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Abstract

In this paper, we develop and apply novel machine learning and sta-
tistical methods to analyse the determinants of students' PISA 2015 test
scores in nine countries: Australia, Canada, France, Germany, Italy, Japan,
Spain, UK and USA. The aim is to �nd out which student characteris-
tics are associated with test scores and which school characteristics are
associated to school value-added (measured at school level). A speci�c
aim of our approach is to explore non-linearities in the associations be-
tween covariates and test scores, as well as to model interactions between
school-level factors in a�ecting results. In order to address these issues,
we apply a two-stage methodology using �exible tree-based methods. We
�rst run multilevel regression trees in the �rst stage, to estimate school
value-added. In the second stage, we relate the estimated school value-
added to school level variables by means of regression trees and boosting.
Results show that while several student and school level characteristics
are signi�cantly associated to students' achievements, there are marked
di�erences across countries. The proposed approach allows an improved
description of the structurally di�erent educational production functions
across countries.

Keywords: Multilevel model; School value-added; Regression trees; Boosting.
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1 Introduction

The educational activity involves a complex process whereby inputs (such as
human and �nancial resources) are converted into outputs. By analogy with
the type of production function that is typically used to analyse the technology
of a �rm, the labour and capital inputs used by a school are likely to in�uence
its output. But, since students themselves form both an input and output, and
since they themselves are transformed by the experience of education, such a
simple framework fails adequately to capture some key salient features of the
process. This is a very well-known challenge in the existent literature about
Educational Production Function (EPF). Indeed, the learning process of stu-
dents is in�uenced by students' own characteristics, those of their family, their
peers, the neighbourhood in which they live, as well as by the characteristics of
the school that they are attending. Moreover, the way in which various inputs
(at di�erent levels) a�ect output is likely to vary substantially across the edu-
cational systems that operate in di�erent countries. A common characteristic
of all educational systems is the hierarchical structure in which students are
nested within classes, that are nested within schools, that are in turn nested
within cities and so forth. Establishing the structure of such a hierarchy is
a non-trivial exercise, not least because this structure may be di�erent across
countries. Exploring international datasets which contain information about
students' performance in more countries can be a rational approach to under-
stand how the di�erences among educational systems can have an impact on
students' results, all else equal (see [13]).

The Programme for International Student Assessment (PISA) is a triennial
international survey (started in 2000) which aims to evaluate education systems
worldwide by testing the skills and knowledge of 15-year-old students. In 2015
over half a million students, representing 28 million 15-year-olds in 72 countries
and economies, took the internationally agreed two-hour test. Students were
assessed in science, mathematics, reading, collaborative problem solving and
�nancial literacy. Moreover, a wide array of data concerning a set of student and
school levels characteristics are available, thanks to questionnaires completed by
students and school principals.

Our aim in this paper is to identify which are the student and school level
characteristics that are related to students' achievement, with the aim of in-
vestigating the impact of these characteristics on the outcome. We analyse the
school systems of nine large developed countries: Australia, Canada, France,
Germany, Italy, Japan, Spain, UK, USA. Speci�cally, our research questions
are:

• Which student level characteristics are related to student achievement?

• How much of the total variability in student achievement can be explained
by the di�erence between schools and how can we estimate the school
value-added?

• Which school level characteristics are related to school value-added and
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in what way?

• How do co-factors interact with each other in determining outcomes si-
multaneously?

• How do these relationships between inputs/covariates and outputs/test
scores vary across countries?

In order to address these issues, we run a two stage-analysis, that departs
from traditional EPFs approach and embraces a Machine Learning strategy:

1. In the �rst stage, we apply multilevel regression trees (RE-EM tree, see
[31]) in which we consider students (level 1) nested within schools (level
2). By means of this model we can both analyse which are the student
level variables that are related to student achievements and estimate the
school value-added, as a random e�ect (grouping factor in the hierarchical
model).

2. In the second stage, we apply regression trees and boosting to identify
which are the school level characteristics related to school value-added
(estimated at �rst stage), how they are related with the outcome and how
they interact among each other.

The set of analytical tools that we use to examine these issues is new to
the literature, but is quickly gaining in popularity. Tree-based methods can be
classi�ed as a Machine Learning (ML) approach. The main di�erence between
statistical and ML approaches is that while the former starts by assuming an
appropriate data model and then estimates the parameters from the data, the
latter avoids starting with a data model and rather uses an algorithm to learn the
relationships between the response and the predictors (in our setting, students'
test scores and their determinants, respectively). Furthermore, ML approach
assumes that the data-generating process is complex and unknown and tries to
identify the dominant patterns by observing inputs and the responses (see [8]).

Tree-based methods (extended to accommodate the multilevel context) �t
the problem in hand well for several reasons. First of all, this methodology takes
into account the hierarchical structure of data. The two levels of analysis are
students (level 1) that are nested within schools (level 2) and it is worth disen-
tangling the portions of variability explained at each level. Multilevel models
are well suited to this. Secondly, our tree-based methodology does not force any
particular functional form on the input-output relationship, and it allows for in-
teractions among the predictors. This point is essential because the functional
form of the relationships between the covariates and the outcome is unknown
a priori and forcing it to be linear can considerably bias the results and, crit-
ically, it does not allow discovery of the most likely relationships between the
variables. Moreover, there are reasons to believe that the educational context
is intrinsically characterised by interactions among variables, since inputs are
various and coexist in the same environment. So, tree-based models, that are
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able to let the variables interact and that identify which interactions are rel-
evant in in�uencing the outcome, are de�nitely attractive (see [19]). Thirdly,
the method allows a clear graphical representation of the results that helps in
communicating them to policy practitioners. Alongside the deep interrogation
of interactive e�ects, we consider this to be a major bene�t of this approach.

The results show that the portion of variability in student achievements that
can be explained at student and school levels varies across countries. While
there is some commonality across countries in the set of variables that matter
for educational performance of students, the way in which these variables a�ect
output - and how they interact with each other in doing so - di�ers considerably
between nations. We report a wide range of �gures that illustrate how the
various school-level factors interact in a complex way, detecting patterns of the
determinants of educational production that are usually hidden when observed
through traditional statistical and econometric lenses.

The remainder of the paper is organised as follows: in Section 2 we review
the existing literature and, in so doing, motivate our model choice; in Section
3 we present the PISA dataset and the countries that we analyse; Section 4
discusses the methodological approach (multilevel trees and boosting); in Sec-
tion 5 we report the results and in Section 6 we derive conclusions and policy
implications1.

2 Background and previous literature

In recent decades, many researchers have studied the determinants of student
achievement, in order to develop policy implications aimed at improving ed-
ucational systems across the world. The statistical methods proposed by the
literature in this perspective are various - including linear regression, multilevel
linear models and stochastic frontier analysis - in each case aimed at parame-
terising the educational production function (EPF). While a complete literature
review of previous studies that use a EPF approach is beyond the scope of this
paper, we report important points from existing contributions that can be con-
sidered as relevant for interpreting our approach. Speci�cally, we focus on those
studies which adopt a cross-national perspective in modelling the determinants
of students' educational performance by means of economic models and sta-
tistical and econometric empirical tools. Indeed, our main contribution to the
academic literature stems from the relevance of the innovations brought by the
ML strategy to explore di�erences in educational production across countries.

The Programme for International Student Assessment (PISA) was initiated
by the OECD, and has been running since 2000. It involves standardised test-
ing of 15 year olds across a large number of countries. Over the 15 years for
which data are now available, PISA results have revealed that there are big
discrepancies across education systems. The data allow direct comparisons of

1All analysis undertaken in this paper is conducted using the statistical software R (see
[25]).
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student performance in science, reading and mathematics, leading to a rank-
ing of the countries and identifying those that score the best results (see [20]).
PISA2015 data, for example, show that Singapore achieves the best results in
the scienti�c area, followed by Japan, Estonia, Finland and Canada. For our
purposes, the most interesting aspect of the PISA data is the possibility that
they o�er to compare the marginal e�ects of student and school levels variables
on students' performance. Gender, immigrant status, socio-economic status
(SES), proportion of disadvantaged students, school size and characteristics of
the school principal are all variables that have been found to be very important
in some countries but less so in others (see [22] and [33]). For example, in almost
all countries boys perform on average better than girls in the scienti�c subjects,
with the notable exception of Finland, where girls have on average higher results
than boys. As another example, after accounting for socio-economical status,
immigrant students have a double probability compared to their not immigrant
counterparts to achieve low results in scienti�c subjects (see [23]). Focusing on
mathematics, four Asian countries outperform all other economies - Singapore,
Hong Kong (China), Macao (China) and Chinese Taipei - and Japan is the
strongest performer among all the OECD countries.

Policy responses to internationally reported PISA results have di�ered among
participating countries. For example, in some country groups PISA de�cits have
been associated with a push towards more centralised control, while others have
responded with much more focused reforms implemented with the speci�c aim
of raising PISA (or similar) test scores over time (see [37]).

What is clear to experts and analysts worldwide, therefore, is that the ed-
ucational systems, in their structural, internal complexity and in their various
aspects, vary within and across countries. Di�erent variables play a role and
sometimes with di�erent impacts in in�uencing educational results in di�erent
contexts. Analysing international datasets like PISA therefore calls for the use
of a �exible model, able to identify the signi�cant variables within each system
and to �t data with di�erent patterns. Indeed, imposing the same coe�cient
on the correlation between covariates and educational results in all countries is
inappropriate and even the inclusion of country �xed-e�ects - shifting only the
intercept - is not obviously an adequate solution. Therefore, it is necessary to
employ more �exible instruments for the analysis of patterns that go beyond
the simply ��xed-e�ects� which impose homogeneity of the interactions between
key variables within countries.

The EPF literature builds upon the work of Coleman, Hanushek, and others
by viewing education as a process in which students' performance or output
(attainment or years of schooling completed) is produced from inputs including
school resources, teacher quality, family attributes, and peer quality. Because
outcomes cannot be changed by �at, policy attention has focused on inputs.
These include inputs that are both directly controlled by policymakers (charac-
teristics of schools, teachers, curricula, etc.) and those that are not so controlled
(family, friends, the learning capacities of the student, etc.) (see [11]). While a
large part of the e�ect on students' attainments is due to these �uncontrolled�
characetristics of students (see [6]), many researchers have found that schools'
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and teachers' characteristics are also of importance in determining outcomes
(see, for example, [12], [3], [28] and [38]).

In this paper, we try to �nd out which are the inputs that are related with
students' performances (output) and in our perspective, three main points need
to be taken into account when modelling the educational production functions:

• Data levels of grouping : educational data have a hierarchical structure and
it is important to distinguish and disentangle the portion of variability in
student achievements due to di�erent levels of grouping ( between and
within classes and schools).

• Realistic assumptions: since the educational system is a complex and un-
known process, the model assumptions are a sensitive issue and are one
of the main weak points of the parametric approaches to the problem.
Most of the statistical approaches force the data to be explained through
a functional form chosen a priori, but the imposition of such a functional
form may be inappropriate - either because it does not re�ect the under-
lying technology in some contexts (countries) or, even in none. Therefore,
there is the need of a �exible approach that does not force any functional
relationships among the variables, where the functional form is not known
and that admits the eventuality that the relationship between a covari-
ate (for instance, school resources) and educational results (for example,
students' test scores) may be non linear.

• Interactions: interactions between cofactors (both within and between
levels) are inevitable, as, for example, the relationship between average
socioeconomic status of students and class/school size. In such a per-
spective, modelling the educational production function would require the
inclusion of interaction factors that better describe how covariates combine
to in�uence educational performances.

Most of the classical statistical techniques used in the literature to model
educational data do not ful�ll these requirements.

From a modelling point of view, the application of hierarchical models to
educational data is straightforward. Raudenbush (see [27]) explains the ad-
vantages of applying these models in an educational context. He states that
two primary goals have motivated application of hierarchical linear models in
education: �rst, researchers have used data from many groups to strengthen
estimation of random e�ects for each group, and the second goal is improved
inference about the �xed e�ects. The application of hierarchical linear mod-
elling enables researchers to go beyond the classical questions, such as why do
some schools have higher achievement than others, to ask about why structural
relationships vary across groups. These models also o�er advantages in dealing
with aggregation bias long associated with nested data structure.

For these reasons, multilevel approaches have been broadly applied in the
literature. Raudenbush himself applies hierarchical models in various educa-
tional studies (see for example [5], [36] and [26]). Other examples are given by
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Agasisti et al. (see [1]), Masci et al. (see [17] and [18]), Plewis (see [24]) and
Rumberger (see [29]), that apply multilevel linear models considering di�erent
levels of grouping, such as class, school, Local Education Authority (LEA) or
geographical regions. Even where these approaches do indeed model the hi-
erarchical structure of data, however, they still force the covariates to have a
linear relationship with the outputs, without allowing possible heterogeneous
interactions among the predictors.

The innovation of the present paper involves the combination of the EPF ap-
proach with a multilevel approach to estimation using a machine learning (ML)
method. This allows us to relax the parametric assumptions and to discover
the data generating process that lies behind our data. The fundamental insight
behind ML approaches is as much statistical as computational and its success
is largely due to its ability to discover complex structure that does not need
to be imposed by the researcher in advance. It manages to �nd complex and
very �exible functional forms in the data without simply over�tting: it �nds
functions that work well out-of-sample (see [19]).

Spurred by the need to relax the parametric assumptions and to explain
complex systems, some researchers have already adopted a ML approach for
studying some key economic and social relevant issues. Varian (see [35]) states
that

�conventional statistical and econometric techniques such as regression often
work well, but there are issues unique to big datasets that may require di�er-
ent tools. First, the sheer size of the data involved may require more powerful
data manipulation tools. Second, we may have more potential predictors than
appropriate for estimation, so we need to do some kind of variable selection.
Third, large datasets may allow for more �exible relationships than simple lin-
ear models. Machine learning techniques such as decision trees, support vector
machines, neural nets, deep learning, and so on may allow for more e�ective
ways to model complex relationships.�

Our paper is not the �rst in which regression trees have been applied in
an educational context. Thomas & Galambos (see [34]) apply regression and
decision trees to investigate how students' characteristics and experiences a�ect
satisfaction. The data mining approach is able to identify the speci�c aspects
of students' university experience that most in�uence students' satisfaction, in
a survey of students in Iowa city (IA). Ma (see [15]) analyses students' per-
formances at middle and high schools employing a two-stage analysis, the �rst
stage of which involves estimation of the rate of growth in mathematics achieve-
ments of each student, by means of a hierarchical linear model (HML), while
the second stage applies classi�cation and regression trees (CART) to students'
characteristics. Cortez & Silva (see [7]) apply some Data Mining (DM) meth-
ods such as regression trees and random forests to relate Portuguese secondary
school students' scores in mathematics and reading to students' characteristics.
Grayson (see [10]) merges results of students at York University in Toronto
that were surveyed at the end of the �rst year with information on grades from
administrative records, by means of regression trees.
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In this paper, we relax the assumption of linear e�ects of student-level co-
variates on their performance, instead modelling this relationship by means of
�exible regression trees. In the �rst stage of the analysis, we therefore combine
multilevel models with regression trees. In the second stage, when exploring the
factors associated to the school value-added, we again employ regression trees,
combining this method with a boosting procedure, so gaining more precise es-
timates of determinants of school performance. To the best of our knowledge,
this is the �rst paper that applies a ML approach to PISA-OECD data.

3 The Dataset

The Programme for International Student Assessment (PISA) data assesses stu-
dent performance, on a triennial basis, in science, mathematics, reading, collab-
orative problem solving and �nancial literacy. In our analysis, we use PISA
data for 2015, focusing on 9 countries: Australia, Canada, France, Germany,
Italy, Japan, Spain, UK and USA. The selection of countries is motivated by
the attempt of representing di�erent �types� of educational systems: Anglo-
Saxon, Asian, Continental-Europe and Southern Europe. Future research will
be realized to extend the analysis to other educational regimes, such as Nordic
countries, South America and Africa. We also need to keep the number of
countries quite limited, for favoring easy interpretation of results and their
comparison. PISA requires both students and school principals to compile a
questionnaire. We therefore have information both at student and school levels.
The school questionnaire contains around 30 multiple choice questions about (i)
school background information, (ii) school management, (iii) teaching sta�, (iv)
assessment and evaluation, (v) targeted groups (eg how schools might organise
instruction di�erently for students with di�erent abilities) and (vi) school cli-
mate. Meanwhile the student questionnaire contains around 50 multiple choice
questions about the (i) student, student's family and student's home (home re-
sources, parents support), (ii) student's view about his/her life (anxiety, e�ort,
collaboration, perception of school climate), (iii) student's school, (iv) student's
school schedule and learning time and (v) student's view on science. In addition,
students are required to undertake tests in several subjects, and, upon comple-
tion, is awarded ten scores for each subject, measuring di�erent abilities within
each subject. For example, in science, these scores measure students' ability to
explain phenomena scienti�cally, to evaluate and design scienti�c enquiry, and
to interpret data and evidence scienti�cally; in reading, they measure student's
ability in retrieving information, forming a broad understanding, developing an
interpretation, re�ecting on and evaluating the content of a text, re�ecting on
and evaluating the form of a text, etc.; and in mathematics, they measure stu-
dents' ability in identifying the mathematical aspects of a problem situated in a
real-world context and identifying the signi�cant variables, recognising mathe-
matical structure (including regularities, relationships and patterns) in problems
or situations, simplifying a situation or problem in order to make it amenable
to mathematical analysis and so on. The ten scores are very highly correlated
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within each subject (coe�cient of correlation ' 0.8/0.9). In each country, test
scores have been standardised in order to have mean = 500 and standard devia-
tion = 100. In our analysis, we focus on mathematics test scores, choosing just
one of the ten scores (the same one for each country) as answer variable. We
report in Tables 1 and 2 the variables used in our two-stage analysis, with full
de�nitions2. Table 3 reports the sample size in the di�erent countries, specify-
ing the number of students and the number of schools that participated in the
PISA survey. The sample sizes vary somewhat across countries, but we have
chosen the countries used in our analysis so as to ensure that there are su�cient
observations in each to allow robust conclusions to be drawn.

4 Methodology

We develop and employ a two-stage procedure. In the �rst stage, we apply
a mixed-e�ects regression tree (RE-EM tree), with only random intercept, in
which we consider two levels of grouping: students (level 1) nested within schools
(level 2). The response variable of the mixed-e�ects model is the student PISA
test score in maths, this being regressed against a set of student level characteris-
tics (�xed coe�cients), plus a random intercept that describes the school e�ect.
By means of this model, we can both estimate the �xed coe�cients of the stu-
dent level predictors on the outcome and the school value-added (corresponding
to the random intercept). In the second stage, we regress the estimated school
value-added against a set of school level characteristics, by means of regression
trees and boosting.

4.1 An introduction to tree-based methods

Given an outcome variable and a set of predictors, tree-based methods for re-
gression (see [14]) involve a segmentation or strati�cation of the predictors space
into a number of regions. In order to make a prediction for a given observation,
we typically use the mean of the observations in the region to which it belongs.
Building a regression tree involves two steps:

1. We divide the predictor space - that is, the set of possible values for
X1, X2 . . . , Xp - into J distinct and non-overlapping regions, R1, R2 . . . , RJ .
For simplicity, we consider these regions as high-dimensional rectangles (or
boxes);

2. For every observation that falls into the region Rj , we make the same
prediction, which is the mean of the response values for the observations
in Rj .

2We report here the students' score in mathematics, since this will be our response variable
in the model. We do not consider students' scores in other educational subjects in the analysis.
In order to have a complete overview of the data collected by PISA, refer to the PISA 2015
technical report in http://www.oecd.org/pisa/data/2015-technical-report/.
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The regions are chosen in order to minimize the Residual Sum of Squares
(RSS):

J∑
j=1

∑
i∈Rj

(yij − ŷRj
)2 (1)

where ŷRj
is the mean of the observations within the j-th box and yij is the

i-th observation within the j-th box.
It is useful to contrast this approach with the more conventional methods

typically used in the education economics literature - namely a linear functional
form imposed on the education production function. In particular, a linear
regression model assumes the following functional form:

f(X) = β0 +

p∑
j=1

Xjβj ; (2)

(where p is the number of predictors) whereas regression trees assume a
model of the form:

f(X) =

M∑
m=1

cmI(X∈Rm) (3)

where M is the total number of distinct regions and R1, . . . , RM represent
the partition of feature space.

Determining which model is more appropriate depends on the problem: if
the relationship among the features and the response is well approximated by
a linear model, then an approach such as linear regression will likely work well,
and will outperform a method such as a regression tree that does not exploit this
linear structure (see [35]). If instead there is a highly non-linear and complex
relationship between the features and the response, then decision trees may
outperform classical approaches. The complex nature of educational production
renders this an ideal candidate for exploring the ability of trees-based methods
to interrogate non-linearities and interactions in the data.

In order to give an example of how to read the result of a regression tree,
let us imagine that we want to regress stadardised student test scores (that is a
continuous variable with mean = 0 and standard deviation = 1) against three
covariates: Economic Social and Cultural Status (ESCS, an indicator of socio-
economic status de�ned to be a continuous variable with mean = 0 and standard
deviation = 1), number of siblings (variable assuming integer values) and time
spent on homework (variable assuming integer values) and that Figure 2 reports
the result of the regression. First, we notice that the number of siblings does
not appear in the tree. This means that this variable is not able to catch any
variability in students' test scores and therefore, the tree excludes it from the
splits. When reading the tree, every time the condition at the split point is
satis�ed, we follow the left branch, otherwise, we follow the one on the right.
On the left side of the �gure, we see the regression tree while on the right, we

11



see the partition of the covariate space into three regions. The most important
variable turns out to be ESCS: a student with an ESCS less than 0.3 follows
the left branch yielding a predicted student test score of −0.3; instead, if the
student's ESCS exceeds 0.3, he/she goes in the right branch and, at this point,
if he/she studies less than 5 hours per week, his/her predicted score is 0.3, while
if he/she studies more, it is 0.8. The algorithm itself identi�es the threshold
values in order to minimize the Residual Sum of Squares (RSS). Focusing on
the interaction between the two covariates, it is noteworthy that the variable
�time of homework� matters if the ESCS is higher than 0.3, while it is irrelevant
if the ESCS is lower than 0.3.

This brief and simpli�ed explanation serves as a foundation for the methods
that we discuss in the following two subsections: RE-EM trees and Boosting,
which are the ones used in the empirical analysis of this paper.

4.2 Multilevel models and RE-EM trees

RE-EM trees (see [31]) work in a similar fashion to random e�ects (or multilevel)
linear models (see [32]) but relax the linearity assumptions of the �xed covariates

with the response. Given N =
∑J
j=1 nj individuals, nested within J groups, a

two-level linear model takes the form:

yij = β0 +

p∑
k=1

βkxkij + bj + εij (4)

where

i = 1, . . . , N is the index of the i-th individual;

j = 1, . . . , J is the index of the j-th group;

yij is the answer variable of the individual i within group j;

β is the (p+1)-dimensional vector of �xed coe�cients;

x1ij , . . . , xpij are the p (�xed) predictors;

bj is the (random) e�ect of the group j on the answer variable (value-added
of group j)

and ε is the vector of the residuals.

Both b and ε are assumed to be normally distributed with mean 0 and
variance σ2

b and σ2
ε respectively. The vector of �xed coe�cients β is the same

for all the J groups, while the random intercept bj changes across groups (bj is
the value-added, positive or negative, of the j-th group). The larger is σ2

b the
larger are the di�erences across groups.

RE-EM trees merge multilevel models with regression trees, substituting the
linear regression of the �xed covariates with a regression tree. So, in place of
a linear regression, a regression tree is built to model the relationship between
the output (test scores) and the inputs (student characteristics). In our case,
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the individuals are the students and the groups are the schools. If we consider
students (level 1) nested within schools (level 2), the two-levels model (with only
random intercept), for pupil i, i = 1, . . . , nj , n =

∑
j nj , in school j, j = 1, . . . , J

takes the form:

yij = f(xij1, . . . , xijp) + bj + εij (5)

with

b ∼ N(0, σ2
b ), (6)

ε ∼ N(0, σ2
ε ) (7)

where f(X) takes the form in (3) and

yij is the maths PISA test score of student i within school j;
xij1, . . . , xijp are the p-predictors at student level;
bj is the random e�ect of school j, which in this paper is interpreted as a

school-speci�c value-added (VA) to the educational performance of the student;
and

εij is the error.

It is generally assumed that the errors ε are independent across objects
and are uncorrelated with the e�ects b. Note, however, that autocorrelation
structure within the errors for a particular object is allowed; to do this, we
allow the variance/covariance matrix of errors to be a non-diagonal matrix.
The random e�ect bj is still linear with the outcome, while the �xed covariates,
that do not change across groups (schools) are related to the outcome by means
of a regression tree.

Moreover, one of the advantages of multilevel models is that we can compute
the Proportion of Variability explained by Random E�ects (PVRE):

PV RE =
σ2
b

σ2
b + σ2

ε

. (8)

PVRE measures how much of the variability of test scores can be attributed
to students' characteristics or to structural di�erences across schools - in other
words, PVRE disentangles the variability of test scores between students from
that between schools. Applying RE-EM trees to data of each of the 9 countries,
we can both (i) analyse which are the student level variables that are related
with students' achievements and in which way and (ii) estimate the school value-
added (random e�ect bj) to students' achievements and compute the proportion
of student scores' variability given by di�erences across schools (PVRE). With
the aim of adequatly considering the structural di�erences between countries,
we estimate the educational production function as speci�ed in the equation (5)
separately for each country.
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4.3 Regression trees and Boosting

Regression trees have a series of advantages: they do not force any functional
relationship between the response variable and the covariates; they can be dis-
played graphically and are easily interpretable; they can handle qualitative pre-
dictors; they allow interactions among the variables and they can handle missing
data. Nevertheless, they su�er from high variance in the estimation of the rela-
tionship between covariates and test scores and they are sensitive to outliers. For
these reasons, methods have been developed that serve to reduce variance and
increase predictive power; these include bagging, random forests and boosting
(see [14]).

Boosting (see [8]) is a method for improving model accuracy, based on the
idea that it is easier to �nd and average many rough rules of thumb, than to
�nd a single, highly accurate prediction rule (see [30]). Related techniques -
including bagging, stacking and model averaging - also build and merge results
from multiple models, but boosting is unique amongst these in that it is sequen-
tial: it is a forward, stagewise procedure. In boosting, models (e.g. regression
trees) are �tted iteratively to the data, using appropriate methods gradually
to increase emphasis on observations that are modelled poorly by the existing
collection of trees. Boosting algorithms vary in exactly how they quantify lack
of �t and select settings for the next iteration. In the context of regression trees
and for regression problems, boosting is a form of �functional gradient descent�.
Consider a loss function - in this case, a measure (such as deviance) that repre-
sents the loss in predictive performance of the educational production function
due to a suboptimal model. Boosting is a numerical optimisation technique for
minimising the loss function by adding, at each step, a new tree that is chosen
from the available trees on the basis that it most reduces the loss function. In
applying the Boosting Regression Tree (BRT) method, the �rst regression tree
is the one that, for the selected tree size, maximally reduces the loss function.
For each subsequent step, the focus is on the residuals: on variation in the re-
sponse that is not so far explained by the model. For example, at the second
step, a tree is �tted to the residuals of the �rst tree, and that second tree could
contain quite di�erent variables and split points compared with the �rst. The
model is then updated to contain two trees (two terms), and the residuals from
this two-term model are calculated, and so on. The process is stagewise (not
stepwise), meaning that existing trees are left unchanged as the model is en-
larged. The �nal BRT model is then a linear combination of many trees (usually
hundreds or thousands) that can be thought of as a regression model where each
term is a tree. A number of parameters control the model-building process: the
learning rate (lr), that drives the velocity with which the tree is learning, that
is, it shrinks the contribution of each tree; the maximum number of trees to be
considered; the distribution of response variable; and the tree complexity (tc),
that is the maximum level of interaction among variables (see [8]).

The increase in predictive power obtained by adopting a BRT approach
comes at a cost in terms of ease of interpretation. Indeed, with boosting it is no
longer possible to display the tree graphically. But the results can nonetheless
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be represented quite simply. BRT provides a ranking of the variables, based on
their ability to reduce the node purity in the tree (see [4]), that is the signi�cance
of each variable. In order to measure the marginal impact of each predictor,
Friedman (see [9]) has proposed the use of partial dependence plots. These plots
are based on the following idea: consider an arbitrary model obtained by �tting
a particular structure (e.g., random forest, support vector machine, or linear
regression model) to a given dataset. This dataset includes N observations yk
of a response variable y, for k = 1, 2, . . . , N , along with p covariates denoted xik
for i = 1, 2, . . . , p and k = 1, 2, . . . , N . The model generates predictions of the
form:

ŷk = F (x1k, x2k, . . . , xpk) (9)

for some mathematical function F (. . .). In the case of a single covariate xj ,
Friedman's partial dependence plots are obtained by computing the following
average and plotting it over a useful range of x values:

Φj(x) =
1

N

N∑
k=1

F (x1,k, . . . , xj−1,k, y, xj+1,k, . . . , xp,k) (10)

The idea is that the function Φj(x) tells us how the value of the variable xj
in�uences the model predictions ŷ after we have �averaged out� the in�uence of
all other variables.

It is possible to visualise also the joint e�ect of two predictors on the re-
sponse variable. The multivariate extension of the partial dependence plots just
described is straightforward: the bivariate partial dependence function Φi,j(x, y)
for two covariates xi and xj is de�ned analogously to Φj(x) by averaging over
all other covariates, and this function is still relatively easy to plot and visualise.
In particular:

Φi,j(x, y) =
1

N

N∑
k=1

F (x1,k, . . . , xi−1,k, x, xi+1,k, . . . , xj−1,k, x, xj+1,k, . . . , xp,k)

(11)
We therefore apply BRT in each country, in the second stage of our analysis,

using the estimated school value-added (�rst stage) as response variable and a
set of school-level characteristics as predictors.

5 Results

We begin by comparing the results of PISA test in mathematics across the 9
selected countries. Table 4 reports descriptive statistics and Figure 1 shows their
distributions. Japan is the country where students, on average, perform higher
test scores, followed by Germany, while USA is the country where students
report the lowest scores. In almost all the countries, the mean and median are
quite close, suggesting that the distributions are symmetric; France and Japan
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are exceptions, where in both cases the mean is somewhat smaller than the
median, suggesting that there is a slightly higher proportion of students with
relatively low test scores.

5.1 First stage: Estimating the determinants of students'

test scores and school value-added by using RE-EM

trees

RE-EM trees are �tted, separately for each country, using the standardised
students' PISA test score in maths as response (in each country students' scores
have been standardized, having mean 0 and standard deviation 1) and the entire
set of student level variables shown in Table 1 as predictors. A random intercept
is given by the grouping factor of students within schools (identi�ed by school
ID). Results of this �rst stage comprise the regression tree with the coe�cients
for the inputs of individual students' characteristics, the proportion of explained
variability by the multilevel model (PV) and the PVRE, within each country.

Figure 3 shows the trees of �xed student level covariates in each country,
while Table 5 shows the estimated variance of errors, estimated variance of
random e�ects, PV and PVRE of the RE-EM trees models. The ability of
student features to explain students' achievements varies markedly across coun-
tries. In some countries, a quite substantial proportion of the di�erences in
students' achievements are explained by student level variables such as socio-
economic index, immigrant status, anxiety in dealing with the scholastic life,
self-motivation and so on. France, Japan and Germany, that have high PVs
(55.28%,50.32% and 50.17% respectively), are examples of this kind. In other
countries, such as Canada and Spain, it seems that these student characteris-
tics are not su�cient to explain much of the variability in outcomes. Despite
these di�erences, Figure 3 shows that the impact of several types of student
characteristics are coherent across countries. In almost all the countries, the
grape of the most important variables includes (1) the indicator that measures
students' self-reported anxiety toward tests, (2) socio-economic index (ESCS)
and (3) the indicator measuring the self-reported motivation. In particular, the
ESCS turns out to be the most important variable within �ve countries out of
the nine (Australia, France, Spain, UK and USA). In Canada, Germany and
Italy, the most signi�cant variable is ANXTEST: students that feel anxious in
their studies have on average lower test scores than more con�dent students.
Japan is the only country where students' self-motivation is the most important
variable: if a student has an index of self-motivation less than a certain threshold
(in this case, less than −0.9017), then no other variables matter in predicting
achievement; otherwise, parents' education and anxiety matter. Other recurrent
variables are the highest educational level of parents (HISCED), the educational
resources at home, the disciplinary climate and the number of minutes in the
maths lesson. Parental education is a particularly relevant variable in Australia,
Italy and Japan. Higher levels of parental education are associated with bet-
ter student achievement. While in Australia and Italy, the di�erent impact of
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parental education is between parents with less or more than ISCED2 (lower
secondary), in Japan the di�erence is between students with parents with less
or more than ISCED4 (post-secondary). Disciplinary climate results to be an
important factor in UK and USA: apparently, students that perceive a good
disciplinary climate in the class, perform on average better than others.

When tuning to the estimation of school value-added, it di�ers across coun-
tries, with some countries showing a stronger role of schools in a�ecting test
scores than others. In France, for example, almost the 50% (PVRE = 47.47%)
of the unexplained variability among students is captured by the �school e�ect�.
This means that results of students attending di�erent schools also di�er, prob-
ably due to heterogeneity in schools' quality. By way of contrast, Spain is a
country in which students' achievements are quite homogeneous across schools
(PVRE = 0.08%). In general, schools have a clear role to play in explaining
the variability of students' scores in France, Japan, Germany and Italy (about
40/45%); in Australia, Canada, UK and the USA, a smaller - but still non-
negligible - portion of variability is explained at school level (about 15/20%).
This is a �nding with very clear policy implications - policies aimed at schools
(rather than, say, families) are likely to have much more potency in the former
group of countries than in the latter.

Di�erent students' achievements across schools may be the consequence of
di�erent school policy and teaching programmes or of the socio-economic com-
position of the school body (see [21]). While the available data and the proposed
methodology do not allow investigation of the channels that drive the causal re-
lationships between schools' characteristics and test scores, the next section uses
regression trees and boosting to show correlations between schools' features and
their estimated �value-added�.

5.2 Second stage: Modelling the determinants of school

value-added through regression trees and boosting

In the second stage of the analysis, we run, within each country, a regression
model based on trees and boosting. The response variable is the school value-
added, as estimated at the �rst stage, while the predictors are the school level
variables described in previous section and contained in the questionnaire �lled
by school principals. Figure 4 and Table 6 show the variable importance rank-
ing within each country and the proportion of total variability explained by the
model, respectively. We report in the �gures only the ten most important vari-
ables within each country, both because the remaining variables are statistically
irrelevant and to lighten the reading. School size (�# students�), proportion
of disadvantaged students, proportion of students with special needs, students'
truancy and the ratio of computers to students are typically the most important
variables in each country (see Figure 4). This means that the school value-added
is mainly associated with students' socioeconomic composition and to school
size, more so than with managerial characteristics or proxies for resources, as
inadequacy of materials and infrastructure. Besides these four main variables,
participation of parents, measured both as proportion of parents speaking with
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teachers and participating in school governance, and the percentage of funds
given by the government are also important in some countries to qualify the
estimated schools' value-added.

5.2.1 Describing the patterns of the impact of school variables on

schools' value-added

After identifying the important variables, in order to detect the magnitude and
the way in which these predictors are associated with the response, we visualise
in Figure 5 the partial plots of the four most signi�cant variables within each
country, noting that these di�er across countries. The proportion of disadvan-
taged students is one of the four most important variables in all the countries
except for Japan. Schools with higher proportions of disadvantaged students
are those with lower estimated value-added. On average, schools with a high
proportion of disadvantaged students su�er a negative impact on performances.
In particular, in almost all countries, the impact of this variable on schools'
value-added is negative in its range from 0% to 30/40%. By way of contrast, in
the USA, schools in which the proportion of disadvantaged students lies between
0 and 20 tend not to di�er in terms of outcomes ceteris paribus, while there is
a monotonic negative association between the covariate and the response in the
covariate range between 20 and 100. Thus, there are countries in which the
substantial di�erence is between schools composed by only advantaged students
and schools with a minimum proportion of disadvantaged ones, while there are
countries, such as the USA, in which the the proportion of disadvantaged stu-
dents is in�uential only if it is quite high (more than 20%).

Another important determinant of outcomes in all countries, with the excep-
tion of Australia, is school size. In general, bigger schools are associated with
higher school value-added. The impact of this variable is highly nonlinear and
this can be an explanation about why some previous literature fails to �nd any
statistical (linear) correlation between performances and size. In all countries,
except for Australia and USA, the school value-added rapidly increases when
the school size ranges between about 500 and 1, 000 students. Schools smaller
than 500 students perform in a quite similar way to schools larger than about
1, 000 students. The USA provides an interesting exception: very small schools
(with fewer than 500 students) are associated with very high school value-added,
while there is a negative peak corresponding to schools attended by about 500
students, that is the value associated with the lowest school value-added. Again,
from 500 on, larger schools are estimated to have higher value-added.

The proportion of students with special needs is important as a determinant
of outcomes in all countries, except Canada and Japan. Schools with a higher
proportion of students with special needs are associated to lower school value-
added. Again, there is a gap in the response value when the covariate ranges
between 0% and 20%. The number of schools with more than 20% of students
with special needs is small, but still we have observations in this range that do
not di�er in their impact on the response.

Another recurrent important variable is the one measuring the students tru-
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ancy. Students truancy is an indicator about how much students take seriously
their presence at school and therefore, their education. In Australia, Canada,
Japan and USA it is one of the four most important variables. Schools with
higher proportion of students that tend to skip school days are associated to
lower school value-added, in a quite intuitive way, with strong e�ects after a
threshold when the number of days skipped is > 2.5.

The percentage of funds given to the school from the government is a key
determinant of schools' e�ectiveness in both Australia and Japan. In Aus-
tralia, the trend is very well de�ned: when the percentage of funds given by the
government increases, the school value-added decreases. From the literature
(see [16] and [2]), we know that in Australia, private schools, which receive less
funds from the government respect to public schools, are more likely to perform
better than public ones and therefore these two aspects are probably strongly
connected. Even if a dummy variable for public/private schools is considered,
the percentage of funds given by the government still re�ects some of the pub-
lic/private heterogeneities and it is actually able to catch more variability in
the response than the dummy variable. Also in Japan the partial e�ect of the
percentage of funds given by the government on the school value-added is re-
lated to the di�erence between private and public schools. In Japan, contrary to
Australia, PISA2015 data indicate that private schools have, on average, lower
performance when compared with public schools. Moreover, private schools usu-
ally receive about 40/50% of their funds from the government. The trend of the
impact of the covariate on the response is less clear than the one in Australia.

Lastly, in Canada and in Italy the percentage of parents speaking with teach-
ers or participating in school governance are important. An increase in cofactor
values is positively associated with the school value-added: schools in which
parents are actively interested in their children's education experience more
favourable outcomes than do others. Likewise, in Spain the percentage of par-
ents participating in school governance, when in the range from 0 to 50%, has
a positive e�ect on outcomes.

The last variable that appears in the four most important variables of France,
Germany, Japan and UK is the number of computers per student (�ratio comp
/ stud�). This covariate has a counterintuitive association with school value-
added. In Japan and UK (see Japan and UK panels in Figure 5), an increase of
number of computers per student is associated with a decrease in school value-
added. In Germany (see Germany panel in Figure 5), there is a peak around
0.4 and a trough around 0.6. Lastly, in France (see France panel in Figure
5), the highest value-added corresponds to zero computers, but there is a peak
around 1, maybe suggesting that one computer per person is the right balance.
A possible interpretation of these trends is that too many computers (more
than one per person) may be sign of ine�cient management of school funds.
Alternatively it might be the case that national policies have concentrated the
IT facilities in less advantaged schools with lower test scores - in this case, the
statistical relationship would be biased.
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5.2.2 Describing the impact of joint variables on schools' value-

added

Up to this point, we have investigated the partial e�ect of predictors one by one,
on a ceteris paribus basis. But one of the main strengths of the regression tree
approach is that it allows consideration of circumstances in which more than
one cofactor changes simultaneously, so a�ecting simultaneously the dependent
variable (in our case, school value-added). We now turn, therefore, to focus on
the visualisation of the joint e�ect of two predictors on the response, and in so
doing investigate the interaction e�ect of the most signi�cant variables within
each country (Figure 6). Again, the choice of the variables to be included in the
graphical illustration is based on the variables that, in the di�erent countries,
turned out to be most important in a�ecting the estimated schools' value-added.

In several countries, the impact on outcomes of the joint association be-
tween the proportion of disadvantaged students and school size is of interest.
From Australia and USA panels, we know that in most countries larger schools
perform better than smaller ones and schools with a high proportion of disad-
vantaged students perform less successfully than others. The extent to which
di�erences in school size a�ect outcomes depends critically on how high is the
proportion of disadvantaged students, however. In Italy and Spain, the pro-
portion of disadvantaged students seems to have a clear negative impact even
in the big schools, while small schools with a low proportion of disadvantaged
students are not associated with negative e�ect on value-added. In UK and
USA, the interaction is much weaker in the sense that the high proportion of
disadvantaged students has a negative impact, almost independently from the
school size. The di�erence between these two countries is that while in UK
the threshold value of proportion of disadvantaged students to have a negative
impact on the response is about 20/30%, in the USA is much higher, around
70/80%.

Interaction between two variables about the students' socioeconomic compo-
sition - namely the proportion of socioeconomically disadvantaged students and
proportion of students with special needs - is also interesting and instructive.
In France, schools in which both percentages are low perform better than the
average while schools where both percentages are high perform worse. However,
schools with a high proportion of disadvantaged students nevertheless manage
average performance if they have a very small proportion of students with spe-
cial needs (and vice versa). In Germany and Italy, schools with a low proportion
of disadvantaged students perform better than the average and the increasing
proportion of students with special needs does not a�ect this performance. On
the contrary, schools with a high proportion of disadvantaged students perform
worse than the average and the increasing proportion of students with special
needs worsens the results even more. In UK, the increase in both proportions
contributes to lower school value-added in an almost symmetric way.

Truancy is another variable whose interaction with school size and school
body composition is worthy of investigation. �Truancy� is de�ned by OECD
as the propensity for students to skip classes without justi�cation. In Japan,
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truancy is associated with very low school value-added only when considering
small schools, while, even if it has again a negative impact, we still have positive
school value-added in big schools with high students truancy. In USA, schools
with low levels of truancy perform better than the average while schools with
high truancy rates perform worse than the average, but there is an important
interaction with school size - truancy has a more negative association to test
scores in smaller rather than in larger schools. In Australia and in Canada, the
interaction between students truancy and proportion of disadvantaged students
is similar: schools with both high (low) truancy and high (low) proportion of dis-
advantaged students are associated with negative (positive) school value-added.
But, schools with high truancy rates and a low proportion of disadvantaged
students (and vice versa), are still able to achieve average performance.

In Australia and Japan, truancy and percentage of funds given by the gov-
ernment are very important variables but they interact in an heterogeneous
way to a�ect schools' performance. In Australia, schools with both high (low)
students truancy and high (low) percentage of funds given by the government
are associated with negative (positive) e�ects on school value-added, but, in all
the other cases, this relationship doen not hold. Instead in Japan, schools with
low (high) students truancy perform worse (better) than the average, almost
independently from the percentage of funds given by the government.

The last interaction that deserves attention is the one between school size
and percentage of parents participating in school governance in Spain: the size
of the school is associated with positive school value-added, but only if par-
ents actively participate at the school government and are interested in their
children's education.

The visualization of joint partial plots to characterise the determinants of
schools' value-added proves to be a powerful tool for analysts and decision mak-
ers. Indeed, these �gures provide an immediate sense of which are the variables
with more or less in�uence on schools' value-added, while simultaneously pro-
viding information covering the whole distribution of the impacting variables,
without forcing to concentrate on average correlations.

6 Discussion, concluding remarks and policy im-

plications

The availability of large scale datasets allowing comparative analysis of edu-
cational performance has been a major boost to researchers interested in the
educational production function. In this paper, we have applied new methods
of analysis, drawn from the machine learning literature, to examine the deter-
minants of students' test scores and schools' value-added. The results con�rm
many of the relationships we knew already from statistical analysis, but provide
a new and enriched understanding of how both nonlinearities amongst and in-
teractions between cofactors determine educational performance. These insights
come from a recognition that the education process is complex, unknown in its
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speci�c mechanisms and heterogeneous across countries. The tree-based meth-
ods that we use represent an inductive and non deductive way to explain the
associations among variables, having two main advantages respect to the classi-
cal statistical methods: they do not force any functional relationships between
the response (students' results) and the covariates (students' characteristics)
and they allow for interactions among the variables.

The �rst stage of our analysis shows that student-level variables are able
to explain part of the variability in their achievements: socio-economic index,
anxiety, motivation, gender, and parental education are some of the most in�u-
ential variables. Their association to test scores and their ability in explaining
variability in students' achievements are di�er substantially across countries.
The percentage of variability in students' achievements explained at school
level (schools' value-added in our terminology here) also varies across coun-
tries. Those countries in which the estimated variance of schools' value-added is
high are characterised by heterogeneity at school level. On the contrary, coun-
tries where the variance of schools' value-added is limited in magnitude o�er
a more homogeneous experience across schools. There are clear policy impli-
cations in noting, for example, that the ratio of students to teachers has high
relative in�uence in Canada, Japan and Spain, but not elsewhere. In many
countries, the actions that can most e�ectively improve educational outcomes
are not educational policies per se, but rather than social policies.

After estimating the school value-added in the �rst stage, we correlate it to
school level characteristics in the second stage. Again, we �nd di�erent school
level variables associated to school value-added across countries. The main focus
in this stage is the e�ect of interactions between cofactors, which is modelled
by means of joint partial plots. As we have seen, the impact on performance of
changes in one variable often depends crucially on the value of other explanatory
variables.

Tree-based methods complement linear regression models of educational per-
formance by augmenting them with a richer interrogation of the data. The
impact of student and school level variables are often not simply linearly asso-
ciated with students' achievements; we have uncovered evidence in the data of
considerably more complex (and intuitively plausible) patterns. The strength
of the machine learning method, in this perspective, is that they literally "learn
from the data", �nding the dominant patterns without any assumption. Armed
with the re�ned understanding of how di�erent policies can impact di�erently
on schools in various circumstances, policy-makers can better implement change
aimed at improved performance.

Several policy implications can be drawn from our analysis. First, the mon-
itoring of relationships between test scores and school/individual factors must
consider more factors at a time. One potential drawback of interventions in the
educational arena is that they are limited to single factors (as school size or av-
erage ESCS), ignoring the �systematic� e�ects of modi�cations in one dimension
on the others.
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Figure 1: Histograms of PISA students test scores in mathematics in the 9
selected countries. Red line refers to the mean, green one to the median. Note:
by construction, PISA test scores are standardized at the international level for
having mean = 500 and standard deviation = 100.
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Figure 2: Example of the result of a regression tree. The answer variable is
students' tests scores (continuous variable with mean = 0 and sd = 1) and
the three covariates are: (i) socioeconomic index (ESCS, continuous variable
with mean = 0 and sd = 1), (ii) number of siblings (integer variable) and (iii)
time of homework (integer variable counting the hours of homework at home).
The image on the left represents the partition of the covariate space into three
regions, computed by the regression tree. The image on the right represents the
regression tree. Variable �number of siblings� does not appear in either the two
images, since it does not result to be statistically relevant.
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Figure 3: Fixed e�ect trees of �rst stage analysis (RE-EM tree in model 5) in
the 9 countries.
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Figure 4: School level variables importance ranking in the second stage of the
analysis. For each country, Boosting creates a ranking of the relative in�uences
of the covariates on the outcome variable (school value-added). To lighten the
reading, we report here only the �rst ten most important variables within each
country (where the most important variable is the one able to catch the bigger
part of variability in the outcome).
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Figure 5: Partial plot of the four most important school level variables in the
association with school value-added, in each country. Note: the selection of the
four most signi�cant variables within each country is taken from Figure 4 and
the explanation of each school level covariate is given in Table 2.
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Figure 6: Joint partial plot of the most important school level variables in
association with school value-added, in each country. Notes: 1. Colors represent
the scale of the values of the response (school value-added). 2. The selection of
variables is based on the group of the variables that turn out to be signi�cant
in previous steps.
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Tables

Variable name Type Explanation

MATH SCORE num Mathematics PISA test score
(mean = 0, sd = 1)

GENDER 0/1 0=male
1=female

ESCS num Socio-economical status
(mean = 0, sd = 1)

IMMIGRANT cat 0 = not immigrant student
1 = �rst generation immigrant
2 = second generation immigrant

TIME HOMEWORK int Number of hours of student
homework per week

HISCED cat Highest level of education of parents
(levels from 0 to 6)

VIDEO GAME 0/1 Whether the student plays video games
or not

SPORT 0/1 Whether the student plays sport or not
DISCIPLIN CLIMATE num How is the disciplinary climate in class
TEACHER SUPPORT num Teacher support in class
MMINS num Hours of mathematics lessons per week
BELONG num Subjective well-being:

sense of belonging to school
MOTIVAT num Student Attitudes, Preferences and

Self-related beliefs: Achieving motivation
ANXTEST num Personality: test anxiety
COOPERATE num Collaboration and teamwork dispositions:

Enjoy cooperation
PARENTS SUPPORT num Parents emotional support
CULTURAL POSSESSION num Cultural possession at home
HOME EDUCAT RESOURC num Home educational resources

Table 1: List of student level variables of PISA2015 survey used in the analysis,
with the relative explanations. Note: we report here only the test score in
mathematics that we use as answer variable in the �rst stage of the analysis. In
each country, we standardize the test score in order to have mean = 0 and sd
= 1. All variables from �DISCIPLIN CLIMATE� to the end are indicators built
by PISA and have mean = 0 and sd = 1.
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Variable name Type Explanation

# STUDENTS num Number of students in the school
RATIO-COMPUTER-STUD num Number of available computers

per student
MANAGEMENT1 1/6 How much the school principal uses

student performance results to develop
school's educational goals

MANAGEMENT2 1/6 How much the school principal discusses
schools' academic goals with teachers
at faculty meetings

STUD-ADMIT-RECORD 0/1 Whether the students are admitted
to the school depending on their
previous scores or not

PRIVATE 0/1 0 = Public school
1 = Private school

% GOVERN FUNDS num Percentage of school funds
given by the government

TEACHERS-INADEQ 1/4 How much the principal thinks that
teachers are inadequate (on a 1 to 4 scale)

MATERIALS-INADEQ 1/4 How much the principal thinks that
materials are inadequate (on a 1 to 4 scale)

INFRASTRUCT-INADEQ 1/4 How much the principal thinks that
infrastructures are inadequate
(on a 1 to 4 scale)

RATIO-STUDENTS-TEACHER num Student-teacher ratio
RATIO-STUDENTS-TEACHER5 num Student-teacher with level 5 ratio
% STUD SPECIAL NEEDS num Proportion of students with special needs
% DISADVANT STUDENTS num Proportion of disadvantaged students

in terms of socio-economical index
STUDENTS TRUANCY 1/4 Students truancy (on a 1 to 4 scale)
STUD-NO-RESPECT-TEACH 1/4 Students lack respect for teachers

(on a 1 to 4 scale)
TEACHER ABSENTEEISM 1/4 Teacher absenteeism (on a 1 to 4 scale)
% PARENTS SPEAK TEACHERS num Proportion of students' parents

speaking with teachers at the meeting
% PARENTS IN SCHOOL GOVERN num Proportion of students' parents

participating at the school government

Table 2: List of school level variables of PISA2015 survey used in the analysis,
with the relative explanations. Note: all variables of type n1/n2 assume integer
values ranging from n1 to n2, with the maximum value corresponding to n2.
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Country # Students # Schools

Australia 14, 530 758
Canada 20, 058 759
France 6, 108 252
Germany 6, 504 256
Italy 11, 583 474
Japan 6, 647 198
Spain 6, 736 201
UK 14, 157 550
USA 5, 712 177

Table 3: Sample size in the 9 selected countries.

Country Mean Median sd

Australia 481.587 480.903 94.443
Canada 505.021 504.813 85.757
France 496.997 503.998 94.647
Germany 509.170 511.604 87.814
Italy 500.235 501.275 89.483
Japan 532.66 536.96 89.256
Spain 491.361 493.681 83.519
UK 490.765 492.591 85.577
USA 467.383 467.286 88.089

Table 4: Descriptive statistics of students' PISA2015 test scores in mathematics
in the 9 selected countries.

Country σ2
ε σ2

b PVRE PV

Australia 0.690 0.125 15.41% 33.59%
Canada 0.724 0.143 16.49% 29.93%
France 0.464 0.419 47.47% 55.28%
Germany 0.525 0.437 45.44% 50.17%
Italy 0.568 0.395 41.04% 45.57%
Japan 0.510 0.437 46.13% 50.32%
Spain 0.706 0.068 0.08% 30.11%
UK 0.695 0.162 18.97% 32.51%
USA 0.689 0.132 16.15% 33.45%

Table 5: RE-EM trees results in the nine selected countries.
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Australia Canada France Germany Italy

PV 40.36% 28.09% 59.13% 53.08% 28.09%

Japan Spain UK USA

PV 30.87% 14.15% 39.12% 35.81%

Table 6: Proportion of explained variability (PV) of the second stage boosting
model, in the 9 selected countries.
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