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Abstract

Criminal organizations tend to be clustered to reduce risks of detection and information
leaks. Yet, the literature exploring the relevance of subgroups for their internal structure
is so far very limited. The paper applies methods of community analysis to explore the
structure of a criminal network representing the individuals’ co-participation in meetings.
It draws from a case study on a large law enforcement operation (“Operazione Infinito”)
tackling the ’Ndrangheta, a mafia organization from Calabria, a southern Italian region.
The results show that the network is indeed clustered and that communities are associated,
in a non trivial way, with the internal organization of the ’Ndrangheta into different
“locali” (similar to mafia families). Furthermore, the results of community analysis can
improve the prediction of the “locale” membership of the criminals (up to two thirds of any
random sample of nodes) and the leadership roles (above 90% precision in classifying nodes
as either bosses or non-bosses). The implications of these findings on the interpretation
of the structure and functioning of the criminal network are discussed.

1 Introduction

Academics and law enforcement agencies are increasingly applying network analysis to or-
ganized crime networks. While the current applications mainly focus on the identification
of the key criminals through centrality measures [Varese, 2006b; Morselli, 2009a; Calderoni,
2014] and other individual attributes [Carley et al., 2002; Morselli and Roy, 2008; Malm and
Bichler, 2011; Bright et al., 2015; Agreste et al., 2016], the analysis of the subgroups and their
influence on the criminal activities received very limited attention so far.

Subgroups are a natural occurrence in criminal networks. Criminal organizations may
structure themselves in functional, ethnic, or hierarchical units. Furthermore, the constraints
of illegality limit information sharing to prevent leaks and detection, as criminal groups face
a specific efficiency vs. security trade-off [Morselli et al., 2007]. This tends to make criminal
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organizations globally sparse but locally clustered networks, often showing both scale-free and
small-world properties [Malm and Bichler, 2011]. Also, the larger the criminal organization,
the most likely and relevant is the presence of subgroups. These considerations suggest that
the analysis of subgroups in criminal networks may provide insight on both the internal
structure of large organized crime groups and on the best preventing and repressive strategies
against them.

The mafias are a clear example of large organized crime groups, often comprising several
families or clans with a specific hierarchy and a strong cohesion. These units may show
different interactions among them, ranging from open conflict to pacific cooperation. Each
mafia family is a subgroup within a larger criminal network, and inter-family dynamics are
determinant for the activities of the mafias. Nevertheless, possibly due to the difficulties
in gathering reliable data, the literature has so far neglected the role of the family in the
structure and the activities of the mafias.

In the literature of network analysis [e.g., Boccaletti et al., 2006; Barrat et al., 2008; New-
man, 2010], one of the most challenging areas of investigation in recent years is community
analysis, which is aimed at revealing possible subnetworks (i.e., groups of nodes called com-
munities, or clusters, or modules) characterized by comparatively large internal connectivity,
namely whose nodes tend to connect much more with the other nodes of the group than with
the rest of the network. A large number of contributions have explored the theoretical aspects
of community analysis and proposed a broad set of algorithms for community detection [For-
tunato, 2010]. Most notably, community analysis has revealed to be a powerful tool for deeply
understanding the properties of a number of real-world complex systems in virtually any field
of science, including biology [Jonsson et al., 2006], ecology [Krause et al., 2003], economics
[Piccardi et al., 2010], information [Flake et al., 2002; Fortuna et al., 2011] and social sciences
[Girvan and Newman, 2002; Arenas et al., 2004].

This paper aims to apply the methods of community analysis to criminal networks ana-
lyzing the co-participation in the meetings of a large mafia organization. The exercise aims
to explore the relevance of subgroups in criminal networks, with a specific focus on the char-
acterization of mafia clans and families and the identification of bosses. The case study draws
data from a large law enforcement operation in Italy (“Operazione Infinito”), which arrested
more than 150 people and concerned the establishment of several ’Ndrangheta (a mafia from
Calabria, a southern Italian region) groups in the area around Milan, the capital city of the
Lombardy region and Italy’s “economic capital” and second largest city. The exploration has
a double relevance. First, it improves the understanding of the internal functioning of criminal
organizations, demonstrating that the Infinito network is clustered in subgroups, and showing
that the subgroups identified by community analysis are related in a non trivial way with the
internal organization of the ’Ndrangheta. Second, it may contribute in the development of
law enforcement intelligence capacities, providing tools for early identification of the internal
structure of a criminal group.

The internal organization of the ’Ndrangheta provides an interesting opportunity to ex-
plore the relevance of subgroups in criminal networks. Indeed, this mafia revolves around
the blood family [Paoli, 2003; Varese, 2006a]. One or several ’Ndrangheta families, frequently
connected by marriages, godfathering and similar social ties, form a “’ndrina”. The “’ndrine”
from the same area may form a “locale”, which controls a specific territory [Paoli, 2007]. The
“locale” is the main structural unit of the ’Ndrangheta. Each “locale” has a number of for-
mal charges, tasked with specific functions: the boss of the “locale” is the “capobastone” or
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“capolocale”, the “contabile” (accountant) is responsible for the common fund of the “locale”,
the “crimine” (crime) oversees violent actions, and the “mastro di giornata” (literally “master
of the day”) takes care of the communication flows within the “locale”.

Since the organization in “locali” plays such an important role in the structure of the
’Ndrangheta, our investigation is specifically oriented to assess their significance in the sense
of community analysis. Therefore, after illustrating some details on the network data (Sec.
2), we first quantify the cohesiveness of each “locale” in the Infinito network, discovering
a quite diversified picture where very cohesive “locali” coexist with others apparently not
so significant. The results of community analysis (Sec. 3) show that the Infinito network
is significantly clustered, suggesting that subgroups play an important role in its internal
organization. If we try and match the clusters obtained by community analysis with the
“locali” composition, we interestingly discover that in most cases clusters correspond either to
“locali” or to unions of them. Then (Secs. 4 and 5) we use the results from community analysis
to identify the “locale” membership of each network participant, and to spot the bosses of the
organization. The latter, in particular, is a problem which is known to be critical since the
early contributions in the field [e.g., Sparrow, 1991; Klerks, 2001; Krebs, 2002; Roberts and
Everton, 2011], given the difficulty to collect accurate data on criminal networks. The results
are finally discussed (Sec. 6) for their implications on the interpretation of the structure and
functioning of the criminal network.

2 The Infinito network

“Operazione Infinito” was aimed at disentangling the organizational structure of the ’Ndrangheta
in Lombardy, with a special care in charting the hierarchical structure and the different “lo-
cali” existing in the region. The documentation1 provides information on a large number of
meetings among members. Indeed, most of the investigation focused on meetings occurring
in private (e.g., houses, cars) or public places (e.g. bars, restaurants or parks). The two
sets, namely meetings and participants, define a standard bipartite (two-mode) network with
574 meetings and 256 participants. The projection of the bipartite network onto the set of
participants leads to a (one-mode) weighted, undirected network, whose largest connected
component – which we will denote hereafter as the Infinito network – has N = 254 nodes and
L = 2132 links (the density is ρ = 2L/(N(N − 1)) = 0.066). The weight wij is the number of
meetings co-participation between nodes i and j, and it ranges from 1 to 115. However, the
mean value of the (nonzero) weights is 〈wij〉 = 1.88 and about 70% of them is 1, denoting
that only very few pairs of individuals co-attended a large number of meetings. Similarly, the
distributions of the nodes degree ki and strength si =

∑
j wij display a quite strong hetero-

geneity: indeed, their average values are, respectively, 〈ki〉 = 16.8 and 〈si〉 = 31.5, but the
most represented individual in the sample has both degree and strength equal to 1.

The affiliation of an individual to the “locale”, namely the group controlling the criminal
activities in a specific territory, is formal and follows strict traditional rules. Each “locale”
has a boss who is responsible of all the activities in front of the higher hierarchical levels (see
Calderoni [2014] for further details). The investigation activity of “Operazione Infinito” was
able to associate 177 individuals (out of 254) to one of the 17 “locali” identified in Milan area,

1Pretrial detention order issued by the preliminary investigation judge upon request by the prosecution
[Tribunale di Milano, 2011].
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Figure 1: The Infinito network: nodes are grouped and colored according to the “locali”
partition (Table 1).

the region under investigation. Of the remaining ones, 35 were known to belong to “locali”
based in Calabria (the region of Southern Italy where the ’Ndrangheta had origin and still has
its headquarters), 3 came from a Lombardy “locale” not in the area of investigation (Brescia),
and 8 were known to be non affiliated to ’Ndrangheta, whereas the correct classification of
the remaining 31 individuals remained undefined. The Infinito network is displayed in Fig.
12. In the figure, node color reflects the 17 “locali” discussed above.

As a first analysis, we assess whether the partition defined by the “locale” membership is
significant in the sense of community analysis, namely whether the intensity of intra-“locale”
meetings is significantly larger than that of the contacts among members of different “locali”.
If so, this would confirm, on one hand, the actual modular structure of the crime organization;
on the other hand, it would provide a tool for investigations, as the composition of the “locali”
could endogenously be derived by mining meetings data.

We denote by Ck the subgraph induced by the nodes belonging to “locale” k. We quantify
the cohesiveness of Ck by the persistence probability αk, namely the probability that a random
walker, which is in one of the nodes of Ck, remains in Ck at the next step. This quantity,
which proved to be an effective tool for mesoscale network analysis [Piccardi, 2011; Della Rossa
et al., 2013], reduces in an undirected network to:

αk =

∑
i∈Ck

∑
j∈Ck

wij∑
i∈Ck

∑
j∈{1,2,...,N}wij

, (1)

namely to the fraction of the strength of the nodes of Ck that remains within Ck (the same
quantity is referred to as embeddedness by some authors [e.g., Hric et al., 2014]). Radicchi et

2All network figures in the paper were produced with Gephi [Bastian et al., 2009].
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“locale” Nk αk zk
L0 not specified 31 0.08 -3.15
L1 not affiliated 8 0.03 -0.84
L2 Bollate 13 0.25 1.31
L3 Bresso 15 0.39 2.72
L4 Canzo 2 0.10 0.47
L5 Cormano 22 0.41 3.96
L6 Corsico 4 0.12 0.21
L7 Desio 19 0.63 6.40
L8 Erba 9 0.37 2.44
L9 Giussano 10 0.63 5.26
L10 Legnano 10 0.20 0.77
L11 Limbiate 1 0 -
L12 Mariano Comense 9 0.27 1.40
L13 Milano 16 0.62 5.78
L14 Pavia 5 0.13 0.25
L15 Pioltello 20 0.43 3.83
L16 Rho 5 0.18 0.78
L17 Seregno 12 0.93 8.73
L18 Solaro 5 0.06 -0.42
L19 Calabria “locali” 35 0.19 -0.97
L20 Brescia 3 0.17 0.98

Table 1: Testing the “locali” partition. In bold, the four “locali” with significant cohesiveness
(αk > 0.5).

al. (2004) defined community a subnetwork which has αk > 0.5. Obviously, the larger αk,
the larger is the internal cohesiveness of Ck. Notice that, since αk tends to grow with the size
Nk of Ck (trivially, αk = 1 for the entire network), large αk values must be checked for their
statistical significance. We derive the empirical distribution of the persistence probabilities
ᾱk of the connected subgraphs of size Nk (we do that by randomly extracting 1000 samples),
and we quantify the significance of αk by the z-score:

zk =
αk − µ(ᾱk)

σ(ᾱk)
. (2)

A large value of αk (i.e., αk > 0.5) reveals the strong cohesiveness of the subgraph Ck, while
a large value of zk (i.e., zk > 3) denotes that such a cohesiveness is not trivially due to the
size of the subgraph, but it is anomalously large with respect to the subgraphs of the same
size.

Table 1 summarizes the values of αk and zk computed on the subgraphs corresponding to
the “locali” (see Fig. 1). Notice that L2 to L18 actually refer to the 17 “locali” under inves-
tigation, all based in Milan area (Milan itself plus 16 small-medium towns); L19 collects the
individuals, participating in some of the meetings, belonging to any of the Calabria “locali”,
and L20 contains those affiliated to Brescia, not subject to investigation and whose members
participated in the meetings only occasionally; L0 are the individuals with non specified af-
filiation, L1 those who are not affiliated. Overall, only 4 “locali” out of 17 reveal strong –
and statistically significant – cohesiveness, proving to actually behave as communities in the
sense of network analysis. Most of the other ones, however, display very mild cohesiveness. It
cannot be claimed, therefore, that the “locali” partition as a whole is significant in functional
terms. In the next section, we analyze whether the network is actually organized around a
different clusterization.
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Nk αk zk
C1 12 0.93 9.07
C2 18 0.72 7.79
C3 25 0.66 9.85
C4 25 0.63 9.11
C5 45 0.68 8.20
C6 62 0.78 8.30
C7 67 0.67 5.72

Table 2: Results of max-modularity community analysis

3 Community analysis

Given a partition C1, C2, . . . , CK of the nodes of a weighted, undirected network into K
subgraphs, the modularity Q [Newman, 2006; Arenas et al., 2007] is given by

Q =
1

2s

∑
k=1,2,...,K

∑
i,j∈Ck

(
wij −

sisj
2s

)
, (3)

where s =
∑

i si/2 is the total link weight of the network. Modularity Q is the (normal-
ized) difference between the total weight of links internal to the subgraphs Ck, and the ex-
pected value of such a total weight in a randomized “null network model” suitably defined
[Newman, 2006]. Community analysis seeks the partition with the largest Q: large values
(Q → 1) typically reveal a high network clusterization. Although the exact max-Q solution
cannot be obtained because computationally unfeasible even for small-size networks [Fortu-
nato, 2010], many reliable sub-optimal algorithms are available: here we use the so-called
“Louvain method” [Blondel et al., 2008].

The result is a partition with 7 clusters (Q = 0.48)3, whose data are reported in Table
2. All clusters, which range from small (12) to medium-large (67, about 26% of the network
size), are strongly cohesive (αk much larger than 0.5, with large zk). Overall, the Infinito
network is therefore strongly clusterized, a result not surprising given that Infinito is a one-
mode network derived from a two-mode affiliation network. Nonetheless, the relationship
between the communities Ck and the “locali” Lh is non trivial, as we discuss below.

The max-modularity partition of the Infinito network is displayed in Fig. 2. The patterns
of node colors – which refer to the “locali”, see Fig. 1 – denote a non trivial relationship be-
tween the “locali” partition and the max-modularity partition. To disentangle this aspect, we
pairwise compare the “locali” L0, L1, . . . , L20 (Table 1) and the communities C1, C2, . . . , C7
obtained by max-modularity (Table 2), quantifying similarities by precision and recall [e.g.,
Baeza-Yates and Ribeiro-Neto, 1999]. Let mhk be the number of nodes classified both in
Lh and in Ck. Then the precision phk = mhk/|Ck| is the fraction of the nodes of Ck that
belongs to Lh whereas, dually, the recall rhk = mhk/|Lh| is the fraction of the nodes of Lh

that belongs to Ck. If we interpret Lh as the “true” set and Ck as its “prediction”, then the
precision quantifies how many of the predicted nodes are true, and the recall how many of
the true nodes are predicted. Then phk = rhk = 1 if and only if the sets Lh and Ck coincide,
while phk → 1 if most of the nodes of Ck belong to Lh, and rhk → 1 if most of the nodes of
Lh are included in Ck.

Figure 3 (upper panels) summarizes the results of this analysis by a graphical representa-
tion of the precision and recall matrices. We firstly note that “locale” L17 perfectly matches

3The maximum modularity is upper bounded by Q ≤ Q′ = 1 − 1/K, with K number of clusters [e.g., van
Mieghen, 2010]. The normalized modularity [e.g., Borgatti et al., 2002] is in our case Q/Q′ = 0.56.
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Figure 2: The Infinito network: nodes are grouped according to the max-modularity partition
(Table 2) and colored according to the “locali” partition (Table 1).

community C1 (it is the community in the upper-left corner of Fig. 2). Moreover, “locale”
L13 can be approximately identified with C3, whereas C2 corresponds to a large extent to
the union of L3 and L20, and C4 to the union of L9 and L12. But also the last three columns
of the recall matrix clearly put in evidence that C5, C6 and C7 actually behave, to a large
extent, as unions of “locali”. This clearly emerges from the lower panels of Fig. 3, where the
precision/recall analysis is performed again but after “locali” have been partially aggregated
in 7 supersets: the diagonal dominance of the matrices phk, rhk highlights that, overall, the In-
finito network is quite strongly compartmentalized (see again Table 2), and the compartments
coincide to a large extent with single “locali” or unions of them.

These findings support the intuition that subgroups are important elements in the internal
organizations of the mafias. The clusterization of unions of “locali” may suggest that clans
or families may have closer connections with a few others. Several investigations showed that
“locali” may raise and decline, compete or collaborate, merge or separate. Based on meeting
co-participation patterns, community analysis methods can effectively reveal a clusterization
closely connected with the formal structure of the mafia. The next two sections will explore
whether community analysis techniques can further contribute to identifying the “locale”
membership and the bosses of the organization.

4 Identifying the “locale” membership

In this section we consider the problem of identifying the “locale” membership of those indi-
viduals for which such an information is unknown. In the Infinito network (254 nodes), this
problem arises for 31 nodes (see Table 1, row L0).

The problem can be set in the general framework of label prediction [Zhang et al., 2010]: we
are given a set of network nodesX = {x1, x2, . . . , x254} and a set of labels L = {L1, L2, . . . , L20}
which, in our case, code the “locali” of the criminal organization (Table 1). The majority of
the nodes have a label: Lh is assigned to node xi (and we write L(xi) = Lh) if xi is affiliated
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Figure 3: Precision/recall matrices of the comparison between the “locali” and the max-

modularity communities. Above: the “locali” L0, L1, . . . , L20 are compared with the com-

munities C1, C2, . . . , C7. Below: after “locali” have been partially aggregated, the diagonal

dominance of the precision/recall matrices evidences that communities coincide to a large

extent with unions of “locali”.

large extent with single “locali” or unions of them.

These findings support the intuition that subgroups are important elements

in the internal organizations of the mafias. The clusterization of unions of

“locali” may suggest that clans or families may have closer connections with a

few others. Several investigations showed that “locali” may raise and decline,210

compete or collaborate, merge or separate. Based on meeting co-participation

patterns, community analysis methods can effectively reveal a clusterization

closely connected with the formal structure of the mafia. The next two sections

will explore whether community analysis techniques can further contribute to

identifying the bosses and the “locale” membership.215

11

Figure 3: Precision/recall matrices of the comparison between the “locali” and the max-
modularity communities. Above: the “locali” L0, L1, . . . , L20 are compared with the com-
munities C1, C2, . . . , C7. Below: after “locali” have been partially aggregated, the diagonal
dominance of the precision/recall matrices evidences that communities coincide to a large
extent with unions of “locali”.

8



to “locale” Lh. The correspondence nodes/labels is, however, partially unknown, since there
are 31 nodes of X whose labeling is unknown and must be predicted based on the network
structure and on the known labels.

A very general approach to the above problem relies on the notion of node similarity,
based on the assumption that the more two nodes are similar (in a sense to be defined – see
below), the more likely their label is the same. Therefore, once defined a similarity score sij
between nodes (xi, xj), the probability that the unlabeled node xi has label Lh is assumed
equal to

p(L(xi) = Lh) =

∑
{xj |j 6=i,L(xj)=Lh} sij∑
{xj |j 6=i,L(xj)∈L} sij

, h = 1, 2, . . . , 20. (4)

In words, p(L(xi) = Lh) counts the relative abundance of nodes labeled Lh in the network,
and weights each of these nodes by its similarity to xi. The label predicted for node xi is the
one attaining the largest p(L(xi) = Lh).

4.1 Node similarities

We consider and test four definitions of the similarity score sij : (i) and (ii) are very popular
and find many applications in social network analysis (e.g., Lü and Zhou (2011)), (iii) and
(iv) exploit the partition found by max-modularity community analysis (Sec. 3).

(i) Common Neighbors (CN): denoting by Γ(xi) the set of nodes neighbors to xi, we let

sij = |Γ(xi) ∩ Γ(xj)|, (5)

where |Q| denotes the number of elements of the set Q.

(ii) Weighted Common Neighbors (wCN): it generalizes the above definition by exploiting
the information on link weights [Lü and Zhou, 2010]:

sij =
∑

k∈{Γ(xi)∩Γ(xj)}

wik + wkj

2
. (6)

(iii) Common Community (CC): a binary indicator, stating that similarity is equivalent to
the membership to the same community:

sij =

{
1, if c(i) = c(j),

0, otherwise,
(7)

where c(i) denotes the community node i belongs to.

(iv) Weighted Common Neighbors - Common Community (wCN-CC): it combines (ii) and
(iii). It is equal to the Weighted Common Neighbors similarity, but it is nonzero only
when (xi, xj) are in the same community:

sij =

{∑
k∈{Γ(xi)∩Γ(xj)}

wik+wkj

2 , if c(i) = c(j),

0, otherwise.
(8)
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4.2 Results

The label identification procedure, with the different node similarities above defined, has
been tested on the Infinito network. Unfortunately, the specificity of the case does not allow
one to validate the method on the 31 nodes which are actually unlabeled – their “locale” is
unknown by definition. Thus the procedure has been applied to the 177 nodes with known
label L2, L3, . . . , L18 (the “locali” in Milan area, the region under investigation – see Table
1), assuming their label is unknown and trying to recover it.

In order to mimic the real situation, in which an entire pool of labels have to be simul-
taneously identified, in our experiments we assume that the labels of m nodes have to be
reconstructed at the same time, and we test the effectiveness of the procedure by letting m
increasing from 1 to 30. For each m, we randomly extract 5 × 103 samples of m nodes in
“locali” L2, L3, . . . , L18, and predict simultaneously their labels via equation (4). For each
sample, we compute the precision as the fraction of correct guesses. More in detail, for each
node under test we increment a success counter s by 1 if the label which maximizes the prob-
ability (4) is the correct node label, while if the probability of r > 1 labels is equally maximal
in (4) we increment the counter by 1/r if the correct node label is one of them. For the
m-node sample, the precision of the reconstruction is eventually given by s/m.

Figure 4 summarizes the results, in terms of mean and standard deviation of the precision
over the samples, for all m = 1, 2, . . . , 30 and for the four similarity measures above defined. In
principle, we expect that the larger m, the more difficult the prediction task, since the latter is
based on a smaller set of known labels. In this respect, the results are rather counterintuitive.
Firstly, the average precision is largely insensitive to m, and ranges from about 45% to 65%
according to the similarity measure adopted. Notably, the best performing method (wCN-
CC) exploits the analysis of the community structure of the network. Secondly, the variability
of the precision rate displays a clear decreasing trend as m increases. This behaviour is due to
a sort of “large numbers” effect: when very few labels are to be guessed, the success depends
very much on the specific nodes under scrutiny. When a large pool of nodes are instead
investigated, successes and failures tend to balance in a proportion which mildly depends on
the specific set of nodes. Overall, this analysis confirms that, on the Infinito network, the
precision of the label reconstruction procedure can reach a proportion of about two thirds,
even for sets of the same order of magnitude of the real unlabeled set L0.

5 Identifying bosses

In this section we focus on the relation between the hierarchical role of individuals within
the ’Ndrangheta organization, and the pattern of their meeting attendance, as modeled by
the Infinito network. The aim is to explore whether the results from community analysis can
provide tools to identify individuals with leading roles, who will be referred to as bosses from
now on. As already pointed out in Sec. 1, the ’Ndrangheta relies on a formal hierarchy with
multiple ranks and offices. In particular, each “locale” normally appoints a few major officers:
the capobastone or capolocale is the head of the “locale”; the contabile is the accountant who
manages the common fund of the group; the crimine (crime) oversees violent actions; the
mastro di giornata (master of the day) ensures the flow of information within the “locale”
[Calderoni, 2014]. Information on the actual number and roles of the offices in the ’Ndrangheta
is incomplete. Yet, in some investigations the suspects discuss about the different offices: these
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Figure 4: Precision of the label identification methods with respect to the number m of
unlabeled nodes. The curves represent the average precision (circles) plus/minus standard
deviation (crosses) over 5 × 103 random samples of m nodes (CN: Common Neighbors;
wCN: Weighted Common Neighbors; CC: Common Community; wCN-CC: Weighted Com-
mon Neighbors - Common Community).

conversations are sometimes tapped by the police, as in the Infinito case.
The judicial documentation classifies 34 of the 254 nodes of the Infinito network as bosses.

Calderoni (2014), working on the unweighed network, investigated the correlation between
a set of node centrality measures (including degree, strength, betweenness, closeness, and
eigenvector centrality) and the boss role of the node, finding that betweenness is by far the
most effective predictor. Indeed, the average betweenness of bosses turns out to be about 15
times larger than that of non-bosses, testifying a brokering role of bosses within the criminal
network.

Here we want to further improve the predictive performance by exploiting the information
provided by community analysis. As a matter of fact, the partition induced by max-modularity
has the effect of placing each node in a specific position in terms of intra-/inter-community
connectivity, an information that can potentially be useful in assessing its functional role.

5.1 z-P analysis

We follow the z-P analysis approach proposed by Guimera and Amaral (2005) (see also
Guimera et al. (2005)) where, after community analysis has identified a partition into K
modules, the intra- vs inter-community role of each node i is quantified by a pair of indexes

(zi, Pi). We denote by c(i) ∈ {1, 2, . . . ,K} the community node i belongs to, and by s
c(i)
i =∑

j∈c(i)wij the internal strength of i, i.e., the strength directed towards nodes of c(i). By
straightforwardly extending the definitions of Guimera and Amaral (2005) to the case of
weighted networks, we define the within-community strength as

zi =
s
c(i)
i − µ(s

c(i)
i )

σ(s
c(i)
i )

, (9)
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Figure 5: z-P analysis of the Infinito network. Each node is identified by a cross corresponding
to the (zi, Pi) coordinates: bosses are highlighted by red circles. The magenta lines correspond
to the average value of zi, Pi, and Wi, over all nodes.

where µ(s
c(i)
i ) and σ(s

c(i)
i ) are the mean and standard deviation of s

c(i)
i over all nodes i ∈ c(i),

and the participation coefficient as

Pi = 1−
K∑
c=1

(
sci
si

)2

, (10)

where sci =
∑

j∈cwij is the strength of node i directed towards nodes of community c. The
normalized internal strength zi measures how strongly a node is connected within its own
community. On the other hand, Pi quantifies to what extent a node tends to be uniformly
connected to all communities (Pi → 1) rather than only to its own community (Pi → 0).

Figure 5 shows the results of the z-P analysis of the Infinito network (notice that we
normalize zi to take values in the [0, 1] interval, i.e., zi → (zi − min zi)/(max zi − min zi)).
The figure highlights that bosses tend to concentrate on the upper-right part of the plot,
namely they have both within-module strength zi and participation coefficient Pi larger than
average. As a matter of fact, the ratio between the values of the two indicators for bosses
and non-bosses is 2.51 for zi, and 2.30 for Pi. It seems, therefore, that leading individuals
have a twofold characterization, namely a connectivity larger than average within their own
community, and at the same time the capability of connecting to a large number of the other
communities. In order to get the most effective prediction, we can combine the role of zi and
Pi in a unique indicator defined as the product Wi = ziPi. The ratio between the Wi value
for bosses and non-bosses is 5.46: as evidenced in Fig. 5, only 2 bosses out of 34 have Wi

lower than average.
We now want to explicitly quantify the predictive ability of the z-P analysis in identifying

the leading roles within the criminal network, and compare it with a non community-based
indicator such as the betweenness bi. For that, first notice that all the indicators bi, zi, Pi,
and Wi induce a ranking in the set of 254 nodes. Table 3 summarizes the performance of the
above indicators in terms of their predictive precision, assuming to know the exact number
of bosses to be guessed (i.e., 34). In other words, we count how many of the top-34 nodes in
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method precision
zP-score Wi 0.735
z-score zi 0.677
betweenness bi 0.677
P-score Pi 0.294

Table 3: Identifying bosses: for each method, the precision is computed as the fraction of true
bosses among the top 34 nodes ranked by the related indicator.
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Figure 6: Identifying bosses: for a given number of predicted boss m, the precision is computed
as the fraction of true bosses among the top m nodes ranked by the related indicator.

the relevant indicator’s ranking are actually bosses. While the P-score alone seems unable to
effectively capture the leading nodes, the z-score and the betweenness both identify 23 bosses
(although the two sets are slightly different), but the zP-score outperforms all the methods
identifying 25 bosses over 34.

One may wonder to what extent the above performances are influenced by the assumption
of knowing exactly the number of bosses, an information not available in reality. For these
reasons, we refine our analysis and compute the precision p for all methods as a function of
the number m = 1, 2, . . . , 34 of guessed bosses, i.e., we take the top-m nodes for each index
and we compute how many of them actually correspond to bosses:

p =
# of nodes correctly guessed among m nodes

m
. (11)

The precision p as a function of m is depicted, for all methods, in Fig. 6. Overall, the zP-score
has the best performance, with 100% precision up to m = 12 and a good performance even for
the largest m values. Betweenness is a valid alternative, displaying comparable performances
except for large m.

5.2 Integrating network-based measures

We complement the previous analysis through a set of multiple logistic regressions estimating
the influence of different factors on the probability of being a boss. This integrates and expands
the analyses of Calderoni [2014, 2015], which were restricted to the individual centrality
measures on the subset of meetings with more than 3 participants (215 nodes).
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variable min max mean st.dev. 2 3 4 5 6
1 boss 0 1 0.134 0.341
2 betweenness 0 100 4.23 11.7 2 - .77 .73 .76 .83
3 strength 1 361 31.6 48.2 3 - .81 .84 .88
4 z-score 0 1 0.228 0.158 4 - .82 .67
5 zP-score 0 100 12.5 17.2 5 - .70
6 n. of meetings 1 179 7.29 16.7 6 -
7 mafia charge 0 1 0.5 0.5

Table 4: Descriptive statistics (left) and Pearson’s correlation coefficients (right) of the vari-
ables used in the regression (all correlations are statistically significant at p < 0.001 level).
To improve the readability of the results, betweenness and zP-score have been normalized to
the [0, 100] range.

The dependent dichotomous variable is derived from the judicial documents (1 for bosses,
and 0 for non-bosses). Independent variables include two of the network centrality measures
retained in Calderoni [2014], namely the betweenness and the strength, and the z-score and
zP-score from the previous subsection. The models also include two control variables: the first
is the number of meetings attended by each individual, the second (mafia charge) is a dummy
one describing whether an individual was charged with the offence of mafia-type association
in the court order, a possible bias in the network (Table 4).

Given the low number of bosses in the sample (34 out of 254), in the logistic regressions we
adopt the penalized maximum likelihood estimation proposed by Firth [1993]. This method
compensates for low numbers in one of the categories of the dependent variable, making it a
good approach for the Infinito network. As for the standard logistic regressions, it models a
dichotomous dependent variable y (in this case, the boss attribute) as a linear combination
of independent variables xi (y = a + b1x2 + b2x2 + . . .). The outcomes can be expressed as
odds ratio (OR), where OR = exp(bi). In the present application, OR expresses the change
in the probability that a node is a boss per unitary increase in any independent variable,
all other variables equal. For OR = 1 the probability is the same, for OR > 1 it increases,
and for OR < 1 it decreases. For example, OR = 1.1 means that a unitary increase in the
independent variable implies a +10% increase in the probability of a node being a boss. Since
the logistic regression predicts the value of the dependent variable based on the values of the
independent variables, comparison between predicted and observed values enables to assess
its predictive power (percentage of correct predictions) [Hosmer et al., 2013].

The results are summarized in Table 5. Model I replicates the best model from Calderoni
[2014] on a wider sample, yielding very similar results. A unit increase in betweenness cen-
trality provides +11% increase in the probability of being a boss, all other variables equal.
The strength contributes with a +3.5% increase in probability. The model correctly classifies
94.1% of the population and 61.8% of bosses (compare with a random probability of 13.3%).
Model II relies only on the control variables, mafia charge and number of meetings. Both
are significant and positive. Yet the overall capacity of the model is lower than the first
one (90.9%), with a remarkable decrease in the identification of bosses (41.2%). Model III
includes both individual centrality measures and the controls. Both strength and between-
ness maintain their significant and positive effect, whereas the controls are non-significant.
The prediction success are similar to model I, especially for bosses. Models IV to VI test
the community measures identified in the previous section. Model IV shows that z-score has
no significant impact on the probability of being a boss, once tested along with the control
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I II III IV V VI
strength 1.035*** - 1.032** - - -
betweenness 1.111** - 1.108* - - 1.035
mafia charge - 12.87* 4.501 8.400* 5.444 5.172
n. of meetings - 1.167*** 0.982 1.116** 1.057 1.046
z-score - - - 33.34 - -
zP-score - - - - 1.098*** 1.086**
true non-bosses 218 217 217 217 216 216
false non-bosses 13 20 13 16 15 14
true bosses 21 14 21 18 19 20
false bosses 2 3 3 3 4 4
precision (total) [%] 94.1 90.9 93.7 92.5 92.5 92.9
precision (bosses) [%] 61.8 41.2 61.8 52.9 55.9 58.8

Table 5: Results of Firth’s logistic regressions on bosses. The upper part of the table reports
the odds ratio with the statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001), the
bottom part summarizes the predictive capabilities (percentage of correct predictions) of
Models I-VI described in the text.

variables. Conversely, in Model V the zP-score has a statistically significant and positive
influence (+9.8% per unitary increase of zP-score) despite the presence of the controls. The
last model (VI) includes the controls and both betweenness and zP-score. The latter results
as the only significant variable with an impact of +8.6% on the probability of being a boss, all
other variables equal. Overall, the share of correct predictions is slightly lower than models I
and III, with the best results in model VI (92.9% and 58.8% for total correct predictions and
correct boss predictions, respectively).

The regressions corroborate the results of the previous section. Network analysis measures
can effectively predict the leadership roles of individuals in a criminal network. All network
measures perform better than naturally observable variables such as the two controls. Central-
ity measures are effective and yield the highest share of correct predictions. Among community
measures, zP-score has a significant capacity to predict bosses. In a model with centrality
measures and controls, zP-score is the only statistically significant variable, indicating a strong
capacity to capture the behavior of leaders in criminal networks.

These findings expand the literature on leadership in criminal networks, as previous studies
mainly relied on centrality measures only, often finding that betweenness centrality identified
leadership roles within crime groups [Morselli, 2009a; Calderoni, 2014]. Whereas the previous
studies pointed out the role of brokering positions, they neglected the analysis of subgroups
and its implications for leadership. The application of community analysis measures shows
that criminal leaders not only have a notable brokering capacity, but also manage to balance
the connection within and outside their group. These results advocate for expanding the
concept of brokerage beyond individuals measures. In fact, bosses not only meet unconnected
individuals, but also have a crucial function in bridging their group with other groups.

6 Discussion and Conclusions

This paper applied community analysis methods to investigate the structure of a mafia orga-
nization. Focusing on meeting participation as a proxy for the relationships among criminals,
community analysis assessed the clusterized structure of the mafia and showed that it often
mirrors the internal subdivision of the mafia among several clans or “locali”, or unions of
them. This supports the intuition that subgroups matter in this type of organizations.
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Given the type of data, it is unsurprising that the Infinito network shows significant
clusterization. Yet, the clusters only partially overlap with the ’Ndrangheta “locali” and most
of the “locali” lack statistically significant cohesiveness. “Locali” are open criminal groups,
with active interactions among them; members of different “locali” frequently met to discuss
criminal activities and internal problems or to participate to social events (weddings, dinners,
celebrations). Operation Infinito provides examples of complex group dynamics among the
different “locali”, ranging from alliances to conflicts, from convergence to internal divisions.
Overall, these findings corroborates the cautions against overemphasizing the importance of
formal organizational charts in criminal networks [Paoli, 2002; Kleemans, 2014]. The internal
organization matters, but also other factors determine the internal relations.

Subgroups are important in Infinito, notwithstanding the partial relevance of formal “lo-
cale” affiliations. The max-modularity partition identifies seven distinct communities: two of
them match specific “locali”, whereas five correspond to unions of “locali”. Different factors
may explain these associations. For example, C4 comprises L9 (Giussano) and L12 (Mariano
Comense), two neighboring municipalities, while C1 includes the “locale” of Seregno (L17),
just a few of kilometers south. In fact, affiliates to Giussano and Seregno were originally
members of the same “locale”. During the investigation two distinct groups emerged, and
the tensions may explain the different communities. Also, Giussano’s leaders asked for the
mediation of the boss of Mariano Comense to arrange a meeting with the regional coordina-
tor, a cooperation which may elucidate the inclusion of both in C4. Conversely, C7 includes
both L4 (Canzo) and L7 (Erba), the two northmost “locali” in Infinito, in a conflicting re-
lation during the investigation. The former union and subsequent contrasts may explain the
inclusion of both “locali” in C4. Similar examples abound in the court order and their full
examination goes beyond the scope of this paper. Clearly, the union of several “locali” under
a single community may reflect different relations among criminal groups and across space.
Perhaps the rigidity of the max-modularity method imposes an excessively rigid partition to
a more dynamic and complex reality [Ferrara et al., 2014]. Nevertheless, the findings show
that, notwithstanding the scarcity of resources, the analysis may provide useful information
on the internal functioning of dark networks.

In the light of these findings, we tested the effectiveness of community analysis to illuminate
the internal organization of the mafia. We focused on two operational applications, namely
the identification of “locale” membership and of criminal leaders.

For the first application, a weighted combination of community and common neighbors
(wCN-CC) identifies up to 65% of any random sample of 1 to 30 individuals. These findings
are expected, as our original bipartite network had many small meetings at the “locale” level
and a few large meetings among “locali”. However, they further demonstrate the potential
of the analysis of subgroups within criminal networks. One the one hand, “locali” do not
behave as communities in a network perspective; on the other hand, the wCN-CC shows
that communities remarkably improves the probability of correctly identifying the “locale”
membership.

The second application integrates the abundant literature on the identification of criminal
leaders, both from criminology and computer science [Bright et al., 2012; Catanese et al.,
2013; Calderoni, 2014, 2015; Taha and Yoo, 2016]. Our results show that the zP-score, which
captures the interplay between a node connectivity within its community and to the other
communities, can effectively single out the bosses of the mafia. This has interesting implica-
tions for the understanding of criminal leadership, for the improvement of criminal network
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methods, and for the support of law enforcement and intelligence activities.
Our results point out that criminal leaders’ are strategically positioned not only at the

individual level, but also among subgroups. ’Ndrangheta bosses achieve strategic positions
both to broker information and resources, and to maintain a more secure indirect control over
criminal activities. Some studies show that leaders may opt for indirect control, with higher
betweenness centrality and lower degree centrality than other criminals [Morselli, 2009a,b,
2010]. In other cases, especially when degree and betweenness are highly correlated, middle-
level criminals may take the most central positions in the network, with leaders resorting to
other forms of control [Calderoni, 2012; Bright et al., 2012; Agreste et al., 2016]. These works,
however, focused on strategic positioning at the individual level. Conversely, our exploration
analyzes for the first time criminal leadership and network subgroups. In Infinito, between-
ness and strength are positively correlated (Pearson’s coefficient 0.77), with no significant
differences between leaders and other members (0.64 and 0.66, respectively). We demonstrate
that leaders often balance a strong direct connectivity towards their own community (which
partially overlaps with the ’Ndrangheta “locali”) with uniform connections with other com-
munities. Leaders’ control their community and are central nodes within their “locale” (high
z-score); at the same time, leaders broker between communities, thus managing the flow of
information and other resources among different clusters of the criminal network.

Our study demonstrates the potential of meeting data for analyzing criminal networks.
Most previous studies focused on wiretapped telephone communications, which may entail
several bias [Campana and Varese, 2009; Agreste et al., 2016]. Criminals face a number of
constraints due to the illegal nature of their activities [Reuter, 1983; Paoli, 2003]. Criminal
networks experience a trade-off between efficiency and security in terms of density and con-
nectivity both at the group and individual level [Morselli et al., 2007]. Dark networks often
prioritize security, for example renouncing to the efficiency of telephones. Whereas leaders may
evade telephones as a security measure, they may unable to avoid meetings [Calderoni, 2014].
Meeting participation is inherently related to the nature of criminal leadership. Refraining
from meetings inevitably affects the status of a boss. In the ’Ndrangheta, participation to
celebrations, dinners and social events is the sign of a leaders’ prerogatives and prestige. For
example, leaders from the “locali” in Lombardy were invited to the weeding between the sons
of two powerful ’Ndrangheta dynasties, the Pelle and the Barbaro. This was a major event
for the ’Ndrangheta. Invitations reflected the status and power of a “locale”, whereas non-
invitation pointed out its weakness. In Infinito, leaders discussed at length about participation
and presents. Clearly, missing such an occasion is not an option for a ’Ndrangheta boss. Not
only for the opportunity to discuss important matters with other invited leaders, but also for
the social and cultural relevance of being present at such an event. The Pelle-Barbaro wedding
is just one of the many important events in Infinito. The close link between leadership and
meeting participation suggests that meeting data may overcome the limitations of wiretaps
and enable effective identification of leaders in dark networks.

Lastly, the identification of leaders may have important implications for law enforcement
and intelligence activities. While leaders may favor meetings instead of telephone calls as a
security strategy, this may turn into a weakness they may hardly avoid. Law enforcement
and intelligence agencies may monitor meeting participation patterns to identify leaders to
target with further investigative efforts. In our study, measures derived from community anal-
ysis (zP-score) equaled betweenness in predicting leadership roles [Calderoni, 2014]. Another
study showed that predictions are reliable and accurate even at the first stages of the investi-
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gation [Calderoni, 2015]. These applications may further develop into intelligence techniques
and integrate into the growing industry of intelligence software (for further information and
discussion, see Ferrara et al. [2014]; Taha and Yoo [2016]).

Overall, these findings reinforce the idea that the tools of network analysis can be fruitfully
adopted to enhance the understanding of the structure and function of organized crime. This
study, however, has limitations which may be addressed by future research. First, our results
rely on a single case study, which implies limited external validity. Future research should
perform a deeper structural analysis on a pool of criminal networks, assessing whether pecu-
liar structural attributes turn out to be recurrent in such networks. Also, a further extension
should demonstrate the superiority of meeting data against wiretaps data for the identifi-
cation of criminal leaders. Second, the analysis focused on the ’Ndrangheta, a traditional,
hierarchical mafia with very specific internal structure (see Introduction). Its peculiarities
may determine the importance of meeting attendance, hindering the generalizability of the
results to other form of organized crime. Further studies should test whether other criminal
groups, such as drug-trafficking organizations, street gangs, and terrorist cells show similar or
different patterns. Last, in this study we applied traditional and relatively simple community
analysis techniques. Given the growth of this field of network studies, other methods might
prove to be more effective - including those specifically devoted to bipartite networks[e.g.,
Barber, 2007; Larremore et al., 2014], as it is our data structure before projection.
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