a)

∇ · u = 0 in Ωf (t) , (1b)

u = 0 on Γf , (1c)

ρs∂ttd̂−∇ · T̂ s(d̂) = f̂ s in Ω̂s, (1d)

d̂ = 0 on Γ̂s, (1e)

u = ∂td on Σ (t) , (1f)

T f (u, p)n = T s(d)n on Σ (t) , (1g)

where (1a)-(1c) are the Stokes equations, (1d)-(1e) are the equations of the
elastodynamics, and (1f)-(1g) are the physical coupling conditions, written in the
current configuration. Moreover, ρf and ρs are the fluid and structure densities,
respectively, ff and f s are two forcing terms, T f (u, p) = −pI + 2µfD(u) is
the fluid Cauchy stress tensor, T s(d) = λs(∇ · d)I + 2µsD(d) is the solid stress

tensor, with D(w) =
1

2
(∇w+∇wT ), µf is the fluid dynamic viscosity, λs, µs > 0

are the Lamé parameters. We have used the following identity to pass from the
Piola-Kirchhoff tensor T̂ s(d̂) to the Cauchy stress tensor T s(d):

T̂ s = JT sF
−T .

Here, J = det(F ), F = ∇x is the deformation tensor, where the gradient is
taken with respect to the reference space coordinates, and x are the points
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coordinates in the current configuration.
Problem (1) is supplemented with the initial conditions u(x, 0) = u0(x),

d(x, 0) = d0(x) and ∂td(x, 0) = v0(x).

Remark 1. Notice that, in this work, we consider the Stokes and the Hooke
linear problems. This simple choice allows us to focus on the novel contribution
of the paper, without adding further technical difficulties due to the presence of
non-linearities. The generalization to the more realistic Navier-Stokes/Finite
Elasticity coupled problem is under investigation.

Remark 2. Notice that in (1c), we have set for the sake of simplicity homo-
geneous Dirichlet conditions for the fluid on the boundary different from the
fluid-structure interface. Of course, in real scenarios, non-homogeneous and/or
Neumann conditions should be considered for the fluid on Γf . This is the case
of the numerical results reported in Sect. 4.

2.2 Weak formulation

We consider a penalty weak formulation for the Stokes problem (1a)-(1c). In par-
ticular, the incompressibility constraint (1b) is enforced by penalization rather
than by means of a Lagrange multiplier (the pressure). Thus, the pressure p
disappears in the weak formulation.

We preliminary introduce the spaces

V f (t) =
{
v ∈

[
H1(Ωf (t))

]2
,v|Γf

= 0
}

V s =

{
ŵ ∈

[
H1(Ω̂s)

]2
, ŵ|Γ̂s

= 0

}
.

Then, the weak formulation of problem (1) reads as follows: for t ∈ (0, T ], find
(u(t), d̂(t)) ∈ V f (t)× V s such that u|Σ = ∂td|Σ, and

ρf (∂tu,v)Ωf
+af (u,v) +ρs(∂ttd̂, ŵ)

Ω̂s
+as(d̂, ŵ) = (ff ,v)Ωf

+ (f̂ s, ŵ)
Ω̂s
, (2)

for all (v(t), ŵ) ∈ V f (t) × V s such that v|Σ = w|Σ. We have denoted by
(·, ·)Z the L2-inner products over the domain Z. In (2), the bilinear forms
af : V f (t)× V f (t)→ R and as : V s × V s → R are defined as

af (u,v) =
(
T̃ f (u),∇v

)
Ωf

= λf (∇ · u,∇ · v)Ωf
+ 2µf (D(u),D(v))Ωf

,

as

(
d̂, ŵ

)
=
(
T̂ s(d̂),∇ŵ

)
Ω̂s

= λs

(
∇ · d̂,∇ · ŵ

)
Ω̂s

+ 2µs

(
D(d̂),D(ŵ)

)
Ω̂s

,

(3)
respectively, where T̃ f (u) = λf (∇ · u)I + 2µfD(u). The new parameter λf
plays the role of the penalty parameter for the incompressibility constraint.
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Remark 3. Notice that in (2) we have considered a penalty formulation in-
stead of the classical saddle-point one [85]. This choice has been motivated by
implementation issues, since in such a way the Stokes and Hooke problems are
formulated by means of similar bilinear forms. It has been proven in [85] that the
continuous penalized velocity solution converges to the one obtained by means of
the saddle point formulation. Moreover, the pressure can be estimated a poste-
riori [47], see also [69]. It is worth to remark that the specific features of the
proposed formulation can be easily extended to the case where the incompress-
ibility constraint is enforced by means of a Lagrange multiplier.

Notice that, owing to the following relation (used to estimate the pressure a
posteriori)

p = lim
λf→∞

λf∇ · u,

cf. [47], we have
T̃ f (u) = T f (u, p) for λf →∞, (4)

where, with an abuse of notation, we have denoted by u both the solutions of
the penalty and Lagrange multiplier formulations. Thus, (4) ensures that the
dynamic interface condition (1g) is enforced also in (2) in the limit λf →∞.

3 Discontinuous Galerkin method on polygonal grids

In this section, we introduce the discretization of problem (2) by means of
PolyDG methods for the space discretization coupled with a Backward Dif-
ference Formula for the time integration.

3.1 Space discretization

To ease the presentation, we assume that Ωf (t), Ωs(t) and Σ(t) are polygonal
domains with Lipschitz boundaries. We denote by Ts,h(t) a solid mesh covering

the domain Ωs(t) and fitted to ∂Ωs(t) and by T̂s,h the mesh corrisponding to

the reference configuration Ω̂s. Accordingly, we denote by Th the background
mesh, covering the whole domain Ω = Ωf (t) ∪ Ωs(t) and fitted to Γf , but in
general not to Σ(t) and Γs. Notice that Ts,h(t) changes with time, whereas Th
is fixed. We indicate with h > 0 the space discretization parameter which is a
function that may vary among the elements K of the meshes and between the
background and structure meshes. As result, the solid mesh Ts,h(t) overlaps the
background mesh Th, see Figure 2, left. Note that both Th and Ts,h(t) can be
made of arbitrarily shaped, possibly non-convex, polygons. Moreover, we define
the mesh T̃h(t) composed of the elements of the background mesh Th that are
intersected by foreground structure mesh Ts,h(t), i.e.

T̃h(t) = {K : K ∈ Th(t),K ∩ Ts,h(t) 6= ∅}.
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Figure 2: Left: Background mesh Th; Middle: The structure mesh Ts,h(t) over-
laps the background mesh Th. Right: Fluid mesh Tf,h(t) obtained by cutting
the elements of the background mesh Th. Notice the polygons generated in the
fluid mesh T 2

f,h(t).

K ∈ T 2
f,h(t)

K ∈ T 2
f,h(t)

K ∈ T 2
f,h(t)

K ∈ T 2
f,h(t)

K ∈ T 2
f,h(t)

Figure 3: Possible geometric intersections between the background mesh Th and
the solid mesh Ts,h(t) (in grey): examples of the resulting chopped elements
K ∈ T 2

f,h(t) are depicted in blue.

7



We introduce now the fluid mesh Tf,h(t) obtained by chopping the elements
of the background mesh Th as a result of the intersection with the foreground
structure mesh Ts,h(t) . More precisely, we set Tf,h(t) = T 1

f,h(t) ∪ T 2
f,h(t), where

T 1
f,h(t) = {K ∈ Th : K ∩Ks = ∅, ∀Ks ∈ Ts,h(t)},
T 2
f,h(t) = {Kf ⊂ Ωf (t) : Kf = K \

⋃
Ks∈Ts,h(t)
Ks∩K 6=∅

Ks, for K ∈ T̃h(t)},

see Figure 2, right, and Figure 3. Notice that the fluid elements belonging to
T 2
f,h(t) are in general polygons even in the case of original triangular background

and solid meshes (see Figure 2, right, and Figure 3) and they can be non-convex
and with possibly degenerate edges.

Remark 4. According to [45], see also [8], very general decompositions can be
allowed in the framework of Discontinuous Galerkin discretizations, like the one
we will address. For example no limitations are imposed on either the relative
size of a face of an element compared to its diameter, nor on the total number
of faces an element could have.

We introduce now the Discontinuous Galerkin approximation of problem (2)
on polygonal meshes (PolyDG). Given a positive integer l, to each Ti,h, i = {f, s},
we associate the corresponding DG Finite Elements space defined as

V l
f,h(t) = {v(t) ∈ [L2(Ωf (t))]2 : v|K ∈ [Pl(K)]2, ∀K ∈ Tf,h(t)},

V l
s,h = {v ∈ [L2(Ω̂s)]

2 : v|K ∈ [Pl(K)]2, ∀K ∈ T̂s,h},
(5)

where Pl(K) denotes the space of polynomials on K of total degree at most l.
We remark that the fluid discrete space and its elements are functions of time
since Ωf changes in time, whereas the structure discrete space and its elements

do not change in time since they refer to the reference configuration Ω̂s.

Remark 5. Notice that in the previous definitions of the discrete spaces V l
f,h(t)

and V l
s,h we have assumed, for the sake of notation, that l is constant over all

mesh elements. Element-wise varying polynomial approximation degrees can be
considered as well, under suitable local-bounded variation assumptions.

An interior face Fi (notice that since we are addressing the case d = 2,
“face” means “edge”) of Ti,h(t), i = {f, s}, is defined as the (non–empty) interior

of ∂Ki
+ ∩ ∂Ki

−
, where K±i are two adjacent elements of Ti,h(t), i = {f, s}.

Similarly, a boundary face of Ti,h(t), i = {f, s}, is defined as the (non-empty)
interior of ∂Ki ∩ Γi(t), where Ki is an element of Ti,h(t), i = {f, s}. We collect
the interior and boundary faces Fi in the sets Fi,h(t), i = {f, s}. Notice that, by
construction, any face Fi ∈ Fi,h(t), i = {f, s}, is not contained in Σ. The faces
FΣ belonging to Σ(t) are collected in the set FΣ,h(t).
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Next, following the notation introduced in [16], we introduce suitable trace
operators, cf also [17]. Let F be an interior face belong to one of Fi,h(t), i = {f, s,Σ},
shared by two elements K±, and let n± denote the normal unit vectors on
F pointing outward K±, respectively. For (regular enough) vector-valued and
symmetric tensor-valued functions v and T , respectively, we define the weighted
average and jump operators as

{T } =
1

2

(
T+n+ + T−n−

)
, [[v]] = v+ � n+ + v− � n−,

where v± and T± denote the traces of v and T on F taken within the interior of
K±, respectively, and where v�n = (vnT +nvT )/2. Notice that [[v]] is a sym-
metric tensor-valued function. On a boundary face F , due to the homogeneous
Dirichlet conditions, we set analogously

{T } = Tn, [[v]] = v � n.

The semi-discrete PolyDG approximation to (2) reads as follows: Given
δ ∈ [0, 1],ff ∈ [L2(Ωf )]d, and f s ∈ [L2(Ωs)]

d, for any t ∈ (0, T ], find (uh(t), d̂h(t)) ∈ V l
f,h(t)×V l

s,h

such that

Af,h (uh,vh) +As,h

(
d̂h, ŵh

)
+AΣ,h(uh,dh;vh,wh) = F (vh, ŵh), (6)

for all (vh, ŵh) ∈ V l
f,h(t)× V l

s,h. Here, we have set

Af,h (uh,vh) = ρf (∂tuh,vh)Ωf
+ af (uh,vh)−

({
T̃ f (uh)

}
, [[vh]]

)
Ff,h

−
(

[[uh]],
{
T̃ f (vh)

})
Ff,h

+ (σf [[uh]], [[vh]])Ff,h
, (7a)

As,h

(
d̂h, ŵh

)
= ρs

(
∂ttd̂h, ŵh

)
Ω̂s

+ as

(
d̂h, ŵh

)
−
({

T̂ s(d̂h)
}
, [[ŵh]]

)
F̂s,h

−
(

[[d̂h]],
{
T̂ s(ŵh)

})
F̂s,h

+
(
σ̂s[[d̂h]], [[ŵh]]

)
F̂s,h

, (7b)

AΣ,h(uh,dh;vh,wh) = −
(
δT̃ f (uh)n + (1− δ)T s(dh)n,vh −wh

)
FΣ,h

−
(
uh − ∂tdh, δT̃ f (vh)n + (1− δ)T s(wh)n

)
FΣ,h

+ (σΣ(uh − ∂tdh),vh −wh)FΣ,h
,

(7c)

F (vh, ŵh) =
(
ff ,vh

)
Ωf

+ (f s, ŵh)
Ω̂s
,

with af (·, ·) and as(·, ·) defined in (3). In (6), we have denoted by σΣ ∈ L∞(Fσ,h), σf ∈ L∞(Ff,h)

and σ̂s ∈ L∞(F̂s,h) the three positive penalty functions related to the face be-
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longing to Fi,h, i = {Σ, f, s}, respectively. Their definition is given by

σf = γf max
K+,K−

{
l2C̄f,K
hK

}
, F = ∂K+

⋂
∂K− ∈ Ff,h,

σ̂s = γs max
K+,K−

{
l2C̄s,K
hK

}
, F = ∂K+

⋂
∂K− ∈ F̂s,h,

σΣ = γΣ max
K+,K−

{
l2

hK

(
δC̄f,K + (1− δ)C̄s,K

)}
, F = ∂K+

⋂
∂K− ∈ FΣ,h,

(8)
hK being the mesh size of the element K, C̄f,K = ‖Cf |K‖l2 , C̄s,K = ‖Cs|K‖l2 ,

with Cf and Cs the fourth order elastic tensors such that T̃ f (u) = CfD(u) and
T s(d) = CsD(d), which are supposed to be piecewise constant over the mesh.
Moreover, γΣ, γf and γs are positive constants that will be chosen later on.
In the form AΣ,h(·, ·; ·, ·) in (6) we have the DG terms (consistency, symmetry,
and stability terms) related to the FS interface Σ(t) which guarantee the weak
imposition of the physical interface conditions (1f)-(1g), whereas in the forms
Af,h(·, ·) and As,h(·, ·) we have the DG terms in the fluid and structure domains
separately. Notice also that at the fluid-structure interface Σ we have used a
weighted average DG formulation with parameter δ ∈ [0, 1], see (6c).

We notice that the idea of using a DG mortaring to weakly impose the
continuity conditions at the fluid-structure interface was first introduced, for
the case of fitted meshes, in [39,40].

3.2 Stability of the semi-discrete problem

In this section, we prove a stability result of the semi-discrete formulation (5).
To this aim, we define the following norms:

‖ŵh‖2s,h =
∥∥∥ρ1/2

s ∂tŵh

∥∥∥2

Ω̂s

+ ‖ŵh‖2DG,s ,

‖(vh,wh)‖2Σ,h =
∥∥∥σ1/2

Σ (vh − ∂twh)
∥∥∥2

FΣ,h

,

‖vh‖2DG,f = af (vh,vh) +
∥∥∥σ1/2

f [[vh]]
∥∥∥2

Ff,h

,

‖ŵh‖2DG,s = as (ŵh, ŵh) +
∥∥∥σ̂1/2

s [[ŵh]]
∥∥∥2

F̂s,h

.

(9)

We consider in what follows some preliminary results useful to prove the final
estimate.

The first result regards an inverse estimate which is valid on polygons, is
sharp with respect to facet degeneration, and holds without any limitation on the
number of edges that an element can have. To this aim, taking as a reference [41],
we make first the following assumption on the mesh.

Assumption 1. For any mesh element K, there exists a set of non-overlapping
triangles Ti, i = 1, . . . , nK , contained in K, such that for any edge F ⊂ ∂K, it
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holds that F = ∂K ∩ ∂Ti for some i, and the diameter hK of K can be bounded
by

hK .
|Ti|
|F |

, ∀ l = 1, . . . , nK .

The hidden constant is independent of the discretization parameters, the number
of edges of the element K, and the edge measures.

Under Assumption 1, the following inverse estimate holds true for a tensorial
function S which is a piecewise polynomial over the mesh:

‖S‖∂K .
l

h
1/2
K

‖S‖K , (10)

cf [41].

Lemma 1. If the penalty parameter γf is large enough and Assumption 1 holds
true for any element K ∈ Tf,h, then there exists a positive constant αf such that

Af,h(uh,uh) &
1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ αf ‖uh‖2DG,f . (11)

Proof. By using the definition of Af,h(·, ·), cf (6a), and the Cauchy-Schwarz
inequality, we obtain

Af,h (uh,uh) = ρf (∂tuh,uh)Ωf
+ af (uh,uh)− 2

({
T̃ f (uh)

}
, [[uh]]

)
Ff,h

+ (σf [[uh]], [[uh]])Ff,h

(12)

=
1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f − 2
({

T̃ f (uh)
}
, [[uh]]

)
Ff,h

≥ 1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f − 2
∥∥∥σ−1/2

f

{
T̃ f (uh)

}∥∥∥
Ff,h

∥∥∥σ1/2
f [[uh]]

∥∥∥
Ff,h

.

Next, noticing that the faces belonging to Ff,h are a subset of all the faces in

Tf,h, and that T̃ f (uh) is a piecewise polynomial over Tf,h, we have from (9):

∥∥∥σ−1/2
f

{
T̃ f (uh)

}∥∥∥
Ff,h

.

 ∑
K∈Tf,h

∥∥∥σ−1/2
f T̃ f (uh)

∥∥∥2

∂K

1/2

.

 ∑
K∈Tf,h

σ−1
f

l2

hK

∥∥∥T̃ f (uh)
∥∥∥2

K

1/2

.

(13)
Since T̃ f (u) = CfD(u), we have also∥∥∥T̃ f (uh)

∥∥∥
K
≤ C̄1/2

f

(
T̃ f (uh),D(uh)

)1/2

K
. (14)

11



Now, putting together (11),(12),(13), and remembering the definition of σf in
(7) and of the DG norm in (8), we obtain

Af,h (uh,uh) &
1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f

− 2

 ∑
k∈Tf,h

σ−1
f

l2

hK
C̄f
(
T̃ f (uh),D(uh)

)
K

1/2 ∥∥∥σ1/2
f [[uh]]

∥∥∥
Ff,h

≥ 1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f

− 2γ
−1/2
f

 ∑
k∈Tf,h

hK
l2 C̄f

l2

hK
C̄f
(
T̃ f (uh),D(uh)

)
K

1/2 ∥∥∥σ1/2
f [[uh]]

∥∥∥
Ff,h

=
1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f − 2γ
−1/2
f a

1/2
f (uh,uh)

∥∥∥σ1/2
f [[uh]]

∥∥∥
Ff,h

≥ 1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ ‖uh‖2DG,f − γ
−1/2
f af (uh,uh)− γ−1/2

f

∥∥∥σ1/2
f [[uh]]

∥∥∥2

Ff,h

,

where in the last step we have used the Young’s inequality. Now, taking γf large

enough, we have that (10) holds true with αf = 1 − γ−1/2
f ≥ αf > 0, where αf

is a positive constant bounded away from zero.

Lemma 2. The following equality holds true:

As,h

(
d̂h, ∂td̂h

)
=

1

2

d

dt

(∥∥∥d̂h∥∥∥2

s,h
− 2

({
T̂ s(d̂h)

}
, [[d̂h]]

)
F̂s,h

)
. (15)

Proof. The thesis easily follows by taking w = ∂td in the definition of As,h(·, ·)
in (6b), by remembering the definition of the norms in (8), and by noticing that
by linearity({

T̂ s(d̂h)
}
, [[∂td̂h]]

)
F̂s,h

+
(

[[d̂h]],
{
T̂ s(∂td̂h)

})
F̂s,h

=
d

dt

(({
T̂ s(d̂h)

}
, [[d̂h]]

)
F̂s,h

)
.

Lemma 3. If Assumption 1 holds true for any element K ∈ Ts,h, then the
following inequalities hold true for any function ŵh ∈ xxV l

s,h:

‖ŵh‖2s,h − 2
({

T̂ s(ŵh)
}
, [[ŵh]]

)
F̂s,h

& ‖ŵh‖2s,h ,

‖ŵh‖2s,h − 2
({

T̂ s(ŵh)
}
, [[ŵh]]

)
F̂s,h

. ‖ŵh‖2s,h ,
(16)
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where the first bound is valid provided that γs is large enough.

Proof. For the proof we refer the reader to [10,12,13].

Lemma 4. Set δ = 1. Then, if γΣ is large enough and Assumption 1 holds true
for any element K ∈ Tf,h, there exists a positive constant αΣ such that:

AΣ,h(uh,dh;uh, ∂tdh) & αΣ ‖(uh,dh)‖2Σ,h − γ
−1/2
Σ af (uh,uh). (17)

Proof. From the definition of AΣ,h in (6c) and taking vh = uh and wh = ∂tdh,
we obtain

AΣ,h(uh,dh;uh, ∂tdh) = −
(
δT̃ f (uh)n + (1− δ)T s(dh)n,uh − ∂tdh

)
FΣ,h

−
(
uh − ∂tdh, δT̃ f (uh)n + (1− δ)T s(∂tdh)n

)
FΣ,h

+(σΣ(uh − ∂tdh),uh − ∂tdh)FΣ,h
.

Now, from the definition of the norms in (8) and by taking δ = 1, we obtain

AΣ,h(uh,dh;uh, ∂tdh) = ‖(uh,dh)‖2Σ,h − 2
(
T̃ f (uh)n,uh − ∂tdh

)
FΣ,h

.

We notice that we have a result analogous to (12), since again the faces belonging
to FΣ,h are a subset of all the faces in Tf,h:

∥∥∥σ−1/2
Σ T̃ f (uh)

∥∥∥
FΣ,h

.

 ∑
k∈Tf,h

∥∥∥σ−1/2
Σ T̃ f (uh)

∥∥∥2

∂K

1/2

.

 ∑
k∈Tf,h

σ−1
Σ

l2

hK

∥∥∥T̃ f (uh)
∥∥∥2

K

1/2

.

Now, proceeding in a similar way to Lemma 1, we obtain the thesis with

αΣ =
(

1− γ−1/2
Σ

)
≥ αΣ > 0, where αΣ is a positive constant bounded away

from zero.

Finally, we can prove the main result of this section.

Theorem 1. Set in (5) δ = 1, and define

αf,Σ = αf − γ
−1/2
Σ ≥ αf,Σ > 0, (18)

where αf,Σ is a positive constant bounded away from zero. Then, if γf , γs, γΣ are
large enough, Assumption 1 holds true for any element K ∈ Tf,h

⋃
Ts,h, ff = 0,

and f s = 0, we have that the following stability bound holds true:∥∥∥ρ1/2
f uh(t)

∥∥∥2

Ωf

+ 2αf,Σ

∫ t

0
‖uh(s)‖2DG,f ds+

∥∥∥d̂h(t)
∥∥∥2

s,h

+2αΣ

∫ t

0
‖(uh(s),dh(s))‖2Σ,h ds .

∥∥∥ρ1/2
f uh(0)

∥∥∥2

Ωf

+
∥∥∥d̂h(0)

∥∥∥2

s,h
,

where αΣ is the constant of Lemma 4.
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Proof. We start by noticing that taking vh = uh, ŵh = ∂td̂h and ff = f s = 0
in (5), we obtain

Af,h (uh,uh) +As,h

(
d̂h, ∂td̂h

)
+AΣ,h(uh,dh;uh, ∂tdh) = 0.

Now, using (10),(14),(16), and setting δ = 1, we obtain

1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+ αf ‖uh‖2DG,f +
1

2

d

dt

(∥∥∥d̂h∥∥∥2

s,h
− 2

({
T̂ s(d̂h)

}
, [[d̂h]]

)
F̂s,h

)
+αΣ ‖(uh,dh)‖2Σ,h − γ

−1/2
Σ af (uh,uh) . 0.

Now, if γΣ is large enough, we have from (17) that αf,Σ ≥ αf,Σ > 0 for suitable
positive constant αf,Σ bounded away from zero, and from the previous inequality
we obtain

1

2

d

dt

∥∥∥ρ1/2
f uh

∥∥∥2

Ωf

+αf,Σ ‖uh‖2DG,f+
1

2

d

dt

(∥∥∥d̂h∥∥∥2

s,h
− 2

({
T̂ s(d̂h)

}
, [[d̂h]]

)
F̂s,h

)
+αΣ ‖(uh,dh)‖2Σ,h . 0.

Integrating in time between 0 and t, we obtain∥∥∥ρ1/2
f uh(t)

∥∥∥2

Ωf

+2αf,Σ

∫ t

0
‖uh(s)‖2DG,f ds+

∥∥∥d̂h(t)
∥∥∥2

s,h
−2
({

T̂ s(d̂h(t))
}
, [[d̂h(t)]]

)
F̂s,h

+2αΣ

∫ t

0
‖(uh(s),dh(s))‖2Σ,h ds .

∥∥∥ρ1/2
f uh(0)

∥∥∥2

Ωf

+
∥∥∥d̂h(0)

∥∥∥2

s,h
−2
({

T̂ s(d̂h(0))
}
, [[d̂h(0)]]

)
F̂s,h

.

By using the inequalities (15), the thesis follows.

3.3 Time discretization and treatment of the geometric coupling

For the time discretization, we consider a Backward Difference Formula of order p
(BDFp) for the fluid and for the structure sub-problems. One major issue arising
after time discretization is the treatment of the fluid domain. Indeed, due to
the Eulerian framework, the fluid problem at time tn = n∆t, n = 0, 1, 2, . . .,
∆t being the time discretization parameter, should be solved in the domain
Ωn
f ' Ωf (tn). This introduces a source of non-linearity that needs to be properly

managed. Classical choices are the implicit treatment obtained by means of sub-
iterations (see, e.g., [57, 59, 68, 81]) and an inexact treatment based on a small
fixed number of sub-iterations [77, 78]. Here, we considered instead an explicit
treatment based on extrapolating the fluid domain position from the previous
time steps [20,56]. In particular, according to the time discretization scheme, we
consider Ωn

f ' Ω∗f , where Ω∗f is a suitable p-th order extrapolation of previous

domain Ωm
f , m = n − 1, n − 2, . . ., and Ωm

f = Ω \ Ωm
s = Ω \

(
Lmh

(
Ω̂s

))
, with

Lmh = I
Ω̂s

+ d̂mh the discrete Lagrangian map. Thus, at time step tn the FSI
problem is solved by considering Ω∗f as an approximation of Ωn

f .
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We notice that the fluid velocity at previous time steps appearing in the
terms resulting from time discretization are not defined on Ω∗f and then do not

belong to the same space of the test functions vh (remember that V l
f,h changes in

time, according to the mesh movement). Thus, these terms should be properly
defined in the new computational domain Ω∗f in order to be employed in the
discrete formulation. Here we follow the idea proposed in [89]. In particular,
whenever a fluid element at the previous time step tn−1 was partially covered
by the structure, we obtain the solution at time tn by extending it to the whole
element itself by means of an extrapolation of order l (the space discretization
order). In the case where the element was completely covered by the structure
at time tn−1, we extend in this element the numerical solution of a selected
neighbour. For further details see [89].

4 Numerical results

In this section we present some numerical results to assess the practical perfor-
mance of the proposed formulation, which has been implemented in Matlab. In
particular, the DG spaces (3.1) are built in practice by using a modal expansion
and based on employing a ”bounding box” technique as described in [44], see
also [11].

We consider the computational domain depicted in Figure 4, representing a
thick structure immersed in a fluid. The fluid domain is a rectangle of size equal
to 0.7 cm× 0.5 cm, whereas the size of the structure domain is 0.5 cm× 0.03 cm,
whose bottom/left corner is placed in (0.1, 0.235) cm.

Figure 4: Fluid domain Ωf and solid domain Ωs (in grey) at the reference
configuration used in the numerical experiments.

For the fluid sub-problem, we prescribe homogeneous Neumann conditions on
Γtop and Γbottom and homogeneous Dirichlet conditions on Γl, and set ff = 0.
For the structure problem, we prescribe homogeneous Dirichlet conditions on
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Γwalls (fixed boundaries) and we set

f s (t) =

{
100 ĵ g/(cm2s2) if t ∈ (0, 0.2) s,

0 g/(cm2s2) if t ∈ [0.2, T ] s,

where ĵ = (0, 1) and T = 0.5 s. The other two portions of the structure bound-
aries coincide with the fluid-structure interface Σ. Thus, we expect to have an
oscillation of the immersed structure along the y direction driven by the inter-
action with the surrounding fluid.

We use the following physical parameters: ρf = 1 g/cm3, λf = 103 g/(cms), µf = 0.035 g/(cms),
ρs = 0.1 g/cm3, λs = 310Pa, µs = 34Pa. Moreover, we set h ' 0.0125 cm cor-
responding to about 5.8·103 elements for the fluid mesh, while we set h ' 0.0083 cm
corresponding to about 500 elements for the structure mesh. In Figure 5, we
report a zoom of the meshes close to the fluid-structure interface. We notice the
non-conformity of the two meshes and the arbitrary shapes of the fluid mesh
elements. Notice also the very small dimension of some fluid faces compared to
the diameter of the corresponding element, that however does not compromise
the stability of the numerical solutions. The time discretization parameter is

Figure 5: Left: zoom on the fluid and structure mesh (delimited by the red line).
Right: further zoom inside the yellow box. A small fluid element (blue) appears
near the immersed structure.

∆t = 0.001 s. As for the penalty parameters in (7), we set γΣ = γf = γs = 10.
In (5)-(6c), we set δ = 1, that is, in accordance with the stability result in The-
orem 1, we unbalance the average operator at the interface towards the fluid
problem, see also [38]. We also set p = l = 3, where l is the polynomial approx-
imation degree and p is the time discretization order. Thus, referring to Sect.
3.3, we have used the following extrapolation for the fluid domain Ωn

f :

Ω∗f = 3Ωn−1
f − 3Ωn−2

f + Ωn−3
f .

The linear system arising at each time step after time discretization of (5) and
corresponding to the proposed PolyDG discretization has been solved monolith-
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ically, thus avoiding the well-known added mass effect which heavily influences
the convergence of partitioned schemes when the fluid density is comparable with
(or even greater than) the structure one [19,48,58], as happens in our numerical
experiments.

In Figure 6, we report the fluid velocity field and the displacement of the
structure at five different time instants. From these results we observe the ability
of our scheme to reproduce the structure dynamics.

In Figure 7 we report for three different time steps the evolution of the fluid
mesh for p = 3. We observe in yellow a triangle which is initially uncovered,
then cut by the structure mesh, and finally uncovered again due to the large
structure displacement. To emphasize this scenario, we have used a coarser fluid
mesh. To numerically manage this, we have implemented the strategy proposed
in [89] and briefly described in Sect. 3.3.
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Figure 6: Fluid velocity (in cm/s) (left) and structure displacement (in cm)
(right) at different observation times. From top to bottom: t = 0.1 s, t = 0.2 s,
t = 0.3 s, t = 0.4 s and t = 0.5 s. l = p = 3.
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Figure 7: Fluid mesh evolution at different observation times. Top: t = 0.05 s;
middle: t = 0.15 s; bottom: t = 0.21 s. Colours represent the fluid velocity
magnitude. l = p = 3.
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