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Abstract

In this work we propose the use of a graphical diagnostic tool (the funnel
plot) to detect outliers among hospitals that treat patients affected by Acute
Myocardial Infarction (AMI). We consider an application to data on AMI hos-
pitalizations arising from administrative databases. The outcome of interest is
the in-hospital mortality, a variable indicating if the patient has been discharged
dead or alive. We then compare the results obtained by graphical diagnostic
tools with those arising from fitting parametric mixed effects models to the same
data.

1 Introduction

It has become common to adopt a hierarchical model structure when comparing
the performance of healthcare providers. It is not immediately clear, however, how
unusual providers, that is, any with particularly high or low rates, can be identified
based on such a model. Outlier detection in provider profiling is a growing interest
topic in decisional processes related to healthcare regulation [2, 3, 9, 13, 15]. In
fact, measuring and understanding process variability and its impact on principal
outcomes are necessary for a significant improvement of healthcare systems. We
focus our readings on the patterns of care undertaken by patients affected by Acute
Myocardial Infarction (AMI) and hospitalized in a structure of our regional district
(Regione Lombardia) in Italy. The nature of such data is hierarchical (patients
within hospitals). The outcome of interest is the in-hospital mortality, a binary ran-
dom variable that indicates if the patient has been discharged alive or not. We fit

1



suitable hierarchical logistic parametric models to these data with a twofold aim: (a)
to estimate the hospitals Mortality Rates and Standardized Mortality Ratios and (b)
to compute estimates of the random effects, after adjusting for significant covariates.
The joint use of funnel plots and diagnostic graphical tools on the random effects
estimates, leads to an effective way for detecting outliers in terms of hospital per-
formance. These graphical tools provide an effective way to summarize information
to be shared and communicate to clinicians. Moreover, they enhance possibility to
convey key conclusions for supporting decision makers in the healthcare regulation
process. In particular we mainly refer to [17], [11] and [18] for the use of funnel plots
in healthcare regulation and to [8] for the use of graphical methods and diagnostic
analysis on random effect estimates.
The article is structured as follows: first we present the data we are dealing with
(Section 2), then we present suitable funnel plots to detect outliers and extreme
structures with respect to Standardized Mortality Ratio (Section 3). The fitted
mixed effects models and the study of random effects estimates is detailed in Section
4. In Section 5 we discuss the achieved results. All the analyses have been performed
with R program [14].

2 Data and Extraction Criteria

Administrative health care databases play today a central role in the evaluation of
healthcare systems, because of their widespread diffusion and low cost information
they provide. There is an increasing agreement among epidemiologists on the va-
lidity of disease and intervention registries based on administrative databases (see,
for example, [4, 5] and [19] and references therein). So more and more frequently
administrative data are used to address epidemiological issues in observational stud-
ies. The most critical issue when using administrative databases for observational
studies is represented by the selection criteria of the statistical units. In fact several
different criteria may be used, and they will result in different images of prevalence
or incidence of diseases. In the case of interest, we focus on in-hospital mortality
after an Acute Myocardial Infarction (AMI). Concerning this pathology, since every
hospital admission ends in a record collected in the administrative datawarehouse,
the administrative database of SDO (Scheda di Dimissione Ospedaliera, i.e., hospi-
tal discharge paper) has been used in order to identify AMI episodes and related
subsequent hospitalizations. In fact, the SDO database contains data for each hos-
pitalization that a patient experiences along time, providing information both on
patient features (in terms of sex, age, . . . ) and on her/his hospitalization details
(date of admission and discharge, diagnoses and procedures, type of admission, type
of discharge, vital status at discharge, hospital of admission/discharge, . . . ).
The case study presented here concerns data arising from a project named “Exploita-
tion, integration and study of current and future health databases in Lombardia for
Acute Myocardial Infarction”, funded by Ministry of Health and Regione Lombar-
dia, the region in the northern part of Italy whose capital is Milan. The principal
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aim of the project was to exploit clinical registries and administrative databases for
evaluating the performance of the cardiological network in treating AMI patients
and to carry out an effective healthcare planning based on real evidence and needs.
In order to identify AMI patients within the administrative database we considered
admissions ended between 2000 and 2010 and classified within the Major Diagnostic
Categories (MDC) 01 - Nervous System, 04 - Respiratory System and 05 - Circulatory
System. Among these records, admissions for acute myocardial infarction have been
identified as those presenting an AMI code in the first diagnosis field among the
six available in the SDO. The list of ICD-9-CM codes referred to AMI has been
created following AHRQ-IQI [1] and consists in the following ones: 41000; 41001;
41010; 41011; 41020; 41021; 41030; 41031; 41040; 41041; 41050; 41051; 41060; 41061;
41070; 41071; 41080; 41081; 41090; 41091. Patients under 18 years, and patients
transferred by another hospital have not been considered. We do not consider also
hospitals managing a number of cases less than 20.
The dataset consists then of 46079 patients treated in 96 hospitals of Regione Lom-
bardia.

3 Funnel plots for Standardized Mortality Ratio

The first statistical method we consider for outliers detection is based on funnel
plots. The funnel plots have been originally introduced in meta-analysis studies,
with the primary aim of being a visual aid to detection of bias or systematic hetero-
geneity. More recently they have been proposed as a graphical aid for institutional
comparisons, especially because they overcome some criticism of the more traditional
caterpillar plots [12].
Following [11] we consider three different approaches to identify unusual performance
of providers using the administrative data previously introduced: (a) a funnel plot
based on the common mean model, (b) a funnel plot to identify outliers in the random
effects distribution and (c) a funnel plot to identify extremes in the random effects
distribution. In the construction of a funnel plot we need, an indicator of performance
X, a target θ0 which represents the desired expectation, so that E[X] = θ0 for
institution “in-control” and a precision parameter ρ that controls the accuracy of
the measured indicator. In general ρ is inversally proportional to the variance, i.e.,
ρ ∝ 1

V ar[X] . Given a series of J observations xj , and the associated precisions ρjs
a funnel plot is a scatterplot of xj versus ρj , with superimposed control limit lines,
function of ρ, computed according to the chosen model for accounting overdisperion.
In our case we chose as performance indicator of each hospital the Standardized
Mortality Ratio (SSR) defined as

SSRj =

∑nj

i=1 y
obs
ij

∑nj

i=1 p̂ij
=

Oj

Ej
, j = 1, ..., J. (1)

where yobsij is the observed outcome of in-hospital mortality for patient i treated
in the hospital j, nj is the number of patients treated in hospital j and p̂ij is the
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corresponding estimated probability of death.
SSRj relates the actual mortality at the jth hospital to the expected mortality in
the same hospital, adjusted for different patient severity resumed in the covariates
of the logistic model. The estimated number of deaths Ej , can be obtained fitting
the following logistic regression model:

logit (E[Yi]) = logit(pi) = β0 +

2
∑

k=1

βkxik. (2)

Yi is the Bernoulli variable representing the in-hospital mortality of patient i and
(β0, β1, β2) are the parameters corresponding to the fixed covariates: xi = (x1i, x2i) =
(Agei, Risk Indexi). We considered also the sex of the patient, but it has been dis-
carded because highly correlated with the age. In the selected model both the
covariates have a very high statistical significance (p-value < 2∗10−16) and the Risk
index evaluated with the APR-DRG mortality score see [6, 16]. Finally, as a preci-
sion parameter to be displayed on the abscissa we adopted the expected number of
deaths of each hospital.
Starting from the first case (a) which doesn’t consider any overdispersion due to
the grouped nature of data, we draw a funnel plot for Standardized Mortality Ratio
reported in Figure 1. In this case limits are given by

θ0 ± zp

√

θ0
E

(3)

where θ0 is the fixed target (in our case θ0 is set to 1 meaning that the target level is
a number of observed deaths which is equal to the expected one), zp are the quantiles
of a standard gaussian distribution, and E is the volume of expected cases.
In case (b) an additive adjustment factor is introduced in the band limits of the
funnel plot (see Figure 2). The limits are then given by

θ0 ± zp

√

θ0
E

+ τ̂2 (4)

where, following [7], if we call σ2
j = θ0

Ej
, wj = 1/σ2

j for every hospital j = 1, ..., J , τ̂2

is given by

τ̂2 =
Jφ̂W − (J − 1)

∑

j wj −
∑

j w
2
j/

∑

j wj

and φ̂W is estimated using the q-Winsorised Z-scores zWj

φ̂W =
1

J

J
∑

j=1

(zWj )2.

The Z-scores zj are obtained by standarizing the observed outcomes of interest,

choosing the target θ0 as the mean, and the estimated variability
√

σ2
j as standard
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Figure 1: In-hospital Standardized Mortality Ratio from 96 hospitals in Regione
Lombardia. Unadjusted funnel plot with band limits at 95% (blue lines) and 98%
(red lines). The horizontal solid black line is the target limit.

deviation, i.e.,

zj =
SSRj − θ0
√

Var[Xj ]
=

SSRj − θ0
√

θ0
Ej

.

The q-Winsorised Z-scores are obtained setting the lowest 100q Z-scores to the quan-
tile of order q of z1, ..., zJ and, analogously the highest 100q Z-scores to the quantile
of order (1 − q) of z1, ..., zJ . If there is no true overdispersion Jφ̂W has approxi-
mately a χ2 distribution with J degrees of freedom. In this case E[φ̂W ] = 1 and
Var[φ̂W ] = 2

J
. So data require a statistically significant adjustment for overdisper-

sion when φ̂W > 1 + 2
√

2/J . In our application φ̂W = 2.6 and this value is strictly
greater than 1 + 2

√

2/J = 1.28. This fact proves, as suggested in [17], a statistical
evidence for overdispersion.
In case (c) a multiplicative adjustment factor is introduced in the band limits of the
funnel plot (see Figure 3). The limits are then given by

θ0 ± zp

√

1

τ̂2

θ0
E

(

θ0
E

+ τ̂2
)

. (5)

The plot is reported in Figure 3. As stressed in [11] the case (b) is the most appropri-
ate adjustment for the identification of outliers to random effect distribution, and so
to detect outlier institutions with unusual performance. Moreover the multiplicative
adjustment proposed in (c) will tend to identify too many providers as unusual.
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Figure 2: In-hospital Standardized Mortality Ratio from 96 hospitals in Regione
Lombardia. Additive adjusted funnel plot with band limits at 95% (blue lines) and
98% (red lines). The horizontal solid black line is the target limit.

4 Outlier detection in random intercept estimates

The second statistical method we consider for outliers detection is based on the iden-
tification of extremes values of the random effect point estimates arising a suitable
mixed effect model fitted to the data, where the hospital of admission is considered
as a grouping factor. The study of the random effects distribution for provider pro-
filing has used both in frequentist [9] and Bayesian context [10] with the main aim
of clustering hospitals and detecting similar behaviors. In this paper we take advan-
tage of the study of random effect distribution to understand the agreement with
the graphical procedures presented in Section 3 and then to provide further evidence
to decision makers, together with a proper quantification of the outlyingness of each
performance.
So we fit a parametric mixed effect model to explain the in-hospital mortality, with in
the fixed part the significant covariates selected in model (2) and a random intercept.
In particular

logit (E [Yij |bj ]) = logit(pij) =

β0 +

2
∑

k=1

βkxijk + bj .
(6)

Yij is the Bernoulli variable representing the in-hospital mortality of patient i treated
in hospital j. (β0, β1, β2) is the parameters vector corresponding to the fixed part.
bj ∼ N (0, σ2

b ) is the Normal random effect superimposed to the grouping factor (i.e.,
the hospital where a patient is admitted to).
In our application the point estimates of parameters (± standard deviation) are
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Figure 3: In-hospital Standardized Mortality Ratio from 96 hospitals in Regione
Lombardia. Multiplicative adjusted funnel plot with band limits at 95% (blue lines)
and 98% (red lines). The horizontal solid black line is the target limit.

β̂0 = −7.8108± 0.1379, β̂1 = 0.0408± 0.0017 and β̂2 = 1.1257± 0.0214, respectively.
The estimate of the standard deviation of the random effect is equal to σ̂b = 0.37.

The points over the limits of the whiskers in the boxplot (see Figure 4) of the point
estimates of the random intercept in model (6) are a subset of the hospitals which
locate out of the 95% limits of all three funnel plots in (3), (4), (5). In Figure 4
we draw also the quantiles of order 2.5 % and 97.5% (blue lines) and the quantiles
of order 1% and 99% (red lines), in order to highlight the agreement with Figure
2. In Figure 5 the Normal Q-Q plot of the point estimates of the random intercept
in model (6) is shown. In fact the Normality assumption on the random effect
bj in model (6) is questioned and weakened by the detected outliers in Figure 4).
Moreover the detected outlier hospitals are the ones located out of the limits in the
funnel plot shown in Figure 2 that, as said before is a suggested tool to point out
unusual performance.

5 Conclusions

The identification of unusual performance of healthcare institutions is a hot topic of
the last years. It is crucial, especially in supporting decisions of people in charge with
healthcare governance. We propose the joint use of graphical instruments (like funnel
plots) to detect and visualizing outliers, and the study of random effects estimated
by fitting a hierarchical mixed effects model to the same data.
The use of hierarchical model allows for a more proper modelling of the overdisperion
highlighted by the funnel plots. Moreover, they enable researchers to quantify the
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Figure 4: Boxplot of the point estimates of the random intercept in model (6). The
horizontal blue lines correspond to the quantiles of order 2.5 % and 97.5%. The
horizontal red lines correspond to the quantiles of order 1% and 99%.
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Figure 5: Normal Q-Q plot of the point estimates of the random intercept in model
6.

outlyingness of a performance, providing a quantitative support to decision makers.
In fact, the funnel plots indicate the presence of overdispersion in data, and by com-
puting suitable confidence limits they allow to detect unusual institutions. On the
other hand, the study of tails and extremes in estimated random effect distribution
confirm the obtained results and provide also an estimate of the quantitave effect of
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these structures in outcome prediction.
We propose the joint use of these two techniques as a simple and effective way for
profiling providers within the context of healthcare regulation.
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