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Abstract

The abundance of functional observations in scientific endeavors
has led to a significant development in tools for functional data anal-
ysis (FDA). This kind of data comes with several challenges: infinite-
dimensionality of function spaces, observation noise, and so on. How-
ever, there is another interesting phenomena that creates problems in
FDA. The functional data often comes with lateral displacements/de-
formations in curves, a phenomenon which is different from the height
or amplitude variability and is termed phase variation. The presence
of phase variability artificially often inflates data variance, blurs un-
derlying data structures and distorts principal components. While the
separation and/or removal of phase from amplitude data is desirable,
this is a difficult problem. In particular, a commonly-used alignment
procedure, based on minimizing the L2 norm between functions, does
not provide satisfactory results. In this paper we motivate the im-
portance of dealing with the phase variability and summarize several
current ideas for separating phase and amplitude components. These
approaches differ in: (1) the definition and mathematical representa-
tion of phase variability, (2) the objective functions that are used in
functional data alignment, and (3) the algorithmic tools for solving es-
timation/optimization problems. We use simple examples to illustrate
various approaches and to provide useful contrast between them.
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1 Introduction

1.1 A first look at phase variation in functional data

Experimental units of data that are distributed over lines and areas, known
as functional data, are best represented as curves and surfaces, respectively;
and we expect that these will vary in height over any particular point. But
we often notice that the continuous substrate of the data seems itself to be
transformable, and that these transformations vary across functional obser-
vations.

Figure 1 displays four peaks for each of four samples of wines in the
part of the nuclear magnetic resonance (NMR) spectrum corresponding to
ethanol. Two of these wines are red, one is white, and one is a rosé. We
notice that most of the variation across these four samples is due to the peaks
of the white and rosé wines being displaced to the right relative to those for
the red wines. It is known that the pH level in a solution has this effect
on the location of the couplets, triplets and m-tuplets that NMR generates;
and also that red wines have pH’s from 3.3 to 3.5, while white pH’s are in
the range 3.0-3.3. Moreover, the effects of pH and other factors are known
to vary from one location in the spectrum to another, with displacements in
opposing directions being not unusual.

The functional data analysis (FDA) literature refers to lateral displace-
ments in curve features as phase variation, as opposed to amplitude variation
in curve height. As in music, we imagine that time can be compressed or
stretched over different intervals in a single performance. Consequently,
we distinguish between measured clock time and related but different time
scales. Relative to human growth time, for example, puberty for girls occurs
on average at the age of 11.7 years; but hormonal and other physiological
factors shift this age forward and backwards to the variable clock times that
parents actually see.

Few time-varying events are more important than the weather. Fig-
ure 2 allows us to explore phase variation in Montreal’s daily temperature
variation over three winters, winter being the most dynamic period in the
Canadian climate year. We see here several important markers of phase
variation. There are two minimum temperatures in most winters, the first
positioned around January 15; and the January thaw that separates them
typically arrives on January 25. We notice, too, the increased volatility in
temperature in the two months in the dead of winter. The two horizontal
lines mark temperatures of great importance to Canada’s economy. The five
degree Celsius threshold is the point at which cash crops in the Canadian
prairies germinate, and their total growth depends on, in addition to pre-
cipitation, the total number of degrees above this threshold prior to harvest.
Minus seven degrees is the threshold below which ice has enough structural
integrity to support winter river crossings and year-round ice dams around
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Figure 1: Circles correspond to intensities over an ethanol region of the
NMR spectrum for two typical red wines, and asterisks indicate a white and
a rosé. The light solid lines are smooth fits of the data using order 6 B-spline
basis functions with a knot at every sampling and a light penalty (λ = 104)
on the fourth derivative. The heavy dashed line is the mean intensity across
31 reds, 7 whites and 2 rosés. The mean has a far different shape from the
quite similar shape of all the data curves, due to registration issues.
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Figure 2: Temperature variation in Montreal, Canada, over three winters.
The solid curve is a smooth of the daily min/max averages, which are shown
as dots. The dashed line is a strictly periodic smooth of the data over the
years 1960 to 1994. The vertical dotted lines indicate the “orbital” year
boundaries separated by 365.25 days. The upper dashed horizontal line is
the temperature at which growth begins for most crops on the prairies; and
the lower dashed line is the temperature below which ice is structurally
sound. Note strong variation from year to year.

tailing ponds for the many mines in the north. Global warming is altering
the dates at which these thresholds are crossed. The small plateaus in the
spring and fall mark out the arrival and departure of snow, respectively. We
see that winter arrived in both 1988 and 1989 particularly early, and with
an intense cold snap in 1989, while the 1987 winter was typical in its timing.
Summer phase variation, by contrast, seems small. Predicting phase varia-
tion is of great importance in weather prediction, crop management and far
northern transportation.

Once recognized, one sees phase variation everywhere. Parents see chil-
dren reaching puberty over a wide range of ages, and perhaps wonder if
there is some connection between the timing of the pubertal growth spurt
and adult height. Growth implies positive change, and Figure 3 displays the
growth of ten girls in the Berkeley growth study (Tuddenham and Snyder
(1954)) as the positive first derivative of height in the top panel, as well as
the acceleration of height or derivative of growth in the bottom panel. Mu-
sicians alter the timing of notes in subtle ways to create tension and define
mood, achieving in this way their unique auditory signature as performers.
Golfers and baseball players, on the other hand, tend to find phase variation
in their swings to be an impediment to fine control over amplitude variation,
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Figure 3: The top panel plots the growth, understood as the first derivative
of height, of ten girls, and the bottom panel contains the corresponding
height-acceleration or growth-derivative curves. The dashed curve in both
plots is the cross-sectional mean. Both these plots indicate both phase and
amplitude variability.

and train to the point where it is nearly eliminated.

1.2 Clock time, system time and the time-warping function

We can articulate the concept of phase variation by distinguishing between
clock time s and system time t. That is, we envisage the spectra of wines,
the weather and children as evolving over their respective continua at vari-
able rates determined by processes that we may at least partially understand
and would like to know more about. Consequently, when large-scale phase
variation is compared to the clock time, defined these days in terms of the
number of oscillations of the cesium atom, we envisage a functional relation-
ship s = h(t) that can vary from one wine type to another, over successive
winters, and across children even within the same family. However, the
system times are defined so that all girls will reach puberty at the same age.

In most cases, we can expect that the mapping h, often called the time
warping function, will be smooth and strictly increasing, two properties
captured in the term diffeomorphism. In other words, we require that the
inverse function value h−1(s) exists everywhere in the support of the func-
tional data since we need to use t = h−1(s) to align a feature such as the
pubertal growth spurt across multiple curves. As statisticians, we look for
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ways to estimate the h’s associated with different units of data distributed
over the base continuum, as well as ways of using discrete and continuous
covariate observations to explain and predict them.

Other conditions such as specified boundary behavior are added as makes
sense for the context at hand. For example, the time taken to produce a
sample of handwriting will vary from replication to replication, so that hi
may map, say, the interval [0, T0] into the interval [0, Ti] where T0 is a fixed
template time. But if the observation is also supposed to reflect when the
handwriting event took place, then simple shifts, hi(t) = t+ δi, will provide
a better model. If the process under study may reasonably be expected to
have one or more derivatives, then the chain rule requires that h, too, be
differentiable to the same extent. In any case it seems unlikely that in many
real-world applications the problem constraints will allow for sharp jumps
in h, so that smoothness can be added to monotonicity as a property.

The following single-parameter expression for h mapping [0, T ] into itself
serves as an illustration, and is often useful: for β ̸= 0,

h(t|β) = T

[
eβt − 1

eβT − 1

]
and h−1(s|β) = 1

β
log

[
s(eβT − 1) + T

T

]
. (1)

The expression converges to the identity warp h(t) = t as β → 0. This
model, taken from Kneip and Ramsay (2008), can also be derived from a
later equation (Eqn. 10) by setting the function W (t) = βt.

Some warping functions corresponding to early and late growth spurts
are shown in Figure 4. The warping function (of the type given in Eqn. 1)
in each right panel maps pubertal growth spurt on the growth(system) time
scale into the clock or observed time scale, as indicated by the zero crossing
of the growth derivative function in the left panel, i.e. the peak of the spurt,
as shown by a circle. The early pubertal spurt in the top panel is modelled
using an h which moves quickly through early growth phases relative to clock
time (i.e. curves downwards) so as to produce the early clock time of about
nine years, whereas the bottom panel is better modelled with an upwards
curving h that reflects slower transition through early growth phases to reach
the clock time of the late growth spurt of about 14 years.

1.3 The problems that come with ignoring phase variation

The presence of phase variation can play havoc with classical data analyses
that are designed for data structures without phase changes. The heavy
dashed line in Figure 1 is the average of the ethanol peaks across forty wine
samples, of which 31 are red. The heights of the mean peaks are lower than
almost all corresponding sample peaks, their widths are substantially wider,
and no sample peak displays the step in the middle of the down-slope of
each average peak. That is, a statistical analysis as elementary as averaging
takes the data well outside of their normal modalities of variation, causing
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Figure 4: The top left panel displays the derivative of growth for a girl
with an early growth spurt, and the bottom left panel for a girl with a late
growth spurt. The top right panel plots a warping function h that maps
the growth time of the pubertal growth spurt, indicated by the circle, into
the early clock time in the left panel. The bottom right panel shows the
corresponding warping function for the late growth spurt. This shows how
phase variation is effectively modeled by warping functions.
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it to fail as an effective data summary. A recent review of chemometrics
(Lavine and Workman (2013)) highlights the importance of aligning peaks
in spectral data as a first step, and warns spectroscopists that getting this
step right can be crucial to the quality of subsequent analyses. In fact, most
familiar data analyses are found to fail in the presence of phase variation;
variances are inflated, fits by regression models are degraded, and additional
principal components are required.

This paper began as a follow-up to a workshop on curve registration at
the Mathematical Biosciences Institute at the Ohio State University in 2012
(see Marron et al. (2014) and companion papers). An effective workshop
raises many more questions than it answers, and this workshop left us with
much to consider. Is there a clear distinction between amplitude and phase
variation, or is there variation that can be represented either way? Can the
transformation h be considered as a full data object, or does it just represent
nuisance variation to be discarded once identified? When phase data objects
are meaningful, how can we incorporate known covariates, such as pH in
the NMR context, into the estimation? Are “features” in a curve or surface
always things like peaks, points of inflection, and threshold crossings, or can
models define more general properties that become invisible on the model
side of the equation when phase is properly incorporated and estimated?
Are traditional fitting criteria such as error sums of squares still useful, or
are they only usable when there is no phase variation? What role should
derivatives play? Can the warping function h be as complex as is required
to align features, or is it wise to impose some regularity? When is it useful
to develop data analyses that reveal aspects of the joint variation in phase
and amplitude? We will discuss some of these questions in this paper.

Section 2 defines some possible goals for curve and surface alignment
or registration, and discusses ways of understanding what is amplitude and
phase variation. Section 3 considers various optimization strategies and
statistical models that separate phase and amplitude variations. Section 5
considers what has been learned in working with these and other datasets,
and looks forward to future research and generalizations in this fascinating
area.

2 Viewpoints and Goals

2.1 The identification of phase variation

In this paper we will use y1, y2, . . . , to denote the observed functions with
both phase and amplitude variability and x1, x2, . . . , be the underling func-
tions denoting only the amplitude variability, i.e. after removing phase
variability, such that xi(t) = yi(hi(t)).

An important challenge is identifiability of amplitude and phase varia-
tion, since which is which is apt to depend very much on prior intuitions
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and knowledge about how each type of variation is caused. For example,
while it may seem obvious that the peaks after age eight in the top panel of
Figure 3 exhibit phase variation, a close look at the lower panel shows that
a number of the growth-derivative functions display more than one negative
slope episode prior to the final crossing of zero. What we are tempted to
call early spurts may only be due to the presence of a single pre-pubertal
spurt, and a late spurt may be due to two or even more pre-pubertal spurts.
This tends to sound more like an amplitude-oriented explanation.

A simple example of this is a data set of linear functions on R, y1, . . . , yn,
having the same slope, but differing intercepts. Using the notation x(t) =
y[h(t)], that mode of variation could be entirely modeled as linear shifts,
hi(t) = ait+ bi constructed so that x1 = x2 = · · · = xn (i.e. all variation is
in the phase variation), or it could equally well be modeled as hi(t) = t, the
identity warp, with all of the variation in the original data appearing in the
intercepts of the yi, or the variation could be split between these modes.

We have tied phase variation in the wine data to a known causal factor,
the pH level of the wine; but, for the weather data, it seems to depend on
intuition as to whether spring came late in a particular year, or whether
that year was simply unusually cold. Even an early velocity peak defining
the pubertal growth spurt can be seen in part as a year of strong growth
followed by a year of weaker growth. It is not surprising, as a consequence,
that we see very little attention given to the phase variation in the evolution
of statistical methodology. In particular, the distinction between phase and
amplitude variation is generally not univocal; but instead depends on both
the application under study and the goals of a particular analysis.

2.2 Types of phase variations

We have mentioned the linear shifts earlier but there are several possibilities
when choosing a class of warpings to specify phase variation. Depending
on the application context, one may prefer one class over the others. We
enumerate some possibilities below and illustrate an example of each in
Figure 5:

• Uniform Scaling: Here the warping of the time domain simply
rescales it by a positive constant a ∈ R+, i.e. h(t) = at for all t ∈ R+.

• Uniform Shift: In this case the time axis gets shifted by a constant
c ∈ R, i.e. h(t) = c+ t.

• Linear or Affine Transform: A combination of the previous two
leads to a linear or affine transformation: h(t) = c + at, a ∈ R+ and
c ∈ R.

• Diffeomorphisms: A general class that includes domain warpings
is given by the set of diffeomorphisms of the domain to itself. While
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Figure 5: Illustrations of different types of warping functions applied to the
same function y. The top row shows y(t) (solid blue line) and y(h(t)) (red-
dashed line), and the bottom row shows the corresponding warping functions
h(t).

it is possible to define diffeomorphisms on the full real line, practical
considerations make it interesting to restrict warpings to compact in-
tervals. The set of linear transformations is contained in the set of
diffeomorphisms if the domain is defined to be the full real line.

While these are the main types of warping transformation, one can fur-
ther enlarge the scope by including functions that allow for some flat regions;
an example is shown in the rightmost column of Figure 5. Please refer to
Srivastava et al. (2011b) for a discussion on the need for such functions and
a rigorous approach to handling them.

2.3 Some goals for an amplitude/phase analysis

We can distinguish three motivations for a model that allows for phase
variation. First, amplitude variation could be the main focus, with phase
variation being a nuisance to be removed and then cast aside. The wine
NMR spectra in Figure 1 illustrate this nicely, in part because the goal of
the analysis is specifically to model the relative heights of the clearly visible
peaks, the widths of which tend to be proportional to their height. Prairie
crop scientists tend to focus on the total heat and precipitation available to
plants in the growing season as predictors of crop yield, leaving the issue
of when the season starts and finishes to the producers to wrestle with.
Auxologists, who study human growth, may be preoccupied by the variation
in the shape characteristics of growth curves such as the variation in their
amplitudes, and see the variation in the timings of the pubertal growth spurt
as a nuisance to be eliminated by lining up the corresponding peaks.
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On the other hand, phase variation could instead contain all of the inter-
esting information, in contexts where issues such as timing are more impor-
tant than relative peak heights, such as the locations of bursts in neuronal
spike train data. Crop producers know that they have little control over heat
and precipitation budgets, but they can look for indicators of when they can
sow their seeds and when certain variants will mature. In this situation, the
time warp functions are the center of attention.

Finally, both amplitude and phase variation, and in fact the joint vari-
ation between these, can be central issues in the analysis. It turns out, for
example, that there is a simple relation between the strength of a pubertal
growth spurt and its timing; namely that early spurts are stronger and later
ones are weaker, resulting in adult final heights that do not depend much on
either factor. That is, it appears that each child has a wired-in capacity for
growth, but that the distribution of the expenditure of the growth energy
over time can vary over children with similar growth capacities.

2.4 The role of the model in the amplitude/phase partition

Assuming the relevance of phase variation, it will be clear that both its
nature and estimation strategies will depend critically on the model being
proposed for the data. The cross-sectional mean is often the model of choice
in feature alignment strategies; peaks and threshold crossings are considered
aligned when the mean curve is centrally located within the registered curves
at all points over the interval of observation. More generally, the mean can
be taken as one of many template or gold-standard curves to be approached
as closely as possible in some sense by the application of phase transfor-
mations. Alternatively, as described in the next section, one can compute
mean under a different metric and use that as a model for alignment. Finally,
functional linear equations, low-dimensional principal component represen-
tations, differential equations and many other mathematical structures may
provide model spaces for amplitude variation that, simultaneously, identify
what is meant by phase variation. That is, if a diffeomorphic transforma-
tion of the substrate of the data, possibly within some pre-defined class, can
improve the fit of the model to the data, we define it as phase. Models,
of course, are usually chosen to represent a conjecture or hypothesis about
what generates the data, and in this sense the identification of the ampli-
tude/phase dichotomy is very much centered on the science underlying the
application.

2.5 Amplitude/phase separation via equivalence classes

One way to study amplitude and phase variation is through equivalence
classes. The use of equivalence classes is not new to statistics. In fact,
they form the core idea in statistical shape analysis (Dryden and Mardia
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(1998)) and in Grenander’s work on pattern theory (Grenander (1993)), in-
cluding its applications to computational anatomy (Grenander and Miller
(1998)). In Kendall’s shape analysis the experimental units are configura-
tions of (landmark) points in an appropriate space, usually two or three
dimensional Euclidean space. To focus the analysis on the shape variation
in the data, non-shape aspects such as location, rotation and perhaps scal-
ing, are incorporated into equivalence classes, where point configurations
are identified with each other (i.e. called equivalent) when they can be
translated, rotated and scaled into each other. Then, one compares shapes
of objects by comparing their equivalence classes. While the past shape
approaches were restricted to point sets and simple transformations (rigid
motions and global scales), the more recent literature has studied continuous
curves with transformations that include time-warpings (more precisely, re-
parameterizations) (see Younes et al. (2008) and Srivastava et al. (2011a),
among others).

In an entirely parallel fashion, one can define amplitude and phase
variability in functional data using equivalence classes. As laid out in
Srivastava et al. (2011b), the main idea is to understand amplitude vari-
ation through a quantity that incorporates all aspects of phase variation
inside it. This is done by defining an equivalence relation, where curves are
identified or deemed equivalent when they can be time warped into each
other. Figure 6 shows some elements of an equivalence class – a set of warps
of a single three peak curve. The equivalence class is actually much bigger,
including all diffeomorphic time warps of this curve, only some of which
are shown here. These equivalence classes are now taken as representing
amplitudes because they model the essence of vertical variation in a simple
and natural way. The phase variation is incorporated within equivalence
classes, while the amplitude variation appears across equivalence classes.
Further motivation for how equivalence classes provide clear definitions for
separation of amplitude and phase is given in Section 3.4. Vantini (2012)
develops a similar definition of phase and amplitude albeit only illustrated
in the restricted case of linear warpings.

While the origins of these ideas lie in shape theory, an understanding
of these concepts can also be obtained using the terminology of object-
oriented data analysis (OODA), as defined in Wang and Marron (2007),
and more recently discussed in Marron and Alonso (2014). An important
special case of OODA is FDA, where functions are the data objects. A
natural approach to the decomposition of amplitude and phase variation is
to model each with appropriate data objects, with specific goals as laid out
in Section 2.3. In some situations, such as the wine NMR data in Figure
1, the phase variation can be viewed as a nuisance, so the data objects
of interest are registered curves, i.e. time-warped to match their peaks.
In other situations, e.g. the temperature data shown in Figure 2 and for
human growth curve data in Figure 4, interesting data objects can be any

12



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Figure 6: Different time warps of a function (left) form an equivalence class
from the perspective of defining its amplitude.

of the registered amplitude curves, or the transformations used to achieve
registration (reflecting phase variation), or else the concatenation of both,
for situations where joint amplitude-phase variation is key. In the same
spirit, the data objects in an equivalence-class approach are the equivalence
classes themselves.

3 Some current curve registration methods

In this section we look at a few curve registration techniques for estimat-
ing warping functions h. In the first two sections, the focus is on using
a template function x0 as a target, so that y(s) ≈ x0[h(t)] and, inversely,
x0(t) ≈ y[h−1(s)]. We will see that the sense in which the approximation is
defined requires considerable care, with least squares approximations com-
puted in the usual way not being a viable candidate. The template x0 is
often defined using an objective function whose solution is iterative, start-
ing with the cross-sectional mean, and alternating between a registration
and a re-calculation of the cross-sectional mean of the registered functions.
Typically this process, often referred to as Procrustes iterations, converges
in only a few steps.

3.1 Dynamic time warping (DTW)

Before examining current registration methods, it is worthwhile mentioning
dynamic time warping (DTW), an early registration method applied to dis-
crete sequences of phonemes (a basic unit of language). Sakoe and Chiba
(1978) devised an insertion/deletion algorithm that is rather like that of iso-
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tonic regression (Barlow et al. (1972)). The underlying algorithm, which is
a dynamic programming algorithm, is an optimization technique where one
partitions the graph space using a finite grid and the warping h is restricted
to be a piecewise-linear function passing through the nodes of this grid.
Depending on the context, one may allow it to have vertical jumps or be
horizontal for multiple time-steps. In the classical DTW, the dynamic pro-
gramming algorithm is applied to minimize the least-squares cost function
given in Eqn. 2. DTW can be effective as a feature alignment method as
it provides a globally optimal solution albeit on the restricted search space
(piecewise linear h on a fixed grid). But the classical DTW has the con-
ceptual problem that it may not provide smooth differentiable time warps
that many applications require. Also, the computational algorithm can be
greedy, in the sense of warping regions where no alignment seems called for.
These problems, in general, can be handled by adding a regularization term
to the cost function.

3.2 Landmark registration

In terms of functional data alignment, we begin with the easiest situation in
which each curve yi(s) has clearly defined features, the timings of which can
be used to estimate hi at a series of points (tℓ, hiℓ). This requires in turn a
consideration of what we might mean by “feature.”

In the case of the wine data, there seems to be little confusion. In most
types of spectra, the presence of a chemical compound is marked by a single
peak, the location of which is the desired landmark, and automatic methods
for peak detection are relatively easy to devise. For multi-peak structures
such as the NMR peaks in Figure 1, the average of the peak locations would
serve the purpose. Alternatively, a template can be set up for a peak shape,
and peak detector can be devised by computing correlations with moving
windows of the curve shape with the template pattern.

Let us suppose that there is a gold standard template spectrum x0 with L
peaks occurring at times tℓ, ℓ = 0, . . . , L+1, where times t0 and tL+1 are the
endpoints of the observation interval. Then, for the ith spectrum with peak
locations at sℓ, we can estimate hi by interpolating in some suitable way
the pairs (sℓ, tℓ). Polygonal lines might serve, or it may be important to use
a smoother interpolant having, perhaps, a specified number of derivatives.
Figure 4 offers an elementary example of landmark registration, where the
timing of a girl’s pubertal growth spurt is the single landmark ti, shown as
a circle in Figure 4, and the intervals (3, ti) and (ti, 18) for the ith girl are
interpolated by the warping functions (formed using the expression in Eqn.
1).

Peak and valley locations can be translated into crossings of zero in
the curve’s first derivative with negative and positive slopes, respectively.
Other types of crossings may also be important. For example, the heavy-
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duty winter in Figure 2 can be defined as the average of the first crossing
time with negative slope for -7 deg C and the second crossing time with
positive slope. Prairie farmers would prefer the crossing of germination
threshold of 5 deg C with positive slope, and in fact do just that with daily
soil temperature readings in May.

The problem with landmarks, of course, is that they are not always vis-
ible, or one may be faced with other types of feature time ambiguity such
as two or more closely-spaced -7 deg C crossings in the temperature data.
Moreover, recording landmarks by hand is tedious; and fail-safe automatic
detectors are sometimes hard to setup. The choice of landmark can itself
be open to the kind of debate that scientists would prefer to avoid. Finally,
landmark registration is only discrete evidence concerning the intrinsically
continuous function hi, and as such ignores what happens in between land-
marks, where there may reside additional information about h.

3.3 Registration using L2 distance and correlational criteria

Now we look at a classical approach to functional registration that does not
require the use of landmarks. Let hi denote the time warping associated
with the ith data item yi; this hi can be restricted to be an element of a
parametric family, defined by the value of one or more parameters, or can
be fully nonparametric as in a diffeomorphism. The one-parameter warp
(Eqn. 1), along with simple shifts, scale changes and linear functions of t,
are examples of simple parametric warping families, and we will propose
more flexible representations in Section 4. It seems natural to specify a loss
function L that optimizes the congruence of a set of clock-time functions yi
to corresponding warped versions of a template x0, i.e., yi ≈ x0 ◦ hi, where
(x0 ◦ hi)(t) = x0(hi(t))

The choice, however, of standard options such as

L(h; yi, x0) = ∥yi − x0 ◦ hi∥2 =
∫

[yi(t)− x0(hi(t))]
2dt (2)

will quickly prove disappointing if combined with a flexible class of warping
functions, as Figure 7 demonstrates. In the left case, the minimization of the
L2 norm results in a reduction from 0.500 to 0.024, using a piecewise-linear
warping and a spike that nearly eliminates the area under the registered
curve corresponding to intervals where the y has larger amplitude than x0.
In the registration process the amplitude characteristics of y have been sig-
nificantly distorted.

This pinching effect can be mitigated by using warping functions that
are constrained to be smooth, either by the use of a regularization strategy
or by the use of a small number of basis functions. The registration proce-
dures proposed in Ramsay and Silverman (2005), for instance, incorporate
a penalization term that forces the choice of the warping functions toward
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Figure 7: The upper panels show a Gaussian density function x0 and its
scaled version y, as dot-dashed and dotted curves, respectively. The solid
curve in the upper left panel results from minimizing the squared error
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∫
[y(t)− (x0 ◦ h)(t)]2dt with the optimal warping function h shown

in the lower left panel. The solid curve in the upper right panel results
from minimizing the squared error criterion

∫
[(y ◦h)(s)−x0(s)]2ds with the

optimal warping function h shown in the lower right panel.
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functions that do not differ significantly from the identity (corresponding
to the case of no registration) or from constant functions. Concerning in-
stead the use of simple parametric families for the class of warping functions,
the L2 distance will work just fine for the one-parameter shift-warp family,
h(t) = t + δ. Such a registration procedure performs perfectly for the ex-
ample in Figure 7, where the identity warp is returned since the two peaked
curves are already registered.

It thus appears fundamental to appropriately relate the definitions of
amplitude variation and of phase variation, that are jointly described by
the loss function to be optimized and the class of warping functions. This
motivates the simultaneous definition of phase and amplitude to avoid issues
such as the one highlighted in Figure 7. For instance, the loss function L
to be optimized and the class of warping functions h may be chosen so that
for any two functions x1, x2, and any warping function h, L satisfies the
relation:

L (x1, x2) = L (x1◦h, x2◦h) (3)

This invariance property guarantees that it is not possible to obtain a fic-
titious increment of the similarity between two functional data by simply
warping them simultaneously with the same warping function, and has been
clarified in the context of different types of warpings in different papers. For
example, Sangalli et al. (2009, 2010) and Vantini (2012) study this invari-
ance and then specify it in the context of linear or affine transformations of
the domain, while Srivastava et al. (2011b) studies it for diffeomorphisms.

Moreover, as already highlighted, the concepts of amplitude variation
and of phase variation are problem-specific and depend on the application
goals. For instance, if two functional data x1 and x2 may be considered
aligned when they are proportional, i.e., when x1 = αx2, then it is natural
to use the loss function associated to the semi-norm∣∣∣∣∣∣∣∣ x1

∥x1∥
− x2

∥x2∥

∣∣∣∣∣∣∣∣ , (4)

and the corresponding correlation measure

ρ(x1, x2) =
⟨x1, x2⟩√

⟨x1, x2⟩ ⟨x2, x2⟩
. (5)

The class of linear warping functions h(t) = δ + γt is compatible, in the
sense of Eqn. 3, with the loss function associated to (4) and (5) if these are
computed over the full real line, or over the intersection of the domains of
the two functional data, as can be done in practice. This definition of ampli-
tude/phase variation seems, for instance, well suited for the wine data, where
the amplitude variation is well described by the relative heights of the peaks,
rather than by their absolute heights, and where linear transformations of
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the abscissa allows for a good alignment of these peaks. This also holds for
growth curve data, where the emphasis is on growth velocities, rather than
on the height curves per se, and the children’s biological clocks, with their
pubertal spurts, are aligned by aiming at proportional growth velocities.
Ramsay and Silverman (2005) used the size of the minimum eigenvalue of
the order two cross-product matrix[ ∫

{x0(t)}2 dt
∫
x0(t)y[h(t)] dt∫

x0(t)y[h(t)] dt
∫
{y[h(t)]}2 dt

]
.

The minimum eigenvalue criterion essentially measures the linearity of the
relationship between x0 and y ◦ h−1, and is the same thing as maximizing
the correlation (Eqn. 5) between the two functions, or correspondingly
minimizing (Eqn. 4). In other contexts, two functional data x1 and x2
may be considered aligned when their first derivatives are proportional, i.e.,
Dx1 = αDx2 and equivalently x1 = αx2+β. Then it is natural to use the loss
function in Eqns. (4) and (5), but applied to the first derivative instead. Also
in this case, if the loss function is computed over the full real line, or over the
intersection of the domains of the two functional data, then it is compatible
in the sense of Eqn. 3 with the class of linear warping functions h(t) = δ+γt.
And the same can of course be said for the L2 distance (2) with the shift-
warp family h(t) = δ + t. Sangalli et al. (2014) report other examples of
loss-functions/class of warping functions, that define concepts of amplitude
and phase variations that are appropriate in different applications.

It is also possible to consider much more flexible representations of phase
variation, and still define loss functions and class of warping functions sat-
isfying the property (3). Section 3.4 is devoted to the case where the phase
variation is described by arbitrary diffeomorphic transformations.

3.4 The square-root-velocity function and the Fisher-Rao
metric

Standard fitting criteria such as least squares may also be applied to trans-
formations of the functional objects, most commonly first and second deriva-
tives or their combinations. However, one can go even further by choosing
newer metrics that are compatible with the notion of equivalence classes
mentioned earlier in Section 2.4. Application of the concept of equivalence
classes as data objects in FDA needs some rethinking of important concepts.
First off, the classical notion of metrics on curves needs to be extended to
metrics on equivalence classes. Some consideration of this point highlights
the challenges faced by classical approaches in analyzing vertical and hori-
zontal curve variation. For example, as mentioned in the previous section, a
common approach to quantifying the vertical distance between curves y1 and
y2 is through L2-norm between y1 and warped y2, i.e. infh ∥y1 − y2 ◦ h∥2.
From a theoretical perspective this quantity has several problems: it is not
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Figure 8: Toy Example showing asymmetry of the L2 norm naively applied
to curve registration.

symmetric and does not satisfy the triangle inequality. Moreover, from a
conceptual perspective, there are problems with this formulation, as shown
in Figure 8 (constructed by Lu and Marron (2013)). The top left panel of
Figure 8 shows a toy example, using two single step functions as y1 and y2.
One naive approach to aligning these curves is to register y2 to y1 using the
simple piecewise-linear warp h2 shown in the top-right panel. The result
of this is a reasonable alignment shown in the top-center panel. But an
equally good approach to aligning these curves is to warp y1 into y2, using
the alternate piecewise linear warp h1 shown in the bottom-center panel.
As shown in the bottom left, this also gives a high quality of alignment.
The challenge in classical approaches is what should be taken as the vertical
distance between y2 between y1? The (appropriately squared, etc.) region
between the aligned curves (representing the L2 norm) in the top-center
panel is clearly very different from that in the bottom-left panel. Now if we
allow warping of both y1 and y2 then many other appealing registrations
could be found, e.g. that in the bottom-right panel, all of which are quite
reasonable. A big payoff of the idea of equivalence classes as data objects is
that it allows a very simple and natural metric, which essentially includes
all of these reasonable alignments in its formulation.

The core idea is to choose a metric that helps compare equivalence
classes, and not just individual functions, since these classes provide an
identifiable representation of amplitude variability in this setting. This is
done in a straightforward way, by starting with a curve metric that is in-
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Figure 9: The signed root velocity transforms of the ten female growth
curves displayed in Figure 3.

variant to identical warping of its two arguments, as in Eqn. 3. That is, it
should satisfy

d(x1, x2) = d(x1 ◦ h, x2 ◦ h) , (6)

for all warpings h. This is a particularization of Eqn. 3 where a general
loss function is replaced by a distance function. Srivastava et al. (2011b)
used the nonparametric form of the Fisher-Rao metric (see Srivastava et al.
(2007) for a short introduction to this metric) for this purpose. In fact,
since the original Fisher-Rao metric was defined only for positive probability
densities, they extended this notion to include a larger class of functions.
The actual expression for this metric is complicated and thus is not discussed
in detail here, except we note that the resulting Fisher-Rao distance, denoted
by dFR, satisfies the property stated in Eqn. 6.

The key step in this formulation is to define a square root velocity function
(SRVF) transform,

SRV F (x) = sign(Dx)
√

(|Dx|) (7)

where sign(u) = +1 if u ≥ 0 and −1 if u < 0 and Dx is the first derivative
of x. It should be noted that SRVF is a one-to-one map up to a translation.
That is, if x(0) is known then one can calculate x back uniquely from its
SRVF. The SRVF transforms of the ten growth curves in Figure 3 are shown
in Figure 9. In this particular case, since the x is defined to be the derivative
of growth, SRV F (x) refers to the acceleration curves shown in the bottom
panel of Figure 3. Consequently, the SRVF curves cross the zero axis at the
same locations, but now with very steep slope.
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The main reason for introducing SRVF is that the Fisher-Rao distance
between any two functions is given by the L2 distance between their SRVFs,
i.e.

dFR(x1, x2) = ∥SRV F (x1)− SRV F (x2)∥ . (8)

We refer the reader to Srivastava et al. (2011b) for the details but mention
in passing that the proof hinges on the fact that SRV F (x◦h) = (q◦h)

√
Dh,

where q = SRV F (x).
This nice mathematical structure leads to formal definitions of amplitude

and phase in functional data. For any two functions, x1 and x2, the actual
registration problem is given by:

inf
h
∥SRV F (x1)−SRV F (x2 ◦h)∥ = inf

h
∥SRV F (x1 ◦h)−SRV F (x2)∥ . (9)

This formulation avoids the issue discussed in the example associated with
Figure 8. It is important to note that SRV F (x ◦ h) ̸= (SRV F (x) ◦ h) and,
therefore, this alignment is NOT simply a least-square alignment of SRVFs.
The infimum value in Eqn. 9 represents a comparison of the amplitudes of
x1 and x2 and is actually a distance between the equivalence classes dis-
cussed in Section 2.5. If the optimal h on the left side is invertible, then its
inverse is also the optimal for the right side of that equation. This has been
called inverse consistency in the image processing literature. The optimal
h denotes the (relative) phase between x1 and x2. The actual optimization
over h in Eqn. 9 can be performed in many ways, depending on the problem.
If h takes a nonparametric form, a diffeomorphism of the domain, then the
dynamic programming algorithm mentioned earlier is applicable. If some
application calls for smooth phases then some common smoothing idea –
either restrict to a parametric family or apply a regularization penalty – can
be applied, both at a loss of some mathematical structure. We emphasize
that while some applications favor smooth solutions for warpings, some oth-
ers, such as activity recognition in computer vision, naturally favor warping
functions that are close to being vertical or horizontal over sub-domains.

3.5 Representations of the warping function

The nature of warping functions leads to some interesting representations.
The evolution of time, whether clock or system, is fundamentally a growth
process, and as such, like height, has a positive first derivative. Two trans-
formations of h play a number of useful roles in the representation and study
of phase variation. Using the notation Dh for the the derivative of h, the
log–derivative transformation and its inverse

h(t) = C0 + C1

∫ t

0
expW (v) dv, C1 > 0 and (logD)h(t)− logC1 =W (t)

(10)
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allow us to represent any diffeomorphism h in terms of the unconstrained
log–derivative function W . A natural and effective method of computing h
is to use numerical differential equation solver methods to approximate the
solution of the linear forced differential equation Ds = exp[W (t)] using the
initial value h0 = C0.Moreover, from the equation h−1[h(t)] = t the solution
of the complementary nonlinear unforced equation Dt = exp[−W (t)] defines
the inverse of the warping function.

Since the log-derivative W is unconstrained and defined over a closed
interval, it is natural to use a basis function expansion, with the B-spline
basis being the likely choice. In particular, the one-parameter model (Eqn.
1) corresponds to W (t) = βt. The overall smoothness of h can be controlled
either by the number of basis functions used or by appending a roughness
penalty to a fitting criterion. It is essential that any representation be
expandable to include contributions from one or more covariates zj known
or conjectured to modulate phase. For example, it is well known in climate
modelling that proximity to oceans retards the seasons by two to three
weeks, so that a model for phase variation across weather stations would
include this factor. Because of global warming, long-term time itself is an
important modifier of climate variables such as seasonal temperature and
precipitation. Covariates can be easily incorporated by extending W to be
a function of a covariate such W (t+ αz) for W (t, z).

Another mathematical representation for warping functions comes from
the SRVF idea. Since Dh is assumed to be positive, one can also use the
positive square-root ψ(t) =

√
Dh(t) as a representation of h. Just like W

earlier, one can use a basis expansion to express ψ if h is not constrained
any further. However, if h represents a time warping of a fixed interval, for
instance [0, 1], to itself, then that imposes an additional constraint on h. In
order to obtain the boundary conditions h(0) = 0 and h(1) = 1, we require
that

∫ 1
0 ψ(t)

2dt = 1, or the L2-norm of ψ is one. This is an interesting
geometric structure – the space of allowed ψ functions is a unit sphere and
its geometry can be exploited in the ensuing analysis. The spherical geom-
etry of this space of ψ functions has been used to perform estimation and
alignment of curves in several places, including Veeraraghavan et al. (2009).
This geometry has also been helpful in developing PCA of warping functions
(Tucker et al. (2013)) and in alternatives to PCA in the form of principal
nested spheres (Jung et al. (2012)).

3.6 Registering curves to models

So far we have focused on pairwise registration of functions but the align-
ment of multiple functions is often more of concern in analyzing real data.
While some methods for multiple alignment are simple extensions of the
binary case, the others take a completely fresh approach and derive models
tailored to such function data objects. The former approach is generally
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based on constructing a template of some kind and then registering indi-
vidual functions to this template. This template may be constructed in
an iterative fashion, as recursive improvements in alignments improve the
resulting template, and vice-versa.

A simple idea for constructing a template is the cross-sectional mean,
as mentioned earlier. At each iteration, one takes the currently aligned
functions {xi ◦ hi} and computes their cross-sectional mean to update the
template x0 =

1
n

∑
xi ◦hi. (The cross-sectional mean is, of course, the mean

of functional objects under the L2 metric.) Then, one by one, the given func-
tions are aligned to this template to update his: hi = argminh L(h;xi, x0).
Depending on the nature of data, the results of this process may be sensitive
to the initial conditions.

The same idea can be generalized to situations where a metric different
from the L2 metric is used. In the case where equivalence classes of functions
are data objects, one can compute the average of the corresponding equiva-
lence classes [x1] , · · · , [xn], using the notion of a Karcher or Fréchet, mean.
This can be done under the Fisher-Rao distance mentioned in the previous
section. The template is then taken to be the center of the Karcher mean
equivalence class, chosen so that the average of the phases of x1, · · · , xn,
with respect to this center, is the identity hid. For further details of this
construction and an algorithm for computing the center of an orbit, please
refer to Srivastava et al. (2011b).

Shown in Figure 10 is an example of alignment using the SRVF frame-
work applied to the wine NMR spectra shown earlier. The top row shows
the original spectra, the aligned spectra and the phase functions obtained
during the alignment. The bottom row of Figure 10 shows the same data
aligned using simple shifts and minimizing the loss in (4), using as tem-
plate one of the curves in the sample, the medoid curve, as detailed e.g. in
Sangalli et al. (2014). For these data the amplitude variation is in fact well
described by the relative heights of the peaks and the shifts-warp family is
able to capture very well the phase variation in the part of the spectra here
considered, as also highlighted by the SRVF framework. The associated
shifts display a clear clustering in the phase of the red wines vs the white
and rosé wines. Figure 11 shows the alignment of the growth velocities of
the 54 girls in the Berkeley growth study, in the time interval 3 to 18 years
– the top row displays the results obtained via the SRVF framework, while
the bottom row displays the results obtained on additionally smoothed data
using linear warpings and minimizing the loss in (4). The non-linear warping
in the SRVF framework allows for a visibly better alignment of the growth
curves, showing that in many applicative contexts non-linear warping is in-
deed necessary. The linear warping, obtained after additional smoothing of
data, is nevertheless able to unveil some interesting features of the data.
For instance, Sangalli et al. (2010) carry out linear warping of the growth
curves of both the girls and boys in the study, highlighting a neat separa-
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growth study using: the SRVF framework (top) with the original data and
the linear alignment (bottom).
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tion of boys and girls in the phase space and other interesting aspects of the
growth dynamics of the two groups.

Instead of using just one template, it is often beneficial to divide data
into smaller sets and use different templates for alignment in these sub-
sets. An instance of this idea is when clustering and alignment are per-
formed together. For instance Sangalli et al. (2010) propose a k-mean align-
ment procedure that jointly performs alignment and (unsupervised) clus-
tering of functional data. Other proposals in this context are given by
Tang and Muller (2009), Liu and Yang (2009), Boudaoud et al. (2010). An-
other set of papers (Tang and Muller (2008); Liu and Muller (2004); Gervini and Gasser
(2004)) take the approach where some data points serve as templates for
others, and the individual warping functions are averaged to find ultimate
warpings.

Kneip and Ramsay (2008) performs registration of functional observa-
tions to the fits provided by a K-dimensional principal components analysis.
In other words, the template is constructed individually for each function
using an orthonormal basis. As an illustration, consider the 15 sections
of mean-centered log-transformed mass-spectrometry intensities in the top
panel of Figure 12. The large peaks on the right are fairly well registered
by a preliminary landmark registration of the whole sequence, but we see
substantial phase variation in the rest of these spectrum sections that ob-
scures important amplitude variation. Three principal components were
computed from these data combined with a registration of each section yi
to its fit ŷi using a method currently under development, as well as a princi-
pal components analysis without registration. The mean squared residuals
for unregistered and registered PCA’s were 0.0052 and 0.0038, respectively,
corresponding to a squared multiple correlation 0.47. That means nearly
half of the variation around the unregistered fit can be accommodated by
modeling phase variation. The bottom part of Figure 12 displays the fits for
y1 and y15 in its left panels, along with the deformations di(t) = hi(t)− t as-
sociated with the registration in the right panels. The PCA is able to nicely
accommodate the amplitude variation, and its fits after time warping are
well-aligned with all of the peaks. Choice of the number of components has
an important impact on this type of analysis. Combining registration with
model estimation or using multiple templates further blurs the distinction
between amplitude and phase variation, suggesting that a successful analy-
sis may depend heavily on prior choices guided by knowledge and intuitions
about which type of variation is the primary focus.

In some contexts it also makes sense to combine the registration prob-
lem with other inferences, such as a regression problem, for a more compre-
hensive solution. For instance, Hadjipantelis et al. (2013, 2014) study the
problem of regression using phase and amplitude components of the given
functions.
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Figure 12: Top: Fifteen mean-centered log10-transformations of sections
of mass spectrometry analyses of blood samples. Bottom left: The fits
(dotted curve) to the data (solid curve) for two observations, y1 and y15,
produced by three principal components and registration. Bottom right:
The corresponding warping functions display using di(t) = hi(t)− t.
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4 Available Software

Software implementations of many of the methods illustrated here are avail-
able publicly. R and Matlab code for implementation of the minimum eigen-
value method of Ramsay and Silverman can be found at
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/. Matlab soft-
ware for the extended Fisher-Rao SRVF approach of Srivastava et al. (2011b)
is available at http://ssamg.stat.fsu.edu/software and the R package is avail-
able from CRAN under fdasrvf. The R package fdakma (Parodi et al. (2014))
implementing the k-mean alignment procedure described in Sangalli et al.
(2010) is available from CRAN.

5 Discussion and Conclusions

In this paper we highlight the concept of phase variability that is present in
functional data and the pitfalls of ignoring it in statistical analysis. After
motivating the importance of phase-amplitude separation, or alignment of
functional data, in statistical analyses we proceed to summarize different
ideas present in the literature for accomplishing this task. Specifically, we
describe the problem of pinching associated with the classical L2-norm based
matching, and present several solutions to avoid this problem. These solu-
tions involve either restricting the amount of warping or using an alternative
metric to perform matching.

We note that while several methods exist for phase-amplitude separation,
this is not a completely solved problem and forms an active area of research.
A major challenge comes from the lack of a single mathematical definition
or algorithm that can work in all, or even most, applications and contexts.
For instance, one can argue that the goals of warping in weather data will be
different from that in wine spectra. Similarly, while in some cases a simple
translation and scaling may be sufficient for alignment of curves, the other
cases require genuine nonlinear warpings for proper alignment. In some
cases effective data analysis is done by seeking the best possible peak/valley
alignment, e.g. in spectral data. In those cases the Fisher-Rao method is the
most effective that we have seen so far. However, in other cases too much
peak alignment can be a distraction, e.g. the growth curve data. Therefore,
it seems more natural to tailor objective functions and algorithms to the
problem area.

Although we have focused on phase-amplitude separation of real-valued
functions in this paper, this problem is prevalent in several other data object
contexts. For instance, the problem of registration of images is considered
a central issue in medical image registration. See Sotiras et al. (2013) for
recent survey of warping-based techniques in this problem area. The ideas
presented in this paper can be extended to included higher-dimensional sig-
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nals such as images.
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