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Abstract

Numerical modeling of fluids in pipes or network of pipes (like in the
circulatory system) has been recently faced with new methods that exploit
the specific nature of the dynamics, so that a one dimensional axial main-
stream is enriched by local secondary transverse components [4, 16, 18].
These methods - under the name of Hi-Mod approximation - construct a
solution as a finite element axial discretization, completed by a spectral
approximation of the transverse dynamics. It has been demonstrated that
Hi-Mod reduction significantly accelerates the computations without com-
promising the accuracy. In view of variational data assimilation procedures
(or, more in general, control problems), it is crucial to have efficient model
reduction techniques to rapidly solve, for instance, a parametrized problem
for several choices of the parameters of interest. In this work, we present
some preliminary results merging Hi-Mod techniques with a classical Proper
Orthogonal Decomposition (POD) strategy. We name this new approach
as Hi-POD model reduction. We demonstrate the efficiency and the relia-
bility of Hi-POD on multiparameter advection-diffusion-reaction problems
as well as on the incompressible Navier-Stokes equations, both in a steady
and in an unsteady setting.

∗Current affiliation : Faculté des Sciences, de la Technologie et de la Communication, Uni-
versité du Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
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1 Introduction

The growing request of efficient and reliable numerical simulations for modeling,
designing and optimizing engineering systems in a broad sense, challenges tradi-
tional methods for solving partial differential equations (PDEs). While general
purpose methods like finite elements are suitable for high fidelity solutions of
direct problems, practical applications often require to deal with multi-query
settings, where the right balance between accuracy and efficiency becomes criti-
cal. Customization of methods to exploit all the possible features of the problem
at hand may yield significant improvements in terms of efficiency, possibly with
no meaningful loss in the accuracy required by engineering problems.

In this paper we focus on parametrized PDEs to model incompressible fluid
dynamic problems in pipes or elongated domains. In particular, we propose
to combine the Hi-Mod reduction technique, which is customized on problems
featuring a leading dynamics triggered by the geometry, with a standard POD
approach for a rapid solution of parametrized settings.

A Hi-Mod approximation represents a fluid in a pipe as a one-dimensional
mainstream, locally enriched via transverse components. This separate descrip-
tion of dynamics leads to construct psychological 1D models, yet able of switch-
ing to a locally higher fidelity [4, 15, 16, 18, 19]. The rationale behind a Hi-Mod
approach is that a 1D classical model can be effectively improved by a spectral
approximation of transverse components. In fact, the high accuracy of spectral
methods guarantees, in general, that a low number of modes suffices to obtain
a reliable approximation, yet with contained computational costs.

POD is a popular strategy in design, assimilation and optimization contexts,
and relies on the so-called offline-online paradigm [7, 8, 10, 23, 26]. The offline
stage computes the (high fidelity) solution to the problem at hand for a set
of samples of the selected parameters. Then, an educated basis (called POD
basis) is built by optimally extracting the most important components of the
offline solutions (called snapshots), collected in the so-called response matrix,
via a singular value decomposition. Finally, in the online phase, the POD basis
is used to efficiently represent the solution associated with new values of the
parameters of interest, a priori unknown.

In the Hi-POD procedure, the Hi-Mod reduction is used to build the response
matrix during the offline stage. Then, we perform the online computation by
assembling the Hi-Mod matrix associated with the new parameter and, succes-
sively, by projecting such a matrix onto the POD basis. As we show in this
work, Hi-POD demonstrates to be quite competitive on a set of multiparameter
problems, including linear scalar advection-diffusion-reaction problems and the
incompressible Navier-Stokes equations.

The paper is organized as follows. In Section 2, we detail the Hi-POD tech-
nique and we apply it to an advection-diffusion-reaction problem featuring six
parameters, pinpointing the efficiency of the procedure. Section 3 generalizes
Hi-POD to a vector problem, by focusing on the steady incompressible Navier-
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Stokes equations, while the unsteady case is covered in Section 4. Some conclu-
sions are drawn in Section 5, where some hints for a possible future investigation
are also provided.

2 Hi-POD reduction of parametrized PDEs: basics

Merging of Hi-Mod and POD procedures for parametrized PDEs has been pro-
posed in [12, 13], in what we called Hi-POD method. We briefly recall the two
ingredients, separately. Then, we illustrate a basic example of Hi-POD tech-
nique.

2.1 The Hi-Mod setting

Let Ω ⊂ Rd be a d -dimensional domain, with d = 2, 3, that makes sense to
represent as Ω ≡

⋃
x∈Ω1D

{x} × Σx, where Ω1D is the 1D horizontal supporting

fiber, while Σx ⊂ Rd−1 represents the transverse section at x ∈ Ω1D. The
reference morphology is a pipe, where the dominant dynamics occurs along Ω1D.
We generically consider an elliptic problem in the form

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (1)

where V ⊆ H1(Ω) is a Hilbert space, a(·, ·) : V ×V → R is a coercive, continuous
bilinear form and F (·) : V → R is a linear and continuous form. Standard
notation for the function spaces is adopted [11]. We refer to u in (1) as to
the full solution. The solution to this problem is supposed to depend on some
parameters that we will highlight in our notation later on.

In the Hi-Mod reduction procedure, we introduce the space

V h
m =

{
vhm(x,y) =

m∑
k=1

ṽhk (x)ϕk(y), with ṽhk ∈ V h
1D, x ∈ Ω1D, y ∈ Σx

}
,

where V h
1D ⊂ H1(Ω1D) is a discrete space of size Nh, {ϕk}k∈N+ is a basis of L2-

orthonormal modal functions to describe the dynamics in Σx, for x varying along
Ω1D. For more details about the choice of the modal basis, we refer to [1, 3, 16],
while V h

1D may be a classical finite element space [4, 16, 18, 19] or an isogeometric
function space [17].

The modal index m ∈ N+ determines the level of detail of the Hi-Mod
reduced model. It may be fixed a priori, driven by some preliminary knowledge
of the phenomenon at hand as in [4, 16], or automatically chosen via an a
posteriori modeling error analysis as in [18, 20]. Index m can be varied along
the domain to better capture local dynamics [19, 20]. For simplicity, here we
consider m to be given and constant along the whole domain (uniform Hi-Mod
reduction).
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For a given modal index m ∈ N+, the Hi-Mod formulation reads as

find uhm ∈ V h
m : a(uhm, v

h
m) = F (vhm) ∀vhm ∈ V h

m. (2)

The well-posedness of formulation (2) as well as the convergence of uhm to u can
be proved under suitable assumptions on space V h

m [16].
In particular, after denoting by {ϑj}Nh

j=1 a basis of the space V h
1D, for each

element vhm ∈ V h
m, the Hi-Mod expansion reads

vhm(x,y) =

m∑
k=1

[ Nh∑
j=1

ṽk,jϑj(x)
]
ϕk(y).

The unknowns of (2) are the mNh coefficients
{
ũk,j

}Nh,m

j=1,k=1
identifying the Hi-

Mod solution uhm. The Hi-Mod reduction obtains a system of m coupled “psy-
chologically” 1D problems. For m small (i.e., when the mainstream dominates
the dynamics), the solution process competes with purely 1D numerical mod-
els. Accuracy of the model can be improved locally by properly setting m.
From an algebraic point of view, we solve the linear system Ah

muh
m = fhm, where

Ah
m ∈ RmNh×mNh is the Hi-Mod stiffness matrix, uh

m ∈ RmNh is the vector of
the Hi-Mod coefficients and fhm ∈ RmNh is the Hi-Mod right-hand side.

2.2 POD solution of parametrized Hi-Mod problems

Let us denote by α a vector of parameters the solution of problem (1) depends
on. We reflect this dependence in our notation by writing the Hi-Mod solution
as

uhm(α) = uhm(x,y,α) =
m∑
k=1

[ Nh∑
j=1

ũαk,jϑj(x)
]
ϕk(y), (3)

corresponding to the algebraic Hi-Mod system

Ah
m(α)uh

m(α) = fhm(α). (4)

The Hi-Mod approximation to problem (1) will be indifferently denoted via (3)
or by the vector uh

m(α).
The goal of the Hi-POD procedure that we describe hereafter is to rapidly

estimate the solution to (1) for a specific set α∗ of data, by exploiting Hi-Mod
solutions previously computed for different choices of the parameter vector. The
rationale is to reduce the computational cost of the solution to (4), yet preserving
reliability.

According to the POD approach, we exploit an offline/online paradigm, i.e.,

- we compute the Hi-Mod approximation associated with different samples
of the parameter α to build the POD reduced basis (offline phase);

- we compute the solution for α∗ by projecting system (4) onto the space
spanned by the POD basis (online phase).
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2.2.1 The offline phase

We generate the reduced POD basis relying on a set of available samples of the
solution computed with the Hi-Mod reduction. Even though off-line costs are
not usually considered in evaluating the advantage of a POD procedure, also this
stage may introduce a computational burden when many samples are needed,
like in multiparametric problems. The generation of snapshots with the Hi-Mod
approach, already demonstrated to be significantly faster [3], mitigates the costs
of this phase. The pay-off of the procedure is based on the expectation that the
POD basis is considerably lower-size than the order mNh of the Hi-Mod system.
We will discuss this aspect in the numerical assessment.

Let S be the so-called response matrix, collecting p Hi-Mod solutions to (1),
for p different values αi of the parameter, with i = 1, . . . , p. Precisely, we identify
each Hi-Mod solution with the corresponding vector in (4),

uh
m(αi) =

[
ũαi

1,1, . . . , ũ
αi
1,Nh

, ũαi
2,1, . . . , ũ

αi
2,Nh

, . . . , ũαi
m,Nh

]T ∈ RmNh , (5)

the unknown coefficients being ordered mode-wise. Thus, the response (or snap-
shot) matrix S ∈ R(mNh)×p reads

S =
[
uh
m(α1),uh

m(α2), . . . ,uh
m(αp)

]
=



ũα1
1,1 ũα2

1,1 . . . ũ
αp

1,1
...

...
...

...
ũα1

1,Nh
ũα2

1,Nh
. . . ũ

αp

1,Nh

ũα1
2,1 ũα2

2,1 . . . ũ
αp

2,1
...

...
...

...
ũα1

2,Nh
ũα2

2,Nh
. . . ũ

αp

2,Nh
...

...
...

...
ũα1
m,Nh

ũα2
m,Nh

. . . ũ
αp

m,Nh


. (6)

The selection of representative values of the parameter is clearly critical in
the effectiveness of the POD procedure. More the snapshots cover the entire
parameter space and more evident the model reduction will be. This is a non-
trivial issue, generally problem dependent. For instance, in [9] the concept of
domain of effectiveness is introduced to formalize the region of the parameter
space accurately covered by a snapshot in a problem of cardiac conductivity.
In this preliminary work, we do not dwell with this aspect since we work on
more general problems. A significant number of snapshots is anyhow needed
to construct an efficient POD basis, the Hi-Mod procedure providing an effec-
tive tool for this purpose (with respect to a full finite element generation of the
snapshots).

To establish a correlation between the POD procedure and statistical mo-
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ments, we enforce the snapshot matrix to have null average by setting

R = S − 1

p

p∑
i=1



ũαi
1,1 ũαi

1,1 . . . ũαi
1,1

...
...

...
...

ũαi
1,Nh

ũαi
1,Nh

. . . ũαi
1,Nh

ũαi
2,1 ũαi

2,1 . . . ũαi
2,1

...
...

...
...

ũαi
2,Nh

ũαi
2,Nh

. . . ũαi
2,Nh

...
...

...
...

ũαi
m,Nh

ũαi
m,Nh

. . . ũαi
m,Nh


∈ R(mNh)×p. (7)

By Singular Value Decomposition (SVD), we write

R = ΨΣΦT ,

with Ψ ∈ R(mNh)×(mNh), Σ ∈ R(mNh)×p, Φ ∈ Rp×p. Matrices Ψ and Φ are unitary
and collect the left and the right singular vectors of R, respectively. Matrix
Σ = diag (σ1, . . . , σq) is pseudo-diagonal, σ1, σ2, . . . , σq being the singular values
of R, with σ1 ≥ σ2 ≥ · · · ≥ σq and q = min{mNh, p} [6]. In the numerical
assessment below, we take q = p.

The POD (orthogonal) basis is given by the l left singular vectors {ψi}
associated with the most significant l singular values, with l � mNh. Different
criteria can be pursued to select those singular values. A possible approach is
to select the first l ordered singular values, such that

∑l
i=1 σ

2
i /
∑q

i=1 σ
2
i ≥ ε

for a positive user-defined tolerance ε [26]. The reduced POD space then reads
V l

POD = span{ψ1, . . . ,ψl}, with dim(V l
POD) = l.

Equivalently, we can identify the POD basis by applying the spectral de-
composition to the covariance matrix C ≡ RTR (being mNh ≥ p ). As well
known, the right singular vectors of R coincide with the eigenvectors ci of C,
with eigenvalues λi = σ2

i , for i = 1, . . . , p. Thus, the POD basis functions reads
ψi = λ−1

i Sci [26].

2.2.2 The online phase

We aim at rapidly computing the Hi-Mod approximation to problem (1) for the
parameter value α∗ not included in the sampling set {αi}pi=1. For this purpose,
we project the Hi-Mod system (4), with α = α∗, onto the POD space V l

POD, by
solving the linear system

Aα∗
PODuα∗

POD = fα
∗

POD,

with Aα∗
POD = (Ψl

POD)TAh
m(α∗) Ψl

POD ∈ Rl×l, fα
∗

POD = (Ψl
POD)T fhm(α∗) ∈ Rl and

uα∗
POD = [uα

∗
POD,1, . . . , u

α∗
POD,l]

T ∈ Rl, where Ah
m(α∗) and fhm(α∗) are defined as in

(4), and Ψl
POD = [ψ1, . . . ,ψl] ∈ R(mNh)×l is the matrix collecting, by column,

the POD basis functions.
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By exploiting the POD basis, we write

uh
m(α∗) ≈

l∑
s=1

uα
∗

POD,sψs.

The construction of Aα∗
POD and fα

∗
POD requires the assembly of the Hi-Mod

matrix/right-hand side for the value α∗, successively projected onto the POD
space. Also in the basic POD online phase, we need to assembly, in general, the
full problem, and the Hi-Mod model, featuring lower size than a full finite ele-
ment problem, gives a computational advantage. In addition, the final solution
is computed by solving an l × l system as opposed to the mNh ×mNh Hi-Mod
system, with a clear overall computational advantage, as we verify hereafter.

2.3 Numerical assessment

In this preliminary paper, we consider only 2D problems, the 3D case being a
development of the present work. We consider the linear advection-diffusion-
reaction (ADR) problem

−∇ ·
(
µ(x)∇u(x)

)
+ b(x) · ∇u(x) + σ(x)u(x) = f(x) in Ω

u(x) = 0 on ΓD

µ(x)
∂u

∂n
(x) = 0 on ΓN ,

(8)

with ΓD,ΓN ⊂ ∂Ω, such that ΓD ∪ ΓN = ∂Ω and
◦
ΓD ∩

◦
ΓN= ∅, where µ, b,

σ and f denote the viscosity, the advective field, the reactive coefficient and
the source term, respectively. In particular, we set Ω = (0, 6) × (0, 1), with
ΓN = {(x, y) : x = 6, 0 ≤ y ≤ 1, } and ΓD = ∂Ω \ ΓN . We also assume constant
viscosity and reaction, i.e., we pick µ = 0.1µ0 for µ0 ∈ [1, 10] and σ ∈ [0, 3];
then, we assign a sinusoidal advective field, b(x) = [b1, b2 sin(6x)]T with b1 ∈
[2, 20] and b2 ∈ [1, 3], and the source term f(x) = f1χC1(x) + f2χC2(x) for f1,
f2 ∈ [5, 25] and where function χω denotes the characteristic function associated
with the generic domain ω, C1 = {(x, y) : (x − 1.5)2 + 0.4 (y − 0.25)2 < 0.01}
and C2 = {(x, y) : (x−0.75)2 +0.4 (y−0.75)2 < 0.01} identifying two ellipsoidal
areas in Ω. According to the notation in (1), we set therefore V ≡ H1

ΓD
(Ω),

a(u, v) ≡
(
µ∇u,∇v

)
+
(
b · ∇u+ σu, v

)
, for any u, v ∈ V , and F (v) =

(
f, v
)
, for

any v ∈ V ,
(
·, ·
)

denoting the L2(Ω)-scalar product.
In the offline phase, we select p = 30 problems, by randomly varying co-

efficients µ0, σ, b1, b2, f1 and f2 in the corresponding ranges, so that α ≡
[µ0, σ, b1, b2, f1, f2]T . We introduce a uniform partition of Ω1D into 121 sub-
intervals, and we Hi-Mod approximate the selected p problems, combining piece-
wise linear finite elements along the 1D fiber with a modal expansion based on
20 sinusoidal functions along the transverse direction.
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In the online phase, we aim at computing the Hi-Mod approximation to
problem (8) for α = α∗ = [µ∗0, σ

∗, b∗1, b
∗
2, f
∗
1 , f

∗
2 ]T , with

µ∗0 = 2.4, σ∗ = 0, b∗1 = 5, b∗2 = 1, f∗1 = f∗2 = 10.

Figure 1 shows a Hi-Mod reference solution, uR,h
m , computed by directly applying

Hi-Mod reduction to (8) for α = α∗, with the same Hi-Mod discretization setting
used for the offline phase.

This test is intended to demonstrate the reliability of Hi-POD to construct
an approximation of the Hi-Mod solution (that, in turn, approximates the full
solution u), with a contained computational cost.
Figure 2 shows the spectrum of the response matrix R in (7). As highlighted by
the vertical lines, we select four different values for the number l of POD modes,
i.e., l = 2, 6, 19, 29. For these choices, the ratio

∑l
i=1 σ

2
i /
∑q

i=1 σ
2
i assumes the

value 0.780 for l = 2, 0.971 for l = 6, 0.999 for l = 19 (and, clearly, 1 for l = 29).
The singular values for the specific problem decay quite slowly. This is due to
the presence of many (six) parameters, so that the redundancy of the snapshots
(that triggers the decay) is quite limited.

Nevertheless, we observe that the Hi-POD solution still furnishes a reliable
and rapid approximation of the solution in correspondence of the value α∗.
Precisely, Figure 3 shows the Hi-Mod approximation provided by Hi-POD, for
l = 2, 6, 19 (top-bottom). We stress that six POD modes are enough to obtain a

Hi-Mod reduced solution which, qualitatively, exhibits the same features as uR,h
m .

Moreover, the contribution of singular vectors for l > 19 is of no improvement.
We also notice that the results for l = 6 are excellent, since six scalar parameters
influence the solution.

Figure 1: ADR problem. Hi-Mod reference solution.

Table 1 provides more quantitative information. We collect the L2(Ω)- and
the H1(Ω)-norm of the relative error obtained by replacing the Hi-Mod reference
solution with the one provided by the Hi-POD approach. As expected, the error
diminishes proportionally to the number of POD modes.
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Figure 2: ADR problem. Singular values of the response matrix R.

Figure 3: ADR problem. Hi-Mod approximation provided by the Hi-POD ap-
proach for l = 2 (top), l = 6 (center), l = 19 (bottom).

3 Hi-POD reduction of the Navier-Stokes equations

We generalize the Hi-POD procedure in Section 2.2 to the incompressible Navier-
Stokes equations [25]. We first consider the stationary problem

−∇ · (2ν D(u)) (x) + (u · ∇) u(x) +∇p(x) = f(x) in Ω

∇ · u(x) = 0 in Ω

u(x) = 0 on ΓD

(D(u)− pI) (x) n = gn on ΓN ,

(9)

9



l = 2 l = 6 l = 19 l = 29
||uR,h

m −uh
m(α∗)||L2(Ω)

||uR,h
m ||L2(Ω)

3.52e-01 3.44e-02 9.71e-04 4.38e-04

||uR,h
m −uh

m(α∗)||H1(Ω)

||uR,h
m ||H1(Ω)

4.54e-01 6.88e-02 2.21e-03 8.24e-04

Table 1: ADR problem. Relative errors for different Hi-POD reconstructions of
the Hi-Mod solution.

with u = [u1, u2]T and p the velocity and the pressure of the flow, respectively
ν > 0 the kinematic viscosity, D(u) = 1

2

(
∇u + (∇u)T

)
the strain rate, f the

force per unit mass, n the unit outward normal vector to the domain boundary
∂Ω, I the identity tensor, g a sufficiently regular function, and where ΓD and ΓN

are defined as in (8). We apply a standard Picard linearization of the nonlinear
term 

−∇ ·
(
2ν D(uk+1)

)
+
(
uk · ∇

)
uk+1 +∇pk+1 = f in Ω

∇ · (uk+1) = 0 in Ω

uk+1 = 0 on ΓD(
D(uk+1)− pk+1I

)
n = gn on ΓN ,

where {uj , pj} denotes the unknown pair at the iteration j. Stopping criterion
of the Picard iteration is designed on the increment between two consecutive
iterations.

Problem (9) is approximated via a standard Hi-Mod technique, for both the
velocity and the pressure, where a modal basis constituted by orthogonal Leg-
endre polynomials, adjusted to include the boundary conditions, is used. Finite
elements are used along the centerline. The finite dimension Hi-Mod spaces
for velocity and pressure obtained by the combination of different discretization
methods need to be inf-sup compatible. Unfortunately, no proof of compatibility
is currently available, even though some empirical strategies based on the Bathe-
Chapelle test are available [3, 5]. In particular, here we take piecewise quadratic
velocity/linear pressure along the mainstream and the numbers mp,mu of pres-
sure and velocity modes is set such that mu = mp + 2. Numerical evidence
suggests this to be an inf-sup compatible choice [2, 5]. Finally, the same number
of modes is used for the two velocity components, for the sake of simplicity.

We denote by V h,u
1D ⊂ H1(Ω1D) and by V h,p

1D ⊂ L2(Ω1D) the finite ele-
ment space adopted to discretize u1, u2 and p, respectively along Ω1D, with
dim(V h,u

1D ) = Nh,u and dim(V h,p
1D ) = Nh,p. Thus, the total number of degrees of

freedom involved by a Hi-Mod approximation of u and p is Nu = 2muNh,u and
Np = mpNh,p, respectively.

From an algebraic viewpoint, at each Picard iteration, we solve the linear
system (we omit index k for easiness of notation)

Sh
{mu,mp} zhmu,mp

= Fh
{mu,mp}, (10)
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where

Sh
{mu,mp} =

[
Ch
{mu,mu} [Bh

{mu,mp}]
T

Bh
{mu,mp} 0

]
∈ R(Nu+Np)×(Nu+Np),

with Ch
{mu,mu} ∈ RNu×Nu , Bh

{mu,mp} ∈ RNp×Nu the Hi-Mod momentum and

divergence matrix, respectively, zhmu,mp
= [uh

mu
, phmp

]T ∈ RNu+Np the vector of

the Hi-Mod solutions, and where Fh
{mu,mp} = [fhmu

,0]T ∈ RNu+Np , with fhmu
the

Hi-Mod right-hand side of the momentum equation.
When coming to the Hi-POD procedure for problem (9), we follow a segre-

gated procedure, where a basis function set is constructed for the velocity and
another one for the pressure. The effectiveness of this reduced basis in repre-
senting the solution for a different value of the parameter is higher with respect
to a monolithic approach, where a unique POD basis is built. We will support
this statement with numerical evidence. Still referring to (6)-(7), we build two
separate response matrices, Ru ∈ RNu×p and Rp ∈ RNp×p, which gather, by
column, the Hi-Mod approximation for the velocity, uh

mu
(α) ∈ RNu , and for

the pressure, phmp
(α) ∈ RNp , solutions to the Navier-Stokes problem (9) for p

different choices αi, with i = 1, . . . , p, of the parameter that, in this case, is
α = [ν, f , g]T . A standard block-Gaussian procedure resorting to the pressure
Schur-complement is used to compute velocity and pressure, separately [24].

Following a segregated SVD analysis of the two unknowns, after identifying
the two indices lu and lp, separately, we construct a unique reduced POD space
V l

POD, with l = max(lu, lp), by collecting the first l singular vectors of Ru and
of Rp. More precisely, for a new value α∗ of the parameters, with α∗ 6= αi for
i = 1, . . . , p, at each Picard iteration, we project the linearized Navier-Stokes
problem onto the space V l

POD.
Another possible approach is to keep the computation of the velocity and

pressure separate on the two basis function sets with size lu and lp, by resorting
to an approximation of the pressure Schur complement, followed by the computa-
tion of the velocity, similar to what is done in algebraic splittings [22, 24, 27, 28].
More in general, the treatment of the nonlinear term in the Navier-Stokes prob-
lem can follow approximation strategies with a specific basis function set and
empirical interpolation strategies [23]. At this preliminary stage, we do not fol-
low this approach and we just assess the performances of the basic procedure.
However, this topic will be considered in the follow-up of the present work in
view of real applications.

It is also worth noting that no inf-sup compatibility is guaranteed for the
POD basis functions. Numerical evidence suggests that we do have inf-sup
compatible basis functions, however a theoretical analysis is still missing.
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3.1 A benchmark test case

We solve problem (9) on the rectangular domain Ω = (0, 8) × (−2, 2), where
ΓD = {(x, y) : 0 ≤ x ≤ 8, y = ±2} and ΓN = ∂Ω \ ΓD.
Moreover, we assume the analytical representation

f =

[
f0,x + fxx x+ fxy y
f0,y + fyx x+ fyy y

]
(11)

for the forcing term f involved in the parameter α.
In the offline stage, we Hi-Mod approximate p = 30 problems, by varying the

coefficients fst, for s = 0, x, y and t = x, y, in (11), the kinematic viscosity ν and
the boundary value g in (9). In particular, we randomly sample the coefficients
fst on the interval [0, 100], whereas we adopt a uniform sampling for ν on [30, 70]
and for g on [1, 80].
Concerning the adopted Hi-Mod discretization, we partition the fiber Ω1D into
80 uniform sub-intervals to employ quadratic and linear finite elements for the
velocity and the pressure, respectively. Five Legendre polynomials are used to
describe the transverse trend of u, while three modal functions are adopted for
p.

In the online phase, we compute the Hi-POD approximation to problem
(9) with parameters α∗ = [f∗, ν∗, g∗]T , with f∗ = [82.6, 12.1]T , ν∗ = 51.4 and
g∗ = 24.2, fxx = fyy = fxy = fyx = 0. Figure 4 (left) shows the contour plots of
the two components of the velocity and of the pressure for the reference Hi-Mod
solution {uR,h

mu , p
R,h
mp } (from top to bottom: horizontal velocity, vertical velocity,

pressure), with uR,h
mu = [uR,h

mu,1
, uR,h

mu,2
]T .

Figure 4: Steady Navier-Stokes equations. Hi-Mod reference solution (left),
Hi-Mod approximation yielded by the monolithic Hi-POD approach for l =
11 (center) and l = 28 (right): horizontal (top) and vertical (middle) velocity
components; pressure (bottom).

For the sake of completeness, we display the results of a monolithic approach
in Figure 4 (center and right), where the POD basis is computed on a unique
response matrix for the velocity and pressure. While velocity results are quite
accurate, pressure approximation is bad, suggesting that, probably, a lack of
inf-sup compatibility of the reduced basis leads to unreliable pressure approxi-
mations, independently of the dimension of the POD space.
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When we turn to the segregated approach, Figure 5 shows the distribution of
the singular values of the response matrices Ru and Rp, respectively. Again the
values decay is not so rapid to pinpoint a clear cut-off value (at least for signifi-
cantly small dimensions of the reduced basis), as a consequence of the multiple
parametrization that inhibits the redundancy of the snapshots. However, when
we compare the Hi-Mod solution identified by three different choices of the POD
spaces, V l,u

POD and V l,p
POD, with the reference approximation in Figure 4 (left), we

notice that the choice l = 6 is enough for a reliable reconstruction of the ap-
proximate solution (see Figure 6 (center)). The horizontal velocity component
- being the most predominant dynamics - is captured even with a lower size of
the reduced spaces V l,u

POD, while the pressure still represents the most challenging
quantity to be correctly described.

Figure 5: Steady Navier-Stokes equations. Singular values of the response matrix
Ru (left) and Rp (right).

Figure 6: Steady Navier-Stokes equations. Hi-POD approximation yielded by
the segregated Hi-POD approach for l = 4 (left), l = 6 (center), l = 10 (right):
horizontal (top) and vertical (middle) velocity components; pressure (bottom).

In Table 2, we quantify the accuracy of the Hi-POD procedure. We com-
pare the relative errors between the Hi-Mod reference solution {uR,h

mu , p
R,h
mp } and

the Hi-POD approximation {uh
mu

(α∗), phmp
(α∗)} generated by different Hi-POD

schemes, with uh
mu

(α∗) = [uhmu,1(α∗), uhmu,2(α∗)]T .

As for the computational time (in seconds)1, we found that the segregated
Hi-POD requires 0.13s to be compared with 0.9s demanded by the standard Hi-

1All the experiments have been performed using MATLAB R2010a 64-bit on a Fujitsu
Lifebook T902 equipped with a 2.70 GHz i5 (3rd generation) vPro processor and 8 GB of
RAM
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||uR,h
mu,1

− uhmu,1(α∗)||H1(Ω)

||uR,h
mu,1
||H1(Ω)

||uR,h
mu,2

− uhmu,2(α∗)||H1(Ω)

||uR,h
mu,2
||H1(Ω)

||pR,h
mp − phmp

(α∗)||L2(Ω)

||pR,h
m ||L2(Ω)

l = 4 7.1 · 10−3 3.9 · 10−1 4.8 · 10−1

l = 6 3.8 · 10−4 4.3 · 10−2 3.9 · 10−1

l = 10 1.1 · 10−4 8.6 · 10−3 1.3 · 10−3

Table 2: Steady Navier-Stokes equations. Relative errors for different Hi-POD
reconstructions of the Hi-Mod solution.

Mod approximation. This highlights the significant computational advantage
attainable by Hi-POD, in particular for a rapid approximation of the incom-
pressible Navier-Stokes equations when estimating one or more parameters of
interest.

4 Towards more realistic applications

We extend the Hi-POD segregated approach to the unsteady Navier-Stokes equa-
tions

∂u

∂t
(x, t)−∇ · (2ν D(u)) (x, t) + (u · ∇) u(x, t) +∇p(x, t) = f(x, t) in Q

∇ · u(x, t) = 0 in Q

u(x, t) = 0 on GD

(D(u)− pI) (x, t) n = g(x, t)n on GN

u(x, 0) = u0(x) in Ω,

(12)
Q = Ω × I with I = (0, T ) the time window of interest, GD = ΓD × I, GN =
ΓN × I, u0 the initial value, and where all the other quantities are defined as
in (9). After introducing a uniform partition of the interval I into M sub-
intervals of length ∆t, we resort to the backward Euler scheme and approximate
the nonlinear term via a classical first order semi-implicit scheme. The semi-
discrete problem reads: for each 0 ≤ n ≤ M − 1, find {un+1, pn+1} ∈ V ≡
[H1

ΓD
(Ω)]2 × L2(Ω) such that

un+1 − un

∆t
−∇ ·

(
2ν D(un+1)

)
+ (un · ∇) un+1 +∇pn+1 = fn+1 in Ω

∇ · un+1 = 0 in Ω

un+1 = 0 on ΓD(
D(un+1)− pn+1I

)
n = gn+1n on ΓN ,

(13)
with u0 = u0(x), un+1 ' u(x, tn+1), pn+1 ' p(x, tn+1) and ti = i∆t, for
i = 0, . . . ,M .

For the Hi-Mod approximation, we replace space V in (13) with the same
Hi-Mod space as in the steady case.
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When applied to unsteady problems, POD procedures are generally used for
estimating the solution at a generic time by taking advantage of precomputed
snapshots [26]. In our specific case, we know the Hi-Mod solution for a certain
number of parameters αi, and we aim at rapidly estimating the solution over a
time interval of interest for a specific value α∗ of the parameter, with α∗ 6= αi.
The procedure we propose here is the following one:

1. we precompute offline the steady Hi-Mod solution for p samples αi of the
parameter, i = 1, . . . , p;

2. for a specific value α∗ of the parameter, we compute online the Hi-Mod
solution to (12) at the first times tj , for j = 1, . . . , P ;

3. we juxtapose the Hi-Mod snapshots to the steady response matrix obtained
offline;

4. we perform the Hi-POD procedure to estimate the solution to (12) at times
tj , with j > P .

In absence of a complete analysis of this approach, we present here some
preliminary numerical results in a non-rectilinear domain. Hi-Mod reduction
has been already applied to curvilinear domains [14, 17]. In particular, in [17]
we exploit the isogeometric analysis to describe a curvilinear centerline Ω1D, by
replacing the 1D finite element discretization with an isogeometric approxima-
tion.

Here, we consider a quadrilateral domain with a sinusoidal-shaped centerline
(see Figure 7). We adopt the same approach as in [14] based on an affine
mapping of the bent domain into a rectilinear reference one. During the offline
phase, we Hi-Mod solve problem (9) for p = 5 different choices of the parameter
α = [ν, f , g]T , by uniformly sampling the viscosity ν in [1.5, 7], g in [1, 80], and
f(x) = [f1, f2]T , with f1, f2 ∈ R in [0, 10]. Domain Ω1D is divided in 80 uniform
sub-intervals. We approximate u and p with five and three Legendre polynomials
along the transverse direction combined with piecewise quadratic and linear
functions along Ω1D, respectively. The corresponding Hi-Mod approximations
constitute the first p columns of the response matrices Ru and Rp.

Then, we solve the unsteady problem (12). We pick u0 = 0, T = 10, and we
introduce a uniform partition of the time interval I, with ∆t = 0.1.
The data α∗ for the online phase are ν∗ = 2.8, g∗ = 30 + 20 sin(t) and f∗ =
[5.8, 1.1]T . Matrices Ru and Rp are added by the first P = 5 Hi-Mod ap-

proximations {uh,j
mu(α∗), ph,jmp(α∗)}, for j = 1, . . . , 5, so that Ru ∈ RNu×10 and

Rp ∈ RNp×10, where Nu = 2× 5×Nh,u, Np = 3×Nh,p with Nh,u and Nh,p the
dimension of the one dimensional finite element space used along Ω1D for u and
p, respectively.

Figure 7 compares, at four different times, a reference Hi-Mod solution
{uR,h

mu , p
R,h
mp }, with uR,h

mu = [uR,h
mu,1

, uR,h
mu,2

]T , computed by hierarchically reducing
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problem (12) with the Hi-POD solution {uh
mu

(α∗), phmp
(α∗)}, with uh

mu
(α∗) =

[uhmu,1(α∗), uhmu,2(α∗)]T , for l = 6. The agreement between the two solutions
is qualitatively very good, in spite of the fact that no information from the Hi-
Mod solver on the problem after time t5 is exploited to construct the Hi-POD
solution. The pressure still features larger errors, as in the steady case.

We make this comparison more quantitative in Table 3, where we collect the
L2(Ω)- and the H1(Ω)-norm of the relative error between the Hi-Mod reference
solution and the Hi-POD one, at the same four times as in Figure 7. We no-
tice that the error does not grow significantly with time. This suggests that
the Hi-POD approach can be particularly viable for reconstructing asymptotic
solutions in periodic regimes, as in computational hemodynamics. As for the
computational efficiency, Hi-POD solution requires 103s vs 287s of Hi-Mod one,
with a significant reduction of the computational time.

||uR,h
mu,1

− uhmu,1(α∗)||H1(Ω)

||uR,h
mu,1
||H1(Ω)

||uR,h
mu,2

− uhmu,2(α∗)||H1(Ω)

||uR,h
mu,2
||H1(Ω)

||pR,h
mp − phmp

(α∗)||L2(Ω)

||pR,h
mp ||L2(Ω)

t = 2 5.4 · 10−4 4.5 · 10−4 3.4 · 10−2

t = 4 2.4 · 10−3 2.1 · 10−3 1.0 · 10−1

t = 6 2.3 · 10−3 2.2 · 10−3 6.2 · 10−2

t = T 2.6 · 10−3 2.4 · 10−3 7.7 · 10−2

Table 3: Unsteady Navier-Stokes equations. Relative error associated with the
Hi-Mod approximation provided by Hi-POD at different times.

5 Conclusions and future developments

The preliminary results in Sections 2.3, 3.1 and 4 yielded by the combination
of the model/solution reduction techniques, Hi-Mod/POD, are very promising
in view of modeling incompressible fluid dynamics in pipes or elongated do-
mains. We have verified that Hi-POD enables a fast solution of parametrized
ADR problems and of the incompressible, steady and unsteady, Navier-Stokes
equations, even though in the presence of many (six) parameters. In particular,
using Hi-Mod in place of a traditional discretization method applied to the ref-
erence (full) problem accelerates the offline phase and also the construction of
the reduced problem projected onto the POD space.

Clearly, there are several features of this new approach that need to be
investigated. First of all, we plan to migrate to 3D problems within a parallel
implementation setting (in the library LifeV, www.lifev.org). Moreover,
we aim at further accelerating the computational procedure by using empirical
interpolation methods for possible nonlinear terms [23]. Finally, an extensive
theoretical analysis is needed to estimate the convergence of the Hi-POD solution
to the full one as well as the inf-sup compatibility of the Hi-Mod bases deserves
to be rigorously analyzed.
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Figure 7: Unsteady Navier-Stokes equations. Reference Hi-Mod solution (left)
and Hi-Mod approximation yielded by the Hi-POD approach for l = 6 (right), at
t = 2 (first row), t = 4 (second row), t = 6 (third row) and t = T (fourth row):
horizontal (top) and vertical (middle) velocity components; pressure (bottom).
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As reference application we are interested in computational hemodynam-
ics, in particular to estimate blood viscosity from velocity measures in patients
affected by sickle cell diseases [21].
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