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Abstract

We propose a bagging strategy based on random Voronoi tessellations
for the exploration of high dimensional spatial data, suitable for di�erent
purposes (e.g., classi�cation, regression,. . .). In particular, we consider the
problem of clustering functional data indexed by the sites of a spatial �nite
lattice. The analysis is based on local representatives from neighboring
data, i.e., belonging to the same element of a tessellation: the proposed
algorithm accounts for spatial dependence by repeatedly clustering func-
tional local representatives with respect to a random system of neighbor-
hoods. Due to the resampling of tessellations, classi�cation result is a clus-
ter assignment frequency map, which can be used to de�ne an a-posteriori
criterion to choose the most suitable grouping structure. Thanks to spa-
tial dependence, local representatives are expected to be less noisy and less
correlated than original data, providing better performances. Moreover,
this reduction in the dimension of the dataset permits the handling of high
dimensional sets of data otherwise intractable without an explicit model for
spatial dependence. The performance of the proposed approach is tested on
simulated data. An application to environmental data contained in Surface

Solar Energy database is also illustrated.

1 Introduction

Many methods for the analysis of high�dimensional data have been proposed
in the recent years: some of them fall into the framework of functional data
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analysis (see Ferraty and Vieu, 2006 [6]; Ramsay and Silverman, 2005 [13]),
and only few among these consider spatially dependent functional data (see the
interesting review by Delicado et. al, 2010 [5]). We aim at considering the
problem of unsupervised classi�cation of spatially dependent functional data in
a non parametric framework, where each curve is indexed by the sites of a spatial
�nite lattice S0 ⊂ S, where S de�nes the region of interest for the analysis.
In particular, our motivating application consist in analyzing a global dataset
concerning irradiance data along time: we examine the annual patterns of the
maximum amount of energy needed to backup a photovoltaic system in 47880
worldwide non-polar districts (a non uniform lattice S0 covering the whole earth
surface) along the years 1983-2005; the analysis of these patterns is closely related
to the sizing of power emergency generators needed in case of consecutive no-sun
days (see Richter et. al, 2009 [14]). The problem thus consists in associating
to each site x ∈ S0 a label l ∈ {1, . . . , L}, such that sites omogeneous with
respect to the distribution generating the functional data are labelled the same:
the aim of the analysis is the reconstruction of the latent �eld of labels. In
our motivating application, we aim at identifying di�erent homogeneous macro-
areas, interpretable in terms of the observed phenomenon and not captured by
customary unsupervised classi�cation procedures that do not take into proper
account the spatial dependence among data.

A tentative approach to this problem consist in the use of standard func-
tional clustering procedures, such as functional k-mean (see Cuesta et al., 2007
[4]; Tarpey and Kinadeter, 2003 [15]), that do not properly account for spa-
tial dependence; indeed, while assigning a site to a cluster, information carried
out by the neighboring sites is not considered. We thus expect these standard
non-spatial approaches to provide good results only when the true groups are
associated to very di�erent distributions; in less trivial situations, where the
distributions associated to di�erent labels may be very similar, exploiting infor-
mation carried by neighbors can lead to more accurate results.

We propose a new bagging algorithm for unsupervised classi�cation that ex-
ploits spatial dependence by repeatedly generating random connectivity maps
and by clustering, at each replication, local representatives of neighboring func-
tional data. The performances of our algorithm are tested in various situations,
and compared with standard clustering techniques. The new algorithm is com-
pletely non-parametric, since no explicit assumption is made neither on the dis-
tribution generating the latent �eld of labels, nor on the conditional distribution
generating functional data. A great advantage of this approach is its �exibil-
ity in the exploitation of further information on the considered region, which
is not paid o� by an excessive increment of the computational cost. The pro-
posed spatial clustering procedure, given the number K of clusters, produces and
analizes bootstrap samples in three basic steps: generation of a spatial Voronoi
tessellation, identi�cation of a representative for each of the n elements of the
tessellation, p-dimensional reduction and clustering of the representatives. For
each site of the lattice S0, the �nal output is the frequency distribution of cluster
assignment to each of the K clusters; the frequency distribution can be summa-
rized in a classi�cation map by means of its mode via a majority vote on the
cluster assignment. Moreover, an a-posteriori criterion based on spatial entropy
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is proposed to select the optimal number K of clusters. The fact that our data is
functional is not irrelevant to the computational cost of standard procedures for
the analysis of lattice data; hence another motivation for our method, which im-
plicitly performs a reduction both in the dimension of the sample (by clustering
a small number n of representatives) and in the in�nite dimension of functional
data (through the p�dimensional reduction of the representatives). Moreover,
most algorithms for image classi�cation based on Hidden Markov Random Field
models, which perform classi�cation via a maximum a posteriori � MAP � crite-
rion (such as simulated annealing, or iterated conditional modes, see Besag, 1986
[2]; Geman and Geman, 1984 [7] for details on these procedures) heavily depend
on hypothesis on the distribution of the observed signal, typically assumed to be
Gaussian.

The paper is structured as follows. In Section 2, the bagging Voronoi clas-
si�ers algorithm for clustering spatially dependent functional data is introduced
and described. In Section 3, some technical issues concerning the algorithm are
detailed; in particular, the adopted strategies to capture spatial dependence and
to reduce the dimension of the data set, and the chosen approaches to dimen-
sional reduction of functional data and clustering. In Section 4 the properties of
the algorithm are explored through a simulation study. Finally, in Section 5 our
motivating application is fully described, and results of application of the bag-
ging Voronoi classi�ers algorithm to irradiance data are shown. All simulations
and analysis of real datasets are performed in R ([12]).

2 Bagging Voronoi classi�ers for clustering spatially

dependent functional data

Suppose a latent �eld of labels Λ0 : S0 → {1, . . . , L} is associated to each site of
the lattice S0, i.e. Λ0(x) is the true unknown label associated to the site x ∈ S0,
where S0 ⊂ S and S is a measurable subset of R

d; the label sums up some
characteristics of the considered area which are interesting for the scopes of the
analysis. Moreover, suppose a functional data is observed in each site x ∈ S0:
given Λ0, the functional data are independently generated in each site x ∈ S0

from a distribution indexed by Λ0(x). Aim of the classi�cation procedure is to
reconstruct the unknown �eld Λ0 of labels from the analysis of functional data
indexed on the considered lattice S0. Hence, the �nal result of the procedure is a
label assignment for each site of the lattice, according to the observed functional
data.

We will now sketch the algorithm via a pseudocode scheme. Speci�cations
for the implementations of the algorithm will be detailed in Section 3. The
procedure is a bagging-inspired algorithm, since it is composed by a bootstrap
sampling phase, articulated in three basic steps, and by an aggregation phase
(see Breiman, 1996 [3] for details on bagging procedures): at each replication of
the three steps, a single weak classi�er is found, which exploits a speci�c structure
of spatial dependence, thus obtaining a coarse estimate of the unknown latent
�eld of true labels Λ0. A more accurate global classi�er is obtained after B
replications, by bagging together all single classi�ers. Higher values of B, imply
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a higher accuracy of the �nal estimate (the reconstruction of the latent �eld of
labels Λ0), which includes all the estimates of the B single classi�ers. Moreover,
the advantage of such an approach stands in the embarassingly parallel nature
of the bootstrap phase, whose computational cost can be dramatically reduced
by parallel programming.

Algorithm. Bagging Voronoi classi�ers.

Bootstrap:

Initialize B, n, p, K. Choose a metric d(·, ·).
for b := 1 to B do

step 1. generate a random Voronoi tessellation of the lattice, i.e., isolate
neighboring groups of data, to capture potential spatial dependence;
step 2. identify a local representative for each element of the tessella-
tion to sum up local information: neighboring data are most likely drawn
from the same functional distribution;
step 3. perform functional dimensional reduction of local representa-
tives to select relevant functional features in the data, and cluster the
projections of local representatives on the space spanned by the obtained
basis to �nally reconstruct the latent �eld of labels.

end for

Aggregation:

perform cluster matching: match the cluster labels along bootstrap replica-
tions, to ensure identi�ability.
for x ∈ S0 do

• calculate the frequencies of assignment of the site to each one of the K
clusters along iterations;
• compute spatial entropy for each site.

end for

First we have to �x the number B of replications of the three basic steps,
the number n of elements in the Voronoi tessellation and the metric d used
to compute distances, the p-dimensional basis for dimensional reduction of the
local representatives and the number K of clusters considered in the clustering
procedure. Then, for b = 1, . . . , B, steps 1-3 are replicated: a set of nuclei Φb

n =

{Zb
1, . . . ,Z

b
n} is randomly generated among the sites in S0, i.e. Zb

i

i.i.d.
∼ U(S0)

for i = 1, . . . , n, where U is the uniform distribution on the lattice. Then, the
b-th random Voronoi tessellation of the lattice S0, {V (Zb

i |Φ
b
n)}

n
i=1, is obtained by

assigning each site x ∈ S0 to the nearest nucleus Zb
i , according to the speci�ed

distance d(·, ·) (step 1); see Section 3 for details. Given the tessellation, for
i = 1, . . . , n the local representative gbi , corresponding to the nucleus Zb

i of the
i-th element of the tessellation V b

i := V (Zb
i |Φ

b
n), is computed (step 2); in this

way we construct the b-th bootstrap sample. Then, dimensional reduction of
the n local representatives {gb1, . . . , g

b
n} is performed, by projecting them on the

space spanned by a proper p�dimensional functional orthonormal basis, thus
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generating the p-dimensional scores vectors {gb
1, . . . ,g

b
n} (step 3); the scores

vectors are then clustered in K groups according to a suitable unsupervised
method, depending on the application (e.g. K-mean clustering, PAM, outlier
detection, . . .). Since we are interested in a �nal classi�cation map of the lattice
S0, we perform an aggregating phase in which results of each replications are
bagged together. In particular, for k = 1, ...,K, and b = 1, ..., B, indicate with
Cb
k the set of x ∈ S0 whose label is equal to k: cluster matching is needed

to ensure coherence of cluster assignments along replications (see Section 3 for
details). Then, the frequency distribution of assignment of each site to each of
theK clusters along the B replications is considered. In fact, for each site x ∈ S0,
one can compute πk

x = #{b ∈ {1, ..., B} : x ∈ Cb
k}/B, ∀ k = 1, . . . ,K. A �nal

assignment of site x to one of the K clusters can be obtained by selecting that
label corresponding to a mode of the distribution πx = (π1

x, ..., π
K
x ).

The previously described procedure for clustering spatially dependent func-
tional data depends on a number of choices, which de�ne the details of the algo-
rithm, e.g. the parameters B, n, p and K have to be chosen in advance: while
B should be chosen big enough to ensure the desired algorithm accuracy, p and
n depend on the particular problem at hand, and their choice will be discussed
in Section 3.

We shall now tackle the problem relative to the choice of the correct number
K of clusters, by means of a spatial entropy index evaluating the quality of
the �nal classi�cation. Consider the frequency distribution of assignment πx =
(π1

x, . . . , π
K
x ) of each site x ∈ S0 to each of theK clusters. The entropy associated

to the �nal classi�cation in the site x ∈ S0 is obtained as

ηKx = −
K
∑

k=1

πk
x · log(πk

x), (1)

which assumes minimum value 0 when ∃r : πr
x = 1, πk

x = 0 ∀k 6= r, k, r =
1, . . . ,K, and maximum value log(K) when πk

x = 1
K
∀k = 1, . . . ,K. The index

in (1) is based on the criterion that the more the frequency distribution in x is
concentrated on one particular label, the more the classi�cation is precise and
stable along replications; conversely, if most frequencies are uniformly spread
over all labels, the uncertainty associated to the �nal classi�cation in x is high.
Spatial entropy can be visualized by plotting all the values obtained via equation
(1) in each site of the lattice: when the chosen number of clustersK is optimal, we
expect a neat plot, mostly equal to zero, and di�erent from zero in sites that are
expected to be at the boundaries between regions associated to di�erent clusters.
To obtain a global evaluation index, we can compute the average normalized
entropy

ηK =

∑

x∈S0
ηKx

log(K) · |S0|
, (2)

including the contribution to the �nal classi�cation quality of all sites in S0. For
comparisons over di�erent choices of K, the quantity ηKx in equation (2) has been
normalized by its maximum value. Indeed, if K is not known, a comparison of
the average normalized entropy for di�erent values of K can be performed in
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order to choose the optimal value of K: in fact, thanks to the de�nition given in
equation (2) we can choose the optimal number of clusters K∗ for the considered
region as

K∗ = argmin
K=1,...,Kmax

{ηK}.

3 Details on the algorithm

We will now expand on the details of each step of the bagging Voronoi classi�ers
algorithm described through the pseudocode scheme in Section 2. Note that the
extreme generality of the proposed algorithm makes each step �exible to di�erent
speci�cations eventually motivated by the application at hand.

3.1 Step 1: Voronoi tessellations

We will here give motivations for the chosen approach to the treatment of spatial
dependence in lattice data via Voronoi tessellations. The motivation for using
Voronoi tessellations comes from a consistency result proven by Penrose (2007,
[11]) in the framework of stochastic geometry.

Consider S ⊂ R
d. To univocally de�ne a random tessellation it is necessary to

select a set of points x ∈ S as nuclei for the Voronoi tessellation. Thus, let Φn =
{Z1,Z2, . . . ,Zn} be a set of n points in S sampled from a proper distribution F
de�ned on S: this will be the set of nuclei of the Voronoi tessellation. For each
Zi ∈ Φn, de�ne the polyhedron

V (Zi|Φn) = {x ∈ S : d(x,Zi) ≤ d(x,Zj), for all Zj ∈ Φn, i 6= j}, (3)

to be the closed Voronoi cell with nucleus Zi for the Voronoi tessellation induced
by Φn, i.e. the set of x ∈ S lying at least as close to Zi, in the sense of the metric
d(·, ·), as to any other point of Φn: the collection {V (Zi|Φn)}ni=1 forms a Voronoi
tessellation of S. There is no strong restriction on the choice of the metric
d(·, ·), but the �nal tessellation will clearly depend both on the choice of the
metric, and on the distribution F . Voronoi tessellations have many interesting
properties, which make them good tools for partitioning a general domain (see
Møller, 1994 [9] for further details on Voronoi tessellations in Euclidean spaces);
however, the more interesting property for our purposes is undoubtedly a coverage
property. Consider the collection of Lebesgue measurable sets {Al}

L
l=1, Al ⊂

S ∀l = 1, . . . , L, and let Vi := V (Zi|Φn); moreover, let

An
l :=

⋃

Zi∈Al

Vi,

be an approximation of Al given by the Voronoi cells whose nuclei belong to
Al. The coverage property states that An

l represents a consistent estimator of
the unknown set Al, ∀ l ∈ {1, . . . , L}, in the sense that (∆ denotes symmetric
di�erence of sets)

µ(An
l ∆Al)

a.s.
→ 0, n → ∞, (4)

where µ denotes the Lebesgue measure. The coverage property for Voronoi tes-
sellations expressed in (4) has been proven by Penrose (2007, [11]) under the
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reasonable assumption that the support of F includes S, and it represents a
strong law of large numbers in the context of Voronoi tessellations.

The coverage property of Voronoi tessellations is fundamental to ensure the
validity of our algorithm, since it states that, when the tessellation becomes less
and less coarse, subsets of the domain S associated to the same label are well
approximated by Voronoi tessellations. Indeed, with a view to our classi�cation
problem, we de�ne the collection of sets {Al}

L
l=1 as Al := {x ∈ S : Λ(x) = l},

for l = 1, . . . , L, where Λ : S → {1, . . . , L} is such that Λ|S0
≡ Λ0.

3.2 Step 2: functional local representatives

We consider the situation where we observe a realization fx : T → R of a
functional random variable in each site x ∈ S0, for T = [tmin, tmax]. Since
our approach is completely non-parametric, we do not make assumptions on the
distribution of fx. The Voronoi tessellation on S, which induces a tessellation on
the lattice S0, provides a partition of the region in random neighborhoods, and
induces a partition in the sample of functional data {fx}x∈S0

. More precisely,
for each element Vi of the tessellation, i = 1, . . . , n, we consider the subset of
functional data {fx}x∈Vi

. To exploit spatial dependence of neighboring data we
consider a local functional representative of data belonging to the same element
of the Voronoi tessellation; in the literature on spatial statistics, this procedure
is named spatial smoothing (see Banerjee et al., 2004 [1] for further details).
The computation of the functional local representatives here described, which
is the one adopted in the application detailed in Section 5, is only one among
the possible approaches; all extensions aimed at computing a local centroid (e.g.
loess, functional median, . . .) are conceivable.

The local representative gi of the element Vi, for i = 1, . . . , n, is computed as
a local mean weighted with a Gaussian kernel

gi(t) =

∑

x∈Vi
wi
xfx(t)

∑

x∈Vi
wi
x

, (5)

where wi
x is a Gaussian weight centered in Zi and decreasing with respect to

d(x,Zi), since we intuitively assume the spatial dependence between two sites to
be decreasing with respect to the distance between them. In this sense the local
representative already accounts for spatial dependence: a bigger contribution
to its calculation, in fact, will be given by functional data associated to sites
nearer to the nucleus of the element. The kernel covariance matrix is σ2

I2,
where σ = dmax/dmin being dmax and dmin the maximum and minimum distance
between two nuclei of the tessellation, respectively; this choice is motivated by
the fact that σ is in this way be related to the mean dimension of the tessellation
element via an estimator of the elements mean diameter (see Møller, 1994 [9] for
a proof in Euclidean spaces). This setting is general, and can be easily adapted
to di�erent situations arising in applications, in presence of proper information:
for example, a non�diagonal covariance matrix in the Gaussian kernel could be
used to account for anisotropy in the latent random �eld.

The choice of n, which sets the tessellation dimension and thus the number
of local representatives to be computed, has great in�uence on the algorithm
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Figure 1: In the left panel, a sample of 50 synthetic data randomly selected from
the realization of a Hidden Markov Random Field with Gaussian emission prob-
ability function; in the right panel, the sample of functional local representatives
obtained using a Voronoi tessellation with n = 50. Di�erent colors correspond
to di�erent labels.

behavior, since the latent �eld of labels is unknown: if the labels were known,
we would choose a tessellation which perfectly follows the cluster borders, thus
independently from the choice of n each local representative would be computed
using data drawn from the same distribution. Indeed, labels are always unknown,
inducing a bias-variance trade-o� which determines the existence of an optimal
choice of n. Consider the example in Figure 1. In the left panel a sample of 50
curves randomly selected from a synthetic data set is shown: they are generated
according to a Hidden Markov Random Field with Gaussian emission probability
function and parameter β = 3, where the latent �eld of labels is the realization
of a Ising �eld on a 100 × 100 lattice of sites, and functional data are obtained
using a Fourier basis with �xed (p = 5) dimension and coe�cients obtained from
the emitted random �eld; the mean vectors of the emission probability function
are µ−1 = (1, 2, 2.25, 0, 0) and µ1 = (1, 1.5, 1.25, 0.75, 0.75), respectively, and
covariance matrices are the identity in R

5 in both cases. Thus the functional
distribution of generated data is a mixture, where mixture components are as-
sociated to the two labels of the latent �eld. In the right panel the functional
local representatives corresponding to the same data set are depicted, when the
tessellation dimension is chosen equal to n = 50 and local representatives are
computed using equation (5). While in the left panel we can hardly distinguish
a grouping structure, since the variability within the two groups is confounding
the one between the groups, in the right panel of the picture, instead, we can
distinguish curves belonging to two di�erent groups thanks to the evident reduc-
tion of the variance in the sample of local representatives. Moreover, the portion
of the domain in which the mean curves of the two clusters are the most di�erent
is also evident in the right panel; this is due to the fact that bias is reduced in
the computation of local representatives.

In general, a certain number of representatives will be optimal in terms of
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misclassi�cation error: the optimal choice of n is the one that �nds a good com-
promise between variance and bias. This is due to the mentioned bias-variance
trade-o�:

• as n decreases, noise is reduced in the local representatives sample, since
local representatives are weighted sample means calculated on an averagely
larger dataset (minimal variance); however, at the same time the associated
Voronoi tessellation follows less accurately the boundaries in the true latent
�eld of labels, thus including di�erent mixture components in the calcula-
tion of local representatives (maximal bias). The limiting case is n ≡ 1,
when all sites in the �nite lattice belong to the same Voronoi element, and
are thus used to compute a single representative;

• as n increases, the resulting Voronoi tessellation approximates more accu-
rately the boundaries of the latent �eld of labels (minimal bias), but at
the same time the variability reduction due to spatial smoothing is smaller
(maximal variance). The limiting case is n ≡ |S0|, when all sites in the
�nite lattice are nuclei, and thus no spatial smoothing is performed.

The optimal value of n determined by this trade-o� depends both on the strength
of spatial dependence, and on the mixture components of the distribution of the
functional signal. In Section 4 a simulation study aimed at stating the existence
of the optimal value of n in some realistic situations is detailed.

3.3 Step 3: dimensional reduction and clustering

We now describe in details the third step of the spatial clustering procedure,
which aims at performing data dimensional reduction and at clustering reduced
data, to obtain a classi�cation map. We thus introduce functional data analysis
techniques aimed at catching the most relevant features in the functional distri-
bution of the sample, useful for the treatment of local representatives {g1, . . . , gn}
(see Ramsay and Silverman, 2005 [13]).

In order to obtain a reduction in the in�nite dimension of functional data,
we need to �nd the best projection of data onto a proper functional basis. The
choice of this basis is extremely open, and heavily depends on the application:
we describe one of the possible methods, the one adopted in our motivating
application described in Section 5. However, in general we shall distinguish two
possible situations. If the functional basis used for p-dimensional reduction of the
sample of local representatives is �xed along replications (e.g., a wavelet basis,
or a Fourier basis), then the only task to accomplish is the projection of the local
representatives on the given basis, but the resulting algorithm is less �exible. If,
instead, the functional basis is data�driven, then there is great �exibility with
respect to the functional features possibly arising in applications.

Among the latter approaches to p�dimensional reduction, one of the pos-
sibilities consists in performing functional principal component analysis, i.e.,
Karhunen-Loève decomposition; indeed, the basis composed by functional prin-
cipal components, is a complete orthonormal basis of L2(T ) (see Ferraty and
Vieu, 2006 [6] for theoretical details). Note that we have to assume {g1, . . . , gn}
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to be independent realizations of a random function g = {g(t), t ∈ T} with �nite
second moment, in order to consistently estimate the covariance structure needed
to �nd principal components. However, we expect the spatial dependence in the
local representatives sample to be highly reduced, so that we can reasonably con-
sider local representatives as an independent sample from a functional mixture
distribution.

Hence, we estimate the covariance operator Γg(s, t) via

Γ̂g(s, t) =
1

n− 1

n
∑

i=1

(gi(t)− ḡ(t))(gi(s)− ḡ(s)), (6)

where ḡ is the estimated functional mean of the local representative sample,
and these functional estimates are obtained via numerical approximations pro-
vided the density of the grid of measurements for each functional data is su�-
ciently large. The orthonormal eigenfunctions {ν1(t), ν2(t), . . .}, and the asso-
ciated eigenvalues {λ1, λ2, . . .}, of the covariance operator are estimated as the
solutions {ν̂k, λ̂k}k≥1 of the eigenequation

∫

T

Γ̂g(s, t)ν̂k(s)ds = λ̂kν̂k(t),

where each function ν̂k detects an orthonormal direction in the functional space
L2(T ), explaining a decreasing portion of variability λ̂k in the sample of local rep-
resentatives; the projections of local representatives in each direction are called
scores. Thus, to perform dimensional reduction of the sample of local representa-
tives {g1, . . . , gn}, only the �rst p eigenfunctions are used to represent data, those
which, according to a graphical inspection, are explaining features associated to
a grouping structure. Alternatively, when using Karhunen�Loève decomposition,
p could be determined by �xing a given portion of the variability to be explained
by selected components.

Once chosen the most relevant p components of the functional basis, only
projections of data along relevant components are analyzed, thus performing
dimensional reduction. Hence, to meet the �nal task of the classi�cation proce-
dure, we can perform k-mean clustering in a multivariate setting considering the
sample of FPCA scores {g1, . . . ,gn}. Note that other clustering methods can
be used to obtain a �nal classi�cation map, e.g., hierarchical methods, PAM or
sparse clustering, depending on the scopes of the analysis and on the application.

3.4 Aggregation: cluster matching

Consider the b-th replication of the bagging Voronoi classi�ers algorithm, and
suppose to have generated a Voronoi tessellation (Step 1), and to have obtained
a sample of local representatives (Step 2), which have then been projected on
a proper basis and clustered (Step 3). Let Γb

1, . . . ,Γ
b
n denote the labels of the

local representatives at the b-th replication, i.e. Γb
i ∈ {1, 2, . . . ,K} is the �nal

cluster assignment of the function gbi , for i = 1, . . . , n, to one of the K clusters;
hence, all sites x in V b

i get the label Γb
i . For k = 1, ...,K, indicate with Cb

k the
set of x ∈ S0 whose label is equal to k. Since our �nal aim stands in obtaining a
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�nal classi�cation map of the lattice S0, all we need is the frequency distribution
of assignment of each site to each of the K clusters along the B replications. The
computation of the frequency distribution of assignment, however, is based on
the assumption that cluster labels {Cb

1, . . . , C
b
K} are coherent along replications

of the algorithm; more speci�cally, we want cluster labels {Cb
1, . . . , C

b
K} to be

coherent with {Cm
1 , . . . , Cm

K}, for all m < b, and b ≥ 2.
The coherence of cluster labels is ensured by cluster matching. The idea is

the following: we consider only subsequent replications. If b ≥ 2, in the current
replication of the procedure the labels identifying the clusters Cb

1, ..., C
b
K are

renamed by matching them with the cluster assignments Cb−1
1 , ..., Cb−1

K obtained
at the previous replication; indeed the algorithm looks for the label permutation
{l1, . . . , lK} in the set {1, . . . ,K} that minimizes the total sum of the o�-diagonal
frequencies in the contingency table describing the joint distribution of sites along
the two classi�cations Cb−1

1 , ..., Cb−1
K and Cb

l1
, ..., Cb

lK
. Other di�erent procedures

for cluster matching are conceivable.

4 Simulation study on synthetic data: optimal choice

of n

We now describe a simulation study to test bagging Voronoi classi�ers algorithm
on synthetic data. It aims at testing the algorithm performance with respect
to the choice of the number of elements composing the Voronoi tessellation, n,
under di�erent correlation structures in the latent �eld of labels: we assume
stronger/weaker spatial dependence in the latent �eld of labels, and we compare
results obtained varying the coarseness of the Voronoi tessellation. Since the
focus of this simulation is on spatial dependence, and on the existence of a value
of n (optimal tessellation) which minimizes the misclassi�cation error, in this
simulation study the emitted random �eld is multivariate.

Here, S0 is a two-dimensional square lattice of 50 × 50 sites and the latent
�eld of labels is generated by a Ising Markov Random �eld Λ0 : S0 → {−1, 1}:
the Ising model has been extensively studied in statistical physics to describe the
behavior of magnetic materials, and according to this model the probability of a
con�guration of sites x ∈ S0 depends on its energy. Precisely, we have

P (Λ0(S0) = λ) =
1

Z
exp







β
∑

x∈S0

∑

x
′
∈Nx

λ(x)λ(x
′

)







,

where Z is a normalizing constant, λ = {λ(x),x ∈ S0} collects the realizations
of the �eld on each site of the lattice S0 and Nx is a proper neighborhood of
x ∈ S0. The strength of spatial dependence is controlled by the parameter
β, a physical constant characterizing the in�uence of neighboring sites on the
realization observed in a particular site: higher values of β imply a stronger
spatial dependence (see Kunsch, 1995 [8] for more details on this model). Hence,
for each site x ∈ S0, denote by Λ0(x) its true label drawn from a Ising �eld. For
our simulation studies, we let β range in the interval (0.5, 1). Conditionally on
the realization of the latent �eld, in each site of S0 we generate independently
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Figure 2: Results of multivariate simulation study: misclassi�cation error ob-
tained via bagging Voronoi classi�ers algorithm over di�erent choices for n and
β � mean over 30 repetitions of the procedure (top, left); true labels, one of the
realizations of the Ising �eld with β = 1 used for the analysis (top, right); �nal
classi�cation map obtained via spatial clustering with n = 500 (bottom, left);
�nal classi�cation map obtained via non�spatial clustering (bottom, right).

a random multivariate vector of dimension p = 5 from a multivariate Gaussian
distribution; the distribution of the random vector depends exclusively on the
site label. For x ranging in S0, we thus obtain

Yx|(Λ0(x) = l) ∼ Np(µl,Σ),

where Σ = σIp, being Ip the identity matrix in p-dimensions, and σ = 2. This
means that the conditional distribution of the observed signal given the label
di�ers only in the mean for di�erent values of the label. In particular we choose
µ−1 = 0 and µ1 = (−2,−1, 0, 1, 2).

The parameters controlling the algorithm are �xed as follows: B = 50, K =
2 and n ∈ {1, 5, 10, 25, 50, 100, 500, 1000, 2500}. The Voronoi tessellations are
obtained uniformly drawing the set of nuclei in S0, and generated by means of the
Euclidean distance. The n representatives are identi�ed as weighted means with
Gaussian isotropic weights while no dimensional reduction of the representatives
is performed. Finally, clusterization of the representatives is obtained through
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K-means. The �nal classi�cation map is obtained through a majority vote on
cluster assignment, and the result is evaluated by computing a misclassi�cation
error rate with respect to the true realization of the �eld. The �nal evaluation of
the algorithm is obtained by repeating the simulation 30 times, and by calculating
a mean misclassi�cation rate.

Results are illustrated in Figure 2. Consider the top/left panel of the picture,
showing the mean misclassi�cation error for di�erent values of β and n. First,
consider the behavior of the mean misclassi�cation error with respect to n: we
appreciate the existence, for both values of β, of a value of n that minimizes the
misclassi�cation error. Moreover, looking at the top/left panel of the picture,
we notice that misclassi�cation error is uniformly smaller (with respect to n) for
higher values of β: hence the improvement introduced by the bagging Voronoi
classi�ers algorithm is stronger in the presence of a stronger spatial dependence
in the latent �eld of labels, for any chosen value of n. Note that the limiting case
n = 50 × 50 = 2500 corresponds to the application of a non�spatial clustering
procedure, namely a standard k-mean clustering. It is clear from the picture that
this technique has a poor behavior in terms of misclassi�cation error compared to
spatial clustering, for nearly all values of n. Finally, in the top/right panel, one
realization of the true latent �eld of labels obtained for one of the simulated data
sets is shown (β = 1), while in the bottom panels the results obtained via spatial
clustering with n = 500 (left), and via non�spatial clustering (right) are depicted.
It is evident from the picture that, although the �nal map obtained via non�
spatial clustering is suggestive of the true label pattern, the �nal result obtained
via bagging Voronoi classi�ers algorithm is far more precise, and the classi�cation
map nearly coincides with the true label �eld (misclassi�cation errors are 3.28%
and 23.08% for spatial and non�spatial clustering, respectively).

5 A case study: clustering irradiance data

We now illustrate an application of our classi�cation algorithm to irradiance data,
carried out to investigate the possible exploitation of solar energy in di�erent
areas of the planet. In particular, power production via collectors that are able
to track the sun diurnal course is strongly in�uenced by solar irradiance and
atmospheric conditions. In fact, solar thermal power employs only direct sunlight
and it is therefore best positioned in areas, such as deserts, steppe or savannas,
where large amounts of humidity, fumes or dust, that may deviate the sunbeams,
do not occur (see Richter, 2009 [14]).

Insolation is a measure of solar radiation energy received on a given surface
area in a given time. It is commonly expressed as average irradiance in kilowatt�
hours per square meter per day (kWh/(m2day)). We consider direct insolation,
i.e., the solar irradiance measured at a given location on earth with a surface
element perpendicular to the sunbeams, excluding di�use insolation (the solar
radiation that is scattered or re�ected by atmospheric components in the sky).
Direct insolation is equal to the solar constant minus the atmospheric losses due
to absorption and scattering: while the solar constant varies with the earth�
sun distance and solar cycles, the losses depend on the time of day (length of
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light's path through the atmosphere depending on the solar elevation angle),
cloud cover, moisture content, and other impurities.

We try to identify areas of the planet which are optimal with respect to the
positioning solar power collectors by considering parameters, which depend on
direct insolation, suited for sizing batteries or other energy-storage systems: the
typical solar insolation parameters are the minimum available insolation over
a consecutive�day period (%), the solar radiation de�cits below expected val-
ues incident on a horizontal surface over a consecutive�day period (kWh/m2)
and the equivalent number of NO-SUN or BLACK days that must be supplied
by the storage backup system (days). All these choices are fully described in
the NASA website at http://eosweb.larc.nasa.gov/sse/text/definitions

.html. These parameters are desired because of the fact that unusually cloudy
conditions occurring over a number of consecutive days continually draw reserve
power from batteries or some other storage device for solar systems not connected
to an electrical power grid. Storage devices must be designed to withstand con-
tinuous below�average conditions in various regions of the globe. More precisely,
we analyze the maximum solar radiation de�cit below expected value incident on
a horizontal surface over a consecutive�day period (kWh/m2), which is strictly
related to the equivalent number of NO�SUN or BLACK days, and which is also
increasing in the monthly average irradiance (see the NASA website [10] for de-
tails on available datasets). This quantity, from an engineering point of view, is
considered as a proxy of the bu�er extra-capacity that is needed to be installed
� in a particular site at a particular time of the year � in order to full�ll the
possible gaps in energy supply provided by solar power plants due to unfavor-
able environmental conditions (from now on, we will name this quantity bu�er
capacity).

Rough data consist of 12 monthly observations in each site measuring for
each month the maximum energy de�cit, with respect to the monthly average,
observed in between July 1983 and June 2005. Sites are located on a non�uniform
lattice S0 =

⋃

λ∈Z1;θ∈Z2
Aλθ, where Z1 = Z∩ [−180; 179] and Z2 = Z∩ [−66; 66]:

each element Aλθ is the portion of the earth surface which is included between
the meridians at longitude λ and λ+ 1 in degrees, and between the parallels at
latitude θ and θ+1 in degrees; this lattice is of course non�uniform, and includes
47880 worldwide non�polar districts. In each site of the lattice, we observe the
bu�er capacity Y ν

λ,θ at a given month ν during the year. A set of functional
data Yλ,θ(t) can be obtained from raw data Y ν

λ,θ, via a Gaussian kernel smoother
with a bandwidth equal to 1.5: in this way we reconstruct the annual functional
pattern of bu�er capacity in each site, which is the input of the bagging Voronoi
classi�ers algorithm.

For this application, we set the algorithm parameters as follows: B = 100 and
n = 300; a set of n elements is repeatedly drawn from a uniform distribution on S
(the surface of the sphere of diameter equal to the earth), and the set of nuclei for
the Voronoi diagram is then chosen by selecting the n sites among x ∈ S0 nearest
in terms of geodesic distance to each of the n generated elements. We then use
a Gaussian isotropic kernel to calculate local representatives, and we choose the
�rst p = 3 functional principal components to project data. Finally, we use k-
mean clustering with the L2 semi�metric induced by the principal components,
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Figure 3: Results of spatial clustering on bu�er capacity data from the Surface
meteorology and Solar Energy database: in the top panel, average normalized
entropy obtained via spatial clustering with di�erent choices of K; in the bottom
panel, normalized spatial entropy associated to the classi�cation with K = 5.
In the bottom panel, colors from red to white correspond to values from 0 to 1;
higher values identify areas where classi�cation is more uncertain.

and we choose the optimal K through the evaluation of the classi�cation map
by means of entropy.

The best classi�cation according to spatial entropy evaluation is obtained for
K = 5: in the top panel of Figure 3 the average normalized entropy obtained
via spatial clustering with di�erent choices of K is shown, while in the bottom
panel of the same picture the map of normalized spatial entropy obtained setting
K = 5 is shown (colors from red to white correspond to a normalized entropy
from 0 to 1). We notice that the choice of K = 5 is the one that gives the
better classi�cation result according to entropy minimization: for K < 5 en-
tropy is higher on average due to the random merging of true underlying groups,
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Figure 4: In the top left panel, set of �nal cluster centroids obtained via spatial
clustering procedure with K = 5: di�erent colors correspond to the di�erent
labels in the �nal clustering associated to the macro�areas in Figure 5. In the
other �ve panels, result of clustering on a set of functional local representatives
obtained with n = 300 in one of the iterations of the procedure: a single clus-
ter is coloured in each panel, and the color is chosen coherently with the �nal
classi�cation map in Figure 5, whilst all other data are shown in gray.

while for K > 5 arti�cial clusters arise. With this particular choice for the num-
ber of clusters, the spatial clustering algorithm identi�es di�erent homogeneous
macro-areas which � prima facie � seem interpretable in terms of the observed
phenomenon, even though a climatological analysis, which is beyond the scopes
of this paper, could deepen their explanation; indeed, the same macro-areas are
not captured by customary unsupervised classi�cation procedures, that do not
take into proper account the spatial dependence among data. The �nal results
for the choice ofK = 5 are shown in Figures 4 and 5. In Figure 4 a sample of local
representatives is shown, each representative colored with a label corresponding
to the macro-area in Figure 5 it belongs to. The red cluster is characterized by
a non-seasonal pattern, and by high average bu�er capacity along the year; it
covers Africa, Middle-East and equatorial America and its presence is not ex-
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plained only in terms of latitude. From North to South we can then identify four
clusters with seasonal patterns depending on the hemisphere and on the average
bu�er capacity along the year: north-low (yellow), north-high (blue), south-high
(violet), south-low (green). It is interesting to note that, while in the Americas
all 5 clusters are present, the north-high and south-high clusters are absent in
Europe and Africa, and the red cluster is absent in Asia. Note also that the red
cluster is the one that shows an annual bu�er capacity pattern which is optimal
from an engineering point of view: it needs the minimal-energy installation (the
maximal annual need for energy is the lowest among the 5 detected patterns),
associated to a constant reliability along the year.

Figure 5: Results of spatial clustering on bu�er capacity data from the Sur-
face meteorology and Solar Energy database: �nal classi�cation map obtained by
setting K = 5 via a majority vote on frequencies of assignment.
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