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Abstract

We apply reduced-order modeling (ROM) techniques to single-phase flow in
faulted porous media, accounting for changing rock properties and fault geometry
variations using a radial basis function mesh deformation method. This approach
benefits from a mixed-dimensional framework that effectively manages the result-
ing non-conforming mesh. To streamline complex and repetitive calculations such
as sensitivity analysis and solution of inverse problems, we utilize the Deep Learn-
ing Reduced Order Model (DL-ROM). This non-intrusive neural network-based
technique is evaluated against the traditional Proper Orthogonal Decomposition
(POD) method across various scenarios, demonstrating DL-ROM’s capacity to
expedite complex analyses with promising accuracy and efficiency.

Keywords: Porous media, faults, reduced order modeling, proper orthogonal
decomposition, deep learning

1 Introduction

Nowadays, the practice of injecting fluids into the subsoil is gaining prominence not
only for the production of fossil fuels, but also for the storage of carbon dioxide and for
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the strategic storage of thermal energy and the exploitation of geothermal resources.
These applications are essential in our quest for sustainable and renewable energy
solutions [1]. Injection of fluid into the subsoil alters the local equilibrium, changing the
stress field and possibly causing fault reactivation. Furthermore, leakage phenomena
from storage reservoirs must be predicted [2]. These phenomena have to be assessed
taking into account the uncertainties related to the subsoil, both those concerning the
physical property of the rock, e.g. the porosity or the permeability, and uncertainties
about the geometry, such as the exact position of the fault or the relative displacement
of the two sides.

Due to this lack of knowledge, we need to execute multi-query applications such
as sensitivity analysis, parameter identification, or uncertainty quantification, which
require many evaluations of the discrete model for different scenarios. The evalua-
tion of each scenario can be computationally demanding; therefore, these analyses can
be a burden. Reduced order modelling (ROM) techniques come into play to provide
a surrogate model that is both reliable and fast to evaluate, making such intensive
computation feasible. Reduced order models can be created using linear reduction
techniques [3–6] with methods such as Proper Orthogonal Decomposition (POD) [3–5],
greedy algorithm [3, 4], empirical interpolation method [3, 7], dynamic mode decom-
position [8, 9]. Moreover, the methods can be adopted in a multi-fidelity context [10]
or in dynamic adaptation [11]. The primary purpose of employing data-driven ROM
empowered by neural networks, as an alternative to traditional approaches, is the
built-in non-intrusiveness and the ability to overcome the limitation of using a lin-
ear combination of basis functions by introducing a nonlinear trial manifold. This
is achieved with the use of autoencoders, which offer advantages in highly nonlinear
or advection-dominated problems [12–20]. It is also possible to discover the latent
dynamic and compute a quantity of interest from it [21].

In this paper, we focus on the problem of incompressible, non-reactive, single-
phase flow in a faulted porous medium, considering both the physical and geometrical
variability of the data. For the latter, we choose to account for the geometrical changes
of the fault configuration by deforming the computational grid using a method based
on algebraic equations. We apply a new data-driven model order reduction technique
based on deep feedforward neural networks, called the Deep Learning Reduced Order
Model (DL-ROM) [15, 19]. This method is intrinsically non-intrusive and naturally
capable of efficiently dealing with nonaffine parameterizations, such as the one used for
the changing geometry of the faults. We compare DL-ROM with the well-established
POD method [3, 4], using several test cases on the problem of flows in fractured porous
media with deformable geometry.

We organise the development and assessment of the proposed methodology as fol-
lows. In Section 2 we present the mathematical model that governs single-phase flow in
a porous medium with particular attention to the treatment of the coupling of subdo-
mains of different dimensions. The discretization of this model is described in Section 3.
Section 4 regards the reduced-order modelling techniques, with an introduction of
both the POD and DL-ROM methods and a discussion of the nonaffine parameter-
isation of our problem. In Section 5, we present our methodology for deforming the
geometry while maintaining a non-conforming mesh at the interfaces of subdomains.
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In Section 6, we set up three different test cases to assess the main features that define
the properties of the methods, such as offline and online time and solution error com-
pared to the full order model. Finally, in Section 7 we show an example of two possible
applications of the proposed model order reduction technique.

2 Mathematical model

We present the mathematical model of an incompressible, non-reactive, single-phase
flow in a porous medium, showing the treatment of the faults. The reader can find a
complete list of symbols used in this document in Appendix A.

2.1 The continuous model

Let us consider Ω ⊂ RD, with D = 2 or 3, a sufficiently regular domain that represents
a porous medium, with outer boundary ∂Ω with outward normal υ. We assume that
there exists a partition of ∂Ω into two measurable parts ∂pΩ and ∂qΩ, such that

∂Ω = ∂pΩ ∪ ∂qΩ and ˚∂pΩ ∩ ˚∂qΩ = ∅, with |∂pΩ| ≠ 0. We consider a Darcy model for
flow in a saturated porous medium, where the Darcy velocity q, in [m s−1], and the
fluid pressure p, in [Pa], satisfy the following system of partial differential equations
consisting of the Darcy law and the mass balance [22], with associated boundary
conditions. {

q +K∇p = 0

∇ · q = f
in Ω,

{
p = p on ∂pΩ,

q · υ = q on ∂qΩ,
(1)

The data and parameters of the model are the permeability of the rock matrix scaled
by the dynamic viscosity K, in [m3s/kg], a scalar forcing term f , in [s−1] (representing
a source or a sink), and the boundary data p and q, in [Pa] and [m s−1], respectively.
We assume that K is a bounded, symmetric, positive-definite tensor.

In this work, we consider the primal formulation associated with (1), where the
only variable is the pressure p, and the Darcy velocity may be reconstructed using
Darcy’s law. It reads

−∇ · (K∇p) = f in Ω,

{
p = p on ∂pΩ,

K ∂p
∂υ = −q on ∂qΩ,

(2)

where ∂p
∂υ = ∇p·υ. Under suitable regularity assumptions on the domain shape, forcing,

and boundary terms, it is well known that the problem is well posed and admits a
unique weak solution p in H1(Ω) as long as ∂pΩ has a non-null measure, see [23]. If
|∂pΩ| = 0, p is known up to a constant.

2.2 Flow in faulted porous medium

Fractures or faults might be present in our domain of interest; these are regions with
one dimension, the aperture, that may be orders of magnitude smaller than the lat-
eral extension. For this reason, we adopt a model reduction strategy that considers
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fractures as objects of codimension 1. Consequently, we need to write a model for the
flow inside the fracture by appropriately averaging the Darcy model in the equation
(1). In the reduced model, the aperture becomes a parameter. The model applies to
fractures and faults, yet because of the target application, we will use only the term
faults in the sequel.

Faults might have permeabilities very different compared to the surrounding porous
media. When they are more permeable than the surrounding medium, they form a
preferential flow path. In contrast, they block the flow and may create compartments
in the porous medium when they have a lower permeability. We are interested in both
cases: for this reason, we consider the mixed-dimensional model already used, among
others, in [24–28], which accounts for both situations.

For the convenience of the readers, we introduce the mathematical model when
only one fault, γ, is present, as shown in Fig. 1; the intersection between faults will
be treated later. Moreover, we assume that the fault is planar with a unitary normal
υγ and an aperture ϵ > 0. The variables in the porous medium, Ω, are the same as
before, while in the fault we consider the following reduced variables,

qγ(x) =

∫
ϵ(x)

(I − υγ ⊗ υγ)q and pγ(x) =
1

ϵ(x)

∫
ϵ(x)

p.

Here, qγ is an integrated tangential flux in [m2 s−1], and pγ an averaged pressure in
[Pa].

The normal υγ allows us to uniquely define the positive and negative side of the
fault, as shown in Fig. 1. On each side, we introduce an additional interface, called
γ+ or γ−, where we define a new variable λ+ or λ− that represents the flux exchange
between the fault and the porous medium, both measured in [m s−1]. We will simplify
the notation by indicating λ = (λ+, λ−).

We note that now the domain Ω does not include the fault, which is, in fact, an
internal boundary. Thus, the boundary of Ω can be partitioned into two open sets:
∂exΩ and ∂inΩ. The first indicates the external boundary, ∂exΩ∩Γ = ∅, and the second
indicates the part of the boundary of Ω facing the fault. Similarly, the boundary of γ is
subdivided into two (possibly empty) disjoint parts: ∂exγ and ∂inγ, the former being
the portion of the boundary of γ in contact with ∂exΩ, while ∂inγ is the boundary
of γ internal to Ω, characterized by ∂Ω ∩ ∂inγ = ∅. The external boundary ∂exγ is
again divided into two disjoint parts, possibly empty, ∂pγ and ∂qγ where we impose
pressure and fluxes, respectively. Finally, we define υ̂γ as the unit normal outward of
∂γ (tangent to γ).

According to the mixed-dimensional model described in the cited literature, we
can write the primal formulation for the coupled problem where the unknowns are p
in Ω, pγ in γ and (λ+, λ−) in γ+ × γ−. We have

−∇ ·K∇p = f, in Ω, −∇ · ϵKτ∇pγ + λ− − λ+ = fγ , in γ, (3a)
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ϵλ+ + 2Kn

(
p
∣∣
γ+ − pγ

)
= 0, on γ+,

ϵλ− + 2Kn

(
pγ − p

∣∣
γ−

)
= 0, on γ−,

(3b)

where (3a) represents the mass balances in, respectively, Ω and γ, whereas (3b) is the
constitutive law for the fluxes λ. Kτ and Kn are the in-plane and normal permeability
of the fault, scaled by the dynamic viscosity, respectively, both expressed in [m3s/kg].
Furthermore, fγ is the averaged source or sink term in the fault, in [s−1]. Velocities can
be reconstructed by Darcy’s law, which for the fracture is expressed as qγ = −ϵKτ∇pγ .
Note that the differential operators in γ are defined with respect to a local coordinate
system, but we retain the same notation for simplicity. Here, with |γ+ and |γ− , we
indicate the trace operators on the respective sides of the fault.

System (3a) with (3b) is complemented by the following boundary conditions

p = p on ∂pΩ, K
∂p

∂υ
= −q, on ∂qΩ,

pγ = pγ on ∂pγ, ϵKτ
∂pγ
∂υγ

= −qγ on ∂qγ,

∂pγ
∂υγ

= 0 on ∂inγ.

(3c)

The last relation, known as the tip condition, imposes a null flux.

Ω1

Ω2

∂inΩ2

∂inΩ1

γ−

γ

∂qγ

∂pγ

γ+
υγ

∂pΩ

∂qΩ

Fig. 1: Generic domain divided in Ω1 and Ω2 by a fault, γ, with normal υγ . The
coupling fluxes, λ+ and λ−, are defined at the additional interfaces, γ+ and γ−. The
parts of the external boundary with the Neumann conditions are indicated by ∂qΩ
and ∂qγ, while the external boundaries with the Dirichlet conditions are denoted by
∂pΩ and ∂pγ. The internal boundaries facing the fault are called ∂inΩ1 and ∂inΩ2.

2.3 Intersections

We focus here on the intersection of 1D faults because it is the only kind of intersection
that we consider in this paper. Different intersection topologies can exist, such as X-,
T-, or Y-shaped intersections; see Fig. 2 for an example of a Y-shaped intersection. All
types of intersection are treated similarly, as explained below. The intersection point
is represented as a 0D domain where the mass conservation equation and the coupling
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conditions must be solved. The 0D mass conservation is:

nbr∑
i=0

λγi = 0,

where nbr is the number of intersecting branches, λγi
[m s−1] are the fluxes exchanged

between the branches through the intersection point, ι: λγi
= qγi

|ι · υ̂γi
, where υ̂γi

is
the outwards unit vector aligned with the i-th fault. Regarding the coupling condition,
we can use a model considering pressure jumps as:

ϵ2λγ + 2Kι (pι − pγ |ι) = 0,

where Kι [m
3s/kg] is a representative value of permeability at the intersection, pι [Pa]

is the pressure of the intersection. The well-posedness of the problem of flows in faulted

υ̂γ2

υ̂γ1

υ̂γ3 ι

γ1
γ2

γ3
Fig. 2: Y-shaped intersection. The three faults, γ1, γ2, γ3, cross each other at the
point ι. υ̂γi are the outward unit vectors aligned with the respective fault.

porous media, including intersections, for a different, yet equivalent, formulation has
been studied in [29, 30].

3 Discretization

We discretize problem (3) with a cell-centered finite volume method [31, 32]. The
degrees of freedom of the primary variables p, pγ , and λ are located in the center of the
cells that discretize the domain and fractures. Numerical fluxes at the cell boundary
are computed with the multipoint flux approximation (MPFA) [33–36], in particu-
lar, the so-called MPFA-O method first proposed in [33] implemented in the Porepy
library [37]. We stress that our objective is to solve the problem for different val-
ues of the geometrical and physical parameters, respectively µgeom and µphy. We set
µ = (µgeom, µphy) ∈ Θ ⊂ Re, where Θ is the space of parameters, and e the total num-
ber of parameters. Variations in geometric parameters lead to domain deformations.
We detail the issues related to domain discretization in Section 5.
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For a given grid, the discretization of the full-order model (3a) leads to a perturbed
saddle point linear system of the form[

A BT
1

B2 −C

] [
p̂
λ

]
= bN , (4)

where A =

[
Ap 0
0 Apγ

]
is a semi-definite positive matrix containing the discretization of

the fluxes in (3a), precisely Ap discretizes the fluxes in Ω and Apγ
discretizes the fluxes

in γ. The terms B1 and B2 derive from the coupling conditions, involving the fluxes
λ, while C is the mass matrix that appears in the discretization of the constitutive
law (3b).We note that (5) satisfies the assumptions for well-posedness; for example,
see [23] Sect. 5.5. The unknown p̂ = [pT , pTγ ]

T contains the degrees of freedom p and
pγ related to p and pγ , while λ contains the degrees of freedom of λ. The previous
system can be rewritten in the following compact form.

ANuN = bN . (5)

Here, AN ∈ RN×N , uN ∈ VN = col(AN ) ⊂ RN is the unknown vector consisting of all
degrees of freedom uN = [p̂T ,λT ]T , bN ∈ RN , N is the number of degrees of freedom of
the full order model. All these quantities depend on µ, which is not explicitly indicated
to simplify the notation.

4 Model order reduction

For several applications, it is necessary to repeatedly query a model with various input
values to perform tasks such as sensitivity analysis, parameter estimation through
inverse problem solving, or uncertainty quantification. When the model is complex
and computationally demanding, managing multiple queries becomes impractical.
Therefore, the development of a fast and reliable surrogate model is crucial.

We address this problem by approximating the solution manifold, S := {uN}µ∈Θ,
of the flow problem in faulted porous media (3) through a reduced model that takes
as input the physical and geometric parameters µphy, µgeom, and returns an estimate
of the corresponding variables p, pγ , λ. The key idea under the model order reduc-
tion procedure is that a few main patterns characterize the parametric dependence
of a problem described by many degrees of freedom (d.o.f.). Thus, we exploit these
patterns to formulate a smaller problem that is easier to solve. Then, we reconstruct
an approximation of the desired solution using a linear or nonlinear map M from the
reduced space to the full-order space.

Model order reduction can be model-based or data-driven [3, 5, 38]. The former uses
the model equations in their differential or discrete form to derive a reduced version.
It has the property of being intrusive, which means that we need to manipulate the
equations and, consequently, modify the solver code to implement the reduced model.
In the latter case, instead, the reduced model is built using a collection of data through
which the dynamics of the system can be inferred; the procedure is non-intrusive
because it is equations and software-agnostic.
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In the following sections, we apply two reduced-order model techniques to the
problem of flows in a porous medium with faults. The first is the Proper Orthogo-
nal Decomposition (POD), which is model-based and linear. The second technique,
called DL-ROM, is data-driven and approximates the nonlinear map M using neural
networks.

4.1 Proper orthogonal decomposition

In this case, the map M is linear, and it is represented by an orthogonal matrix
Φ ∈ RN×n called transition matrix, with n < N . A slightly different definition is
considered in Section 4.2, where a non-linear map replaces the linear map, Φ. The
matrix Φ contains information about the basis functions that represent the full-order
solutions. Typical ways to compute it are the singular value decomposition (SVD)
and the greedy algorithm [3, 4]. We now briefly recall the SVD process. A number
ns, n < ns < N , of full-order model solutions, called snapshots, are calculated and
collected in the snapshot matrix,

S =
[
u(1)| . . . |u(ns)

]
. (6)

Then, the singular value decomposition factorizes S as S = UΣV H , where U ∈ RN×N

is a unitary matrix whose columns are the left singular vectors, Σ ∈ RN×ns , is a
rectangular diagonal matrix containing the singular values in decreasing order, V ∈
Rns×ns is a unitary matrix whose columns are the right singular vectors. Φ will be
formed by the first n columns of U associated with the highest singular values Φ = Utr,
where [Utr]ij = [U ]ij , i = 1, . . . , N , j = 1, . . . , n. This choice of Φ is optimal in the
sense that it minimizes the reconstruction error in the snapshots:

ns∑
i=1

∥u(i) − ΦΦ⊤u(i)∥22 = min
W∈RN×n

ns∑
i=1

∥u(i) −WW⊤u(i)∥22.

The proof follows the Eckart-Young theorem [39], originally discovered by Schmidt in
the continuous framework [40]; see [3] for a detailed proof. The previous equation tells
us that the POD is an optimal linear reduced-order modeling approach in the sense
described previously.

Given the basis functions stored in the columns of the transition matrix Φ, we
define the reconstructed solution, ũN , belonging to the full-order space VN , obtained
from the reduced basis solution:

ũN = Φun. (7)

where un ∈ Vn ⊂ Rn are the reduced coefficients, solution of the reduced problem.
A possible strategy to retrieve un is to make the residual orthogonal to the linear

subspace defined by the column of Φ, i.e., to compute a Galerkin projection into the
linear subspace Sn = col(Φ),

Φ⊤ (bN −ANΦun) = 0,
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which yields
Φ⊤ANΦun = Φ⊤bN .

Defining An = Φ⊤ANΦun, and bn = Φ⊤bN , we have the following reduced problem:

Anun = bn. (8)

After the reduced problem has been solved, ũN is retrieved from (7).
Since our problem features multiple coupled variables, an alternative formulation

involves applying the SVD separately to each variable. In this way, we replace the
transition matrix with a block-diagonal one. Considering a problem with two generic
physical variables c and d we have:

Sc =
[
u
(1)
c | . . . |u(ns)

c

]
= U cΣc(V c)H

Sd =
[
u
(1)
d | . . . |u(ns)

d

]
= UdΣd(V d)H .

In addition, the truncation is done independently, producing the matrices U c
tr and

Ud
tr whose elements are: U c

tr,ij = U c
ij , i = 1, . . . , N , j = 1, . . . , nc and Ud

tr,ik = Ud
ik,

i = 1, . . . , N , k = 1, . . . , nd. The transition matrix is a block diagonal matrix of the
truncated left singular vectors matrices:

Φ =

[
U c
tr 0
0 Ud

tr

]
.

We refer to this approach as block-POD. Considering the unknowns of our problem,
p, pγ , λ, the matrix takes the form:

Φ =

Up
tr 0 0
0 U

pγ

tr 0
0 0 Uλ

tr

 .

Here, we choose the number of modes in each left-singular vector to be the same for
each physical variable np = npγ

= nλ.
A problem is affine if the discrete operator can be rewritten as a linear combination

where only the coefficient depends on µ. Taking into account the full-order matrix,
AN , the affine parametric dependence implies that:

AN =

Q∑
q=1

θq(µ)A
q
N ,

where θq(µ) are scalar functions, and Aq
N are constant matrices, so they are computed

once and for all, independently of µ. The reduced order matrix, An, is thus expressed
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by the following sum:

An = Φ⊤
Q∑

q=1

θq(µ)A
q
NΦ =

Q∑
q=1

θq(µ)Φ
⊤Aq

NΦ =

Q∑
q=1

θq(µ)A
q
n. (9)

POD is particularly efficient when the affine parametric dependence is satisfied because
the calculation of An for each new value of the parameters µ does not require reassem-
bling the matrix AN but using (9) with the precomputed Aq

n. However, as we will see
in Section 5 the changes in geometry related to the sliding of a fault imply a non-affine
problem.

4.2 Deep Learning-ROM

We restrict ourselves to the core ideas of the DL-ROM approach, and the reader is
invited to read [15–20] for more details. In this case, the parameter-to-solution map
M is approximated by employing a neural network that naturally accounts for the
nonlinear structure of the solution manifold. The reduction procedure is divided into
two parts.

(i) First, we perform a dimensionality reduction step that identifies a low-dimensional
latent space obtained from a nonlinear mapping of the full-order space to Rn. With
little abuse of notation, here n denotes the dimension of the reduced space, which
can be different from the corresponding space obtained using the POD method. The
mappings from the full-order space to the reduced-order space and back, named Ψ′ :
S → Vn and Ψ : Vn → VN respectively, are approximated here by feedforward neural
networks. Here, Vn denotes the reduced-order space obtained with the encoder. More
precisely, the approximation of Ψ′ is called the encoder neural network, while Ψ
is called the decoder. Their combination is called the autoencoder ; see Fig. 3 for
a graphical representation of the adopted neural networks. This approach defines a
nonlinear trial manifold because the d.o.f. in the latent space is mapped to the full-
order space by the nonlinear function provided by the neural network. Note that
neural networks work in discrete spaces; in particular, the encoder input is the discrete
solution uN on a given mesh, and the decoder outputs the reconstructed solution on
the same mesh.
(ii) Once the reduced space has been identified, we have to surrogate the operator
that solves the problem in the reduced space. This is done again using a data-driven
approach. Specifically, a third neural network, named φ, is trained to provide a
representation of the solution in the reduced space for any admissible value of the
parameters. This approach is feasible due to the low dimensionality of the input and
output spaces. In essence, we employ a deep feedforward neural network called reduced
map nerwork, to describe the map, φ, from the parameter space to the reduced solution
space: φ : Θ → Vn. Therefore, the reduced solution is un = φ(µ).

In conclusion, combining steps (i) and (ii) of this procedure, the resulting approxi-
mation of the parameter-to-solution map is the following composition: Ψ(φ(·)), so the
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Fig. 3: DL-ROM scheme. The encoder, Ψ′, takes the FOM solution, uN , and returns
the reduced basis solution, un. The decoder Ψ reproduces an approximate solution,
called reconstructed solution ũN , with the only knowledge of the reduced solution.
The reduced map network, φ, approximates un as a function of the given parameter µ.

reconstructed solution is
ũN = Ψ(un) = Ψ(φ(µ)).

In [19], it has been observed that this method enjoys some optimality properties in
terms of the reducibility of the solution manifold. Given the manifold S, the authors
of [41] define the nonlinear counterpart of Kolmogorov n-width, δn(S), as the worst
reconstruction error using the best encoder and decoder maps Ψ and Ψ′, respectively:

δn(S) = inf
Ψ′ ∈ C(S,Vn)
Ψ ∈ C(Vn,VN )

sup
u∈S

∥u−Ψ(Ψ′(u))∥.

Then, following [19], the minimal latent dimension of S, denoted as nmin(S), is defined
as the smallest n for which δn(S) = 0. Under the hypothesis that the map µ → uN

is continuous and injective and Θ has a non-empty interior, it is shown in [19] that
nmin(S) = e. In other words, there exists an autoencoder, with the bottleneck width
equal to the size of the parameter space, capable of achieving a null reconstruction
error.

The encoder and decoder process the discrete solution as a singular vector
containing all physical components p, pγ , λ.

4.2.1 Training

Training the neural network can follow the stages reported in Section 4.2. In the
dimensionality reduction step, the encoder and decoder networks, Ψ′ and Ψ, must be
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trained. We associate with this task the following loss function:

ℓ1 =
1

N
∥uN (µi)−Ψ(Ψ′(uN (µi)))∥22. (10)

This is an unsupervised learning task in which the autoencoder Ψ◦Ψ′ is trained using
a sequence of unlabeled data representing randomly sampled points in the solution
manifold. The second step is to train the reduced map network to learn the map φ.
This is done by minimizing the following loss function:

ℓ2 =
1

n
∥Ψ′(uN (µi))− φ(µi)∥22. (11)

In this case, we use a sequence of labeled data [µi,Ψ
′(uN (µi)], representing the

parameter-to-reduced state map at a suitable number of points in the parameter space.
Two options are available to train the entire network Φ ◦ φ. One is to proceed

as previously described, minimizing the function ℓ1 first and then the function ℓ2.
This method has the advantage of reducing the computational complexity of training
because the parameters of the networks Ψ′ and Ψ are optimized independently of those
of φ. The second training approach consists of optimizing all networks together, by
minimizing the total loss function defined as

L = αℓ1 + βℓ2, (12)

where α > 0 ∈ R, β > 0 ∈ R, are user-defined hyper-parameters. We remark that the
encoder is used only during the offline stage, see Section 4.3. The query of the network
for a new value of the parameter, µ, does not require the evaluation of the encoder.
Indeed, the final reduced model is composed of only the reduced map network and
the decoder. It appears that two-stage training is not beneficial, as suggested by [15].
Training the three neural networks together is advantageous in terms of both accuracy
and speed.

4.3 Offline-Online stages

Model order reduction strategies are typically divided into two stages: the offline phase
and the online phase. The offline phase encompasses all operations that do not need
to be repeated when querying the reduced model with a new parameter value, denoted
as µ. This phase includes data generation, which is common to both the POD and DL-
ROM methods. Specifically, for POD, this phase also involves calculating Φ and, in
cases of affine parametric dependence, computing Aq

n. For DL-ROM, the offline phase
ends with neural network training.

Although the offline phase can be time intensive, it is a one-time process. Once
completed, the online phase begins. For POD, this includes the assembly of An, solving
the reduced system, and reconstructing the solution. On the contrary, the online phase
of DL-ROM simply involves the forward evaluation of neural networks φ and Ψ.
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5 Mesh deformation

We change the domain by deforming a reference computational grid to account for
geometric uncertainties. This strategy has the advantage of keeping the same grid
topology and having a fixed number of degrees of freedom. As a consequence, all
snapshots have the same size. Moreover, the ordering of the d.o.f. is kept, so they
remain associated with the same physical region since we consider small geometric
deformations. The general procedure presented in the following can also work for large
deformations in both the 2D and 3D cases at the price of additional mesh handling
complexity. We adopt a technique based on radial basis functions (RBF) to deform
the mesh, and we show first the standard approach [42–44], then its adaptation to our
specific problem of geometries containing sliding faults.

In the standard approach, we seek to interpolate each component of the displace-
ment function, s(x) ∈ RD, D being the physical dimension, using a linear combination
of a given radial basis function, g(d), where d = d(x1, x2) = ∥x1 − x2∥ is the distance
between the two points. By defining g∗(x1, x2) = g(d(x1, x2)), we have the following.

s(x) =

l∑
j=1

g∗(x, xcj )ζj , (13)

where ζj ∈ RD, are the unknown coefficients and xcj are the so-called control points.
We use the following radial basis function: g(d) = d/0.2. To find ζj , we need to apply
the constraints formed by selecting a number l of relevant points of which we have
information about their displacement. For instance, we can choose the nodes on the
fixed borders of the domain or the nodes belonging to elements whose geometry is
uncertain. These points are called control points, xcj , j = 1, . . . , l, and that is where
we enforce a known displacement, sj :

s(xcj ) = sj . (14)

Evaluating (13) at the control points, we have a linear system for each component,
m = 1, . . . , D, of the vector displacement, s:

Gzm = σm, (15)

where G ∈ Rl×l, [G]i,j = g(d(xci , xcj )), zm ∈ Rl is the unknown vector where [zm]j =
[ζm]j . The right-hand side σm ∈ Rl contains the known displacement as a function of
the geometrical parameters [σm]j = [sj ]m(µgeom).

We aim to let the two sides of the fault slide independently, so the control points
must be positioned on both sides to avoid any undesirable deformation of the fault.
Some control points inevitably become very close or even coincident, causing G to be
ill-conditioned or singular. Moreover, to make the process more practical, instead of
the displacement constraint, we would like to impose a sliding constraint on xcj on
some specific surfaces, for example, the fault surface or the boundary of the domain;
see Fig. 4.
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We now show an improvement of the standard mesh deformation method to meet
our requirements. Taking a generic surface, Si, which could be, for example, a fault or a
boundary face, with normal νi and two (one in 2D) non-parallel tangent unit vectors ti
and bi, the sliding constraint can be described by two conditions: the non-penetration
condition:

s(xcj ) · νi = 0, (16)

and by the no-tangential contribution condition:

ζj · ti = 0,

ζj · bi = 0,
(17)

where ζj is the coefficient associated with xcj on the sliding surface. Equation (16)
sets the control points on a sliding surface free to move except in the normal direction.
Equation (17) implies that the tangential displacement of the control points on the
fault does not affect the displacement of all the other points. Anyhow, the displacement
of the control points on the fault is influenced by all the other control points.

To address the issue of coincident points and add the sliding condition, let us define
an index set C of xcj and divide it into four subsets: Cd containing the control points
not on the fault where displacement is enforced, Cdf containing the control point on
the fault where displacement is enforced, Cs and Csf containing the sliding control
points, respectively, not in the fault and in the fault. Moreover, we call Cs the set
of surfaces where sliding conditions are applied. We introduce the side function of a
point, β(x, ν), with respect to the sliding fault, γ, with normal ν:

β(x, ν) =
sign ((x− xref ) · ν) + 1

2
,

xref ∈ γ is a reference point. We define the influence function, I, as a function that
hides the points that are not on the same side of the fault. An expression could be (for
the sake of simplicity, we restrict the discussion to the case of a single sliding fault,
with normal ν2):

I(x, β(x, ν2), β(xcj , ν2), ν2) =
1 if xcj ∈ Cds

NXOR(β(x, ν2), β(xcj , ν2)) if xcj ∈ Csf and x ∈ ∂inΩ
|(x− xref ) · ν2|
∥(x− xref )∥

NXOR(β(x, ν2), β(xcj , ν2)) if xcj ∈ Csf and x ∈ Ω,

where Cds = Cd ∪ Cs and Cf = Cdf ∪ Csf and NXOR is the combination
of the logical operations “not” and “xor”, NXOR(a, b) = ¬(a ⊕ b). Introducing
I to (13) and the displacement and sliding constraints, setting g†(x, xcj , ν2) =
I(x, β(x, ν2), β(xcj , ν2), ν2)g

∗(x, xcj , ν2) the system to be solved to deform the mesh
becomes:
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s(x) =

∑l
j=1 g

†(x, xcj , ν2)ζj ,

s(xcj ) · νi = 0, xcj ∈ Cs ∪ Csf , Si ∈ Cs

ζj · ti = 0,

ζj · bi = 0,
xcj ∈ Cs ∪ Csf s.t. xcj on Si ∈ Cs

For example, for a 2D case with one sliding surface, labelled as 1, and one sliding fault,
labelled as 2, the system becomes:

G 0
0 G

Gν1x Gν1y
Gν2x Gν2y
H1t1x H1t1y
H2t2x H2t2y


[
zx
zy

]
=


sx
sy
0
0
0
0


with [G]ij = g†(xci , xcj , ν2) for xci ∈ Cd ∪ Cdf and xcj ∈ C, and

[H1]ij =

{
1 if xci , xcj ∈ Cs,

0 else.
[H2]ij =

{
1 if xci , xcj ∈ Csf ,

0 else.

We aim now to demonstrate that the relative sliding of the two sides of a fault
introduces a non-affine problem, thereby reducing the efficiency of the POD reduced
order modeling technique, as discussed in Section 4.1. From (3), the pressure on the
internal boundaries of Ω facing the fault γ, see Fig. 1, can be rewritten as:

p|∂inΩ2
= pγ +

ϵ

2Kn
λ+. (18)

Let r be the combination of the maps r1 : ∂inΩ2 → γ+ and r2 : γ+ → γ map
from ∂inΩ2 to γ, so r = r1 ◦ r2. A generic point xγ on the fault corresponds to
xγ = r(x∂inΩ2 ;µ) where r depends on the geometric parameterization governed by
µgeom. The map r could be non-affine, which already spoils the problem’s affinity.
Introducing r in (18) to explicitly write the link between the pressures in the two
subdomains, we have:

p(x∂inΩ2
) = pγ(r(x∂inΩ2

;µ)) +
ϵ

2Kn
λ1(r(x∂inΩ2

;µ)),

where the dependence on µ cannot be separated, even if r were an affine map. In
the weak formulation, this implies that the calculation of the pressure on the inter-
nal boundaries contains terms that cannot be separated from the parameters, so the
problem is not affine.
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Fig. 4: Generic faulted domain with control points, in orange. The dashed lines rep-
resent sliding surfaces, one is on ∂exΩ, and the control points therein belong to Cs,
the other two represent the boundaries ∂inΩ facing a fault, the control points on those
lines are included in the set Csf . The gap between the two faces of the fault was added
for graphical reasons only, and it is actually absent, so the control points on the fault
may be coincident. Other control points in Cd are placed on the fracture where a rigid
displacement, s, is applied. The remaining control points in Cdf are on the boundary
of Ω where a displacement s is enforced.

(a) original mesh (b) deformed mesh

Fig. 5: Mesh deformation. Zoom of the bottom-left corner of the domain of the third
test case, see Section 6.3. A rigid displacement is imposed to the left side of the fault
and to the two small intersecting fractures. The left boundary is a sliding surface
where sliding conditions are applied, on the bottom one, instead, a null displacement
is enforced.

6 Numerical validation

The reduced order model techniques described above have been applied to three 2D
and 3D test cases with different specifics. The first test is a simple problem with a 2D
domain in which uncertainties are associated with the permeability of the rock and
the throw of the fault. The second case is the three-dimensional extension of the first
one. The third case is a complex fracture network with varying boundary conditions.
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In all the case studies we assess the quality of the reduced model by measuring the
maximum, minimum, and averaged relative norm of the error, defined as:

emax = max
j

(∥e(µj)∥2/∥uN (µj)∥2),

emin = min
j

(∥e(µj)∥2/∥uN (µj)∥2),

eave =
1

J

J∑
j=1

∥e(µj)∥2/∥uN (µj)∥2,

(19)

where J is the size of the test dataset and e(µ) is the difference between the FOM and
ROM solution, e(µ) = uN (µ)− ũN (µ).

6.1 Case 1 - setup

As a first test case, we studied a unit 2D square domain cut by a fault whose aperture
is ε = 10−3 tilted by an angle of 60° from the horizontal, Fig. 6. There are two layers
separated by a caprock, and they are identified by different values of permeabilities
K1, K2, K3. An injection point and a production point are placed, respectively, at the
bottom-left and top-right corners, where we enforce counterbalanced fluid fluxes. We
impose homogeneous Neumann boundary conditions at all boundaries except for the
bottom-left corner, where the pressure is set to 1.

The parameters of the problem are the three values of permeability, K1 ∈
[10−2, 10−1], K2 ∈ [102, 103], K3 ∈ [10−4, 10−3], of the three layers, the permeabil-
ity K4 ∈ [10−4, 10−3], of the fault such that Kτ = K4, Kn = 2K4/ε, and the height
h ∈ [0, 0.07], of the right horizons: a small displacement is allowed along the fault
direction. The maximum displacement value h = 0.07 is less than the thickness of
the caprock equal to 0.1. This setting implies a pressure distribution with three main
regions: high pressure layer at the bottom, low pressure layer at the top, and high-
pressure gradient in the caprock that horizontally separates the domain, as we can see
in Fig. 9(a) that represents a typical snapshot of the test data set. Furthermore, based
on the specific values of the permeabilities, there may be a jump in pressure across
the two faces of the fault.

Subsoil permeabilities may vary widely, even by several orders of magnitude, so
it is convenient to express them as exponential functions and sample the exponent.
Therefore, the permeabilities are written in the following form: Ki = eηi , i = 1, . . . , 4
and the parameter vector consists of the exponents of the permeabilities and the height
of the horizons: µ = (η1, η2, η3, η4, h).

The data set is made up of 1000 snapshots whose parameters are randomly sampled
from a uniform distribution (the same strategy is adopted for the other tests). It is
divided into a training dataset (800 snapshots), a validation dataset (100 snapshots),
and a test dataset (100 snapshots). These data sets are used in both the POD approach
(Sect. 6.1.1) and the DL-ROM approach (see Section 6.1.2).

Note that the training data set may be small compared to the complexity of the
problem and the number of parameters. A comparison with a uniform grid sampling
reveals that we are sampling the parameters with fewer than 4 points for each of the
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5 axes of the space Θ. This is because we aim to apply the reduced-order modeling
techniques to real scenarios, where a single snapshot generation is extremely expensive,
making the generation of very large datasets infeasible, and therefore the test cases
are designed accordingly.

h

1

2

3

4

60°

Injection

Fig. 6: Case study 1. Geometry. The fault cuts the domain from the bottom to the
top with an angle of 60°. The right layers can slide along the fault. The production is
in the top right corner and the injection is on the bottom-left corner.

6.1.1 Case 1 - POD

Both POD and block-POD (Section 4.1) are shown. After the offline phase, the quality
of the reduced model is assessed using the test data set. Each parameter of the test
data set is used to generate the reduced solution and then the reconstructed solution,
which is compared with the solution of the full-order model to compute the errors
defined in (19). We evaluated the errors for different sizes of the reduced space, Vn,
which corresponds to different truncations of the transition matrix, as shown in Fig. 7.
The block POD error shown in Fig. 7(b) decreases faster than the standard POD; we
justify this trend by examining the decay of the singular values of each variable in
Fig. 8. We observe a faster decay in the singular values of the POD block snapshot
matrices computed for pγ and λ compared to those related to p. The trend of the latter
resembles that of the complete discrete vector uN . Then, decoupling the variables takes
advantage of the faster decay of the approximations for pγ and λ, which otherwise
would not have an effect in the fully coupled approach.

Some oscillations are observed in the trend of the error; nevertheless, it decreases
to negligible levels taking a sufficient number of modes.

Offline time encompasses the generation of the training data set and all compu-
tation related to the SVD decomposition required to obtain the transition matrix.
Indicatively, data generation takes 4 min 30 s on an Intel i5-1135G7 and a fraction
of a second to finalize the offline phase. The online phase includes the construction
of the matrix that assembles the linear system, its solution, and the reconstruction of
the solution. Its time is assessed at 30 points of the test data set. The main statistics
are shown in Fig. 10, as well as the times for the FOM and DL-ROM. As in the other
tests, similar results are obtained with the block-POD. Indeed, in both the POD and
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block-POD methods, the online time is dominated by the assembly of the full order
model matrix A, a common step for both methods. Consequently, for the sake of sim-
plicity, the timing results of block-POD will not be reported. The square is delimited
by the first and third quartiles, whereas the whiskers extend from the box by 1.5x
the interquartile range. The yellow line represents the median. The number of modes
n = 45 is chosen because the related error is similar to the error obtained with the DL-
ROM, so we can compare the timing for the same error. The consequent compression
rate is n

Nh
= 4.3%.
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(a) POD, DL-ROM
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Fig. 7: Case study 1. emax, emin, eave, respectively, maximum, minimum and average
errors versus the size of the reduced space, n, of the reduced model obtained with (a)
standard POD and (b) block-POD. The points on the panel (a) represents the value
errors for the DL-ROM, described in Section 6.1.2.

6.1.2 Case 1 - DL-ROM

When not specified differently, we use the following architectures and settings in each
test case: the encoder is made of a fully connected network with one hidden layer, the
decoder architecture is symmetric with respect to that of the encoder, and the reduced
map network is made of a fully connected network with one hidden layer. As a nonlin-
ear activation function, ρ, we use, for all networks, the PReLU function: PReLU(x) =
max(0, x)+amin(0, x), where a is a trainable weight. The weights of the layers m are

initialized from the uniform distribution U
(
−
√

1/size(m− 1),
√

1/size(m− 1)
)
.

The data used to train, validate, and test neural networks are the same as those
used for the POD approach.

The input of the encoder is normalized to [0, 1]. Since the ratio of the physical
variables may differ by some order of magnitude, we decided to normalize each discrete
physical variable taking individually their maximum and minimum values over the
training dataset.
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Fig. 8: Case study 1. The decay of singular values of the snapshot matrix of the
fully coupled POD approach for uN , compared to the block-POD case applied to each
variable pγ , λ and p independently.

Details of the neural networks of this test case are summarized in Tab 1. With the
use of neural networks, in this case, we reach a compression rate of n

N = 0.5%, which
is almost ten times higher than that of the POD.

The network is trained for 4000 epochs with Adam optimizer [45], using the hyper-
parameters suggested in the cited reference and a minibatch size of 32. The learning
rate is initialized to 10−3 and is reduced by a factor of 0.6 every 500 epochs. Once the
networks are trained, the reconstruction errors are: emax = 3.2%, emin = 0.41%, and
eave = 1.2%, they are depicted in Fig. 7 (a) as points. The distance between the max-
imum and minimum values is small, which means that the network is accurate evenly
throughout the parameter space.

The data generation and the training of the neural networks constitute the offline
phase; the latter takes about 40 minutes to complete the 4000 epochs. The online phase
is represented by the evaluation of the reduced map network and the decoder; this
time it is evaluated on the Nvidia MX330 graphic card and is shown in Fig. 10. We can
observe that, despite a slightly longer offline phase, the online is almost three orders
of magnitude faster than the POD case. In fact, the online time savings (normalized
difference of times) with respect to the FOM model is 99.14%. We want to highlight
that the DL-ROM allows for the efficient exploitation of both CPU and GPU hardware,
while the POD does not run efficiently on GPUs.

A visualization of the reconstructed solution compared to the full-order model is
illustrated in Fig. 9. We can observe qualitatively that the reconstructed solutions of
both POD and DL-ROM are close to the FOM solution in the entire domain.

6.2 Case 2 - setup

The second test is a 3D simulation that resembles the first in most of its features. The
main differences are the domain (Fig. 11) which is a unit cube whose normal section
to z corresponds to the domain pictured in Fig. 6, and the position of the injection
and production points that are at two opposite corners of the cube. We chose this test
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layer # tw # tw tot

Encoder
fc, 1045, 181, PReLU

190 238

382 622

fc, 181, 5, PReLU

Decoder
fc, 5, 181, PReLU

191 277
fc, 181, 1045, PReLU

Reduced map network
fc, 5, 100, PReLU

1 107
fc, 100, 5, PReLU

Table 1: Case study 1. Architecture of the networks that make
up the reduced model. “fc” stands for fully connected layer,
tw is the number of trainable weights.

(a) FOM (b) POD

(c) block-POD (d) DL-ROM

Fig. 9: Case study 1. Reconstructed solutions for a specific value of the parameter µ.
(a) FOM. (b) POD. (c) block-POD (d) DL-ROM.
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Fig. 10: Case study 1. Evaluation times in seconds of the full-order model, the reduced
model obtained through POD, and the reduced model obtained through the DL-ROM.
Evaluations of reduced models are timed on 30 points of the test dataset.

case to study the effects of adding the third physical dimension without adding many
other factors.

The datasets are made similarly to the previous test case: the parameters are
sampled from a random distribution, 800 snapshots constitute the training dataset,
100 snapshots are used for the validation dataset and 100 for the test dataset.

h

1

2

3

4

Production
Injection

Fig. 11: Case study 2. The domain of this test corresponds to the geometry of case 1
extruded along the z-direction. Production and injection are placed at the two opposite
corners.

6.2.1 Case 2 - POD

Fig. 12 shows the errors defined by (19) with respect to the size of the reduced space.
We notice a slightly slower decrease of the error with respect to test case 1 and
that, for this scenario, the block POD proves to have higher performance than the
standard one. The online time depends on the number of modes used; to facilitate the
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Fig. 12: Case study 2. emax, emin, eave, respectively, maximum, minimum, and aver-
age error versus the size of the reduced space, n, of the reduced model obtained with
(a) standard POD, (b) block-POD. The points on panel (a) represent the value errors
for the DL-ROM, described in Section 6.2.2.

comparison with the other methodology, we report in Fig. 14 the online time for the
standard POD for n = 18 which entails a test error similar to that of the DL-ROM.
The related compression rate is equal to n

N = 0.2%. Due to the great number of d.o.f.,
the online time reaches a high value of about 15 seconds, Fig. 14, it is mainly due to
the computations for deforming the mesh and the rediscretization of the problem due
to its non-affine nature.

6.2.2 Case 2 - DL-ROM

The specific architectures are summarized in Tab. 2. We can infer that the compression
rate is equal to n

N = 0.06%, which is ten times higher than the POD. The hyperpa-
rameters of the training are the same as in Case 1, except for the number of epochs
that is higher, 6000 instead of 4000 (about 3 hours). The errors in the test data set
are: emax = 4.6%, emin = 0.16%, eave = 1.02%. They are similar to the values of case
1, suggesting that the DL-ROM works equally in a 2D and 3D scenario. Fig. 13 shows
a snapshot of the test data set. As in section 6.1, we can see that, qualitatively, all
the solutions resemble the FOM one at each point of the domain. The online time is
reported in Fig. 14, despite the large increase in degrees of freedom of the problem,
the online time has only doubled with respect to case 1. The consequent time saving
is equal to 99.97%.

6.3 Case 3 - setup

The third test case resembles the complex fracture network benchmark in [46]. The 2D
square domain includes intersecting permeable and impermeable fractures, as shown
in Fig. 15, whose detailed description can be found in the reference. Compared to the
reference, we further increase the complexity by setting two horizontal layers whose
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layer # tw # tw tot

Encoder
fc, 8706, 1708, PReLU

14 880 103

29 770 013

fc, 1708, 5, PReLU

Decoder
fc, 5, 1708, PReLU

14 888 803
fc, 1708, 8706, PReLU

Reduced map network
fc, 5, 100, PReLU

1107
fc, 100, 5, PReLU

Table 2: Case 2. Architecture of the networks that make up the
reduced model. “fc” stands for fully connected layer, tw is the
number of trainable weights.

(a) FOM (b) POD

(c) block-POD (d) DL-ROM

Fig. 13: Case study 2. Reconstructed solutions for a specific value of the parameter µ.
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Fig. 14: Case study 2. Evaluation times in seconds of the full-order model, reduced
model obtained through POD, and reduced model obtained through the DL-ROM.

rock permeability is equal to 10−2 at the bottom and 102 at the top. A Dirichlet
boundary condition for the pressure is applied to all the boundaries such that an
average flow is generated from one side to the opposite. After a manual sensitivity
analysis, we set the two most relevant features as uncertain parameters: the first
controls the boundary condition creating high variation among the snapshots, see
Fig. 17, while the second controls the geometry, making the problem non-affine. A
sinusoidal variation of the pressure at the boundary, pb, is applied:

pb(ω) = p1

(
1− sin

(
ω − ω0

2

))
+ p2

(
sin

(
ω − ω0

2

))
,

where p1 and p2 are the maximum and minimum values, ω = arctan(y/x), x and y
are the coordinate of the boundary points. The first parameter is the reference angle
ω0 which can be subject to a variation of 90°, Fig. 17 shows snapshots for three
different values of ω0. The second parameter controls the position of the horizon on
the left of fault number 3, displacing rigidly also fractures number 1 and 2. The high
variation of the boundary conditions and the presence of blocking fractures imply
strong nonlinearities in the solution manifold that may raise issues in reducing the
order of the model. Generally speaking, the results of this case show a larger gap
between the performance of the two reduced-order model methods in favor of the
DL-ROM one.

6.3.1 Case 3 - POD

For this test, only the standard POD is investigated. The error versus the size of the
reduced space (Fig. 16) shows that several modes are required to reach a low error.
The online time is depicted in Fig. 19 where a number of n = 44 modes is used. The
strong nonlinearities of the problem manifest in a compression rate higher than in the
previous cases n

N = 1.85%. The five-number summary of the online time is shown in
Fig. 19.
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Fig. 15: Case study 3. The domain contains 9 fractures and one fault (number 3).
Fractures 4 and 5 are blocking fractures, while all others have high permeability.
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Fig. 16: Case study 3. emax, emin, eave, respectively, maximum, minimum and average
error versus the size of the reduced space, n, of the reduced model obtained with
the standard POD. Points represent the value errors for the DL-ROM, described in
Section 6.2.2.

6.3.2 Case 3 - DL-ROM

The architectures are described in Tab. 3, in particular, the reduced space size is equal
to n = 2, so the compression rate results in n

N = 0.08%. The training requires 5000
epochs (about 74 minutes) to reach a steady low value of the loss function. The errors
are fairly low: emax = 6.2%, emin = 0.78%, eave = 2.3% (Fig. 16), although the ratio
between the minimum and maximum values is higher than the one in case 1 and case
2. The online time can be inferred from Fig. 19, the time savings are equal to 99.86%.

7 Multi-query application

In this section, we show possible practical applications of the reduced order model
techniques. We first used a Monte Carlo strategy to sample the data and conduct
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layer tw tw tot

Encoder
fc , 2378, 404, PReLU

961 928

1 926 735

fc, 404, 2, PReLU

Decoder
fc, 2, 404, PReLU

964 303
fc, 404, 2378, PReLU

Reduced map network
fc, 2, 100, PReLU

504
fc, 100, 2, PReLU

Table 3: Case study 3. Architecture of the networks that make
up the reduced model. “fc” stands for fully connected layer, tw
is the number of trainable weights.

(a) FOM (b) FOM (c) FOM

Fig. 17: Case study 3. Boundary conditions are applied such that the mean pressure
gradient is (a) horizontal (b) slanted (c) vertical.

a sensitivity analysis, comparing the results of different reduced-order models and a
full-order model. Afterwards, an inverse problem is solved exclusively with DL-ROM.

7.1 Sensitivity analysis

We use a Monte Carlo technique to perform a sensitivity analysis on a problem based
on test case 1 (see Section 6.1). We chose this test case because its small size allowed us
to run the Monte Carlo analysis even with the full-order model and thus compare the
results with those obtained with the reduced models. We rely on the Chaospy library,
a numerical toolbox to perform uncertainty quantification [47]. Our goal is to focus
on a quantity of interest (q.o.i) represented by the pressure jump between injection
and production, see Fig.6, called ∆p, and determine its mean value, ∆p, standard
deviation σ̃, and the first-order sensitivity index (Sobol index) [48], s̃1,i, i = 1, . . . , 5,
related to each entry, µi, of the parameter vector µ.
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Fig. 18: Case study 3. Reconstructed solutions for a specific value of the parameter µ.
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Fig. 19: Case study 3. Evaluation times in seconds of the full order model, reduced
model obtained through POD, and reduced model obtained through the DL-ROM.

For the purpose of this example, we prepare a training data set of 200 snapshots
and a validation data set of 20 samples. All data in the training data set are used
to create the snapshot matrix to which the SVD decomposition is applied. Then, the
left singular vector matrix, U , see Section 4.1, is truncated to n = 13 basis functions
because it leads to a low enough reconstruction error, that is, eave = 5%. The neural
networks are trained until the loss function reaches a low enough value to have a
satisfactory reconstruction error equal to eave = 5.3%. Since the q.o.i. is known a priori,
it is possible to add a term in the loss function related to the q.o.i., thus increasing
the accuracy of the reduced model for only what is needed. For instance, in this case,
we add the term ℓ3 to the loss function defined in (12):

L = αℓ1 + βℓ2 + γℓ3 =
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=
α

N
∥uN (µi)−Ψ(Ψ′(uN (µi)))∥22 +

β

n
∥Ψ′(uN (µi))− φ(µi)∥22 + γ(∆prom −∆pfom)2

where γ is a user-defined coefficient, ∆prom and ∆pfom are, respectively, the jump of
pressure between the injection and the production computed with the reduced order
model and the full order model.

In order to reach stable values of the statistics, having a negligible error due to the
finite sampling, we generate a number of 900 instances from a uniform distribution of
the uncertain parameters to compute the desired statistics. This value is inferred from
convergence analysis, made computationally cheap by the neural network approach,
shown in Fig. 20.

Fig. 21 shows the probability density function (pdf) of the q.o.i. estimated using a
Gaussian kernel estimator [49]. Its profile is well reproduced by both reduced models.

We list in Tab. 4 the summary statistics of our interests. We notice a good agree-
ment between the values; most significant discrepancies occur for small quantities, such
as s̃1,1 and s̃1,4, whose values are difficult to capture accurately. From the Sobol index,
we can see that most of the variance in the pressure jump is due to the permeability
of layer 1, the bottom layer, and layer 3, the caprock, since their permeabilities are
low. The small displacement along the fault is less relevant, and the high-permeability
upper layer and fault permeability play a minor role in this context.

We now want to estimate the total time required to assess this multi-query appli-
cation. A single numerical solution of the full-order problem takes on average 0.58 s
per core, see Fig. 10, using a 4 core CPU, we get a total time for the Monte Carlo
evaluation of about 131 s. For the POD we need to consider the offline time to create
the reduced model and the time to generate the required samples with the reduced
model. Given the size of the training data set, we see that data generation takes
200 × 0.58/4 = 29 s. The creation of the Φ matrix requires a negligible time com-
pared to the other operations. The online time is 0.57 s, which is slightly less than
the full-order model time because the latter is already small and most of the time is
spent deforming the mesh and reassembling the full-order matrix A. The POD sam-
pling time results to be equal to 900 × 0.57/4 = 130 s, therefore, the total time to
evaluate the sensitivity analysis is 159 s plus an additional time for additional routines
that are common for all methods. Training in the neural network takes 400 epochs in
67 s. The overall sampling time is less than one second, so it is negligible. The total
time, which includes the training and validation data sets, is 96 s. This problem is
very computationally cheap, so a reduced-order model technique does not show great
computational time improvements, indeed the POD takes even longer than the full-
order model. We recall that we chose this problem for the possibility of running the
Monte Carlo analysis with the full-order model, hence to compare the accuracy of
the results. Moreover, we repeat that those are just indicative numbers; the computa-
tional time depends on the relation between the algorithm, code, and hardware since
different parts of the algorithm run better on different hardware because of different
code parallelization. Depending on the user’s hardware availability, the outcomes may
vary, but the neural network approach has an online time order of magnitude faster
than the other methods, so for a problem large enough it will be convenient.
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∆p σ̃ × 103 s̃1,1 × 101 s̃1,2 s̃1,3 × 101 s̃1,4 × 103 s̃1,5 × 102

FOM 1.0033 6.61 3.11 7.04 × 10−8 5.86 0.32 0.85

POD 1.0028 7.79 1.28 8.16 × 10−3 3.62 9.37 2.45

DL-ROM 1.0036 6.57 2.76 3.73 × 10−3 5.12 0.92 2.13

Table 4: Mean value, ∆p, deviation, σ̃, and first order sensitivity index, s̃1,i, of the
quantity of interest obtained with data generated by the FOM, POD, and DL-ROM.
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Fig. 20: Convergence of relevant statistics. The values reach a stable value with a set
of 900 samples or more.

7.2 Inverse problem

The goal of this application is to determine the parameters such that a q.o.i. is equal to
a desired value. We take Case 2 and set the pressure difference between injection and
production equal to the desired value of ∆pd = 0.188 derived from the following set of
parameters: K1 = 0.1, K2 = 150, K3 = 1×10−4, K4 = 9.5×10−4, h = 0.09. Assuming
that some parameters, K2 and K4, are fairly known while some others are more
uncertain, the ranges where we seek a solution are: K1 ∈ [10−4, 1], K2 ∈ [102, 2×102],
K3 ∈ [10−6, 10−4], K4 ∈ [9× 10−4, 10−3], and h ∈ [0.01, 0.1].

In this example, we show only the application of DL-ROM. Similarly to the pre-
vious application, neural networks are trained on a small dataset made up of 200
snapshots because high precision is not required for the purpose of the current appli-
cation. The training data set contains solutions sampled from the ranges defined in
6.1 that are stricter than those considered in this application, so we indirectly exploit
the extrapolation capacity of the reduced model.

We cast the inverse problem as: minµ F (µ), where F (µ) = (∆p(µ) − ∆pd)
2. We

want to show that DL-ROM allows us to use heuristic optimization algorithms, which
usually require a large number of evaluations of the objective function. We select
the differential evolution algorithm [50] implemented in Scipy [51] with the default
setting, except for the convergence tolerance: tol = 0.001 and atol = 10−10. After
300 iterations, with a total number of objective function evaluations of 22581, the
algorithm satisfies the convergence criterion. The optimal solution gives K1 = 0.251,
K2 = 153, K3 = 9.1 × 104, K4 = 9.4 × 10−4, and h = 0.08. We observe that the
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Fig. 21: Probability density function of the quantity of interest, ∆p. Both POD and
DL-ROM well reproduce the shape.

optimal values of the parameters are similar to the exact ones except for K1 and a
small error affects also the value of h.

The ∆p obtained with the reduced model is equal to 0.188 as requested, while
taking the optimal solution, recomputing the results of ∆p with the results of the
full-order model equal to 0.196, close enough to the desired value.

See Fig. 22 for the full-order model pressure field obtained with the optimal
solution.

Due to the high number of objective function evaluations, we have considerable
time savings: the offline phase takes about 75 min for snapshot generation and 4 min
for neural network training, while 22581 runs would require 142 hours with the FOM
but only 136 s with the use of the DL-ROM. Therefore, the total computational time
is approximately 142 hours without the use of reduced models, and 1 h 18 min with
the DL-ROM.

8 Conclusion

We focussed on reduced-order modeling techniques applied to the problem of a single-
phase flow in rigid porous media with an arbitrary number of fractures and faults. The
mixed-dimensional framework lets us efficiently deal with geometrical discontinuities
(fractures or faults) in a geometry-deforming setup. It was possible to generate the
data (solution of the full-order model) and create the reduced-order model without
any further devices. We considered uncertainties in the parameters with respect to the
physical properties of the rock and the geometry, whereas uncertainties in the fluid
properties represent interesting possible future developments.

According to the results shown by our tests, the DL-ROM takes slightly longer
compared to classic methods as the POD to generate the reduced model because of
the training of the neural networks, but the online time is extremely low, which makes
this approach promising, especially when the number of queries required is large.
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Fig. 22: Full order model pressure field obtained from the optimal solution.

Similarly to block-POD, the efficiency of the DL-ROM could be improved by seg-
regating variables and severing the links between disparate physical variables, i.e., p,
pγ , λ. This would decrease the total trainable weights, thereby expediting the train-
ing phase. Although we have conducted an initial review of this approach, it remains
under development and is the subject of future research.

A disadvantage of the neural network approach is the large number of hyperpa-
rameters, such as the size of the training dataset, architecture of the neural networks,
parameters of the optimization algorithm, etc., for which some user experience is
needed since they affect the accuracy of the reduced model. We showed that the
ROM strategies, and in particular the DL-ROM, lead to an advantage in terms of
faster analysis with satisfying accuracy, so further investigations will be undertaken
on the line of multifidelity ROM, and study of applications of ROM strategies to time-
dependent problems simulating more realistic and complex physics. For instance, this
could involve studying scenarios such as two-phase flows in fractured porous media,
which presents, in addition to the geometric discontinuities, the challenge due to the
sharp fronts resulting from the hyperbolic nature of the problem. This highly nonlin-
ear scenario may pose strong difficulties for methods based on a linear map, M, while
promoting nonlinear methods such as the DL-ROM.
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P. Zulian, Verification benchmarks for single-phase flow in three-dimensional
fractured porous media. Advances in Water Resources 147 (2020). https:
//doi.org/10.1016/j.advwatres.2020.103759 [math.NA]

[29] L. Formaggia, Handbook of Grid Generation (CRC Press, 1998), chap. Data
Structures for Unstructured Mesh Generation

[30] J.M. Nordbotten, W.M. Boon, A. Fumagalli, E. Keilegavlen, Unified approach
to discretization of flow in fractured porous media. Computational Geosciences
23(2), 225–237 (2018). https://doi.org/10.1007/s10596-018-9778-9

[31] J. Blazek, 3rd edn. (Butterworth-Heinemann, Oxford, 2015). https://doi.org/
https://doi.org/10.1016/B978-0-08-099995-1.09986-3

[32] C. Hirish, Numerical Computation of Internal and External Flows (Elsevier,
2007). https://doi.org/10.1016/b978-0-7506-6594-0.x5037-1

[33] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilat-
eral grids. Computational Geosciences 6(3), 405–432 (2002). https://doi.org/10.
1023/a:1021291114475

[34] J.M. Nordbotten, E. Keilegavlen, in Polyhedral Methods in Geosciences
(Springer International Publishing, 2021), pp. 119–158. https://doi.org/10.1007/
978-3-030-69363-3 4

35

https://doi.org/10.1137/s1064827503429363
https://doi.org/10.1051/m2an/2011148
https://doi.org/10.1016/j.advwatres.2017.10.036
https://doi.org/10.1016/j.advwatres.2017.10.036
https://doi.org/10.1137/17m1139102
https://doi.org/10.1016/j.advwatres.2020.103759
https://doi.org/10.1016/j.advwatres.2020.103759
https://doi.org/10.1007/s10596-018-9778-9
https://doi.org/https://doi.org/10.1016/B978-0-08-099995-1.09986-3
https://doi.org/https://doi.org/10.1016/B978-0-08-099995-1.09986-3
https://doi.org/10.1016/b978-0-7506-6594-0.x5037-1
https://doi.org/10.1023/a:1021291114475
https://doi.org/10.1023/a:1021291114475
https://doi.org/10.1007/978-3-030-69363-3_4
https://doi.org/10.1007/978-3-030-69363-3_4


[35] M. Starnoni, I. Berre, E. Keilegavlen, J.M. Nordbotten, Consistent MPFA dis-
cretization for flow in the presence of gravity. Water Resources Research 55(12),
10105–10118 (2019). https://doi.org/10.1029/2019wr025384

[36] I. Stefansson, I. Berre, E. Keilegavlen, Finite-volume discretisations for flow in
fractured porous media. Transport in Porous Media 124(2), 439–462 (2018).
https://doi.org/10.1007/s11242-018-1077-3

[37] E. Keilegavlen, R. Berge, A. Fumagalli, M. Starnoni, I. Stefansson, J. Varela,
I. Berre, Porepy: An open-source software for simulation of multiphysics processes
in fractured porous media. arXiv:1908.09869 (2019). https://doi.org/10.48550/
ARXIV.1908.09869

[38] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM Review 57(4), 483–531 (2015).
https://doi.org/10.1137/130932715

[39] C. Eckart, G. Young, The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936). https://doi.org/10.1007/bf02288367

[40] E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen. Math-
ematische Annalen 63(4), 433–476 (1907). https://doi.org/10.1007/bf01449770

[41] R.A. DeVore, R. Howard, C. Micchelli, Optimal nonlinear approximation.
Manuscripta Mathematica 63(4), 469–478 (1989). https://doi.org/10.1007/
bf01171759

[42] A. de Boer, M. van der Schoot, H. Bijl, Mesh deformation based on radial basis
function interpolation. Computers & Structures 85(11), 784–795 (2007). https:
//doi.org/10.1016/j.compstruc.2007.01.013

[43] D. Forti, G. Rozza, Efficient geometrical parametrisation techniques of interfaces
for reduced-order modelling: application to fluid–structure interaction coupling
problems. International Journal of Computational Fluid Dynamics 28(3-4), 158–
169 (2014). https://doi.org/10.1080/10618562.2014.932352

[44] S. Aubert, F. Mastrippolito, Q. Rendu, M. Buisson, F. Ducros, Planar slip condi-
tion for mesh morphing using radial basis functions. Procedia Engineering 203,
349–361 (2017). https://doi.org/10.1016/j.proeng.2017.09.819

[45] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014). https://doi.org/10.48550/ARXIV.1412.6980

[46] I. Berre, W.M. Boon, B. Flemisch, A. Fumagalli, D. Gläser, E. Keilegavlen,
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a Trainable parameter of PReLU
A Matrix describing the discrete equation
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C,Cd, Cdf , Cs, Csf Control points sets
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Cs Set of surfaced where sliding conditions are applied
d(x, y) Euclidean distance between x and y
D Spatial dimension
e Number of parameters
emin, emax, eave Minimum, maximum, averaged relative errors between the FOM

and ROM solution
f [1/s] Scalar source or sink term
fγ [1/s] Scalar source or sink term in the fault
G Matrix of displacement constraint
g Radial basis function dependent on the distance, d, of two points,

x1, x2
g∗ Radial basis function dependent on x1, x2
g† Modified radial basis function
Hk Matrix of no tangential contribution constraint applied to surface

k
I influence function
l Number of control points
N Number of degrees of freedom of the full order problem
n Number of degrees of freedom of the reduced problem
nbr number of intersecting branches
nmin Minimal latent dimension
p [Pa] Pressure
p [Pa] Pressure on boundaries
pγ [Pa] Pressure in the fault
pι [Pa] Pressure at the intersection

∆p [Pa] Mean value of ∆p

q [m s−1] Darcy velocity

q [m s−1] Darcy velocity on boundaries

K [m3s/kg] Intrinsic permeability scaled by the dynamic viscosity

Kn [m3s/kg] Normal fault permeability

Kτ [m3s/kg] In-plane fault permeability

Kι [m3s/kg] Representative permeability at intersection
r Map from γ to ∂inΩ
S Snapshot matrix
s [m] Displacement
s [m] Known displacement
s̃ First order sensitivity index
t, b Non-parallel tangent unit vectors of sliding surface
uN Full order model solution
ũN Reconstructed solution
un Reduced order model solution
U Left singular vector matrix
Utr Left singular vector matrix truncated
V Right singular vector matrix
z Unknown of mesh deformation linear system
L Loss function
M Map from full order model space to reduced space
S Solution manifold
Vn Reduced problem solution space
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VN Full order model solution space
α, β User-defined loss function weights
β Side function
γ Fault domain
∂pγ Boundary of γ where Dirichlet boundary condition for the

pressure is applied
∂qγ Boundary of γ where Neumann boundary condition is applied
∂exγ Boundary of γ in contact with ∂Ω
∂inγ Boundary of γ not in contact with ∂Ω

γ+(γ−) Additional interfaces between the matrix domain, Ω and fault
domain, γ

δn Non-linear counterpart of Kolmogorov n-width.
ϵ [m] Fault aperture
ζ Unknown coefficients of the linear combination of radial functions
η Exponent defining the permeability

λ+(λ−) [m s−1] Volumetric fluid flux exchanged between subdomains

λγ [m s−1] Volumetric fluid flux exchanged between branches of a intersec-
tion

µ Parameters
µgeom Geometrical parameters
µphy Physical parameters
ν Normal of a sliding surface
ρ Activation function
σ Right-hand side of mesh deformation system
σ̃ Standard deviation
θ Scalar function µ-dependent
Θ Parameter space
Σ Singular values matrix
υ Unit vector
υγ Unit vector associated to γ
υ̂ Unit vector aligned with the fault
φ Map φ : Θ → Vn. In the DL-ROM approach, it is represented by

the reduced map network
Φ Transition matrix
Ψ Map Ψ : Vn → VN . In the DL-ROM approach, it is represented

by a decoder
Ψ′ Map Ψ′ : S → Vn. In the DL-ROM approach, it is represented

by an encoder
Ω Matrix domain
∂Ω Boundary of Ω
∂pΩ Boundary of Ω where Dirichlet boundary condition for the

pressure is applied
∂qΩ Boundary of Ω where Neumann boundary condition is applied
∂exΩ External boundary of Ω
∂inΩ Internal boundary of Ω
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