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Abstract

Heart failure (HF) is one of the main causes of morbidity, hospitalization

and death in the western world and the economic burden associated with HF

management is relevant and expected to increase in the future. We consider

hospitalization data for heart failure in the most populated Italian Region, Lom-

bardia. Data were extracted from the administrative data warehouse of the

regional healthcare system. The main clinical outcome of interest is time to

death and research focus is on investigating how recurrent hospitalizations af-

fect the time to event. The main contribution of the paper is to develop a joint

model for gap times between two consecutive hospitalizations and survival time.

The probability models for the gap times and for the survival outcome share a

common patient specific frailty term. Using a Bayesian nonparametric prior as

the random effects distribution accounts for patient heterogeneity in recurrent

event trajectories. Moreover, the joint model allows for dependent censoring of

gap times by death or administrative reasons and for the correlations between

different gap times for the same individual. It is straightforward to include co-

variates in the survival and/or recurrence process through the specification of
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appropriate regression terms. Posterior inference is performed through Markov

chain Monte Carlo methods.

AFT model, Dirichlet process mixtures, frailty, survival analysis, waiting times.

1 Introduction

Recurrent event data arise in different fields of application and typical examples include

engineering product testing and reliability analysis of repairable systems in technology,

recurrent infections and hospitalizations in medicine. In this article we focus on medical

applications. In this context it is typical to have observations on a large number of

individuals, each of them presenting a small number of occurrences of the clinical event

of interest. In many applications, a terminating event such as death can occur during

the follow-up period precluding further occurrence of the recurrent events. When

recurrent event processes are terminated by another absorbing event, data are usually

referred to as recurrent events data with termination and relevant information may

include patients’ survival times. The termination (often death) time may be dependent

on the recurrent event history and it is essential to account for dependence between

the recurrent and terminal event processes; for example, Schmoor et al. (2013) and

Conlon et al. (2014) use cancer relapses to predict the risk of death.

The main contribution of this work is to develop a joint model for waiting times

between recurrent events and survival outcome within a Bayesian nonparametric frame-

work. Particular attention is devoted to the clustering of subjects according to their

history of recurrent events and termination and the ability of assessing the relationship

between event occurrence, survival and potential explanatory factors. We treat the

time-to-event as the main clinical outcome of interest and we model the relationship

between survival times and recurrence of events. This is an important feature of our

approach as several recurrences (in our case re-hospitalizations) are often related to risk

of death and are likely to affect it. The strength of the association between recurrences

and terminal event may then be interpreted in terms of patients’ risk profiling, and a

better understanding of how recurrences affect survival may lead to a more effective

planning of healthcare resources. In this sense, the terminal event can be considered

as informative censoring.

To better accommodate for subject-specific variability in the recurrent event trajec-

tories, we specify a random effect distribution based on the Dirichlet Process Mixture
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prior. This choice allows for extra flexibility, over-dispersion and clustering of the ob-

servations and overcomes the often too restrictive assumptions underlying a parametric

distribution. Similarly to Huang and Liu (2007), we model the time dependency be-

tween recurrent events assuming that, conditional to subject-specific random effects

parameters, the gap (or waiting) times between such events are independent. We

then assume that the conditional distribution of the survival time for each individual

depends on the same random effect parameters. In other words both conditional dis-

tributions, i.e., the one of the j-th gap times and the one of the survival time, share a

common subject-specific frailty, that is a subject-specific random effect on the log scale.

The joint model takes into account the dependent “censoring” of gap times by death,

and the dependency between different gap times of the same patient. However, unlike

Huang and Liu (2007), we model each event time distribution as a regression model,

and our approach is Bayesian. The shared frailty parameters are given a Bayesian

nonparametric prior, in particular they are a sample from a Dirichlet process (DP)

(Ferguson, 1973). It is well known that the DP is almost surely discrete, and that if

G is a DP(M,G0) with total mass parameter M and baseline distribution G0, then G

can be represented as (Sethuraman, 1994)

G(·) =
∑
h≥1

whδθh(·) (1)

where δθ is a point-mass at θ, the weights follow a stick-breaking process, wh =

Vh
∏

j<h(1−Vj), with Vh
iid∼ Beta(1,M), and the atoms {θh}h≥1 are such that θh

iid∼ G0.

Due to the discreteness of the DP, the prior induces clustering of the subjects in the

sample based on the unique values of the random effects parameters, where the number

K of clusters is unknown and learnt from the data. Brown and Ibrahim (2003) use a

similar strategy for specifying a joint model for survival and longitudinal outcome to

allow for extra flexibility and robustness in the model. Ouyang et al. (2013) develop

statistical methods for joint modelling of recurrent event counts and survival time for

heart transplantation patients within a Bayesian framework, where the emphasis is on

modelling the risk of death and the risks of rejections. See Sinha et al. (2008) for a de-

tailed review of such approaches. In a frequentist framework, Yu and Liu (2011) model

nonparametric covariate functions in the presence of recurrent events and dependent

termination.

In summary, our strategy consists in specifying a survival regression model for

the time-to-event response and a distribution for the gap times between recurrent
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events. An alternative approach consists in modelling the intensity functions of the

event counts of the recurrent process, and the survival hazard rate. For a discussion

about the relative merits of the two approaches see Cook and Lawless (2007).

Our work is motivated by a real data application involving Congestive Heart Hail-

ure (hereafter HF for sake of simplicity) patients. HF is a chronic disease caused

by many conditions that damage the heart muscle, including coronary artery disease,

heart attack, cardiomyopathy and conditions that overwork the heart (high blood pres-

sure, valve disease, thyroid disease, kidney disease, diabetes or heart defects present

at birth). In addition, HF can occur due to a combination of these diseases. This

morbid illness associated to a very poor prognosis, often leading to death or repeated

hospitalizations, which are both largely burdensome to the patient and the healthcare

system. For instance, it has been estimated that the average cost of a HF-related event

in Lombardia is around 6,000 euros. Despite the efforts to improve the efficiency and

the efficacy of treatments and management, re-hospitalization rates remain persistently

high. Moreover, the ageing of the population and improved survival of cardiac patients

due to modern therapeutic innovations have led to an increasing impact of HF on

healthcare systems all over the western countries. As for many other chronic diseases,

clinical interest lies in both the final outcome (death or survival time) and the dynamics

of the process itself, since it determines the subsequent quality of patients’ life. From

an economic and healthcare planning perspective, there is great interest in strategies

to reduce re-hospitalization for HF. In fact, a better understanding of both death and

non-fatal clinical events would potentially lead to improved prognosis and a better as-

sessment of the impact and costs of the disease by healthcare providers. It is therefore

paramount to develop a comprehensive model for disease management, mortality and

associated clinical event histories, which is also able to account for the significant inter-

individual variability in disease course which is typical of chronic diseases, as well as of

biological events. In our analysis we use episodes of hospitalization for disease related

events (recurrent events), obtained from administrative healthcare data of Lombardia

(one of the administrative divisions of Italy), and we include patients characteristics

to predict risk of death.

In Section 2 we introduce the model, while in Section 3 we describe in details the

application. In Section 4 posterior inference results are presented, then in Section 5 we

assess model performance and goodness of fit and in Section 6 we discuss the proposed

approach in terms of out-of-sample predictive ability. Eventually, in 7 we compare our
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approach to other competing methods. We conclude the paper in Section 8.

2 A joint model for gap times of recurrent events

with termination

We consider data on N individuals. We assume that 0 := Ti0 corresponds to the start

of the event process for individual i and that subject i is observed over the time interval

[0, ζi]. If ni events are observed at times 0 < Ti1 < · · · < Tini
< ζi, let Wij = Tij−Tij−1

for j = 1, . . . , ni denote the waiting times (gap times) between events of subject i.

Let Si denote the survival time of patient i since the start of the corresponding event

process: either the time Si or the censoring time ζi is observed. If Si is observed, then

ζi = Si and Tini
< Si, otherwise Tini

< ζi. In what follows we set Tini+1 > ζi with the

last gap-time Tini+1−Tini
always censored. Let J be the maximum number of observed

repeated events, i.e., J := max
i=1,...,N

ni.

As mentioned in the Introduction, our goal is to jointly model the gap times and

survival time of each subject in the sample. Two approaches are possible. One consists

of introducing an explicit dependence of the survival time on an underlying process, as

for instance in Brown and Ibrahim (2003), who specify a Bayesian nonparametric model

for a longitudinal process whose outcome (i.e., the trajectory) is used as predictor in the

hazard function of the time-to-event. The second strategy consists of assuming that,

conditionally on all the parameters, gap times are independent of each other and are

also independent of the survival time. In this latter case, the shared parameters take

into account the dependent “censoring” of gap times by termination and the correlation

between different gap times for the same subject. Huang and Liu (2007) and Ouyang

et al. (2013) use a common frailty parameter in order to link the two hazard functions

of the waiting times and of the time-to-event. In this paper, we opt for the second

strategy and develop a Bayesian semiparametric approach.

Since the terminal event censors event recurrence, but not vice versa, we need to

assume a semi-competing risks model, i.e., a model taking into account that, when

subjects are at risk of another recurrent event, they are also at risk of the terminal

event; see, for instance Cook and Lawless (2007, Sect. 6.6). More specifically, let Ni(t)

and ∆Ni(t) be the number of recurrent events on the interval [0, t] and [t, t + ∆t),

respectively. We assume Ni(0) = 0 and define Di(t) := 1(t ≤ Si). Let Hi(t) :=

{(Ni(s), Di(s)) : 0 ≤ s < t} be the process history of subject i up to time t. The
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intensity function of the recurrent process is given by

λi(t|Hi(t)) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))

∆t

while the intensity function of the terminal event is

γi(t|Hi(t)) = lim
∆t↓0

P (Si < t+ ∆t|Hi(t), Di(t) = 1)

∆t
.

We assume that

λi(t|Hi(t)) = λi(t|Hi(t), xi(t)) = hi(t− TNi(t−)|xi(t))

γi(t|Hi(t)) = γi(t|Hi(t), xi(0))
(2)

where t− TNi(t−) is the time since the most recent event before t for subject i, xi(t) is

a vector of covariates at time t and hi(·) is the hazard function of gap times Wij (see

below for more modelling assumptions). We introduce dependency among gap times

and between gap times and the terminal event time of the same patient through random

effects. However, in contrast to Huang and Liu (2007), instead of explicitly modeling

the intensities or the hazard of the recurrent event process, we assume an accelerated

failure time model with random effects linking gap and terminal event times.

Specifically, we specify the following hierarchical structure for the log-transformation

of waiting times and survival times, i.e., Yij = log(Wij), j = 1, . . . , ni+1, Ui := log(Si),

i = 1, . . . , N :

Yij|xij,β∗j , αi, σ2
i

ind∼ N (xTijβ
∗
j + αi, σ

2
i ) j = 1, . . . , ni + 1, (3)

Ui|zi,γ, αi, ψ, η2
i ∼ N (zTi γ + ψαi, η

2
i ). (4)

for i = 1, . . . , N . Therefore, (Yi1, . . . , Yini+1) and Ui are conditionally independent for

each i, given the hyper-parameters, as well as the trajectories for different patients.

Here β∗j := (β0,βj)
T = (β01, . . . , β0p, βj1, . . . , βjq)

T is the vector of regression coeffi-

cients, xij is a set of p fixed and q time-varying covariates influencing the gap times,

while γ := (γ1, . . . , γr) and zi denote the vector of regression coefficients and fixed

covariates, respectively, which are potential predictors of the time-to-event. Note that

treatment effects on disease recurrence and survival are not necessarily the same, since,

in general, some therapies may delay disease recurrence but not prolong survival. For

this reason, the covariates zi and the components of xij may be distinct. Observe that

hi(·) = hi(·|xij,β∗j , αi, σ2
i ) in (2) is defined in our model as the hazard of Wij from

the log-normal distribution in (3), while, similarly, γi(·) = γi(·|zi,γ, αi, ψ, η2
i ) is the
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hazard derived from the distribution of Si in (4). The likelihood for subject i, under

independent censoring, is then given by:(
ni∏
j=1

fY (yij|xij,β0,βj, αi, σ
2
i )

)
SY (log(τi − (eyi1 + . . .+ eyini )))

× f 1−νi
U (log τi|zi,γ, αij, η2)SνiU (log τi|zi,γ, αij, η2

i ),

where fY , fU are the densities of the gap and survival times (both Gaussian), re-

spectively, SY , SU denote the corresponding survival functions, τi = min(Si, ζi) and νi

(= Di(ζi)) is the censoring indicator, which is equal to 1 if the survival time is censored

and 0 otherwise. Note that the factor SY (log(τi−(eyi1 + . . .+eyini ))) is the contribution

of the ni + 1-th gap time being censored, i.e., the conditional probability that Wini+1

is larger than τi − (Wi1 + . . . + Wini
), given parameters and past history. As stated

earlier, given the parameters and the covariates, the individual recurrent processes are

assumed conditionally independent. We are making the implicit assumption (which is

common in these type problems) that a patient cannot experience a recurrent event

and a terminal event at the time. However, in our framework, this assumption is easily

relaxed.

We assume a priori independence among parameters β0, (β1, . . . ,βJ), γ, ψ, and

{(αi, σ2
i , η

2
i ), i = 1 . . . , N}. As random effect distribution we specify a nonparametric

prior distribution for (αi, σ
2
i , η

2
i ):

(αi, σ
2
i , η

2
i )|G

iid∼ G i = 1, . . . , N

G ∼ DP(M,G0),
(5)

i.e., the random effects distribution is a Dirichlet Process.

In summary, our modelling assumptions imply that (i) waiting times are inde-

pendent of each other, conditionally to the other parameters; (ii) the subject-specific

random effect αi links the distribution of the waiting times and survival times, as it

determines the mean of the distribution of Yij and it is used as predictor in the sur-

vival regression component of the likelihood (see (4)); (iii) the shared parameter αi

allows the clustering to depend on both gap times trajectories and survival outcome.

We complete the model by setting the following prior distribution on the remaining
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parameters:

β0 ∼ Np(0, β2
0Ip)

β1, . . . ,βJ | µ := (µ1 . . . , µq)
T ,Σ := diag(τ 2

1 , . . . , τ
2
q )

iid∼ Nq(µ,Σ)

µ1, . . . , µq
iid∼ N (0, σ2

µ)

τ 2
1 , . . . , τ

2
q

iid∼ Inv-Gamma(aτ , bτ )

γ ∼ Nr(0, γ2
0Ir)

ψ ∼ N (0, ψ2
0)

G0 = N (0, α2
0)× inv-Gamma(aσ, bσ)× inv-Gamma(aη, bη)

M ∼ U(aM , bM).

(6)

Note the use of a further level of hierarchy in the prior marginal distribution of the time-

varying regression coefficients to ensure exchangeability. This allows the coefficients to

exchange information over time and leads to better estimates, in particular for the last

gap times as often fewer observations are available.

The model can be generalized by making different distributional assumptions for

either/both gap and survival times (e.g. using a Weibull distribution), or by allowing

the variance of the gap times to depend on the time index. As an alternative, we

could assume ηi = η for i = 1, . . . , N , and a parametric marginal prior for it, i.e., η2 ∼
inv-Gamma(aη, bη), while maintaining the nonparametric prior specification (αi, σ

2
i ):

(αi, σ
2
i )|G

iid∼ G i = 1, . . . , N

G ∼ DP(M,G0)

G0 = N (0, α2
0)× inv-Gamma(aσ, bσ).

(7)

Finally, it is easy to perform variable selection in this context, by assuming, for example,

a spike and slab prior on the regression coefficients or performing Stochastic Search

Variable Selection. See Rockova et al. (2012) for a review of Bayesian variable selection

strategies.

3 Congestive heart failure dataset

We apply the model described in Section 2 to a real dataset extracted from the health-

care data warehouse of Regione Lombardia (a region in Northern Italy), which contains

information on patient healthcare usage and the relative economic impact on the na-

tional health system (e.g. hospitalizations, drugs, visits); see Mazzali et al. (2015) and
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Mazzali et al. (2016) for details. We consider data on a sample of n = 1000 patients

coming from the dataset described in Mazzali et al. (2016). The subsample is represen-

tative of the entire population in terms of age, gender, comorbidity burden, number of

procedures and groups. We focus on hospitalizations due to Congestive Heart Failure

(HF) in the time window January 1st, 2006 - December 31th, 2012. Therefore, for ad-

ministrative reasons, the censoring time for all the patients in the sample is December

31th, 2012. In the analysis the gap times refer to times between successive hospital-

izations. The first recorded hospitalization for each patient represents here the origin

of the recurrent process (Ti0 := 0 for all i); consequently, ni represents the number of

completely observed gap times between subsequent hospitalizations, given the initial

one.

Since the number of recurrences for patients differs widely, we only consider patients

with at least two recurrences (including the first one), i.e. at least one observed gap time

but no more than 10. The resulting dataset for the analysis consists of N = 810 patients

for a total of 2920 gap times (this subset covers 74.64% of all the events). Table 1

reports the distribution of the number patients Nj for which j , j = 1, . . . , J = 10

waiting times are observed, where
∑

j Nj = N .

j 1 2 3 4 5 6 7 8 9 10 TOT

Nj 169 153 142 100 71 66 50 24 24 11 810

Table 1: Number of patientsNj that experience exactly j recurrent events, j = 1, . . . , J .

Figure 1 displays the histogram of the observed gap times in log-scale: 356 out of

810 patients are right-censored (in terms of event time), which corresponds to a high

censoring rate, approximately 44%. In Figure 2 we show the empirical distribution of

event times for censored (blue) and non-censored (red) observations in log scale. This

implies that for each patient the likelihood contribution from the waiting time process

includes always a last censored waiting time, independently of censoring by death or

administrative reasons.

Information has also been collected on several covariates, fixed or time-varying. We

report below a list of the covariates included in the model:

• gender of the patient. In Table 2, we report the percentage pj of male patients

among the observations available at each gap time j. This proportion is roughly

close to 50% except for the last one.
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Figure 1: Histogram of the log-transformed gap times.

Figure 2: Histogram of the log-transformed survival times: observed (red) and censored

(blue) observations.

j 1 2 3 4 5 6 7 8 9 10 MEAN

pj 0.46 0.48 0.52 0.44 0.51 0.59 0.58 0.46 0.58 0.73 0.50

Table 2: Percentage of men in the data, stratified for each gap time j, j = 1, . . . , J .
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• age [years] of the patient at each hospitalization. Empirical mean of age at

entrance in the study is 75.77 (s.e. 10.78). The empirical means of age stratified

by gender are 78.44 (s.e. 10.02) for women and 73.14 (s.e. 10.86) for men,

respectively. Age at the end of each gap time is included as a time-varying

covariate in the model, but we find that there is no real difference in the posterior

inference reported in Section 4 if we include only age at the entrance in the study

and therefore we use this latter variable.

• group: indicator variable which identifies the clinical classification of the patient

according to criteria detailed in Mazzali et al. (2016). In particular, the patients

are classified based on indicators proposed by the Agency for Healthcare Research

and Quality (AHRQ Quality Indicators, 2015) and HF codes as identified by the

Center for Medicare and Medicaid Services (Evans et al., 2011). As a result,

four different groups were defined (see Figure 2 and Table 2 in Mazzali et al.,

2016): G1 denotes the group of patients having HF as the cause of admission or

complicating another cardiac disease. G2 includes patients with Myocardial or

cardiopulmonary diseases. G3 refers to patients with Acute HF as a complication

of other diseases or for whom HF is reported as comorbidity. Finally, G4 identifies

the remaining subjects (only three). The “group” variable is defined at the time of

the first heart failure event, independently of subsequent events. As G1 represents

the most frequent classification, as well as the most traditional characterization

of hearth failure, we reduce the variable group to a binary covariate, which is set

equal to 0 if the label of the patient is G1 (560 patients), and 1 otherwise (250

patients). Hence, group denotes the indicator of non-standard pathology.

• rehab: binary variable indicating if any time during the hospitalization is spent

in a rehabilitation unit: 11.78% of the hospitalizations are spent partially or

completely in a rehabilitation unit, corresponding to 29.01% of the patients.

• ic: binary variable indicating if at least a part of the hospitalization is spent in a

intensive care unit. This happens in 11.95% of the hospitalizations, corresponding

to 31.48% of patients.

• n com: total number of comorbidities for each hospitalization. Table 3 reports

the average number of comorbidities for all patients observed at the j-th gap

times, for j = 1, . . . , J .
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j 1 2 3 4 5 6 7 8 9 10 MEAN

n com 2.19 2.69 3.14 3.52 3.88 4.12 4.28 4.58 5.00 5.09 3.05

Table 3: Average number of comorbidities for hospitalization, stratified for each gap

time j, j = 1, . . . , J .

• n pro: total number of surgical procedures for each hospitalization. Table 4

reports the average number of surgical procedures for all patients observed at the

j-th gap times, for j = 1, . . . , J .

j 1 2 3 4 5 6 7 8 9 10 MEAN

n pro 0.10 0.15 0.10 0.12 0.07 0.08 0.08 0.05 0.03 0 0.11

Table 4: Average number of surgical procedures for hospitalization, stratified for each

gap time j, j = 1, . . . , J .

Note that 426 (52.59%) patients spend some time in either a rehabilitation or intensive

care unit; none of the patients is admitted in both rehabilitation and intensive care

unit at the same hospitalization; 129 (15.93%) patients enter a rehabilitation unit in

at least one hospitalization, but never an intensive care one, while for 149 (18.40%)

patients the opposite occurs.

Moreover, it is important to highlight that each gap time is calculated as the differ-

ence between two successive hospitalizations and, as such, it captures both the length

of stay in hospital and the time between the discharge and the next hospitalization of

the patient. In the analysis we include the value of the time dependent covariates mea-

sured at the end of each gap time, for example, xi1 refers to the covariates of patient

i at the end of the first waiting time.

When fitting model (3)-(6), variables gender, age (at the first hospitalization) and

group are treated as fixed covariates (p = 3), whereas rehab, ic, n com and n pro are

time varying (q = 4). Moreover, age, n com and n pro have been standardized to have

mean zero and variance one. The remaining covariates are binary. Therefore, the linear

regression term in (3) for patient i at time j is given by.

β01xi1 + β02xi2 + β03xi3 + βj1xij1 + βj2xij2 + βj3xij3 + βj4xij4,

where xij := (xi1, xi2, xi3, xij1, xij2, xij3, xij4); xi1 and xi2 correspond to indicators for

gender (= 0 if the patient is a male) and pathology group (= 0 for standard pathology
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G1), respectively, xi3 is the standardized age at the beginning of the study; xij1 and

xij2 denote the binary variables rehab and ic for patient i at the j-th time, respectively,

while xij3 and xij4 are the standardized number of comorbidities and number of surgical

procedures of patient i during the j-th gap time. We assume that zi = (xi1, xi2, xi3),

i.e., the fixed covariates included in the survival regression component are gender,

pathology and standardized age at the beginning of the study.

4 Posterior inference and cluster estimates

Posterior inference for the proposed model can be performed through a standard Gibbs

sampler algorithm, which has been implemented in JAGS (Plummer, 2003) and run

within the R software (R Core Team, 2015), through the R package rjags. We have

run the MCMC sampler for 70, 000 iterations, discarding the first 10, 000 as burn-in and

thinning every 12 iterations; the final sample size is 5, 000. We check through standard

diagnostics criteria, such as those available in the R package CODA (Plummer et al.,

2006), that convergence of the chain is satisfactory for most of the parameters.

In the analysis we select hyperparameter values that reflect lack of information, i.e.,

we opt for non-informative prior distributions. We choose η2
i = η2 ∼ inv-Gamma(aη, bη)

and the two-dimensional nonparametric prior component as in (7) with

β2
0 = 100; aτ = 2.01; bτ = 1.01; γ2

0 = 100;ψ2
0 = 100

aM = 0.3; bM = 5;α2
0 = 100; aσ = aη = 2.01; bσ = bη = 1.01.

In particular, the prior choice for the variance parameters σ2
i , η

2 implies a priori

marginal expected value of 1 and an a priori variance equal to 100 for both of them.

Analogously, we specify a large value for the standard deviation of the regression co-

efficients β,γ and ψ. We opt for a uniform distribution between 0.3 and 5.0 as prior

for the total mass M of the Dirichlet Process. This choice corresponds to a prior belief

that the expected number of clusters is large, i.e., E(K) = 15.33. The lower bound

of the support of the marginal prior for M , 0.3, is specified to avoid computational

difficulties in JAGS caused by small weights in the stick-breaking representation of the

DP (see Ohlssen et al., 2007, for instance). MCMC implementation of the DP in JAGS

requires a truncation of the process, i.e., truncating the stick-breaking representation

(1) to a prefixed level C. This strategy, on which many MCMC schemes for the DP

are based, obviously leads to a truncation error, which depends on the choice of C. As
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suggested in Ohlssen et al. (2007) we fix C equal to 40, so that, in case M assumes

values close to the upper bound of its prior support, the truncation error is negligible.

4.1 Posterior inference

We now present the inference results for the regression parameters in order to under-

stand how covariates influence the recurrent events distribution and survival, regardless

of the underlying structure of the trajectories (which is captured by the subject-specific

parameters).
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Figure 3: Posterior marginal densities of the regression coefficients β0 and γ of the time-

homogeneous covariates. The shaded regions correspond to 95% credible intervals. Top

row corresponds to the effect of gender on gap (left) and survival (right) times, middle

row of group, bottom row of age.

Figure 3 shows the 95% credible intervals for the posterior marginals of the fixed

effect regression parameters (β01, β02, β03) and (γ1, γ2, γ3). In what follows we assume

that a covariate has an effect on the response if its 95% credible interval does not cover

zero. As such, we observe that:

• there is no evident effect of gender on the gap times, but an effect is detectable
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on the survival times (with a negative effect on the survival time for women), see

the top plots in Figure 3. Sample average survival times by gender confirm that

women have slightly shorter survival times (7.07 in the log scale, with standard

deviation equal to 0.96; 7.11 and 0.96 are the corresponding sample average and

standard deviation for men);

• the group variable seems to be relevant for the gap times (patients with non-

standard pathology, i.e. not in group G1, have larger gap times); however it does

not influence the survival time;

• the age variable is a predictor of both gap times and survival (see the bottom

plots in Figure 3): in particular, there is evidence that the average time between

hospitalizations is shorter for older patients.

Time-varying covariates are reported at the end of each gap time. We need to take

this into account when analysing the results for the regression coefficients of such covari-

ates. In general time-varying covariates do not have a strong effect on the recurrence

process, except for few early gap times and, as expected, the uncertainty on the effect

estimates increases over time, due to the smaller number of available observations.

Figure 4 displays the 95% CIs of the posterior marginal densities of the regression

coefficients (βj1, βj2, βj3, βj4) of the time-varying covariates. It is evident that rehab

and ic have an effect on the distribution of waiting times, as patients with rehab or ic

equal 1 show shorter gap times (the effect of ic is stronger than rehab). Moreover, the

number of comorbidities does not seem to be influential and it appears that a large

number of surgical procedures yields frequent hospitalizations at the beginning of the

study, followed by an opposite effect (delayed hospitalizations) for later gap times.

Figure 5a shows the posterior predictive density for a hypothetical new patient

of the random effect parameters α? which is modelled using Dirichlet Process prior

jointly with σ2. This distribution is multimodal, indicating a clustering structure

among patients. Moreover, in Figure 5b we plot the marginal posterior distribution of

the parameter ψ, which links the survival outcome to the recurrent event process and

reflects the strength of the relationship between the two processes. In our application,

this distribution is centred away from zero, on the positive axis, indicating that as the

time between hospitalizations widens, the probability of survival increases as well.
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Figure 4: 95% credible intervals of posterior marginal densities of the regression coef-

ficients of the time-varying covariates. The red line corresponds to 0.
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Figure 5: Posterior predictive density of α? and posterior marginal density of ψ.

4.2 Clustering

As mentioned in the Introduction, our model, described by (3)-(4) and (6)-(7), in-

duces a prior on the partition of the subjects in the sample (Barcella et al., 2015).
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We denote with ρ a random partition of the patients. In this framework it is then

straightforward to perform posterior inference on the clustering structure and to ob-

tain a posterior estimate of the parameter ρ from the MCMC output. Here we report

the clustering allocation ρ that minimises the posterior expectation of Binder’s loss

function (Binder, 1978) under equal misclassification costs, a common choice in the

applied Bayesian nonparametric literature (Lau and Green, 2007); see Argiento et al.

(2014) for computational details. Note that the parameters (αi, σ
2
i ) determine the clus-

tering of patients. Since the parameter αi links the failure and recurrence processes,

our modelling strategy allows the clustering to depend on both gap times trajectories

and survival outcome. The estimated partition contains 6 clusters. In Table 5 we

report cluster-specific summary statistics.

Cluster Size un yn age n̄i % censored

1 17 (2.16 %) 7.769 (0.048) 7.342 (0.209) 74.706 (9.980) 1 100

2 537 (68.15 %) 7.561 (0.381) 4.883 (1.696) 75.973 (10.592) 3.669 61.82

3 14 (1.78 %) 4.742 (0.651) 3.576 (0.632) 73.214 (10.245) 3 0

4 104 (13.2 %) 6.643 (0.570) 4.568 (1.204) 75.794 (10.867) 4.356 1.92

5 112 (14.21 %) 5.546 (0.818) 3.864 (1.366) 75.157(11.764) 2.982 0.89

6 4 (0.51 %) 7.764 (0.054) 5.753 (0.557) 79 (13.441) 6 100

Table 5: Cluster specific sample summary statistics: size, average survival time (stan-

dard deviation), average gap time (standard deviation), average number of gap times

per trajectory, censoring rate

Trajectories of the gap times, Yij, j = 1, . . . , ni, for all the patients are displayed

in Figure 6 for each cluster. Moreover, in Figure 7 we show observed and censored

survival times and corresponding kernel density estimates for the six clusters above.

The largest cluster of patients (68.15% of the patients), denoted as cluster 2 in Ta-

ble 5, is characterized by large survival times and long gap-time trajectories. Cluster 1

and 6 include only censored observations and are characterized by large survival times,

but also by larger gap times compared to Cluster 2 and 4. Clusters 3, 4 and 5 present

shorter time intervals between hospitalizations compared to the others clusters as well

as shorter survival times (see Table 5 for details). The percentage of patients with

standard pathology (i.e. group=0) is similar to the overall rate (' 70%) in each cluster

but in Cluster 1, where it is 53%.

Finally, Figure 8 shows the posterior distribution of K, the number of clusters in
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Figure 6: Trajectories of gap times. Lines connect the gap times for each observation.

the sample, whose mode is at 6.

5 Goodness-of-fit and model selection

In Section 4 of the paper we fit our model when the variance of the survival time is

assumed to be the same for all the subjects. We also consider the model in which we

introduce a subject specific variance, ηi, as in (4). We refer to the first models as DP2

and to the second one as DP3, respectively, since the prior component for the subject

specific effects is a DP defined on R2 (see (7)) or R3 (see (5)).

We compare the models using two measures of predictive performance: the Watanabe-

Akaike information criterion (WAIC) and the Brier score. WAIC is a fully Bayesian

approach for estimating the predictive accuracy of the dataset: it is obtained com-

puting the log point-wise posterior predictive density and then adding a correction (a

penalty) for the effective number of parameters to penalise overfitting. In particular,
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Figure 8: Posterior distribution of the number of clusters.

WAIC is defined as lppd− pWAIC1, where lppd is the log pointwise predictive density,

i.e., the product (in the log scale) of the conditional densities (evaluated at yij), of Yij,

given all the data, and then adding the bias correction pWAIC1, which is similar to the

bias correction in the definition of the DIC (see Gelman et al., 2014, for details). In

our case, the WAIC values computed for the two models (see Table 6) indicate a better
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performance of DP3.

DP2 DP3

WAIC −5979.591 −5973.26

Table 6: WAIC values for the model DP2 and DP3; the penalization used is pWAIC1

as in Gelman et al. (2014).

The second criterion is the Brier score (Brier, 1950), that measures the accuracy of

in-sample prediction. As the Brier score is usually evaluated for binary classification

problems, we need to dichotomise our prediction to adapt the Brier score to continuous

data, as proposed by Barcella et al. (2016). Therefore, we are interested in predicting

whether the survival time of an individual is above or below a specific threshold. We

use the quartiles of the observed survival times as thresholds. Therefore, we discretise

the observed data so that ũ
(k)
i = 0 if ũi ≤ Qk and ũ

(k)
i = 1 if ũi > Qk, where Qk is

the k-th quartile of the data, k = 1, 2, 3. At each iteration of the Markov chain, for

each patient i we evaluate the predictive probability fi of obtaining a survival time

larger than the specified threshold and we then compare it with the observed value.

The Brier Score is defined as follows

BRk =
1

N

N∑
i=1

(
f

(k)
i − ũ

(k)
i

)2

,

that is, for each patient we compute the difference between the predictive probability

of the observation to be above the threshold Qk and the observed value ũ
(k)
i . Small

values of the Brier statistic indicates good classification performance.

Figure 9 displays the boxplots of the Brier Score under 6 scenarios (model DP2 and

DP3 for each of the three quartiles Q1, Q2 and Q3).

As expected, the two models perform better when estimating the probability that

the prediction and the true observation lie at the same side of the first quartile. Indeed,

the time-to-event data in this application consist of strongly left skewed observations.

Therefore, it is more difficult to predict large survival times. In general, however,

we observe that for each model and for each quartile, the Brier Score is smaller than

the threshold of 25%, which represents the case in which the prediction of interest is

equivalent to a coin toss. Moreover, model DP2 outperforms DP3 for the first quartile,

but DP3 is more accurate for the prediction of higher survival times.
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Figure 9: Boxplots of the Brier scores corresponding to the three quartiles of the data

for model DP2 (purple) and DP3 (blue).

6 Out-of-sample predictive inference

In order to asses the predictive performance of our model, 22 patients (5% of the total

sample size) are randomly selected and removed from the training set, leaving 788

patients in the sample. The training set includes patients with at most nine observed

gap times. We fit the model (see details in Section 4 of the paper) to the reduced

dataset, and we predict the distribution of the gap time as well as of survival time for

the excluded patients using their covariate values. We then compare our predictions

with the observed data. To summarise our results, we compute the Mean Squared

Error between predicted and observed waiting times, i.e., MSEj =
∑N∗

j

i=1(y∗ij − yij)
2,

where N∗j is the number of patients experiencing at least j recurrences in the test set,

and y∗ij denotes the median of the predictive density for patient i at gap time j in

the test set, whose corresponding observed value is yij; the values obtained for all 22

patients, at each time j and overall, are shown in Table 7 for the two models discussed

in Section 5. No significant differences in predictive performance between the two

models are noticeable.

Figure 10 displays the predicted trajectories of gap times for a subset of 9 randomly

selected patients. In our model, we assume that each patient is characterised by a

random effect influencing the mean of every gap time and a covariate effect. Therefore,
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MSEj j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9
9∑
j=1

MSEj

DP2 2.05 2.40 1.13 3.71 2.24 1.73 0.33 3.44 1.66 18.70

DP3 2.06 2.43 1.16 3.69 2.21 1.74 0.33 3.41 1.74 18.77

Table 7: Mean squared error of the out-of-sample prediction for each gap time under

models DP2 and DP3.
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Figure 10: Predictive distribution of the gap time trajectory for 9 randomly selected

patients. The solid black line represents estimated posterior medians of the waiting

time trajectory, the shadowed area is the 95% credible interval. Red crosses represent

observed values.

in this model the oscillations around the mean value of the gap times are given by a

change in the values of the covariates. Finally, in addition to the Brier score presented

in Section 5, we evaluate the 95% predictive credible interval for the the survival time

of each of the 22 patients in the test set to assess the ability of the model to predict

the survival component. Under both models, 21 out of 22 observed survival times are

included in the 95% CIs.
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7 Comparison with other models

We now compare our results to those obtained employing one of the most popular semi-

parametric models in survival analysis with covariates: the Cox proportional hazards

(PH) model. In this model, the hazard function for the survival time is specified as

hi(t|zi,γ) = h0(t)ez
T
i θ, (8)

where h0(·) is the baseline hazard rate, zTi is a vector of covariates and θ is a vector

of regression coefficients. Under model (8), the larger zTi θ, the larger the hazard of

the event. To make the comparison with the model described in Section 2 as fair as

possible, we include in zi the same fixed covariates (zi1, zi2, zi3) influencing the time Si

(i.e. gender, group and age), but we also add a fourth covariate zi4 representing the

mean waiting times (in log-scale) of each individual. This latter covariate is supposed

to give a heuristic approximation of the random effect αi in the proposed Bayesian

semiparametric model.

The application of the PH model to the HF data show consistent results with those

obtained by our model. In particular, all the covariates are significant, and the Hazard

Ratios are:

• eθ1 = 1.42 for gender, indicating that female patients have an hazard function

which is greater than male patients, all the other covariates being equal;

• eθ2 = 141.38 for age at the first event, which corresponds to strong evidence that

age is the main driver of the risk of death;

• eθ3 = 1.32 for group, implying that patients with non-standard HF are at higher

risk;

• eθ4 = 0.68, which indicates that longer gap times can result in longer survival

times.

Thus, the effect of gender, group and age is the same as in the proposed model. In

general, the uncertainty associated to the estimates obtained under our model is higher

as we also account for uncertainty in the gap times distribution. Nevertheless, our

approach introduces extra flexibility when estimating the distribution of the survival

times, as it allows the identification of different risk groups.

For a fairer comparison, we also fit to our data the joint frailty model developed by

Rondeau et al. (2007) and implemented in the R package frailtypack (Rondeau et al.,
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2012). Using this approach it is possible to estimate jointly the two hazard functions

associated with recurrent and terminal events. In this context, the dependence is

modelled through a common frailty term, vi, that takes into account the heterogeneity

in the data. The frailty term affects differently the two hazards functions. Conditional

on the frailty term vi, the joint frailty model is given by: rij(t|vi) = vir0(t) exp
{
xTijβ

}
(recurrent events)

λi(t|vi) = vξi λ0(t) exp
{
zTi γ

}
(terminal event)

where r0(t) (resp. λ0(t)) is the recurrent (resp. terminal) event baseline hazard func-

tion, xij and zi are vector of covariates for individual i at time j, β and γ are the

corresponding vectors of regression parameters and vi are iid Gamma random variables

with mean 1 and variance κ. If the parameter ξ is equal to zero, then the dependence

between the two processes is captured only by specifying common covariates.

In fitting this model to the HF data we use the same covariates as described in Sec-

tion 3. Notice that the model allows including time-varying covariates in the recurrent

event process, but, differently from our approach, the effect is assumed constant over

time.

We report the results of the joint frailty model in Table 8. The application of this

model to the HF data yields conclusions that are in general consistent with the ones

obtained with the Bayesian semiparametric model. The coefficients for ic and npro are

significant. This can be explained by the fact that in this case the effect is assumed

to be constant and therefore the model can borrow strength across gap-times. The

most notable difference is the coefficient of gender in the survival regression (although

the p-value is 0.04) that has an opposite effect in the joint frailty model compared

to our approach. Nevertheless, our results are in agreement with both the Kaplan-

Meier estimator stratified by gender (results not shown) and with the Cox Proportional

Hazard analysis. Finally, the estimate of κ is 0.2505 (s.e. 0.023), which implies that

there is heterogeneity between subject not explained by the covariates, as confirmed by

the clustering structure obtained by our model. The estimate of ξ is 4.70 (s.e. 0.3461);

this means that the incidence of recurrences is positively associated with death, once

again in agreement with our model.
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Recurrences:

Coefficient Std. Dev. p-value

gender -0.0709 0.0503 0.15

group 0.0375 0.0542 0.49

age 0.8027 0.1676 1.68 · 10−6

rehab (TV) -0.01 0.0633 0.87

ic (TV) 0.4162 0.0667 4.36 · 10−10

ncom (TV) 0.007 0.0238 0.78

npro (TV) 0.1194 0.0220 6.45 · 10−8

Terminal event:

Coefficient Std. Dev. p-value

gender -0.3206 0.1669 0.04

group -0.1970 0.1814 0.27

age 7.4208 0.6478 0

Table 8: Estimated regression coefficients of the joint frailty model, as implemented in

the R package frailtypack. TV denotes a time varying covariate.

8 Discussion

Treating and managing appropriately Heart Failure (HF) patients is a major public

health issue. Indeed, HF is one of the major causes of hospitalization and death in adult

population and the main reason for hospital admission in patients aged over 65 years

in western countries; see Desai and Stevenson (2012). As the population ages and the

prevalence of heart failure increases, expenditures related to the care of these patients

are climbing dramatically. As a result, the health care industry must develop strategies

to contain the economic burden without compromising the effectiveness of the care. It

has become evident that there is an urgent need for methods supporting healthcare

management by improving evidence-based practice. To this aim, it is essential to gain

a deeper understanding of the clinical factors contributing to lengthen/decrease short-,

middle- and long-term survival jointly with the length and recurrence of hospitaliza-

tions. However, most analysis focus only on the primary clinical outcomes (such as

death or time to first re-hospitalization), ignoring the information contained in the

recurrent event process and the relationship between multiple hospital admissions and
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patient’s survival.

In this paper we propose a joint semiparametric model for recurrent hospitalizations

due to HF and time to death. Our approach jointly models survival and the hospitaliza-

tions times, specifying a DP as random effect distribution of the frailty parameter that

links the survival and gap time trajectories. This strategy allows us to introduce extra

flexibility in the model to account for patients heterogeneity and identify different risk

groups. Other Bayesian nonparametric priors could be employed, at the cost of more

expensive computations. An important feature of the model is to be able to take into

account the dependent censoring of gap times by death since in many applications, such

as ours, there is a strong relationship between event recurrences and termination. Time

homogeneous and time-varying covariates are easily incorporated within a regression

framework. Specification of different survival and/or gap time distributions can also

be easily accommodated. This approach can be extended to include time dependency

between gap times through the inclusion of, for example, autoregressive terms. Main

advantages of the proposed methodology are wide applicability, ease of interpretation

and efficient computations.

Our results show that women tend to have lower survival times. This can be due

to the fact women are much older than men when entering the study and they are

more likely to die because the comorbidity load increases with age. The effect of the

variable group on gap times reflect different protocols of HF treatments. The strong

effect of age on both recurrent and survival process is not surprising as older age is

usually associated with worse health conditions and comorbidity load. Furthermore,

we have investigated the effect over time of the time-varying covariates, highlighting

possible temporal patterns. For example, it is evident that admission to an intensive

care unit shortens early gap times, as well as rehabilitation. This can be explained

by the fact that usually these variables are associated with more serious complica-

tions. Estimates of the effect on later gap times are associated with wider credible

interval, due to less observations available. Moreover, the model is able to account

for patient-specific heterogeneity through the data-driven clustering of patients based

on their re-hospitalizations trajectory and survival outcome. In future work we will

extend the methodology to a much richer dataset, which will include a wider patient

population and new potential explanatory variables. Moreover, an hospital effect and

spatial information can be easily incorporated in the model, as well as variable selec-

tion strategies. These future directions of research will most likely require generalising
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the methodology to combine aggregated and individual level information. Finally, the

model assumes a time-homogeneous effect of the gap times on survival, which can be

a strong modelling assumption when many subsequent hospitalizations are associated

with a higher risk of death. This limitation can be overcome by, for example, specifying

an autoregressive model for the random effect parameter αi (Tallarita et al., 2016).
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