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Perspective transfer model building via imaging-based rules extraction
from retrospective cancer subtyping in Hodgkin Lymphoma

Lara Cavinato, Student Member, IEEE, Noemi Gozzi, Student Member, IEEE, Martina Sollini, Margarita
Kirienko, Carmelo Carlo-Stella, Chiara Rusconi, Arturo Chiti and Francesca leva

Abstract—Image texture analysis has for decades represented
a promising opportunity for cancer assessment and disease pro-
gression evaluation, evolving over time in a discipline, i.e., ra-
diomics. However, the road for a complete translation into clinical
practice is still hampered by intrinsic limitations. As purely su-
pervised classification models fails in devising univocal imaging-
based differences in tumors with different prognosis, cancer sub-
typing approaches would benefit from the employment of distant
supervision, for instance exploiting survival/recurrence informa-
tion. In this work, we transfer our previous model for Hodgkin
Lymphoma subtyping to a multi-center study case. We evaluated
model performance in two independent datasets coming from two
hospitals, comparing and analyzing the results. Our preliminary
data confirmed the instability of radiomics due to across-center
lack of reproducibility, leading to meaningful results in one center
and poorer performance in the other. We then learnt stratification
rules from the first dataset via Random Forest and leveraged
those rules to transfer the stratification policy onto the second
dataset. In this way, on the one hand, we tested the stratification
ability of cancer subtyping in a validation setting and, on the other
hand, enriched the noisier dataset with valuable information, in
a borrowing strength fashion. The transfer of the model resulted
successful. Moreover, having extracted decision rules for cancer
subtyping, we were able to draw up risk factors to be considered in
clinics. The work shows the potentialities of the proposed pipeline
to be further evaluated in larger multi-center datasets, with the goal
of translating radiomics into clinical practice.

Index Terms— Cancer subtyping, Clinical guidelines, Ex-
plainability, Hodgkin Lymphoma, Imaging Clustering, Ra-
diomics, Rule extraction, Survival Clustering, Transfer
model.

[. INTRODUCTION

Cancer subtyping and patients stratification are currently the trend-
ing approaches in literature about personalized medicine and tuning
of treatment pathways in oncological research. Several methodologi-
cal strategies have indeed been explored, ranging from supervised,
semisupervised and unsupervised learning models on both struc-
tured and unstructured data, above all genomics [1]-[3]. In [4],
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we proposed a recurrence-informed supervised graph clustering for
stratifying Hodgkin Lymphoma patients according to their radiomic
phenotype and clinical characteristics as retrieved by daily practice.
We leveraged distant supervision approach [5], training the imaging-
based model to learn recurrence probabilities with the scope of
devising significant risk classes. Beside the prognostic reliability
of detected sub-populations and the scalable performance, the main
advantage of this approach regards the interpretability of the model
building. In fact, groups characterization enables the radiomic fea-
tures clinical interpretation in terms of both cancer severity and
therapy response. We indeed provided a tool for reversing the
biological interpretation paradigm of higher order radiomic variables,
robust when properly trained on a real case study.

In this context, the retrospective nature of the model and the limited
variability of observations coming from one single hospital prevent
from translating such approach into clinical practice. In fact, the
clustering of the estimated patient-to-patient graph into homogeneous
sub-populations requires the availability of both medical, imaging and
cancer evolution data and serves for insightful descriptive purposes.
Additionally, the clinical conclusions that may derive from this
pipeline are tightly dependent on the observed data set as far as it
is not evaluated in other settings. It happens in fact quite frequently
in literature to find inconsistencies and lack of consensus about the
application of radiomics framework to clinics even with regard to
the same cancer. This is due to non uniform experimental protocols,
scanner variability, ad hoc performance evaluation and instability of
results [6]-[8]. The intrinsic limitations of radiomics research along
with the complexity of cancer prognosis have since long bounded the
performance of classification-based models in the field. Pertinently,
deducing perspective rules from distant-supervised stratification in
different datasets - rather than classification strategies - might pave
the way to single out the agnostic predictive power of radiomics
as to translate it to clinical practice and overcome across-center
reproducibility.

Here, we extend our previously proposed framework with a two-
fold purpose: 1) we compare results on two different datasets coming
from different hospitals to discuss concordance of findings and limita-
tions of retrospective approach when considering diverse populations,
acquisition protocols and operator-variability; 2) we deduce general
knowledge from one setting and transfer a robust rule-based model
to the other, in order to enrich it and validate the guidelines in a
perspective way for the clinics. This work is intended as a proof of
concept for employing the reliability of recurrence-specific supervised
graph clustering approach in properly stratifying imaging cancer
subtypes in an agnostic and perspective way.

Il. RELATED WORKS

Several associations between imaging characteristics and different
molecular subtypes, hormone receptor status and cancer severity have
been found [9] [10]. Given the hypothesis that imaging subtypes pro-
vide a proxy for established histopathological or molecular subtypes,
it is widely agreed that they may help in stratifying patients. Accord-
ingly, a number of unsupervised Image Clustering (IC) techniques has



been proposed to identify imaging and clinical subtypes as to evaluate
their prognostic capacity of predicting recurrence-free survival [11]
[12].

The most up-to-date approaches of IC for survival risk prediction
in medical imaging adopt unsupervised or semi-supervised deep
learning approaches [13] [14]. In [15], an unsupervised encoder with
Cox loss was developed to compress clinical, mRNA, microRNA
expression data and histopathology Whole Slide Images (WSIs)
and to perform clinically-relevant cancer subtyping. Similarly, [16]
performed prognostic analysis of histopathological images of hepato-
cellular carcinoma using pre-trained CNN to extract latent features;
they kept those features significant at Cox analysis and applied SVM
model for stratification. Moreover, in [17], the authors proposed a
pipeline consisting of learning the image latent representation from
survival CNN, a dimensionality reduction step, and the clustering
evaluation. Such approaches extract imaging representation features
from somewhat trained CNNs and need to apply a feature selec-
tion procedure in order to either reduce the data dimensionality
or to keep only survival-informative variables. On the contrary,
we here may want to exploit the imaging radiomic representation
as is, as to explainably assess its capability in devising relevant
groups of patients. Additionally, we intend the disease-free-survival
information to be part of the learning process of patient-to-patient
similarities, overcoming the above-mentioned fragmented procedure.
In the framework of stochastic gradient variational inference, [18]
proposed a deep probabilistic approach to retrieve clusters driven
by latent variables and survival information. However, difficulty in
explaining radiomic variables and retrospective nature of the method
still represent preventing issues for its clinical translation.

The most comparable work has been proposed in [19] where
authors employed an ensemble of clustering methods and performed
consensus via Harrell’s C-index computation. They implemented tree-
based risk model approaches to identify interactions between clinico-
genomic features for colorectal from genome expressions. However,
they did not externally validate the survival risk rules, preventing the
translation into clinical practice.

1. METHODOLOGICAL PIPELINE

The methodological study workflow is depicted in Figure 1.
Prior to models illustration, we describe the data collection and
harmonization process as to provide an overview of the datasets’
summary information (Section III-A). Moreover, in Section III-B
we perform a classical ML-based radiomics model following current
literature guidelines. Several limitations occur, laying the foundation
for this work objectives. Afterwards, Section III-C opens the proposed
analytical workflow and tackles the first aim of the present work.
Although distant supervised cancer subtyping has been ascertained
to be the paradigm shift needed for a translation of radiomics into
clinical practice, across-center reproducibility problems still hold.
We thus implement the model separately on two different single
center datatsets and one multi-center dataset as to assess agreement
of results in terms of clusters’ probability to recur and radiomics
discrimination power. Additionally, we recall that patient-to-patient
graph is estimated by minimizing differences both in patients’ ra-
diomic description and in patients’ Cox-based disease-free-survival
functions (for further detail and mathematical formulation see [4],
[20]). As a third point of comparison, we are interested in assessing
the survival-radiomics balance in the graph estimation in each of
the three models via logistic regression. Finally, Section III-D faces
the second contribution of this work. As distant supervised cancer
subtyping suffers from dependency on dataset specification and
retrospective nature, Section III-D describes a rule-based perspective

TABLE |
HUMANITAS RESEARCH HOSPITAL (ICH) PATIENTS’ CATEGORICAL
CHARACTERISTICS

ICH RESPONDERS NON RESPONDERS
(N=107) (N=21)
I 7,4% 0%
Stage I 53,4% 52,4%
11 11,2% 9,5%
v 28% 38,1%
Sex F 57,9% 66,6%
M 42,1% 33,4%
B Symptoms N 56,1% 33,4%
Y 43,9% 66,6%
N 69,2% 52,4%
Extranodal v 30.8% 47.6%
Bone N 74,8% 85,7%
Y 25.2% 14,3%
. N 35,5% 81%
Radiotherapy v 64.5 19%
DS1 76,6% 47,6%
DS2 11,2% 9,5%
iPET DS3 10,3% 4,8%
DS4 1,9% 23,8%
DS5 0% 14,3%
DS1 71,9% 61,8%
DS2 10,3% 14,3%
PET EOT DS3 9,3% 4,8%
DS4 2,9% 4,8%
DS5 5,6% 14,3%
TABLE I

HUMANITAS RESEARCH HOSPITAL (ICH) PATIENTS’ NUMERICAL
CHARACTERISTICS

ICH RESPONDERS (N=107) NON RESPONDERS (N=21)
Mean SD Mean SD
Age 39.252 15.875 40.143 15.963
# Nodal lesions 6.673 4.813 6.619 6.184
# Extranoodal lesions 1916 5.750 3.857 10.258
Dispersion of nodal lesions 0.967 0.441 1.169 0.564
Dispersion of extranodal lesions 0.827 1.652 1.882 4.383
Dispersion of all lesions 0.931 0.409 1.352 0.714
Mean volume (std) 0.028 0.520 0.455 0.963
SD
volume (std) 0.529 0.833 1.270 1.702
Minimum volume (std) -0.307 0.141 -0.326 0.084
X;‘j’;‘m“m volume 1.157 2.136 2582 3352
Time to relapse [days] 1126.97 704.94 358.86 322.854

model implementation and its explainability. Performance evaluation,
improvements and interpretation of results follow in Section IV.

A. Data Collection and Harmonization

Data were collected from two hospital of Milan area, Humanitas
Research Hospital (ICH - Istituto Clinico Humanitas) and the Italian
National Cancer Institute (INT - Istituto Nazionale dei Tumori).
The study was performed in accordance with the Declaration of
Helsinki and approved by the local ethics committees. In view of the
observational retrospective study design, the signature of a specific
informed consent and the legal requirements of clinical trials were
waived.

At Humanitas Research Hospital, 128 patients were enrolled in
the study as they met inclusion criteria. They were diagnosed with
Hodgkin Lymphoma and were treated and followed up at the center.
Pre-treatment [18F]FDG PET/CT was available for all patients. Per-
sonal and clinical information regarding demography, therapy, follow-
up and qualitative disease information was collected from Digital
Medical Records per each patient. In addition, all [18]FDG-avid
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2. TRANSFER MODEL
STRATIFICATION IMPROVEMENTS

Methodological study workflow: objective (1) provides a comparison between distant cancer subtyping model as trained on different

datasets; objective (2) describes the knowledge transfer from the more informative setting to the less valuable one and performs improvements

assessment.

lesions bigger than 64 voxels were located and semi-automatically
segmented by expert nuclear medicine physicians (M.S.). From
regions of interest, radiomic description was computed with LifeX
software (www.lifexsoft.org, [21]), consisting of 45 radiomic features
including conventional, first, second and higher order statistics. A
total of 1340 lesions was collected and quantitatively assessed.
Survival and recurrence free survival times were also registered along
with censoring information. Chemotherapy starting dates, dates of ad
interim PET (iPET) and End Of Treatment (EOT) PET were collected
as to extract temporal information of therapy pathways. Radiotherapy
date was also made available when performed. For what treatment
efficacy and recurrence/relapse are concerned, response to therapy
was monitored over time, with checkpoints at the end of first line of
chemotherapy (iPET), at the end of all chemotherapy cycles (EOT
PET) and at the time of the last follow up (LFU). Patients were
defined as responders and non responders which included patients
who progressed during or early after first-line treatment (refractory)
and patients who have eventually relapsed within the observation
period (recurrent/relapsing). Additionally, survival information at the
time of the last follow up was collected, yet only one patient
experienced the event. Patients information is made available in Table
I for categorical variables and II for numerical variables. In Appendix
I, descriptive statistics of disease-free-survival times according to
clinical-informed stratification is explored.

The same criteria were used to enroll patients and analyse images
at National Cancer Institute. Most of patients were diagnosed at the
center and information about those patients for whom this was not
the case was retrieved and properly annotated. Briefly, [18F]FDG
PET/CT images of 76 Hodgkin Lymphoma patients (794 lesions)
were analysed by expert nuclear medicine physicians (M.K.) using
LifeX software. The radiomic descriptions (45 radiomic feature) were
obtained for all regions of interest. Clinical data about demographics,
chemotherapy cycles length, radiotherapy treatment and follow-up
was collected. Both iPET and EOT PET were defined as positive in

TABLE IlI
NATIONAL CANCER INSTITUTE (INT) PATIENTS’ CATEGORICAL
CHARACTERISTICS

INT RESPONDERS NON RESPONDERS
(N=59) (N=17)
1 1.,8% 0%
Stage 2 52,4% 23,5%
3 10,2% 5,9%
4 35,6% 70,6%
Sex F 57,6% 47%
M 42.4% 53%
B Symptoms N 59,3% 23,5%
Y 40,7% 76,5%
N 66,1% 41,1%
Extranodal v 44.99% 58.9%
Bone N 74,6% 76,5%
Y 25,4% 23,7%
Radiotherapy I;I gg:?;ﬁ ?%Z;Z;
. Negative 93.2% 47%
iPET Positive 6.8% 53%
Negative 100% 0%
PET EOT Positive 0% 100%

presence of an area of [18F]FDG uptake higher than background as
defined by the Deauville score (DS) DS4 and DS5. DS3 or lower was
consistent with a negative exam [22]. Information about the specific
DS of each patient was available only for the ICH dataset. At INT,
no distinction was made if non responding patients at LFU were
refractory or relapsing, however time to recurrence allowed to retrieve
such information when compared to chemotherapy cycles duration.
No survival information was collected. Patients information is made
available in Table III for categorical variables and IV for numerical
variables. In Appendix I, descriptive statistics of disease-free-survival
times according to clinically-informed stratification is explored.



TABLE IV
NATIONAL CANCER INSTITUTE (INT) PATIENTS’ NUMERICAL
CHARACTERISTICS

INT RESPONDERS (N=59) NON RESPONDERS (N=17)
Mean SD Mean SD

Age 36.478 13915 42.867 17.868
# Nodal lesions 7.271 5.499 9.706 6.362
# Extranoodal lesions 2.288 5.789 3.706 7.355
Dispersion of nodal lesions 0.900 0.463 1.405 2.049
Dispersion of extranodal lesions 0.747 1.636 1.938 3.425
Dispersion of all lesions 0.900 0.443 1.406 1.886
Mean volume (std) 0.075 0.542 0.176 0.784
SD

volume (std) 0.625 1.030 0.931 1.394
Minimum volume (std) -0.331 0.090 -0.358 0.087
i volume 1312 2453 2304 3368
Time to relapse [days] 1105.72 546.490 257.59 167.17

As our aim was to assess across-center imaging variability and
transfer the cancer subtyping policy from one to the other, an harmo-
nization step was required. First, all clinical and personal information
was processed with a strategy of compliance to the less rich dataset.
That is, response to treatment and cancer progression were flagged by
a dichotomous variable, survival information was neglected and times
to events were computed. Additionally, some variables were added or
transformed as to enrich the disease description and obtain a single
vector patient representation as described in [4]. In fact, number of
total lesions, number of nodal and extranodal lesions and dispersions
of all, nodal and extranodal lesions within a patient as a proxy
of tumor heterogeneity were computed and analyzed. In addition,
radiomic features were averaged patient-wise such that every patient
was described by its lesions’ mean radiomic profile/phenotype. After
harmonization, Humanitas Research Hospital (ICH) dataset contained
128 patients described by 61 variables and National Cancer Institute
(INT) dataset held 76 patients described by the same 61 variables.

B. ML-based model limitations

Classical machine learning algorithms have been evaluated for
radiomics-based recurrence prediction. As to remove redundancy and
collinearity among variables, correlation between clinical features
was performed and brought to removal of stage (pcc > 80% with
extranodal and bone disease statuses) while correlation between
radiomic features was assessed and lead to keep 15/45 features.
The selection was made according to domain knowledge, robustness
with respect to the tumor segmentation method [23] and matrix
frequency. No relevant correlation between clinical and radiomic
features was found. Variance Inflation Factor was implemented for
additional correlation removal, leading to a set of 14 features. In order
to capture lesions’ imaging variability within multi-lesion patients,
statistic moments (i.e., mean, min, max, std) were computed and
used to build the vector-based patient representation. A total of 68
variables were considered.

Prior to be fed into the model for relapsing vs non- relapsing
patients’ classification, the predictive power of features was assessed
with both univariate and multivariate feature selection methods.
ANOVA, Pearson Correlation, Spearman Correlation, Mutual Infor-
mation and Univariate Logit were considered by assessing the rela-
tionship between each variable and target, i.e., relapse. A reasonable
agreement was found among different techniques and 28 variables
were robust in at least 4/5 methods. Being robust throughout univari-
ate selection, such features were additionally screened with multivari-
ate selection. Forward Selection, Backward Selection, Bidirectional
Selection, Recursive Feature Elimination, Ridge Regression, LASSO
and Elastic Net were considered. Wrapper methods and penalized
logistics separately showed agreements in selecting features, yet quite

a discordance between each other: 11 of them resulted robust to 5/7
techniques. Interestingly, these included volume and both lower and
higher order radiomics features. The flow of the feature selection
process and a complete list of the selected features can be found in
Appendix II.

On selected features, we trained and tuned different models for
imbalanced data based on CARTSs. The best model resulted to be an
easy ensemble classifier with Random Forest base estimator with 50
trees and replacement. Results on cross-validation on ICH dataset
were good, reaching 0.76 £ 0.035 accuracy with 0.67 4= 0.179 of
sensitivity, leading to 0.72 £ 0.082 of AUC. Due to across-center
imaging variability, performance in the external INT test set dropped
to 0.62 accuracy with 0.41 sensitivity.

This preliminary yet rigorous assessment brings up the well-known
limitation of radiomic framework as it is currently presented and
exploited in clinical literature [6]. First, high dimensional data call for
massive feature selection approaches which mostly require, as well
as classification models, several and balanced data. Poor repeatability
and reproducibility of the results are indeed due to datasets’ intrinsic
limitations, imbalance and scarsity of data. Unfortunately, such issues
could hardly be overcome: in fact, the number of samples is limited
to the number of cases, few when dealing with rare diseases like
Hodgkin Lymphoma; number of minority class observations is limited
to the number of patients who do not heal and eventually recur, which
is a small percentage over the total patients; moreover, variability
in the reconstruction parameters, acquisition settings and scanners is
given by the lack of standardization of the status quo clinical practice.

For these reasons, the current paradigm of radiomics should
shift towards more complex and unsupervised strategies for patient
stratification and imaging based-risk factor identification. A priori
knowledge, temporal information, data structural similarities and
more informative representation should be exploited for pivoting
a more effective radiomic research. Pertinently, distant supervised
cancer subtyping allows for partially consider all these factors,
overcoming radiomics intrinsic limitation.

C. Across-center reproducibility of Cancer Subtyping Models

1) S2GC on ICH data: Following the pipeline in [4], upon
datasets processing and harmonization, the cancer subtyping model
(S2GC [20]) was applied on ICH dataset in order to reproduce the
results. Loss function was optimized for estimating the patient-to-
patient similarity graph, prompt to be clustered into risk classes of
patients according to spectral clustering algorithm. Clustering was
performed on eigenvectors of the graph laplacian matrix, normalized
with symmetric method [24]. As pointed out in our previous paper,
such procedure brings to the slicing of patients’ diseases into can-
cer imaging phenotypes with different prognosis, exploiting all the
variability of the data. Hyper-parameters were set as in [4] and two
groups were identified and tested for significance at Kaplan-Meier
estimates (p-value of the Log Rank test << 0.01). According to
Hazard Ratio (0.2176, IC: 0.1202-0.3937), group 1 was characterized
by a better prognosis with almost no recurrence experienced, while
group 2 contained patients with poorer prognosis, who were instead
more likely to recur. Clinical and radiomic features were used for
interpreting the clusters’ risks, emerging as significant in several
cases. To compare average imaging description of one cluster with
respect to the other, two sided non parametric tests on averages
(Mann-Whitney U tests) were used and p-values lower than the
threshold of 0.05 were considered significant.

2) S2GC on INT data: For comparison and qualitative assess-
ment purposes, the very same procedure was applied to and optimized
also in INT dataset. Similarly to ICH dataset, two significant groups



(p-value of the Log Rank test << 0.01) were obtained and tested as
significantly different. In particular, as emerged from Hazard Ratio
(0.0627, 1C: 0.0321-0.1223), group 1 featured those patients with a
better prognosis with no events of recurrence, while group 2 was
populated by patients with poorer prognosis and a higher chance
of recurrence. Tests were again performed to evaluate differences
between the two populations and to characterize INT risk stratification
policy. In fact, clustering interpretation was hereby interpreted as
rules for patient slicing, to be compared with the criteria built on
ICH dataset for repeatability purposes.

3) S2GC on ICH+INT data: As an additional level of analysis,
the two datasets have been merged and survival clustering pipeline
was run on the multi-center dataset as to evaluate the significance
of variables irrespectively to the provenience of observations. In fact,
we anticipate that the ICH model brought to high stratification power
of radiomic features while INT model did not. For such reason we
have investigated whether such power holds when noising the ICH
one-center data with data coming from different populations, i.e.,
INT center. Similarly to ICH and INT cases, the survival clustering
procedure on the multi-center dataset resulted successful and the
Kaplan-Meier curves of patients belonging to the two obtained risk
classes were tested different (p-value of the Log Rank test << 0.01).
From Hazard Ratio assessment (0.1117, IC: 0.0732-0.1705), it was
clear how group 1 was again related to non recurrent patients and
group 2 to recurrent and bad prognosis cases. Non parametric tests on
radiomic variables were performed to compare the two populations,
resulting significant - as we will see in Section IV-A - in almost all
cases.

The three models have brought to significant and comparable
results and each have led to the stratification of the populations
into two - severe and mild - risk classes. Results describing shared
features between the study cases could thus be discussed, assessing
the significance of radiomics discrimination power.

D. Transfer Model Building and Evaluation

Beside ad hoc model comparison, generalization ability of S2GC
stratification method was assessed with interpretable predictive
model. ICH decision rules have been extracted from III-C.1 stratifica-
tion and a transfer model was implemented, exploiting the borrowing
strength strategy. Specifically, a Random Forest of 100 trees, cross-
validated with Out-of-Bag prediction, with a minimum leaf size
of 5 and empirical prior was used for rule extraction. The model
was trained on ICH dataset, where those features which resulted
significant at univariate testing (Mann-Whitney U tests) on stratified
populations have been considered. Performance are discussed in
Section IV-B. Upon model training, it was applied on INT dataset and
performance has been evaluated in terms of prognosis stratification
power. A new set of labels resulted from rule transferring, leading
to grouping patients in two risk classes, ideally with poorer and
milder prognosis respectively. Kaplan-Meier estimates of survival
curves of the groups were compared with the Log Rank test and
stratification power of radiomics was assessed in terms of non
parametric univariate test significance (if Mann-Whitney U test p-
value < 0.05). The resulting stratification was compared with the ad
hoc INT cancer subtyping model described in Section III-C.2 and
improvements were evaluated (Section IV-C).

Finally, the interpretation of rule extraction step was performed ac-
cording to the explainability analysis of the Random Forest model as
to highlight the role of specific clinical and radiomic variables as risk
factors. In addition to feature importance assessment, common rule
set was in fact estimated from the Random Forest model according to
[25] [26]. Every rule of every tree split was annotated and kept when

common enough in the forest to be relevant to the model; similar
rules were than post-treated and aggregated as to define a stable,
interpretable and unique set of elementary rules pivoting the model
decisions. The algorithm was first trained in a cross-validation fashion
in order to estimate the optimal hyperparameter p0 used to select
the number of relevant rules to extract. Specifically, pO represents
the proportion of forest’s trees in which a selected rule must appear
in order to be defined as relevant, and is estimated according to a
performance-stability trade-off. The algorithm was then run on the
trained Random Forest to retrieve the k most relevant decision rules.
Section IV-D details the findings.

IV. RESULTS
A. Agreement analysis between S2GC models

The significance of clinical and radiomic variables was first com-
pared in the two single center datasets (models III-C.1 and III-C.2),
leading to some observations. First, ICH stratification was appre-
ciably driven by radiomic tumor characterization, as the majority
of features resulted significant at the slicing. On contrary, although
INT patients stratification was successfully carried out, very few
variables emerged as significant at testing. As a matter of facts, the
pseudo — R? statistics of the logistic regression between radiomic
variables (independent variables) and stratification labels (dependent
variable, namely group 1 and group 2) was 65% (p-value << 0.01)
in the ICH model and 46% (p-value = 0.045) in the INT model.
Indeed, the pseudo— R? is the ratio between the log-likelihood of the
intercept model (as a total sum of squares) and the log-likelihood of
the full model (as the sum of squared errors), suggesting the level of
improvement over the intercept model offered by the full model [27].
In other words, the pseudo—R2 metrics is here considered as a proxy
for the variability of the estimated graph explained by the differences
in the radiomic features with respect to the total estimation model.
The low percentage of the contribution of radiomics in the model
suggests how stratification on INT data has been mainly dragged by
minimization of recurrence time periods in the Cox related part of
the loss function, whereas radiomic variables played a limited role.
Of course, this might not be acceptable when tackling the problem
from a predictive point of view, aiming to extract general information
that could inform clinical practice in a perspective way. We remind
that INT dataset included PET scans performed at INT and other
centers, with different acquisition procedures. Consequently, INT
situation represents the perfect case study for transfer knowledge, as
stratification criteria could be guided and enriched with information
coming from ICH rules, exploiting the borrowing strength strategy
[28]. Additionally, comparing radiomic variable significance across
models enables to acknowledge variables which are agnostic with
respect to imaging acquisition settings and texture extraction param-
eters. In the multi-center model (III-C.3), these differences in the
radiomic predictive power appeared to settle, suggesting the strength
of higher variability. In fact, the pseudo—R2 statistics of the logistic
regression between radiomic variables (independent variables) and
stratification labels (dependent variable) was 70% (p-value << 0.01),
testifying the preponderant role of radiomics.

A complete list of Mann-Whitney U tests p-values for each
radiomic feature in the three datasets can be found in Appendix
III. Few variables (5/61) appeared to be significant in both one-
center datasets, holding their significance when applying the whole
framework in the multi-center dataset of patients. This was expected
as intrinsic limitations of radiomics often leads to discordant results
and lack of literature consensus [29].

The majority of features that resulted significant in the ICH (27/45)
model but not in the INT one were strong enough to remain signif-
icant in the third multi-center model. Such variables were equally
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Fig. 2. Random Forest model explainability analysis: feature impor-
tance plot with descending order.

found among first order, second order and higher order features, as
well as qualitative disease information like volume and counts of
nodal and extranodal lesions. The remaining features significant in
the ICH model (15/45) did not hold significance in the multi-center
dataset. Of course, variables that were not significant in ICH dataset
nor in INT dataset remained not significant in the multi-center case
(14/61). Only one variable - the dispersion of nodal lesions - resulted
significant in INT model and not in ICH model yet was not strong
enough to remain significant in the multi-center model.

B. Rule Extraction Performance

The cross-validated Random Forest was successfully trained on
ICH dataset. As expected from previous consideration, the model
was able to capture all the variability entailed in the data and
exploit such information to classify observations into predefined
risk classes. In fact, radiomics played a fundamental role in the
stratification algorithm of S2GC, showing again predictive power
under the classification perspective. Beside accuracy, which resulted
to be 97.66%, other more relevant performance evaluation criteria
was found to be widely satisfactory: sensitivity and specificity were
respectively 98.82% and 95.34%, while F-measure was 98.24%. We
remark that such performance values reveals a model highly overfit-
ting the training data, with the clear aim of obtaining an interpretable
and predictive mirror of the retrospective cancer subtyping model.
Contrary to common ML best practice, we here want to discard
generability to appreciate the peculiar intrinsic structure of the model
we are mimicking. Also the Log Rank test on the Kaplan-Meier
curves was significant (p-value of the Log Rank test < 0.01), such
that the splitting into two groups of different prognosis phenotypes
devised a group with fast-relapsing patients and one with long- or
non-relapsing patients (HR: 0.2230, IC: 0.1227-0.4054). Being fitting
and modeling robust enough to be intended as a subtyping Rule
Extractor, the Random Forest model is worth to be applied and tested
in the INT scenario, and further analyzed in order to explainably
define such rules.

C. Transferred Stratification Performance

The stratification rules were thus transferred to INT dataset ap-
plying the Random Forest model to it. The resulting stratification
brought out two risk classes of patients having characteristics of
imaging phenotypes similar to ICH risk groups, from which we

borrowed the information about radiomic variability and cutoffs. The
stratification based on information transfer was quite similar to the
one obtained with the ad hoc cancer subtyping algorithm as seen
in Section III-C.2. In fact, the concordance index between the two
reached 0.6. We remind that the S2GC approach on INT did lead
to a significant patients’ prognosis stratification, but no quantitative
radiomic information could be elected as relevant risk factors on
which to eventually rely the prognosis, because of non significance of
tests. Only qualitative disease information and primarily time to event
information accounted for the majority of the model stratification
power. The fact that the purely radiomics-based classification model
showed concordance and coherence with the ground truth strengthens
the reliability of the transferring. Generally speaking, models involv-
ing radiomics, as any other data analysis model, benefit from high
dimensional datasets. However, this numerosity often comes at the
expense of informative variability from which we can extract valuable
knowledge. Particular attention needs in fact to be payed when trading
off between data dimentionality and consistent inclusion criteria. In
the context of our analysis, INT dataset did contain information,
although it was masked by radiomic well-known constrains and could
not be appreciated. ICH-informed model behaved as a magnifying
glass and enabled the extraction of radiomic-based knowledge from
noisy data.

The two groups resulting from the transferred stratification model
were compared in terms of Kaplan-Meier estimates of survival curves,
leading to a significant discrimination between the better prognosis
and the poorer prognosis class (p-value = 0.0105), as highlighted by
the Hazard Ratio (0.2496 (0.1240-0.5026)) and displayed in Figure 3.
Irrespectively to the ad hoc procedure that brought to the significance
of only 6 variables (none of whose was purely related to radiomics),
the transfer stratification model lead to 38 significant variables,
including conventional, first- and second-order texture statistics. It
follows coherently that the pseudo — R? statistics of the logistic
regression between radiomic variables (independent variables) and
stratification labels (dependent variable) resulted to be 63% (p-value
< 0.01), attesting the role played by radiomics.

D. Rule Extraction Explainability

As to explain and interpret the rules extracted by the transfer
model, we first may want to look at feature importance plot. As
displayed in Figure 2, the ranking of the Random Forest predictors
has been computed basing on their importance in the model and the
top relevant ones were plotted. We selected the first variables which
presented significantly higher absolute importance, leading to a total
of 18 considered features. The majority of them (13/18) were found
among the variables that showed to be significant at S2GC model in
both one-center datasets or significant in ICH dataset and holding in
multi-center dataset. However, few variables (5/18) emerged even if
they did not hold significance from ICH to multi-center datasets. Of
interest, the most important factor that dragged the classification was
radiotherapy, followed by conventional and second order radiomic
features. Volume and dispersion of lesions were relevant as well.
Intuitively, the most relevant features were the ones driving the
decisions throughout the trees of the forests.

In line with the importance plot, different clinical and radiomic
features were leveraged by common Random Forest tree splits.
The list of such rules can be assessed in Figure 4. Among the
extracted rules, radiotherapy was the first key factor to be considered
when determining the recurrence outcome of patients: absence of
radiotherapy treatment lead to the higher probability of incurring into
tumor relapsing (Pr = 0.909). Although such finding was already
known in clinical practice - in fact, more severe patients are often
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Fig. 3. National Cancer Institute patients’ stratification into risk classes with different survival estimates according to Random Forest model.

treated with both chemotherapy and radiotherapy - it is worth to
notice that it was frequently observed together with dispersion and
radiomic variables. The absence of radiotherapy and values of lesions
dispersion higher than 67% of the sample (2 = —0.431) brought
to higher probability, i.e., certainty, of recurrence (Pr = 0.979).
Moreover, when considered together with values of GLRLM Run
Length Non-Uniformity higher than 77% of the sample (z = —0.744),
the probability of recurrence of patients without radiotherapy rise
to Pr = 0.959. It follows that clinical information about patients
demography and therapeutic pathways are solid markers for patients
disease progression, yet their power is deeply increased when taking
the imaging and heterogeneity information into account as well.
The other relevant rules also testify the same point. In fact,
other few clinical variables were fundamental for prognosis, i.e., the
presence of B symptoms, related to higher probability of recurrence
(Pr = 0.869), the volume of the patient’s smallest lesion, leading to
poorer outcomes (Pr = 0.81) when lower than 81% of the sample
(z = —0.0889) and the volume of the patient’s biggest lesion, leading
to poorer outcomes (Pr = 0.779) when higher of the 66% of the
sample (z = —0.439). Indeed, huge differences in lesions’ volume
within the same patients are proxies of intra-patient heterogeneity.
All the other decision splits account for radiomic descriptors values,
in particular for lesions’ heterogeneity measures. Conventional SUV
Peak, GLZLM Zone Length Non-Uniformity, GLCM Correlation,
GLZLM Long Zone High Gray-level Emphasis and GLRLM Gray
Level Non-Uniformity lead to worse tumor progression outcomes
when assume high values with respect to the population distribution
(Pr = 0.779 with z = —1.05, Pr = 0.792 with z = —0.326,
Pr = 0.779 with z = —0.482, Pr = 0.897 with z = —0.0908,
Pr = 0.843 with z = —0.158 respectively). Interestingly, higher
probabilities were found in correspondence of rules exploiting higher

order radiomic features, supporting the prognostic value of radiomics.

V. DISCUSSION

Survival- or recurrence-specific supervised graph clustering has
found evidence of being a reliable tool for patients stratification
and tumor evolution prediction. Although it exploits retrospective
cancer data to perform insightful cancer subtyping, it could help in
defining decision rules and imaging-based guidelines in a perspective
sense, as far as imaging characteristics are used to build the model.
In this work, we intended to address this matter and provide a
proof of concept of the potentialities of such approach. We built
the retrospective model on a very rich and informative dataset of
one hospital and transferred the deduced knowledge to a smaller and
noisy dataset of a different hospital. Of note, in previous literature
such transferring has been shown often unreliable and unstable due
to the limitation of radiomics, which is known to be dependent on
operators, i.e., the segmentation of regions of interest, acquisition
settings, scanner characteristics and other independent factors [30]
[31]. Nevertheless, our results demonstrated the possibility of singling
out agnostic features that remain robust throughout different centers
and radiomics inconsistencies. Interestingly, variables that showed
a significance in all three datasets were mainly related to clinical
and qualitative information about the disease, i.e., the stage, the B
symptoms, the extranodal disease status, radiotherapy and dispersion
of lesions. Such disease information thus appeared agnostic with
respect to the center of provenience and could be acknowledged as
robust in a perspective study. We recall that dispersion is the extent
to which the distribution of lesions within a patient is stretched
or squeezed. Here, this variability is computed as the patient-wise
spreading of lesions in the radiomics space, i.e., the average distance
between radiomic variables of peer lesions. Of note, the dispersion



COMMON RULES SET

RADIOTHERAPY AND RADIOMICS

if Radiotherapy = 0 then Pr = 0.909 (n=55)
if Radiotherapy = 1 then Pr = 0.479 (n=73)

if Radiotherapy = 0 & Dispersion all >=-0.431* then Pr = 0.979 (n=47)
if Radiotherapy = 1 & Dispersion all < -0.431* then Pr = 0.481 (n=81)

if Radiotherapy = 0 & GLRLM RLNU >= -0.744* then Pr = 0.959 (n=49)
if Radiotherapy = 1 & GLRLM RLNU < -0.744* then Pr = 0.481 (n=79)

CLINICAL VARIABLES

if B Symptoms = 0 then Pr = 0.478 (n=67)

if B Symptoms = 1 then Pr = 0.869 (n=61)

if Volume - min < -0.0889* then Pr = 0.81 (n=63)

if Volume - min >= -0.0889* then Pr = 0.523 (n=65)

if Volume - max < -0.439* then Pr = 0.49 (n=51)
if Volume - max >= -0.439* then Pr = 0.779 (n=77)

RADIOMICS

if GLZLM ZLNU < -0.326* then Pr = 0.471 (n=51)
if GLZLM ZLNU >= -0.326* then Pr = 0.792 (n=77)

if GLCM Correlation < -0.482* then Pr = 0.49 (n=51)
if GLCM Correlation >= -0.482* then Pr = 0.779 (n=77)

if GLZLM LZHGE < -0.0908* then Pr = 0.562 (n=89)
if GLZLM LZHGE >= -0.0908* then Pr = 0.897 (n=39)

if CONVENTIONAL SUVpeak < -1.05* then Pr = 0.49 (n=51)
if CONVENTIONAL SUVpeak >= -1.05* then Pr = 0.779 (n=77)

if GLRLM GLNU < -0.158* then Pr = 0.545 (n=77)
if GLRLM GLNU >= -0.158* then Pr = 0.843 (n=51)

Fig. 4. Verbose common rules set divided into radiotherapy informed by
radiomics features, clinical features and stand alone radiomic features.
(*) thresholds refer to z-standardized variable values.

was robust and agnostic with respect to the acquisition settings as it
aggregates the imaging information in a standardized way [32] [33].

The strategy of borrowing the strength and knowledge transfer
from one set of data to a less informative one has been successful
in devising groups of at-different-risk patients with significantly
different time-to-recurrence curves. As Hodgkin Lymphoma, like
several other tumor diseases, is a rare condition, this approach could
support decisions in those cases where only few observations are
available and the aggregated information coming from other sources
may aid the evaluation/assessment.

Of interest, among risk factors, both clinical and imaging variables
have emerged as relevant. Indeed, rules have, on one hand, confirmed
the prognostic power of known qualitative factors as tumor volume,
radiotherapy and the presence of B symptoms; on the other hand,
tumor heterogeneity measures have appeared to consistently aid the
recurrence probability estimation. In fact, a number of radiomic
features - conventional, first-, second- and higher order features -
significantly rose the precision of clinical variables in estimating
the probability of relapsing. Several of them were exploited in
the decision making, however we showed and discussed the more
common ones among the trees splits of the Random Forest.

The mean intensity value in the higher intensity 1 mL volume
sphere, i.e., Conventional SUV Peak, was found higher in recurrent
patients. The maximum uptake of PET radiotracer is indeed a sign
of more aggressive diseases [34], [35]. The linear dependency of
grey-levels in Grey Level Co-occurrence Matrix, i.e., GLCM Corre-
lation, appeared slightly higher in worse prognosis group, meaning

that lower-order heterogeneity measures do contribute to define the
intra-lesion variability of tumor phenotypes [36]. Such variability
comes often with and is underlined by higher-order heterogeneity
assessments which strengthen the characterization of lesions. Gray-
Level Non-Uniformity for runs, i.e., GLRLM GLNU, and Run Length
Non-Uniformity, i.e., GLRLM RLNU, represent the non-uniformity
of the grey-levels or the length of the homogeneous runs. Higher
values lead to higher probability of recurrence since, as expected,
intrinsic variability of lesions’ uptake is related to heterogeneous
thus severer tumors [37]. Analogously, the Gray-Level Zone Length
Non-Uniformity, that is the non-uniformity of the length of the
homogeneous zones, was again found higher in recurrent patients.
The less uniform the homogeneous runs, the less uniform also the
homogeneous zone, which are the 3D extensions of runs [21]. This
means that more aggressive lesions, even if heterogeneous, do not
exhibit all grey levels with equal proportions, rather they show some
gray values preferably than others. Specifically, high values of grey
levels were found more often in worse lesions and cancers with
respect to low values. In fact, Long-Zone High Gray-level Emphasis
represents the distribution of the long homogeneous zones with high
grey-levels and contributed positively in defining relapsing patients
among decision rules. In line with this findings, recent literature
has sharpened its focus towards repeatability and reproducibility
of radiomics in multi-center studies [38]. Although sensitive to all
above-mentioned acquisition criteria, far from a few lower- and
higher-order radiomic features appeared to be robust and agnostic.
Beside quantitative radiomics-based measures of intra-lesions vari-
ability, intra-patient variability assessment was decisive as well. The
patient-wise dispersion of lesions’ radiomic profiles increased the
reliability of recurrence probability estimation, being affected by its
value. Multi-lesions tumors are known to exhibit heterogeneity over
lesions. They entail biological, both genetic and epigenetic, aberration
that make sub-populations of cells evolve and acquire mutations,
conferring resistance to specific therapies and leading to treatments’
inefficacy and relapsing [39] [40]. A tumor evolves changing its
molecular characterization over time while spreads throughout the
patient’s body such that metastases have a molecular fingerprint
different from primary tumor. Although this heterogeneity has only
been explored and evaluated in terms of biological characterization,
texture-based comparison among lesions may represent the non-
invasive and easy-to-retrieve counterpart of the same information.
In this sense, lesions-wise radiomic features’ dispersion could be a
reliable index for reassuming intra-patient heterogeneity [32], [33].
Although promising, the proposed approach positions itself as a
proof of concept and should tackle some current limitations that
may prevent the immediate translation into a perspective clinical
study. It would be desirable to collect data from many different
centers/hospital to harmonize and integrate available information
and to build more informative and agnostic decision models. As
highly anonymous and aggregated data are needed, this step might
not represent a bottleneck from the privacy point of view, which
is often an issue when sharing medical data. Collected datasets
could thus update the current decision rules with an online-updating
framework as new observations become gradually available, in a
federated fashion. Larger graphs could be estimated from a higher
number of patients and more robust rules could be derived from
the procedure. In this direction, an additional point of improvement
could be acknowledged: a grouping strategy would be desirable
to exploit the hierarchical nature of a multi-center dataset as to
automatically consider the nesting levels in the graph estimation
phase of the algorithm. Accordingly, loss function could be revised
and the grouping term could be appended and minimized.
Ultimately, alternative patient representation implementation could
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Fig. 5. Cumulative disease-free-survival curves in a) ICH dataset and b) INT dataset. In both cases, four types of patients are considered in the
box, namely i) not having bone lesions and not undergoing radiotherapy, ii) not having bone lesions and undergoing radiotherapy, iii) having bone
lesions and not undergoing radiotherapy and vi) having bone lesions and undergoing radiotherapy. Each group is divided into subjects presenting

and not presenting B symptoms.

be implemented and properly compared. Our approach currently
relies on a weighting strategy between patient’s lesions as to end
up with an easy-to-handle vector representation where the dispersion
and the counting indexes account for the multi-level structure of
samples. On one hand, the employed wide data format - as the
transformation of the long data format - has been shown to entail
an exhaustive summary of the patient relevant information that
let exploit the reliability of the matrix data. Of course, additional
information, including other source of data such as genomics and
blood analysis, could be included in the vector to better describe the
cancer assessment from a multi-omic point of view. On the other
hand, lesions’ observations could be re-arranged in an object-based
representation of the patients with higher complexity as to manipulate
the least the raw data.

VI. CONCLUSIONS

In this work, we exploited recurrence-specific graph clustering
model for Hodgkin Lymphoma subtyping. The model was applied
and evaluated in three different settings, two one-center datasets and
one multi-center dataset. We quantified and compared findings when
considering diverse populations, acquisition protocols and operator-
variability, remarking the limitations of a retrospective approach. In
order to extract relevant insights in a perspective way, we employed
a interpretable predictive model in order to generalize and transfer
the deduced knowledge from a more informative setting to a less
valuable one. This work provided a preliminary yet robust evidence
of the reliability of recurrence-specific supervised graph clustering
approach in properly stratifying cancer subtypes in a perspective way.

APPENDIX |
DESCRIPTIVE SURVIVAL STATISTICS

An exploratory survival analysis has been conducted on clinical
information of both datasets, i.e. ICH and INT. Specifically, collected
data included the annotation of clinical-relevant risk factors, such
as lesions location in bone or extra nodal tissue and the onset of
B symptoms significant to the prognosis and staging of the disease
(namely fever, drenching night sweats and heavy body weight loss).

We explored the influence of these factors in the disease-free-survival
probability and found consistent results in the two centers.

In Figures 5, we represented the curves of cumulative events
in different groups of patients, stratified according to clinical risk
factors: ICH patients and INT patients are displayed respectively
in plot a), on the left, and plot b), on the right. In both plots, the
upper left box i) shows patients who did not exhibit bone lesions and
did not undergo radiotherapy, differentiated among who presented
(orange line) and not presented B (red line) symptoms; the upper
right box ii) presents those subjects not exhibiting bone disease who
underwent radiotherapy, divided into groups with (green) and without
(light green) B symptoms; the lower left box iii) features patients with
bone disease, no radiotherapy treatment, who did (blue) or did not
(light blue) manifest B symptoms; finally, lower right box iv) presents
groups with (pink) and without (purple) B symptoms who had bone
disease and were treated with radiotherapy.

In both centers, patients who underwent also radiotherapy were
less likely to recur with respect to patients who were treated with
chemotherapy only. Of course, even though radiotherapy appeared to
be a preventing factor from recurrence, disease-free-survival probabil-
ity was also dependent on the stage of the tumor and the health status
of the subjects. Patients with bone lesions seemed to not have worse
prognosis in matter of recurrence while patients with B symptoms
exhibited in every of the four cases a higher probability to recur and
thus a poorer prognosis.

APPENDIX Il
FEATURE SELECTION IN ML METHODS

In Figure 6, the flow of the feature selection process is display.
We first carried out a correlation-based skimming of the radiomic
variables. According to pair-wise correlation coefficients, 7/45 fea-
tures did not correlate with any particular feature while the remaining
38/45 features formed 8 uncorrelated groups of redundant variables
(colorized feature sets in Figure 6). Only one feature per group
(highlighted in bold) was selected according to domain knowledge,
robustness and matrix frequency, as to scale back the number of
covariates. Additionally, GLCM Entropy log2 was removed as to
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Fig. 6. Patient representation and feature selection process of ML-based model: a correlation criterion was used to select uncorrelated features;
personal information, disease information and basic statistics of non-redundant radiomic features formed the patient representation. The grey box
contains features robust at univariate selection and red box the ones robust at multivariate selection.

TABLE V
DISCRIMINATION POWER OF RADIOMIC VARIABLES IN STRATIFYING LOW-RISK AND HIGH-RISK PATIENTS IN THE THREE DATASETS (ICH, INT,
MULTI-CENTER)

Variables P-values on P-values on  P-values on Variables P-values on P-values on  P-values on
ICH dataset INT dataset multi-center dataset ICH dataset INT dataset multi-center dataset
Stage 0.0098 ** 0.0026 ** 0.0000 *** GLCM Energy 0.1700 0.8574 0.8858
Sex 0.3503 0.3869 0.4478 GLCM Contrast 0.0328 * 0.2954 0.0612 .
Age 0.9176 0.1265 0.2906 GLCM Correlation 0.0099 ** 0.8408 0.0935 .
B Symptoms 0.0000 *** 0.0014 ** 0.0000 *** GLCM Entropy logl0 | 0.0480 * 0.6268 0.3539
Extranodal disease 0.0111 * 0.0753 . 0.0002 *#* GLCM Entropy log2 0.0480 * 0.6268 0.3539
Bone disease 0.1767 0.6932 0.6338 GLCM Dissimilarity 0.0546 . 0.3861 0.1052
Radiotherapy 0.0000 *** 0.0000 = 0.0000 *** GLRLM SRE 0.2018 0.9494 0.3490
# nodal lesions 0.0547 . 0.1078 0.0288 * GLRLM LRE 0.1700 0.8243 0.3466
# extranodal lesions 0.0032 ** 0.3415 0.0005 *#* GLRLM LGRE 0.0882 . 0.3690 0.1795
Dispersion nodal 0.1226 0.0359 * 0.2131 GLRLM HGRE 0.0086 ** 0.3309 0.0503 .
Dispersion extra 0.0045 ** 0.8894 0.0008 *** GLRLM SRLGE 0.0836 . 0.3578 0.1689
Dispersion all 0.0047 ** 0.0557 . 0.0046 ** GLRLM SRHGE 0.0092 ** 0.3309 0.0532 .
Volume mean 0.1214 0.4658 0.0388 * GLRLM LRLGE 0.1087 0.5191 0.2339
Volume std 0.0019 ** 0.1662 0.0025 ** GLRLM LRHGE 0.0094 ** 0.2857 0.0535 .
Volume min 0.0010 ** 0.1933 0.0064 ** GLRLM GLNU 0.0087 ** 0.2537 0.0481 *
Volume max 0.0003 *** 0.0970 . 0.0003 *** GLRLM RLNU 0.0001 *** 0.1153 0.0040 **
Conventional SUVmin 0.0123 * 0.3523 0.1052 GLRLM RP 0.2127 0.9916 0.3442
Conventional SUVmean 0.0155 * 0.3204 0.0632 * NGLDM Coarseness 0.0043 ** 0.1361 0.0978 .
Conventional SUVstd 0.0048 ** 0.3634 0.0245 * NGLDM Contrast 0.1931 0.3523 0.2105
Conventional SUVmax 0.0021 ** 0.2857 0.0157 * NGLDM Busyness 0.1965 0.6957 0.4669
Conventional SUVpeak 0.0002 *3#* 0.4097 0.0353 * GLZLM SZE 0.0074 #* 0.4854 0.0383 *
Conventional TLG (mL) 0.0049 ** 0.3634 0.0173 * GLZLM LZE 0.2439 0.7193 0.3948
HISTO Skewness 0.0067 ** 0.7998 0.2062 GLZLM LGZE 0.0533 . 0.3523 0.1363
HISTO Kurtosis 0.0463 * 0.8161 0.1032 GLZLM HGZE 0.0058 ** 0.2905 0.0423 *
HISTO ExcessKurtosis 0.0463 * 0.8161 0.1032 GLZLM SZLGE 0.0521 . 0.2162 0.1057
HISTO Entropy logl10 0.0185 * 0.6419 0.0707 . GLZLM SZHGE 0.0044 ** 0.2954 0.0360 *
HISTO Entropy log2 0.0185 * 0.6419 0.0707 . GLZLM LZLGE 0.8165 0.9242 0.9706
HISTO Energy Uniformity | 0.0509 . 0.7036 0.1826 GLZLM LZHGE 0.0007 0.1476 0.0099 **
SHAPE Volume (mL) 0.0403 * 0.4658 0.0347 * GLZLM GLNU 0.0036 ** 0.1254 0.0211 *
GLCM Homogeneity 0.1327 0.6495 0.2376 GLZLM ZILNU 0.0001 == 0.3309 0.0023 **
GLZLM ZP 0.2358 0.6343 0.1873

reduce the Variance Inflation Factors. Beside radiomic features, exhaustively represent the patients, the patient-wise distributions of
personal and qualitative disease information were considered. As to  uncorrelated radiomic features have been considered. In fact, each



patient had a variable number of lesions with corresponding radiomic
description. As to consider the variability within the patient, the
mean value, the standard deviation, the minimum value and the
maximum value of each radiomic variable have been computed per
each subject. In this way, the vector based patient representation is
composed by 6 patient-related covariates, 6 disease-related covariates,
56 imaging-related covariates, for a total of 68 covariates. These
features were tested to be relevant in the stratification of patients
through different methods: univariate selection included ANOVA,
Pearson Correlation, Spearman Correlation, Mutual Information and
Univariate Logit while multivariate selection included wrapper meth-
ods (Forward Selection, Backward Selection, Bidirectional Selection
and Recursive Feature Elimination) and penalized logistics (Ridge
Regression, LASSO and Elastic Net). Variables in the grey box are
the ones that survived at univariate reduction phase (being significant
at 4/5 methods). Variables in the red box are the ones that hold
their significance at multivariate reduction phase (being robust at 5/7
techniques).

APPENDIX Il
DISCRIMINATION POWER OF RADIOMIC VARIABLES

In Table V, we list the specification of the Mann-Whitney U tests
of radiomic variables in patient stratification. For each of the three
dataset - namely ICH, INT and multi-center datasets - we display the
p-values of the univariate tests performed on every radiomic variable.
Significance is marked with a “” if 0.05 < p — value < 0.1, “*” if
0.01 < p —wvalue < 0.05, “**” if 0.001 < p — value < 0.01 and
cak if p — value < 0.001.

Stage, B Symptoms, Extranodal disease, Radiotherapy, Dispersion
of all lesions and Volume (lesions’ maximum value) were significant
in all datasets. 45/65 features were significant in ICH dataset, 7/65 in
INT dataset and 35/65 in multi-center dataset. 13 features were not
significant in any of the datasets, including Sex, Age and 11 radiomic
features. 33 features were significant both in ICH dataset and multi-
center dataset.
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