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Abstract

In this paper we present a numerical discretization of the coupled elasto-acoustic wave
propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) ap-
proach in a three-dimensional setting. The unknowns of the coupled problem are the
displacement field and the velocity potential, in the elastic and the acoustic domains,
respectively, thereby resulting in a symmetric formulation. After stating the main the-
oretical results, we assess the performance of the method by convergence tests carried
out on both matching and non-matching grids, and we simulate realistic scenarios where
elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves and
the scattering of elastic waves by an underground acoustic cavity. Numerical simulations
are carried out by means of the code SPEED, available at http://speed.mox.polimi.it.
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Introduction

The main goal of this work is to simulate three-dimensional scenarios of elasto-acoustic cou-
pling via a Discontinuous Galerkin Spectral Element (DGSE) discretization. Coupled elasto-
acoustic wave propagation arises in several scientific and engineering contexts. In a geophysical
framework, a first example one can think of is given by seismic events occurring near coastal
environments; another relevant situation where such a problem plays a major role is the de-
tection of underground cavities [1-3]. Elasto-acoustic coupling occurs in structural acoustics
as well, when sensing or actuation devices are immersed in an acoustic fluid [4], and also in
medical ultrasonics [5, 6].

Typically, an elasto-acoustic coupling arises in the following framework: a space region made
up by two subregions, one occupied by a solid (elastic) medium, the other by a fluid (acoustic)
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one, with suitable transmission conditions imposed at the interface between the two. The aim
of such conditions is to account for the following physical properties: (i) the normal component
of the velocity field is continuous at the interface; (ii) a pressure load is exerted by the fluid
body on the solid one through the interface. In a geophysics context, when a seismic event
occurs near a coastal environment, both pressure (P) and shear (S) waves are generated.
However, only P-waves (i.e., whose direction of propagation is aligned with the displacement
of the medium) are able to travel through both solid and fluid media, unlike S-waves (i.e.,
whose direction of propagation is orthogonal to the displacement of the medium), which can
travel only through solids. This explains the reason for considering the first interface condition.
On the other hand, the second one accounts for the fact that an acoustic wave propagating in
a fluid domain gives rise to an acoustic pressure exerted on the solid via the interface.

Numerical simulation of elasto-acoustic coupling scenarios has been the subject of a very broad
literature. We give below a brief (and by far non-exhaustive) overview of some of the research
works carried out so far in this field. Bathe et al. [7] and Bermudez et al. [8] considered
a displacement-based formulation in both subdomains. Komatitsch et al. [9] introduced a
Spectral Element method for modeling wave propagation in media with both fluid (acoustic)
and solid (elastic) regions. The employed formulation is symmetric (i.e., it is made in terms
of displacement in elastic regions and velocity potential in acoustic regions), and matching
between domains is implemented based on an interface integral in the framework of an explicit
prediction-multicorrection staggered time scheme. Bermudez et al. [10]| considered a Finite
Element approach to the problem based on a pressure formulation in the acoustic domain.
Chaljub et al. [11] studied a Spectral Element approach for modeling elastic wave propagation
in a solid-fluid sphere by taking into account the local effects of gravity, employing a symmetric
formulation, as here. Flemisch et al. [4] devised a numerical treatment based on two inde-
pendent triangulations on the elastic and acoustic domains with Finite Elements. Due to the
flexible construction of both grids, the finite element nodes on the elastic and acoustic bound-
ary on the interface may, in general, not coincide, so as to allow as much flexibility as possible;
as a result, non-conforming grids appear at the interface of the two subdomains. Késer and
Dumbser [12] considered a numerical scheme suited for unstructured 2D and 3D meshes based
on a Discontinuous Galerkin approach to simulate seismic wave propagation in heterogeneous
media containing fluid-solid interfaces, using a formulation in terms of a first-order hyperbolic
system in velocity-stress unknowns. The solution across element interfaces is handled by Rie-
mann solvers or numerical fluxes. De Basabe and Sen [13] investigated the stability of the
Spectral Element method and the Interior Penalty Discontinuous Galerkin method, consider-
ing the Lax-Wendroff method for time stepping and showing that it allows for a larger time
step than the usual leap-frog finite difference method, with higher-order accuracy. Wilcox et
al. |14] studied a high-order Discontinuous Galerkin scheme for the three-dimensional prob-
lem based on a velocity-strain formulation, allowing for the solution of the acoustic and elastic
wave equations within the same unified framework, based on a first-order system of hyperbolic
equations. Soares |15] considered a stabilized time-domain Boundary Element method to dis-
cretize each sub-domain. Bottero et al. [16] used a time-domain Spectral Element method for
simulations of wave propagation in the framework of ocean acoustics. Terrana et al. [17] stud-
ied a high-order hybridizable Discontinuous Galerkin Spectral Element method, again based
on a first-order hyperbolic velocity-strain formulation of the wave equations written in con-
servative form. Very recently, Appel6 and Wang [18]| devised an energy-based Discontinuous
Galerkin approach, again using a symmetric formulation. Finally, a detailed hp-convergence



analysis of a Discontinuous Galerkin method on polytopal meshes has been presented and
validated in a two-dimensional setting in [19], wherein also a well-posedness result has been
obtained by a semigroup-based approach.

In this paper, the unknowns of the problem are the displacement field in the solid domain
and the velocity potential in the fluid domain, i.e., we employ a symmetric formulation. The
latter, say ¢, is defined in terms of the acoustic velocity field v, in such a way that v, = —V .
Also, the acoustic pressure p, in the fluid region is given by p, = pg, with ¢ the first time
derivative of the velocity potential.

In the context of earthquake ground motion simulations, the numerical scheme employed has
to satisfy the following requirements: accuracy, geometric flexibility, and scalability. To be
accurate, the numerical method must keep dissipative and dispersive errors low. Geometric
flexibility is required since the computational domain usually features complicated geometrical
shapes as well as sharp discontinuities of mechanical properties. Finally, real-life seismic
scenarios are typically characterized by domains whose dimension, ranging from hundreds to
thousands square kilometers, is very large compared with the wavelengths of interest. This
typically leads to a discrete problem featuring several millions of unknowns. As a consequence,
parallel algorithms must be scalable in order to efficiently exploit high performance computers.

To comply with these requirements, we employ a Discontinuous Galerkin Spectral Element
(DGSE) approach based on a domain decomposition paradigm, which was introduced in [20].
More precisely, the discontinuities are imposed only at the interfaces between suitable non-
conforming macroregions, so that the flexibility of the DG methods is preserved while keeping
the accuracy and efficiency of Spectral Element (SE) methods and avoiding the proliferation
of degrees of freedom that characterize DG methods. We refer to [21] for a more detailed and
comprehensive review of discretization methods for seismic wave propagation problems.

The rest of the paper is organized as follows. In Section 1 we give the formulation of the
problem and recall the well-posedness result proven in [19] under suitable hypotheses on
source terms and initial values. In Section 2 we introduce the DGSE method and present the
formulation of the semi-discrete problem, also recalling a stability result for its formulation in
a suitable energy norm, as well as hp-convergence results (with h and p denoting the meshsize
and the polynomial approximation degree, respectively) for the error in the same norm; a
discussion of the fully discrete formulation of the problem is presented as well. Finally, in
Section 3, we present several numerical experiments carried out in a three-dimensional setting,
with the two-fold aim of verifying the theoretical results and simulating test cases of physical
interest.

Throughout the paper, we will use standard notation for Sobolev spaces [22]. The Sobolev
spaces of vector-valued functions are denoted by H™(Q) = [H™(Q)]? and their norms by
| m.q, where © = R? is an open bounded domain of R?, d € {2,3}. We will use the symbol
(-,-)o and ||-|q to denote the standard inner product and norm in the space H°(Q) = L?(Q),
respectively. We also use the abridged notation z < y in place of x < Cy, for C > 0
independent of the discretization parameters (polynomial degree and meshsize), but possibly
depending on the material properties of the media under consideration.



1 Problem statement

In this section, we recall the formulation of the elasto-acoustic problem in its symmetric form,
i.e., written in terms of the displacement field u and the velocity potential ¢, defined such
that the velocity field in the acoustic domain v, is given by v, = —V¢ (see [19]). Let
Q= Q. U Q, c R? denote an open bounded domain with Lipschitz boundary, given by
the union of two open disjoint bounded subdomains 2. and €2, representing the elastic and
acoustic regions in their reference configurations, respectively. We denote by I't = 02, n 02,
the interface between the two domains. Thus, given a body force f. and a scalar volume
acoustic source f, as well as a final time T > 0, the strong formulation of the problem reads

peil —dive(u) = £, in Q, x

fa in Q, x

(

o(u)n, = —p,pn, on I't x (
c2g— Ly (
(

Op/0n, = —u-n, on I't x

coupled with suitable boundary and initial conditions that are detailed below.

Here, pe € L*(Q), pe > 0, is the mass density of the elastic region €.; o(u) = Ce(u) =
A(tre(u))I + 2pue(u) is the Cauchy stress tensor; C is the uniformly elliptic and symmetric
fourth-order elasticity tensor, representing a linearly elastic isotropic behavior, with p and
A the Lamé parameters; e(u) = sym (Vu) = 1 (Vu+ Vu?) is the strain tensor. Also, we
denote by p, € L*(Q4), pa > 0, the density of the acoustic region Q, and by ¢ > 0 the speed
of the acoustic wave.

The trasmission conditions on I' take account of the pressure, of magnitude pg|¢|, exterted
by the acoustic region onto the elastic one through the interface, and of the continuity of the
normal component of the velocity field at the interface.

Concerning boundary conditions we assume the following decomposition: 092 = (02U 0dQ,)\I'1
where 0Q, ='epul'e y Ul ng U T and 082, =Ty p Ty v Uy Nr U T'1. We denote by n,
and n, the outer unit normal vectors to 02, and 02, respectively. Homogeneous Dirichlet
boundary conditions are assigned on I'. p U T’y p, i.e., u =0 and ¢ = 0. Neumann boundary
conditions on I'c ;y UT', x are prescribed in term of a surface traction g, and a surface acoustic
flux g, as

o(u)n, = g onT'en x (0,77,
Op/dn, = g4 on Iy v x (0,77.

Non-reflecting boundary conditions are imposed on I'c yr U I'g nr; here, the surface loads are
themselves expressed in terms of the time derivatives of the unknowns. In particular, we set

{ o(un, =g on I'e g x (0,77, @)

op/on, = g, on 'y nr % (0,77,

with g% = pecp(-ne)ne + pecsti, and g2 = ¢ 1 (see e.g. [4, 23, 24]), with @, = i — (1-n.)n,

is the tangential velocity field over I'c yg, and cp and cg are the propagation velocities of P
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(pressure) and S (shear) waves, respectively, given by cp = /(A + 2u)/pe and cg = +/ 11/ pe.
These are commonly referred to in literature as first order absorbing boundaries [25].

Finally, as initial conditions we set u(-,0) = ug and a(-,0) = u; in Q. while ¢(+,0) = ¢y and
&(+,0) = 1 in Q, for some regular enough functions ug, uy, @o, and ¢1.

The well-posedness of the problem (1) in suitable functional spaces was proven in [19] under
suitable regularity assumptions on the data, in the case I'e y UT'q v = & = T'e nr U Lo NR-

2 Numerical discretization

In this section we present the numerical approximation of the weak formulation of (1) through a
DGSE method coupled with an explicit Newmark predictor-corrector staggered time marching
scheme (see [9]). We first introduce the semi-discrete counterpart of (1), observing that
the solution of (1) satisfies the following weak form: for any ¢t € (0,7, and all (v,v) €
Hll“e’D (Qe) x HllmD (Qa),

(peii(t), V)a. + (¢ 2pa(t), ), + Ac(u(t),v) + Au(p(t), ) + Le(¢(t), v) + La(1a(t), )
= (fe(t), v)a. + (8e(t), V)r. v + (82(1), V)1, va
+ (fa(t)a Qp)Qa + (ga(t)a w)FmN + (g(;(t)7v)ra7NR(7 )
3
where

Ae(u,v) = (Ce(u),e(v))a.,  Ze(¥,v) = (pa¥me, v)ry,

4
Aa(%w) = (IOlZV(p7 V¢>Qaa Ill("vdj) = (PaV'nmlb)FI- ( )

We observe that the second evolution equation has been multiplied by p, to ensure (skew)symmetry
of the two interface terms (since n, = —n).

2.1 Partitions and trace operators

We now consider a decomposition Tq, of €. into L. nonoverlapping polyhedral regions Qg,
¢ e {1,...,L}, such that Q. = |Jie, Qf, with Q¢ n QY = & for any £ # (/. This first
macropartition is introduced to distinguish elastic materials with different properties (density
pe and material moduli A, x). On each Qf, we build a conforming computational mesh Th,
of meshsize hy > 0 made of disjoint elements K. ¢, and suppose that each K., < Qg is the
image through an invertible bilinear map F¢ : K — Ke,e of the unit reference hexahedron
K = (=1,1) d € {2,3}. Given two adjacent regions Q¢ we define an internal face F as

the non-empty interior of 0K, j+ n K, -, for g 4+ € 77164#’ Keot © Qgi, and collect all the

internal faces in the set fﬁ .- Moreover, we define .7-",?6, ]:,{bve, and F,]lvf as the sets of all

boundary faces where displacement, tractions, or non-reflecting elastic boundary conditions
are imposed, respectively. We collect all the boundary faces not laying on I't in the set ]—"g o

On the other hand, concerning the acoustic domain €, since we do not take into account
multi-phase fluids, we introduce a conforming grid 7, of €}, made by disjoint hexahedral
elements KC,. As in the elastic case, we suppose that each K., < Qﬁ is the image through an
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Figure 1: Example of decompositions for the domains €2, and €2,. Interfaces between elastic
regions 2}, 02, and Q3, characterized by different material properties, are highlighted in green,
and the elasto-acoustic interface I't is highlighted in purple.

invertible bilinear map Fj : K — Ky of the unit reference hexahedron K = (—1,1)¢, d € {2, 3}.
Also, we define ]-",? o ]-",év o and ]-",JLVGR as the sets of all boundary faces where velocity potential,
fluxes, or non—reﬂécting7 acoustic iaoundary conditions are imposed, respectively. We collect
all the boundary faces not laying on I't in the set .7-"}1’7 o

Finally, we collect all faces laying on I't in the set J, r; in this case, F' € Fj, r, is the non-
empty interior of 8@ N 0K,, for given Kee © Qﬁ € To, and K, € T7;*. Implicit in these
definitions is the assumption that each face laying on 0€2. U 0€2, can belong to exactly one of
the sets F}fe, .F,le .7-",? F}]Xa, and Fj, .

767 7a’

Remark 2.1 (Non-matching grids at the elasto-acoustic interface). Notice that the above-
detailed framework allows to handle the situation of non-matching grids at the interface I'y
between the elastic and the acoustic domains (cf. Figure 1). Meshes can therefore be generated
independently on each of the domains.

We now introduce the following average and jump operators [26, 27| for mesh faces in the
elastic domain. For sufficiently smooth scalar, vector, and tensor fields 1, v, and 7, we define
averages and jumps on an internal face F' € fﬁ’e, F < oK, o+ 0O, -, with K+ € 7;,;, as

follows: 4 _
[ =v"n* +von, fup =37,
M=vion' +voon, (vj= "tV
[r]=7"n" + 77 n, {r} = T+—2FT_,

where a ® b denotes the tensor product of a,b € R?; ¢»*, vt and 7% are the traces of ¥, v
and 7 on F taken from the interior of &, ¢+, and n¥ is the outer unit normal vector to 0K o+ -
When considering a boundary face F € F _, we set [¢] = ¢, [v] = v®n, [7] = 7n, and
{v} =, {v}=v, {r} =7. Wealso use the shorthand notation

@, W)=Y (2,0)p, |0|F=(2,F,
FeF

for scalar, vector or tensor fields ® and ¥ and for a given generic collection F of mesh faces.



2.2 Discontinuous Galerkin Spectral Element approximation

First, concerning the elastic domain €)., we associate with each subdomain Qﬁ a nonnegative
integer N.¢ = 1, and introduce the finite-dimensional space

V(Q) = (ve CO) : vy, o Fug € [QY (K] VKoo € Ti (5)

where Qe (I/C\) is the space of polynomials of degree N, in each coordinate direction on the

unit reference hexahedron K. We then introduce the space V(Q) = X fzel V(QY). Concerning
the acoustic domain €2, we choose a spectral degree N, > 1 and define the following space:

V(%) = (¥ € COQ) : dyic, 0 Fu € QV(K) VK, € T, (6)
The semi-discrete DGSE approximation of (3) reads then: (up, ) € C2([0,T];V(£2)) x
C?([0,T];V () such that, for all (vy, ) € V(Qe) x V(Qy),
(petin(t), va)a, + (¢ 2pa@n(t), Yn)a, + Ah(an(t), vi) + Af(on(t), ¥n)
+ L (&n(t), vi) + Iy (an(t), ¥n) = L5 (va) + Lf;(¥n),

with initial conditions (u;(0),14(0)) = (ugp,urn) € V() x V(Qe), and (¢4(0), ¢1(0)) =
(po.hs01,0) € V() x V(Q4), where ug p,, a1 4, @o,n, and ¢qj, are suitable approximations of
the initial data. In (7)

Ay = Y (@nlw),env)ar — Honh [V

(7)

f<Eu]] {or P+ ] [VDz; Vu,ve V()
A (p, 1) = K;aoaaw, VK, Vi, v € V(Q),
Zi, (4, V) = {pavme, V)5, V(1 v) € V() x V(),
Th(v,¥) = (pav-na, ), . = —Th (1, V) V(v, 1) € V(Q) x V(Q),
L5(v) = QET (£e(), V)t + (@e(t), V)gy +(8I(1), V)pnn ¥V E V().
Li(W) = ;g:m(tm V)i +9a(t). W gy +{ga (0, W) rn Vi€ V().

(8)

We point out that the fourth identity in (8) holds since n, = —n, on I'[. Here we have set,
for any v e V(£.),

sh(v) = % (VhV + VhVT) , O'h(V) = Csh(v),

with V7, the usual broken gradient operator. The discontinuity penalization function n: F, }L e
R is defined as follows:

N2\ * A
me = af(A+2u) "} { (Z> } , FeFe Faikep ok, (9)
H

7



with IC, o+ € 771‘; Here, a > 0 is a positive constant to be properly chosen, and {v*}y =

20Tv~ /(v + v7) is the harmonic mean of traces v and v~ of a given scalar field v.

Upon introducing the following norms

VIBG.e = ICen(v) IR, + [ IvIIZ; v e V()
VDI, = o501, + 1001, + v Be. YveC (0.TEVQ),  (10)
[V, = I o0, + 10 T3, Wb e C([0.T]: V().

it is possible to prove that bilinear forms A7 and A? are continuous and coercive. Con-
sequently, a stability result and an error estimate in the above-defined energy norm for the
semi-discrete solution can be inferred. We recall those results below; for the sake of readibility,
we give a simplified statement of the error estimate (see [19] for a more general framework,
and [28] for the purely elastic case).

Theorem 2.2 (Stability of the semi-discrete formulation). Let (up, ¢p) be the solution of (7).
For a sufficiently large penalty parameter v in (9), the following bound holds:

lan(®)]e. + len(®)le, < lun(0)]e, + len0)le, +f (Ife(T)le. + 1fa() ) d7, e (0,T7].

0
(11)
Theorem 2.3 (A priori error estimate in the energy norm). Assume that the exact solution

of problem (1) is such that u € C?([0,T]; H™(Q.)) and ¢ € C*([0,T]; H" (%)), for given

integers m,n = 2. Then, the following error estimate holds:

sup (Jlun(t) — )|z, + len(t) — o(t)lz,)

te[0,T]
Le h2min(m,Ne,g+1)72 h2min(n,Na+1)—2
{4 . K .
< sup | 3 g (g + lulag) + X g (I8l + Il c)
tE[O,T] /=1 el K:E'Tha a,
T [ Le h2min(m,Ne’g+1)—2
+ j (2 e (112, 0 + 1813, 0 + 0l )
0 \r=1 el

2min(n,Ng,+1)—2

+ 2 (18l + 19
KeT a

i,ic + H@Hi,/c) dr.

Remark 2.4 (Error in the energy norm). If both meshsizes are quasi-uniform, i.e. hy ~ h, ¥/ €
{1,...,Le} and hx ~ h, VK € T, if the polynomial degree is uniform over elastic regions
QL ie. Ney = Ne Vle{l,...,Lc}, and if m > N. + 1 and n > N, + 1, the following error

e’
estimate holds:

- e
sup ([un(t) —u(®)le, + lent) —¢@)le.) s Cu(T)—T=5; + Co(T)— =7, (12)
te[0,T7] Ne Na

where Cy(7T") and C,(T') are positive numbers depending on the final time 7" and the exact
solution, along with its time derivatives.



2.3 Fully discrete formulation

Upon fixing polynomial bases for discrete spaces V() and V(Q,), see e.g. [19], the semi-
discrete algebraic formulation of problem (7) reads

(13)

Meii(t) + Setr(t) + Keu(t) + Cod(t) = fo(t), te (0,77,
Mo () + Sad(t) + Kad(t) + Cati(t) = fa(t),

with initial conditions u(0) = u®, a(0) = V%, (0) = ¢°, and $(0) = P°, and where the
vectors u(t) and ¢(t) represent the expansion coefficients of wy(t) and ¢p(t) in the chosen
bases, respectively. Analogously, M., K., and C. are the matrix representations of the bilin-
ear forms (peu,v)q,, An(u,v) and Zj (1, v), respectively (see (8)). When elastic absorbing
boundary conditions are included in the model, matrix S, takes account of the boundary
term (gg,v)p& ~ri Otherwise, it is identically equal to zero. On the other hand, M,, K,, and
C, = —C/! represent the bilinear forms (c™2p.¢,%)q,, A%(p,¥), and T¢(v,), respectively.
When acoustic absorbing boundary conditions are considered, S, represents the boundary
term (g3, 9)r, ng- Finally, fe(t) and f,(t) are the vector representations of linear functionals
Ly and L}, respectively.

For the time integration of system (13), as in [9], we employ an explicit Newmark predictor-
corrector staggered method [29]; in this case, the scheme is conditionally stable and second-
order accurate. We thus subdivide the time interval [0,7"] into N7 subintervals of amplitude
At = T/Nr and denote by u” ~ u(t,), v? ~ (t,), a ~ ii(t,), d" ~ d(t,), " ~ d(t,), and
all ~ d)(tn) the approximations of u, 4, i, ¢, ¢, and ¢ at time ¢, = nAt, n € {0,...,Nr},
respectively. Then, along the lines of [9], we exploit the fact that mass matrices are diagonal,
and implement an iterative scheme based on a staggered prediction/correction technique. At
each time step, we first compute predictors of the solution in both domains:
2
W =0 4 AN 4 A—ta’;, v =y ga’g,
2 2 (14)
Tn+1 n n At? n Tn+1 n At n
0] =o¢" + At +7aa, P =1 +?aa.

Then, we update the solution in the elastic domain by solving the first equation of (13) for
a"*1 where the coupling term is evaluated as —CelT)”“, hence using the predictor computed
in the acoustic domain. Next, we compute the solution in the acoustic domain by solving
the second equation of (13) for a”*!, now using the updated solution in the elastic domain to
evaluate the coupling term, which is thus given by —C,v"*!, where v = yn+1 4 %a?“. We
then iterate this algorithm by returning to the first step, this time using the updated solution.

The algorithm is summarized in the following scheme.



Newmark predictor-corrector staggered scheme
Given initial conditions u®, v and ¢9,°:
0 _ ¢0 0 0 0
Mea, = f, — Sev’ — Keu® — Cap”,
0 0 0 0 0
Maa, = f, — Sab” — Ko™ — Covs
for n=0to Ny —1 do
compute predictors u" 1 v pntl Pt as in (14);
compute a?tl: Mgantl = fr+l — g gntl K gntl — Cpntly
update the solution in Q.: u**t! = gn+l yntl — gntl 4 %a?“;
compute ag-ﬁ-l: Maag-i-l _ fg-i—l _ Sali)n-&-l _ Ka¢n+l~_ Cavn-&-l;
update the solution in Q,: ¢"+! = pntl, Prtl =+l 4 %agﬂ;
end for

compute a? and a!: {

3 Numerical results

3.1 Verification test

In this section we solve problem (1) in the parallelepiped Q = (—1,1) x (0,1) x (0,1) on
both matching and non-matching grids (Figure 2), and verify the convergence results shown
in Theorem 2.3. Here Q. = (—1,0) x (0,1) x (0,1) and 2, = (0,1)3; the interface is thus
given by I't = {0} x [0,1] x [0,1]. In all cases we compute the energy norm of the error
at time t = 0.1, cf. (12). For the time discretization we employed the staggered scheme
presented in the previous section. The timestep will be precised depending on the case under
consideration. Finally, we choose p. = 2.7, cp = 6.20, cg = 3.12, p, = 1, and ¢ = 1 (cf. [5,
6]). The right-hand sides f. and f, are chosen so that the exact solution is given by

drx drx A
u(z,y,z;t) = | cos (—), cos (—), cos <—) cos(4nt),
cp cs cs

4
SD(‘T7 Y,z t) = sin (ﬂ) Sin(47’[’t).
C

(15)

Grids are sequentially refined starting from an initial mesh with uniform meshsize h = 0.1 in
the matching case (Figure 2a); on the other hand, in the non-matching case (Figure 2b—2c),
the submeshes of €2, and (), have the two initial respective meshsizes h, = 0.1 and h, = 0.2.
Numerical tests carried out in both matching (Figure 3) and non-matching (Figure 4) cases,
show that h- and N-convergence rates match those predicted by (12). We also considered a
further non-matching grid, where the initial submeshes are such that their meshsizes are not
a multiple of each other, i.e., he = 0.1 and h, = 0.15 (Figure 4c). In this case, we obtain a
quadratic order of convergence, as expected with polynomial degree N, = N, = 2.

3.2 Scholte waves

Scholte waves are an example of boundary waves, propagating along elasto-acoustic interfaces
(cf. Figure 5). Their amplitude decays exponentially away from the interface. As in [14],

10



we consider here two half-spaces. The lower half, z < 0, is occupied by an elastic medium
with A = p = 1 and p. = 1; and the upper half, z > 0, by an acoustic medium with ¢ = 1
and p, = 1. The analytic expressions of the displacement field u = (uq, ug, u3) and velocity
potential ¢ can be inferred from [14], where a displacement-based formulation is employed in
both domains (see also |30, Section 5.2]), and are the following. For z < 0 (elastic region), we
have

uy(z,y, 2;t) = k(BoeM?* — Bsby,eM???) cos(ka — wt),

U2($7yaz§t) = 07 (16>

ug(x,y, 2;t) = k(Babape™?* — Bsekb2:%) sin(kx — wt);
and, for z > 0 (acoustic region),

—kbipz

o(x,y,z;t) = wBie cos(kx — wt). (17)

Here, the wavenumber is k = w/csap, for a given frequency w and Scholte wave speed c¢ge,. The
decay rates are given by

2 2 2

C C C
bip=A[1— =8, by =4 /1= S by = [1— =2
C Cp Cg

Wave amplitudes By, Be, and Bs have to satisfy a suitable eigenvalue problem, say AB =0
with A a suitable 3 x 3 matrix and B = [B; By Bs]’, stemming from the transmission
conditions imposed on I'[, i.e. oo(u)n, = —p,én, and dp/dn, = —ia-n,. The value of the
Scholte wave speed cgq, is thus given by the condition det A = 0. One can show that a Scholte
wave speed exists for arbitrary combinations of material parameters. Based on the values of
the material parameters we selected, we obtain, analogously to [14], ¢sen = 0.7110017230197,
and we choose By = 0.3594499773037, B = 0.8194642725978, and Bs = 1. Also, for our
numerical experiments, we choose w = 1, which gives, in turn, k = 1.4064663525.

We use a uniform mesh consisting of 2400 elements (corresponding to a meshsize h = h, =
he = 0.416) over the domain (—1,1) x (—1,1) x (=20, 20), and we impose Dirichlet conditions
all over the boundary. Figure 6 shows asymptotic exponential convergence rate of the error
in the energy and L? norms, as expected.

3.3 Underground acoustic cavity

As a last test case, we simulate a seismic wave in the presence of an underground spherical
acoustic cavity. This problem arises in several applications, the most important one, besides
non-destructive testing [31], is given by near-surface seismic studies to detect the presence of
cavities in the subsoil, which are originated after underground nuclear explosions, and can
give rise to resonance effects when a seismic event occurs [3]|. In particular, the geometry we
consider is the following: the acoustic domain is given by an open ball Q, = {x € R? : ||z| <
R}, of radius R = 30m, and the elastic one is Q. = (—Ly, Ly) X (—Ly, Ly) x (=L, L,)\Qq
surrounding the cavity, with L, = L, = 600m and L, = 300m (Figure 7). Non-reflecting
boundary conditions are imposed on the external elastic boundary. The system is excited by
a point Ricker wavelet of the following form:

£(@,t) = f(Hesd(@ —m0),  f(t) = fo (1 — 202 f2(1 — t0)?) e ™R (—00)”,
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Region | poja (kg/m®) | cp (m/s) | cs (m/s)
Q. 2700 3000 1734
Q. 1024 300 —

Table 1: Test case 3.3. Material properties.

with e, = (0,0,1), o = (200,0,300) m, to = 0.25s, fo = 101Y N, and peak frequency f,. The
set of data and space discretization parameters is summarized in Table 1, where we write cp
for ¢ in the case of an acoustic wave. Since the wavelength inside the cavity is much smaller
than outside, we are led to choosing a finer meshsize inside the cavity, and thus employ the
following meshsizes: h, = 20m, hy, = 5m. We use a polynomial degree N, = N, = 4 on both
domains, and we set the time-step to At = 1077 s.

Figure 8 shows the z-component u, of the displacement field in the subsoil and the acoustic
velocity potential ¢ in the spherical cavity at times ¢t = 0.4s, t = 0.5, and ¢t = 0.7s when
the peak frequency is set to f, = 22 Hz, whereas Figure 9 shows the same quantities when
fp = 11 Hz. We remark that, in the first case (Figure 8), the elastic wave detects the acoustic
cavity: spherical wavefronts are generated due to refraction phenomena between the cavity
and the subsoil, since the wavelength corresponding to the value f, = 22 Hz is comparable
with the diameter of the cavity. On the other hand, if the peak frequency is reduced by
a factor two (Figure 9), we observe that the interaction of the elastic wave with the cavity
is weaker than in the first case, since the corresponding wavelength is twice as much as in
the first case. In both cases, since outside the sphere the material is stiff, the acoustic wave
remains trapped within the cavity over time and it generates reflection and refraction effects.
These phenomena can be better represented and remarked if the time histories of a number
of monitored points in the elastic and acoustic domains are considered. In particular, we took
into account an X-shaped set of points in a square cross section of the computational domain
lying in the xz-plane, centered in the origin, with side 600 m (Figure 10). Time histories of
points in the subsoil and in the underground cavity are showcased in Figures 11 and 12 for
the first case (f, = 22 Hz) and in Figures 13 and 14 for the second case (f, = 11 Hz). In
particular, reflection phenomena for elastic waves are clearly more remarkable in the first case
than in the second. As expected, point A being the closest one to the location of the seismic
source, is the first to undergo a displacement impulse, which is then delayed for the other
points; the same occurs in the second case. Finally, in both cases, we clearly see that the
acoustic wave remains trapped in cavity over time, due to persistent reflections.

4 Conclusions and perspectives

We have presented a Discontinuous Galerkin Spectral Element method for the approxima-
tion of the elasto-acoustic evolution problem. Several numerical experiments carried out in
a three-dimensional framework have been discussed, both to verify the theoretical results
and to simulate a scenario of physical interest. Our approach is well-suited to comply with
the requirements for the discretization of heterogeneous seismic wave propagation problems
(geometric flexibility, high-order accuracy, and flexibility); in addition, it allows for the treat-
ment of non-matching grids at the interface between the elastic and the acoustic domains,
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0

0 1 %

(b) he = 0.1, hy = 0.2 (c) he = 0.1, hq = 0.15

Figure 2: Test case 3.1. Computational domain with matching (a) and non-matching (b)—(c)
hexahedral meshes.

which can therefore be generated independently on each of the domains. All numerical
experiments have been carried out using the computer code SPEED [24], freely available at
http://speed.mox.polimi.it.

A future work consists in the extension to general polyhedral meshes in SPEED, in order to
tame the computational cost of mesh generation and enhance the geometrical flexibility of the
numerical discretization. As a second perspective is given by the enrichment of the models.
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Figure 3: Test case 3.1. Error in the energy norm vs. h (a)—(b) and N (c) at t = 0.1s.
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hexahedral grids. Initial meshsizes are he = 0.1, hq = 0.2 in (a) and (b), and h. = 0.1,
he = 0.15 in (c).

Figure 5: Test case 3.2. Scholte wave at the interface between an elastic medium and an
acoustic one.
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Figure 6: Test case 3.2. Error in the energy (a) and L? (b) norms vs. N at t = 0.1s, with N
ranging from 2 to 6.

Vertical point source at o = (200, 0,300) m

Figure 7: Test case 3.3. Geometry of the computational domain for the case of a seismic wave
in the presence of an underground cavity.
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Figure 8: Test case 3.3. Displacement along the z-direction and velocity potential at time
t=04s(a),t=0.5s (b),and t =0.7s (c), for f, =22 Hz.
17



I" 4“
T

Figure 9: Test case 3.3. Displacement along the z-direction and velocity potential at time
t=04s(a),t=0.5s (b),and t =0.7s (c), for f, = 11 Hz.
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600 m

Figure 10: Test case 3.3. Set of monitors in the square cross section of the computational
domain lying in the xz-plane, centered in the origin, with side 600 m.

Monitors

Monitors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure 11: Test case 3.3. Time histories of the displacement along the z-direction for the
monitored points in the elastic subsoil, for f, = 22 Hz.
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Figure 12: Test case 3.3. Time histories of the velocity potential for the monitored points in
the acoustic cavity, for f, = 22 Hz.
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Figure 13: Test case 3.3. Time histories of the displacement along the z-direction for the
monitored points in the elastic subsoil, for f, = 11 Hz.
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Figure 14: Test case 3.3. Time histories of the velocity potential for the monitored points in
the acoustic cavity, for f, = 11 Hz.
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